
Contents

4 Shortest Chain Algorithms 327
4.1 LP Formulation of the Unconstrained Shortest Chain

Problem as a Minimum Cost Flow Problem 329
4.2 Label Setting Methods for Shortest Chains from a Spec-

ified Origin . 336
4.3 Label Correcting Methods for Shortest Chains from a

Specified Origin . 342
4.4 Shortest Chains From a Specified Origin in an Acyclic

Network . 355
4.5 Matrix Methods for Shortest Chains Between All Pairs

of Nodes . 357
4.6 Sensitivity Analysis in the

Shortest Chain Problem 362
4.7 Algorithm for Ranking Chains in Nondecreasing Order

of Length . 364
4.8 Exercises . 367
4.9 References . 379

i

ii

Chapter 4

Shortest Chain Algorithms

The problem of finding a shortest chain from a specified origin (or
source) node to a specified destination (or sink) node is a fundamen-
tal problem that appears in many applications. It generates essential
information in transportation, routing, and communications applica-
tions; here the lengths of the arcs are the geographical distances (or
the travel times) associated with them. This problem appears as a sub-
problem in each step in solving multicommodity flow problems using
the revised simplex method on an arc chain formulation (Section 5.11);
in this application the lengths of the arcs are numbers derived by the
algorithm, and they depend on the dual solution in that step. In critical
path methods (CPM, see Chapter 7) arcs in the acyclic project network
correspond to jobs, the length of each is the negative of the time dura-
tion required to complete the corresponding job, and the shortest chain
problem appears in the task of scheduling the various jobs over time.
There are also applications in equipment replacement (Garcia-Diaz and
Liebman [1980]), preparation of travel time and distance charts (Golden
and Magnanti [1978]), vehicle routing and scheduling (Christofides,
Mingozzia and Toth [1981], Golden and Magnanti [1978]), capacity
planning (Doulbiez and Ras [1975]), design and/or expansion of trans-
portation and communication networks (Golden and Magnanti [1978],
Schwartz and Stern [1980]), and in several other areas. The shortest
chain problem also appears as a subproblem in algorithms for the solu-
tion of other network flow and discrete optimization problems. In this

327

328 Ch. 4. Shortest Chain Algorithms

chapter we discuss various algorithms for finding shortest chains in a
network.

What we call a “chain” is called a “path” in some books. So, in
the literature, the shortest chain problem is often referred to as the
“shortest path problem” or the “shortest route problem.”

Suppose there is an edge (i; j) in the original network of length ci;j .

If ci;j
>
= 0 we replace (i; j) by the pair of arcs (i, j), (j, i) both of length

ci;j. On the other hand, if ci;j < 0, this operation creates a negative
length circuit (i, j), (j, i) in the transformed network (notice that this
is not a circuit in the original network; see Section 1.2.2). As explained
later, negative length circuits in the network create difficulties for solv-
ing shortest chain problems in it; hence we cannot replace a negative
length edge (i; j) by the pair of arcs (i, j), (j, i) of the same length.
When the original network contains negative length edges, but other-
wise no negative length circuits, the problem of finding shortest simple
chains in it requires special techniques based on matching algorithms
(Tobin [1975]) but we will not discuss them because of their limited
applicability.

Hence, we assume that if there are any edges in the original network,
their lengths are

>
= 0, and we will replace each of them by a pair of

arcs of the same length as described above. So in the sequel we assume
that the network on which our shortest chain problem is defined is a
directed connected network G = (N ,A, c) with c = (cij) as the vector
of arc lengths, and |N | = n.
The length of any chain is the sum of the lengths of arcs in it. If

there are parallel arcs with tail node i and head node j in G, only
the shortest among them will be used on the shortest chains. Call
this the arc (i, j) and eliminate all other arcs parallel to it from further
consideration. We continue to denote the set of arcs byA. Letm = |A|.
We will discuss the problem of finding the shortest chains from a

fixed origin to all the other nodes in G. Given a chain containing some
circuits, all the arcs on these circuits can be eliminated, leaving a simple
chain; this elimination will not increase the length of the chain if the
lengths of these circuits are

>
= 0. Hence, if a chain exists from the

origin to j, and G contains no negative length circuits, there exists a
shortest chain from the origin to j which is simple. All shortest chains

4.1. LP Formulation 329

found by algorithms discussed in this chapter will be simple chains.
If shortest chains from the origin to all the other nodes in G exist,

by the result in Exercise 4.1 later on, there exists an outtree rooted at
the origin such that the unique path in it between the origin and any
other node is a shortest chain to that node. Such an outtree is called
a shortest chain tree (also called a shortest path tree in the
literature). The shortest chain tree stored using the predecessor labels,
provides a convenient data structure for storing the shortest chains out
of the origin.
Another problem that we will consider is that of finding shortest

chains between every pair of nodes in G.

4.1 LP Formulation of the Unconstrained

Shortest Chain Problem as a Mini-

mum Cost Flow Problem

To find a shortest chain from 1 to n in G = (N ,A, c) is equivalent
to the following problem of sending one unit of flow from 1 to n at
minimum cost with 0, ∞, c as the lower bound, capacity and unit cost
coefficient vectors for arc flows.

Minimize
3
(cijfij : over (i, j) ∈ A)

Subject to − f(i,N) + f(N , i) =

⎧⎪⎨⎪⎩
−1 if i = 1
0 if i W= 1, n
1 if i = n

(4.1)

fij
>
= 0, for all (i, j) ∈ A

The chain may traverse through an arc any number of times since
this is an unconstrained shortest chain problem. The flow on each arc
represents the number of times the chain traverses it (if the capacity of
an arc is made = 1, then we get the flow formulation of the constrained
shortest chain problem in which you cannot pass through that arc more
than once). (4.1) has a redundant constraint that can be eliminated;
we choose it to be the one corresponding to the origin, node 1. The

330 Ch. 4. Shortest Chain Algorithms

dual of the resulting problem involves dual variables which are node
prices πi. It is

Maximize πn − π1

Subject to πj − πi
<
= cij , for each (i, j) ∈ A (4.2)

π1 = 0.

Every basic vector for (4.1) consists of flow variables associated with
arcs in a spanning tree in G. A feasible basic vector for it corresponds
to a spanning tree dd such that the unique path in dd from 1 to n is a
chain and vice versa. In the corresponding BFS the flow amounts are
equal to 1 on all the arcs of that chain, and 0 on all the other arcs.
Hence, in every BFS f = (fij) of (4.1), all fij are 0 or 1, and {(i, j) : fij
= 1} is the set of arcs on a simple chain from 1 to n. Thus each extreme
point of the set of feasible solutions of (4.1), i.e., each BFS of (4.1), is
the incidence vector of the set of arcs on a simple chain from 1 to n in
G and vice versa.
Suppose there is a negative length circuit

→
CC in G. Summing the

dual constraints in (4.2) corresponding to arcs (i, j) on
→
CC leads to the

inconsistent inequality 0
<
= a negative number. So, the dual problem

(4.2) is infeasible, and by the duality theorem of LP, if (4.1) is feasible,
the objective value in it is unbounded below. The solution of (4.1)
which makes the objective function unbounded below corresponds to a

flow that traverses around
→
CC an infinite number of times. Hence, when

the network contains a negative length circuit, unconstrained shortest
chain algorithms will detect one such circuit and terminate with the
unboundedness conclusion.
As an example consider the network in Figure 4.1. Arc lengths are

entered on the arcs. A feasible flow vector f(µ), for µ
>
= 0, is marked

with the flow on each arc entered inside a box if it is W= 0. As µ→∞
the objective value of f(µ)→ −∞.
Even when G contains a negative length circuit, the constrained

shortest chain problem of finding a minimum length simple chain from
1 to n is a well-posed problem. (4.1) has a finite number of BFSs, each
associated with a simple chain from 1 to n in G. Hence this problem

4.1. LP Formulation 331

1

1

1

1

1

1

1

µ

3

7

Origin Destination

1

1

µ

µ

1

4

5

6

2

_
3

Figure 4.1: Network with a negative length circuit containing nodes 2,
3, 4.

is equivalent to that of finding a minimum cost BFS among the finite
number of BFSs of the unbounded LP (4.1). In Section 2.2 we have
seen that the maximum capacity cut problem is also a problem of
this type. In general these are NP-hard combinatorial optimization
problems. At the moment the only known algorithms for tackling them
are enumerative algorithms whose computational requirements grow
exponentially with the size of the problem in the worst case.

The network in Figure 4.1 has the special property that any node
which lies on a negative length circuit does not lie on any chain from
the origin to the destination. Under this property it is possible to solve
the shortest simple chain problem efficiently; see Exercise 4.3.

In the shortest simple chain problem, unboundedness in the pres-
ence of negative length circuits occurs due to traversal around such a
circuit an infinite number of times. From this, one may be tempted to
think that the simple technique of imposing an upper bound of 1 on all
the variables in (4.1) will take care of this difficulty. This capacitated

332 Ch. 4. Shortest Chain Algorithms

2

1

3

4

6

5 7

6

7

18

10

15

20

1

2

1

-12

4

5

Figure 4.2:

problem has an integer optimum solution as long as there is a chain
from 1 to n in G; suppose it is f̄ = (f̄ij). The set of arcs (i, j) on which
f̄ij = 1 defines a chain from 1 to n which we denote by C0. C0 may not
be simple; it may include some negative length circuits. Eliminate all
circuits from C0; suppose this leaves the simple chain C1 from 1 to n.
Unfortunately, C1 may not be a shortest simple chain from 1 to n in G
as illustrated by the network in Figure 4.2. Arc lengths are entered on
the arcs. The shortest simple chain from 1 to 7 in this network is 1, (1,
6), 6, (6, 4), 4, (4, 5), 5, (5, 3), 3, (3, 7), 7 of length 18. Problem (4.1)
with capacities of 1 on all the arcs in this network has the optimum
flow with flow amount of 1 on all the thick arcs, and 0 on others. The
set of thick arcs includes the negative length circuit containing nodes
3,4,5. Elimination of this circuit from the set of thick arcs leaves the
simple chain 1, (1, 2), 2, (2, 3), 3, (3, 7), 7, which is not a shortest
simple chain from 1 to 7 in this network.

Let f̂ = (f̂ij) be a basic feasible flow vector for (4.1) and π̂ = (π̂i),

a node price vector in G. Let Ĉ be the simple chain from 1 to n in G
corresponding to f̂ ; i.e., f̂ is the incidence vector of Ĉ. By the duality
theory of LP f̂ , π̂ are respectively optimal to (4.1), (4.2), iff

4.1. LP Formulation 333

π̂n = opt. obj. value in (4.2) = opt. obj. value in (4.1)

= length of a shortest chain from 1 to n in G (4.3)

π̂j − π̂i = cij whenever f̂ij = 1, i.e., for all (i, j) on Ĉ (4.4)

π̂j − π̂i
<
= cij for all (i, j) ∈ A (4.5)

(4.5) are just the conditions for the node price vector π̂ to be dual
feasible. Conversely, given a dual feasible node price vector π̂, if there
exists a chain from 1 to n consisting only of arcs (i, j) for which π̂j−π̂i =
cij , then that chain is a shortest chain.
Assume that G contains no negative length circuits. One can derive

the above facts directly without appealing to the duality theory of LP.
For this, define π̂1 = 0, and for i ∈ N , i W= 1, let π̂i be ∞ if there
exists no chain from 1 to i in G, or the length of a shortest chain from
1 to i otherwise. For (i, j) ∈ A, if π̂i < ∞, π̂i + cij is the length of
a chain from 1 to j (it consists of a shortest chain from 1 to i and

then the arc (i, j)), and hence π̂i + cij
>
= π̂j , since π̂j is the length of a

shortest chain from 1 to j. So, π̂ = (π̂i) must satisfy (4.5). Also the
shortest chains themselves consist of arcs satisfying these conditions as
equations. Also, given π feasible to (4.2) or (4.5), any chain from 1
to q consisting of arcs for which (4.5) holds as an equation must have
length πq, and hence is a shortest chain from 1 to q.
From this discussion it is clear that the value of the dual variable πi

in an optimum dual solution can be interpreted as being the length of
a shortest chain from 1 to i in G. And, the vector π̂ = (π̂i) of shortest
chain lengths out of node 1 satisfy

π̂1 = 0

(4.6)

π̂j = min.{π̂i + cij : i ∈ Bj}, for all j ∈ N , j W= 1
(4.6) are known as the Bellman-Ford equations for the shortest

chain problem with node 1 as the origin node. They represent neces-

334 Ch. 4. Shortest Chain Algorithms

sary conditions for the vector of shortest chain lengths out of node 1.
Conversely, if the vector π = (πi) satisfies the Bellman-Ford equations,
and there is a chain from 1 to i of length πi, then that chain is a shortest
chain from 1 to i.
(4.1) is the LP formulation for finding a shortest chain from node 1

to the specified destination, node n. But its dual (4.2) involves variables
which represent the lengths of the shortest chains from 1 to all the other
nodes in G. Therefore it usually happens that to find a shortest chain
from 1 to a specified destination, one may have to find the shortest
chains from 1 to all the other nodes in the network.

Exercises

4.1 G = (N ,A, c) is a directed network with the origin at node 1.
The simple chain Ci is a shortest chain from 1 to i in G. For every node
p on Ci prove that Ci(p), the portion of Ci between 1 and p, is a shortest
chain from 1 to p in G.
Let the simple chain Cj be a shortest chain from 1 to j W= i, and

p W= 1 a common node on Ci and Cj . Prove that Ci(p) and Cj(p) must
have the same length. See Figure 4.3. Using this prove that there must
exist simple chains from 1 to i, j respectively which are shortest chains
to i, j satisfying: either these chains have no common node other than
the origin 1; or if they have any common node p W= 1, the portions of
both these chains between 1 and p are identical.
Using this prove that if shortest chains exist in G from 1 to all

the other nodes, then there exists a spanning outtree, dd, rooted at 1,
on which all the paths from the root are shortest chains. Hence show
that in this case there exists an optimum feasible basic vector for (4.1),
corresponding to an outtree rooted at 1 which is a shortest chain tree.

4.2 G = (N ,A, c) is a connected directed network with c as the vector
of arc lengths, and |N | = n. Show that the following minimum cost
flow problem is a formulation for the problem of finding shortest chains
from the origin, 1, to all the other nodes in G.

Minimize
3
(cijfij : over (i, j) ∈ A)

4.1. LP Formulation 335

i

e
1

e
2

e
3

e
4

e
5

j
1

p

Figure 4.3: Ci is thick, and Cj is normal. Ci(p) consists of arcs e1, e2;
Cj(p) of e3, e4, e5.

Subject to f(i,N)− f(N , i) =

l
n− 1 , if i = 1
−1 , if i W= 1 (4.7)

fij
>
= 0, for all (i, j) ∈ A

Prove that every BFS for (4.7) is nondegenerate. Show that the
dual of (4.7) is

Maximize
3

(πi − π1)

Subject to cij− (πj − πi)
>
= 0, for all (i, j) ∈ A

Show that we can set π1 = 0 in the dual problem, and in that case,
πi in an optimum dual solution gives the shortest chain distance from
the origin to node i.
Suppose a shortest chain tree dd1 for this problem is given. Now

consider the same problem with a different origin node, say node 2.
For the flow version of the new problem, dd1 is dual feasible but primal
infeasible. Develop a special adaptation of the dual simplex algorithm
of LP to compute a shortest chain tree rooted at node 2, starting with
dd1 (Florian, Nguyen, and Pallatino [1981]).
4.3 G= (N ,A, c) is a directed network with c as the arc length vector.
Suppose it is required to find a shortest simple chain from 1 to n in G

336 Ch. 4. Shortest Chain Algorithms

that has no common nodes with any negative length circuit. Develop a
procedure for this problem using any of the shortest chain algorithms
discussed in later sections. If there are no common nodes between any
chain from 1 to n and any negative length circuit in G, show that this
procedure finds a shortest chain from 1 to n in G.

4.4 Suppose there are some negative length circuits in G = (N ,A, c).
Solve (4.1) with the capacity constraint of 1 on all the arcs, let f̄ = (f̄ij)
be an optimum integer flow vector for this problem. If f̄ is the incidence
vector of a simple chain from 1 to n, prove that it is a shortest simple
chain from 1 to n in G.

4.2 Label Setting Methods for Shortest

Chains from a Specified Origin

Let G = (N ,A, c) be the connected directed network with node 1 as
the origin for this problem. Here we discuss an algorithm due to E.
W. Dijkstra [1959]. The arc length vector c must be

>
= 0 for using this

algorithm. It builds the shortest chain tree in a connected fashion one
arc per step. Once an arc is included in this tree, it is not removed
later on. The new node on the arc that is included in each step is the
best (i.e., closest to the origin) among all the out-of-tree nodes at that
stage. So, the arc selection in each step is a greedy selection and
the algorithm itself is known as a greedy algorithm. We now provide
the main result on which the algorithm is based.

THEOREM 4.1 Let G = (N ,A, c) be a directed connected network
with arc length vector c

>
= 0. Let dd be an outtree rooted at the origin,

node 1, spanning the nodes in the set X ⊂ N , which is a shortest chain
tree. For each i ∈ X, let πi be the length of a shortest chain from 1 to
i in G. Let p ∈ X, q ∈ X̄ = N\ X satisfy: (p, q) ∈ A, and

πp + cpq = min. {πi + cij : over i ∈ X, j ∈ X̄, (i, j) ∈ A} (4.8)

4.2. Label Setting Methods 337

Then adding the arc (p, q) to dd and defining πq = πp+ cpq, extends
dd into ddI which is a shortest chain tree spanning the nodes in X∪{q}.

Proof Let C0 denote the chain obtained by adding the arc (p, q)
at the end of the chain from 1 to p in dd. Let C be any chain from 1
to q. Let (r, s) be the first arc in the cut (X, X̄) as you travel along
C. Let C1 be the portion of C from 1 to r, and C2 the portion from s
to q. Then C consists of the chains C1 and C2 and the arc (r, s). So,
the length of C = crs + length of C1 + length of C2 >

= crs+ length of
C1 (since length of C2 >

= 0 as c
>
= 0)

>
= crs + πr (since πr is the shortest

chain length from 1 to r)
>
= πp + cpq (by (4.8)) = length of C0. Hence

C0 is a shortest chain from 1 to q.

Beginning with the trivial tree consisting of the single node 1, the
result in Theorem 4. 1 can be used repeatedly to obtain in (n − 1)
steps the shortest chain tree in G, adding one arc and node per step.
At the stage when the tree spans r nodes, selecting the next arc to
add to the tree using (4.8) can take up to O(r(n − r)) additions and
comparisons, since there may be that many arcs in the cut at that stage.
If carried out directly, the computational effort in the entire algorithm
may therefore be

�
rO(r(n − r)) = O(n3). Dijkstra observed that

repeated minimization over the cut leads to repeated examination of
arcs, and pointed out that cut examination can be replaced by setting
and updating node labels called temporary labels on out-of-tree
nodes. By this, each arc is examined precisely once in the algorithm,
and the overall computational effort will be at most O(n2).
Nodes may be in three possible states: permanently labeled,

temporary labeled, or unlabeled in this algorithm. The label in
node i is always of the form (P(i), di), where P(i) is the predecessor
index of i, and di is the length of the present chain to i, which is the
predecessor path of i in reverse order. A node becomes permanently
labeled when it is included in the shortest chain tree, and then its label
will not change subsequently. Hence, this method and all variants of
it are called label setting methods. For each permanently labeled node,
the present chain from 1 to it will be a shortest chain. X, Y, N denote
the sets of permanently labeled, temporary labeled, unlabeled nodes
respectively. In each step, one node is transferred from Y to X. The

338 Ch. 4. Shortest Chain Algorithms

labels on nodes in Y are updated in each step.

THE LABEL SETTING METHOD

Step 1 Label the origin, 1, with the permanent label (∅, 0). Label
each j ∈ A1 with the temporary label (1, c1j). X = {1}, Y =
A1, N = N\(X∪Y). Go to Step 2.

Step 2 If Y = ∅ go to Step 3. If Y W= ∅, find an i ∈Y for which the
distance index di in the label is the least among all the nodes in
Y at this stage. Break ties for this i arbitrarily. Make the current
label on i permanent and move it from Y to X. If the label on
i is (P(i), πi), (P(i), i) is the arc included in the shortest chain
tree in this step.

For each j ∈Y, let dj be its present distance index. If (i, j) ∈ A
and dj > πi + cij , change the label on j to (i, πi + cij), otherwise
leave the temporary label on j unchanged.

Temporary label each j ∈ N∩Ai with (i, πi + cij) and move it
from N to Y.

If X W= N repeat this Step 2.

Step 3 The present labels define a shortest chain tree spanning the
nodes in X. Since Y = ∅, if X W= N , there exists no chain from 1
to any node in the set N at this stage. Terminate.

Discussion

As an example consider the network G in on the left of Figure 4.4
with arc lengths entered on the arcs. Figures 4.4 to 4.6 illustrate the
various steps in the label setting method to find a shortest chain tree
rooted at node 1 in this network. Permanent labels are marked in bold
face, temporary labels in regular style. In-tree arcs are marked with
thick lines. Figure 4.6 right side network contains the shortest chain
tree rooted at node 1.
Suppose all the cij are equal to 1. In this case the shortest chain

problem is that of finding a chain from the origin to the destination
consisting of the smallest number of arcs. In the shortest augmenting

4.2. Label Setting Methods 339

1

2

3

4

5

6

6.1

11.2

8.1

5.2

3.2

10.2

4.4

3.1

1.1

origin

9.3

(1,11.2)

(1,6.1)

(1,5.2)

(ø , 0)

1

2

3

4

5

6

6.1

11.2

8.1

5.2

3.2

10.2

4.4

3.1

1.1

origin

9.3

(1,6.1)

(1,11.2)

(1,5.2)

(ø , 0)

Figure 4.4:

path method of Section 2.3.3 for the maximum value flow problem, in
each step the problem of finding a shortest augmenting path is exactly
a problem of this type in the residual network at that stage. It can be
verified that the breadth first search method for it discussed in Section
2.3.3 is a specialization of this label setting method to it.

THEOREM 4.2 Assuming that c
>
= 0, the in-tree chain from 1 to

any permanently labeled node is a shortest chain.

Proof Assume that the following statements hold at some stage.

(i) For each j ∈ X, the present in-tree chain to j is a shortest chain.
(ii) For each j ∈Y, the present chain from 1 to j traced by the current

labels (permanent or temporary) traverses only through nodes in
X before reaching j, and has minimum length among all chains
satisfying this property.

Let i ∈ Y be the temporarily labeled node whose label is made
permanent next. For j ∈ Y let dj be the present distance label on j.
Then by the choice of i

di = min. {dj : j ∈ Y} (4.9)

340 Ch. 4. Shortest Chain Algorithms

1

2

3

4

5

6

6.1

11.2

8.1

5.2

3.2

10.2

4.4

3.1

1.1

origin

9.3

(1,6.1)

(1,5.2) (2,16.3)

(2,9.3)(ø , 0)

1

2

3

4

5

6

6.1

11.2

8.1

5.2

3.2

10.2

4.4

3.1

1.1

origin

9.3

(1,6.1)

(1,5.2)

(2,9.3)

(5,12.4)

(5,13.7)

(ø , 0)

Figure 4.5:

1

2

3

4

5

6

6.1

11.2

8.1

5.2

3.2

10.2

4.4

3.1

1.1

origin

9.3

(1,6.1)

(1,5.2)

(2,9.3)

(5,13.7)

(5,12.4)

(ø , 0)

1

2

3

4

5

6

6.1

11.2

8.1

5.2

3.2

10.2

4.4

3.1

1.1

origin

9.3

(1,6.1)

(1,5.2)

(2,9.3)

(5,12.4)

(5,13.7)

(ø , 0)

Figure 4.6:

Suppose the present chain to i is not a shortest. Let C be a shortest
chain from 1 to i. Then length of C must be < di, and by (i) it must
pass through some nodes j ∈ Y, j W= i before reaching i, suppose q ∈
Y is the first such node on C. Let δ be the length of the portion of
C from q to i, δ

>
= 0 since c

>
= 0. The portion of C from 1 to q is a

shortest chain to q, and all nodes on it other than q are from X, so, by
(ii) its length is dq. So, length of C = dq + δ

>
= dq

>
= di by (4.9). Since

the length of C < di by the hypothesis, this is a contradiction. So, the
present chain to i must be a shortest chain, thus (i) continues to hold
after transferring i from Y to X. By the updating process of

temporary labels, (ii) also continues to hold after this transfer.

4.2. Label Setting Methods 341

1 2

3

1

5 5_

Figure 4.7:

Clearly (i), (ii) hold initially. By the above arguments and induc-
tion, (i), (ii) hold after each step, and the assertion in the theorem
remains valid.

THEOREM 4.3 The computational effort in this method is bounded
above by O(n2) where n = |N |.

Proof Each time Step 2 is executed, the choice of node i requires
at most (n − 2) comparisons, and the updating of temporary labels
requires an additional (n−2) additions and comparisons at most. Step
2 is executed at most (n − 1) times during the algorithm. Hence the
result follows.

The label setting method does not work unless c
>
= 0. One can

verify this by applying it on the network in Figure 4.7.
A major computational burden in this method is the repeated search

among temporary labels to find the minimum. Special data structures
and sorting techniques have been developed to make this search effi-
cient; see Denardo and Fox [1979], Dial [1965], Dial, Glover, Karney,
and Klingman [1979], Fredman and Tarjan [1987], Imai and Iri [1984],
and Johnson [1973, 1977].
Once a point is permanently labeled in this method, the shortest

chain from the origin to that point is known. Thus, if shortest chains
from the origin to only a specified subset of points are desired, the
method can be terminated as soon as all those points are permanently
labeled. This is an important advantage of label setting methods. The

342 Ch. 4. Shortest Chain Algorithms

label correcting methods discussed in the next section do not have this
advantage; there the full shortest chain tree has to be found before any
shortest chain is known with certainty.

4.3 Label Correcting Methods for Short-

est Chains from a Specified Origin

Let G = (N ,A, c) be the connected directed network with node 1 as the
origin for this problem. Here we discuss variants of the primal simplex
method applied to the LP formulation (4.1). Every basis for (4.1)
corresponds to a spanning tree in G, and a pivot step in it corresponds
to exchanging an out-of-tree arc with an in-tree arc in its fundamental
cycle. These methods always maintain a spanning outtree rooted at
the origin, and change it in each step by changing the labels on one
or more nodes. Hence these methods are known as label correcting
methods.

For each j ∈ N such that (1, j) W∈ A, these methods usually intro-
duce an artificial arc (1, j) associated with a large length α. Taking α
= 1 + n(max.{|cpq| : (p, q) ∈ A}) is sufficient. After this change, let
dd0 be the spanning outtree rooted at 1 consisting of the arcs (1, j) for
each j W= 1. dd0 is normally used as the initial outtree in most of these
methods. If an artificial arc (1, j) is contained in the shortest chain
tree obtained at the termination of the method, it implies that there
exists no chain from 1 to that particular node j in the original network.
Thus, eliminating all the artificial arcs from the final outtree obtained
in the method leaves a shortest chain tree spanning all the nodes that
can be reached from 1 by a chain in the original network.

These methods work for general c, so we do not require c
>
= 0 in

this section. Each of them will terminate after a finite number of steps
with either a negative length circuit, or a shortest chain tree. These
methods maintain node labels of the form (P(i), di) on node i, for each
i ∈ N , where P(i) is the predecessor index of i. At any stage, we denote
the set of arcs {(P(i), i): i W= 1} by the symbol E. As long as the node
labels represent a tree, E is the set of arcs in the outtree at that stage;
in this case for each i ∈ N , di in the label on i is either the length

4.3. Label Correcting Methods 343

of the present chain from 1 to i, or a number
>
= that length. When a

negative length circuit is obtained in the method, the node labels may
no longer represent a spanning outtree; at that time E will form two
or more connected components, an outtree (not spanning) rooted at 1,
and one or more disjoint negative length circuits. We will first discuss
the classical primal method for the shortest chain problem to provide
the basic ideas behind this class of algorithms.

THE CLASSICAL PRIMAL METHOD FOR
THE SHORTEST CHAIN PROBLEM

In this method node labels always define a spanning outtree and
they are of the form (P(i), πi) where πi is always the length of the
present chain to i. Artificial arcs are eliminated from the network once
they leave the outtree.

Initialization Begin with the spanning outtree dd0 discussed above,
and the node labels that go with it.

General step For each i ∈ N let (P(i), πi) be the current label
on it. Look for an arc (i, j) ∈ A violating the dual constraint
corresponding to it in (4.2), i.e., satisfying πj > πi + cij. If
there is no such arc, the present outtree is a shortest chain tree;
terminate. Otherwise, with this arc (i, j) do the following. Let
δ = πj − πi − cij. So, δ > 0.
Ancestor checking operation Check whether j is an ances-

tor of i in the present tree. If it is, the circuit consisting
of the arc (i, j) and the portion of the predecessor path of
i between j and i is a negative length circuit of length -δ;
terminate. Otherwise continue.

Label correction Replace the in-tree arc incident into node
j by (i, j); i.e., change the label on j to (i, π+ cij). This has
the effect of reducing the length of the chain to j by δ.

Correcting the distance index of descendents For each
descendent t of j leave its predecessor index unchanged, but
change its distance from the present πt to πt − δ.

344 Ch. 4. Shortest Chain Algorithms

Go to the next step.

Discussion

1

2

3

4

6.2

8.5

(1, 6.2)

(2, 14.7)

(3, 2.2)

1.3

12.5_

Figure 4.8:

As an example consider the network in Figure 4.8. Numbers on the
arcs are their lengths, and node labels are given by the side of nodes.
Arc (4, 2) violates dual feasibility as π2 = 6.2 > π4 + c42 = 2.2 + 1.3
= 3.5. Here δ = 2.7. Node 2 is on the predecessor path of node 4;
this identifies the thick negative length circuit of length −2.7, and the
method terminates.
As another example consider the network on the left of Figure 4.4

with arc lengths entered on the arcs. In Figure 4.9, on the left, we
introduce the dashed artificial arcs (1, 3), (1, 6) with length ∞. The
various outtrees obtained in applying this method on this network are
given in Figures 4.9 to 4.10. Outtrees are marked by thick lines and in
each step the node labels are entered by the side of the nodes.
Each outtree corresponds to a unique π-vector, and in each step

the πi for at least one node i strictly decreases. So, no outtree can
reappear, and the method
must terminate after at most a finite number of steps. If a negative
length circuit is not discovered, at termination we have an outtree in

4.3. Label Correcting Methods 345

4

origin

2

3

5

1

6

3.1

3.2

6.1
11.2

10.2

8.1

5.2
1.1

9.3

4.4

4

origin

2

3

5

1

6

3.1

3.2

6.1
11.2

10.2

8.1

5.2
1.1

9.3

4.4

(1, 6.1)

(1, 11.2)

(1, 5.2)

(1, 6.1)

(1, 5.2)(1,)

(1,)

(1,)

(1, 11.2)

(5, 15.6)

8

8

8
8

8

8

Figure 4.9: Node 1 is the origin.

which the optimality conditions discussed earlier hold; hence it is a
shortest chain tree.

The computational complexity of this method depends critically on
the procedure used to look for an arc (i, j) violating dual feasibility.
Under some rules for this search, the computational requirements in
the method grow exponentially with the size of the problem in the
worst case. There are some search procedures under which the method
turns out to be nicely polynomially bounded. We will discuss some of
these efficient implementations. Some of these implementations select
a node i first by some rule, and then they examine successively all arcs
in the forward star (or reverse star) of this node for dual feasibility.
This operation is called branching out of node i. Candidate nodes
for branching out are maintained in a list.

The ancestor checking operation, and correcting the distance index
of descendents, each adds an O(n) effort per step to the worst case
computational complexity. For correcting the distance indices of de-
scendents efficiently, the predecessor indices alone are not adequate; we
need to use some other list structures discussed in Chapter 1 to repre-

346 Ch. 4. Shortest Chain Algorithms

4

origin

2

3

5

1

6

3.1

3.2

6.1
11.2

10.2

8.1

5.2
1.1

9.3

4.4

4

origin

2

3

5

1

6

3.1

3.2

6.1
11.2

10.2

8.1

5.2
1.1

9.3

4.4

(1, 6.1)

(1, 11.2)

(1, 5.2)

(1, 6.1)

(1, 5.2)

(5, 15.6)

(5, 14.3)

(2, 9.3)

(5, 12.4)

(5, 13.7)
(0 , 0)/ (0 , 0)/

Figure 4.10:

sent the tree and we need to update them in every step. This makes
each step expensive. That’s why in the implementations discussed be-
low, these operations are not carried out.

When arc (i, j) violates dual feasibility, and we do not carry out
the ancestor checking operation, j may be an ancestor of i and we
may not detect it. If j is an ancestor of i, and we carry out the label
correction on node j, the node labels will no longer represent a spanning
tree; from then on the set E will consist of a negative length circuit
containing node j. These implementations have special rules to detect
the occurrence of this possibility.

If the operation of correcting the distance index of descendents is
not carried out in each step, in the label (P(i), di) on node i, di may
not be equal to the length of the present chain to node i; it will be
a number

>
= that length. However this will be detected when all the

arcs on this chain are examined, and the distance indices will get cor-
rected eventually, and if a negative length circuit is not identified, the

4.3. Label Correcting Methods 347

distance indices on the nodes become the actual lengths of the chains
at termination.

Elimination of the ancestor checking and correcting the distance
labels of descendents operations in each step makes it possible for the
following implementations to have a better worst case computational
complexity bound. Clearly, the ancestor checking operation should be
eliminated if it is known that no negative length circuits exist in G.
Otherwise, computational tests reveal that the extra work in carrying
out these operations is worthwhile as it avoids scanning nodes just
for correcting their labels, and definitely pays off in better average
performance, particularly as the density of the network increases.

The Bellman-Ford-Moore Label Correcting Algorithm

We will now discuss an implementation known as the Bellman-
Ford-Moore label correcting algorithm or the BFM method
which can be interpreted as an iterative approach for solving the Bellman-
Ford equations (4.6). It goes through several iterations; the distance
indices in the rth iteration are denoted by πri , i ∈ N , r = 1, 2, In
each iteration it corrects the distance labels on all the nodes using re-
cursive equations of the form (4.10) given below. So, the method is
one of successive approximations for (4.6), obtaining the (r + 1)th or-
der approximation from the rth.

THE BFM METHOD

Initialization Begin with the spanning outtree dd0 discussed above,
and the node labels that go with it. Set iteration count equal to
1.

General iteration r + 1 for r
>
= 1 Let (P(i), πri) be the label on

node i ∈ N at the end of the previous step. For each j ∈ N
compute

πr+1j = min. {πrj ;πri + cij : over i ∈ Bj} (4.10)

348 Ch. 4. Shortest Chain Algorithms

If πr+1j = πrj for all j ∈ N ; terminate, the present labels define
a shortest chain tree rooted at node 1. If this condition does
not hold, for each j such that πr+1j < πrj do the following: Let
i = u be an index attaining the minimum in (4.10). Change the

label on j to (u,πr+1j). If r + 1
<
= n− 1 go to the next iteration.

Otherwise (i.e., if r + 1 = n) a negative length circuit has been
detected; identify it in the present set E of arcs, and terminate.

Discussion

For each j ∈ N and r
>
= 0, πrj here represents the length of a

shortest chain from 1 to j among those that contain no more than r
arcs. This interpretation is clearly valid for r = 1. Set up an induction
hypothesis that this statement is true for some r. Now we will show
that this implies that it must be true for r + 1 too. A shortest chain
from 1 to j of no more than r+1 arcs either contains

<
= r arcs (in which

case its length is πrj by the induction hypothesis) or contains r+1 arcs
and has some final arc incident into j, say (u, j). The portion of this
chain from 1 to u must be a shortest chain to u containing r arcs, so
the length of this chain to j is πru+ cuj. Hence minimizing π

r
u+ cuj over

u ∈ Bj, which gives πr+1j , yields the length of the shortest chain to j
with r + 1 or less arcs in the latter case. So, the statement must hold
for r + 1 too, and by induction it holds for all r.

If there is no negative length circuit in G, with the introduction of
the artificial arcs in Step 1, there exists an unconstrained shortest chain
to j with

<
= (n − 1) arcs for each j ∈ N , and hence πrj will stabilize

at the length of the unconstrained shortest chain to j in
<
= (n − 1)

iterations. Such stability (i.e., πr+1j = πrj for each j ∈ N) will not be
reached after n iterations only if there is a negative length circuit in G.
If stability is attained, we then have an outtree in which the optimality
conditions discussed earlier hold, and hence it is a shortest chain tree.

In each iteration all the nodes are examined. Examining node j
in an iteration requires O(|Bj|) additions and comparisons. So, the
computational effort in an iteration is O(m), and since there are at
most n iterations in the method, the overall computational effort is at
most O(nm).

4.3. Label Correcting Methods 349

As mentioned above, if the BFM method goes through n iterations
without stabilizing, it is an indication that a negative length circuit
has been detected. There are other conditions signaling the detection
of a negative length circuit in this method. One is that πr1 < 0 for
any r (1 is the origin node). This signifies the detection of a negative
length circuit containing node 1. Another condition is that πr+1j < πrj
holds for at least (n− r) distinct nodes j, for some r = 1 to n− 1; see
Exercise 4.6. When any of these conditions hold, the negative length
circuit itself can be located among the set of arcs E at that stage, and
the method terminated.

The Dynamic Breadth-First Search Label Correcting Algo-
rithm

Let the present label depth of node j, denoted by aj , be the
number of arcs on the present chain to j. Node labels on node j in
this algorithm are of the form (P(j), dj , a

I
j), where P(j), dj have the

same meaning as before, and aIj is the label depth index of node j;
it may not be equal to the label depth of j in intermediate stages since
the correction operation on descendents is not carried out, but it will
be corrected and will become equal to the true label depth on all the
nodes, at termination. aIj

<
= aj for all j always, as the label depth index

of a node can only increase in this algorithm. Like breadth-first search,
this variant performs a sequence of iterations in which in iteration r,
only those nodes with label depth index r are branched out. Since
the label depth index of a node can change during the algorithm, this
variant can be viewed as a dynamic breadth-first search algorithm.

At any stage, for each h, n(h) denotes the number of nodes j for
which aIj = h. In each iteration of this algorithm, nodes from a specified
subset called list are selected according to a criterion, for branching
out. The iteration is completed when all the eligible nodes in the list
are branched out. While this is going on, a new subset of nodes called
next list is being built. The next list at the end of an iteration
becomes the list for the next iteration.

THE DBFS LABEL CORRECTING ALGORITHM

350 Ch. 4. Shortest Chain Algorithms

Initialization Begin with the spanning outtree dd0 discussed above,
and the node labels that go with it. aI1 = 0 and aIj = 1 for all
j W= 1. List = N\{1}. Next list = ∅. n(0) = 1, n(1) = n − 1
and n(h) = 0 for all h > 1. Set iteration count equal to 1. Go to
iteration 1.

General iteration r: 1. Select a node to branch out If list =
∅ go to Step 3 given below. Otherwise select a node i from
the list to branch out, and delete it from the list. Let the
present label on i be (P(i), di, a

I
i). If a

I
i = r go to Step 2.

Otherwise repeat this step.

2. Branching out of selected node i Do the following for
each j ∈ Ai. Let the present label on j be (P(j), dj , a

I
j). If

dj
<
= di+cij continue. If dj > di+cij , change the predecessor

index of j to i, its distance label to di+ cij, and if a
I
j W= r+1

subtract 1 from n(aIj).
If n(aIj) = 0, the network contains a negative length cir-
cuit. One such circuit can be identified by beginning at j
and tracing a path using the predecessor labels until a node
repeats.

Otherwise change aIj to r+1, add 1 to n(r+1), and include
j in next list.

After all this work is completed return to Step 1.

3. Set up candidate set for next iteration If next list =
∅, the present labels define a shortest chain tree rooted at
the origin, node 1; terminate. Otherwise make next list into
list, next list = ∅, and go to the next iteration.

Discussion

First assume that there is no negative length circuit in G. For each
j ∈ N let π∗j denote the unknown length of a shortest chain from 1 to
j, and bj the smallest number of arcs in a shortest chain from 1 to j.
Define L(r) = { j : bj = r}.
Observe that at the start of iteration r, the list consists entirely of

those nodes i for which aIi = r, since in the previous step these and only

4.3. Label Correcting Methods 351

these nodes are put in the next list. Also, a node in the list is branched
out in this iteration only if its label depth index remains equal to r
when the algorithm tries to select that node.

(i) At the start of iteration r in this algorithm L(r) is a subset of
the list, and di = π∗i for all i ∈ L(r). Also, in this iteration, all nodes
in L(r) are branched out.

We will now establish by induction that these statements are cor-
rect. From the initialization step, they clearly hold for r = 1. Set up
an induction hypothesis that they hold for r = r̄. We now show that
the induction hypothesis implies that they must also hold for r = r̄+1.
Let i ∈ N be such that bi = r̄+1. Then there is a shortest chain from
1 to i that has an arc, (u, i) say, as the last arc, with bu = r̄. By the
induction hypothesis, u is in the list at the start of iteration r̄, and u
is branched out in this iteration. There may be several shortest chains
from 1 to i with r̄ + 1 arcs; let u denote the first node on such a chain
that is branched out by the algorithm in iteration r̄. So, before u is
branched out in this iteration we have di > π∗i , and di will be set =
π∗i and a

I
i to r̄ + 1 when u is branched out, and i included in the next

list. At the end of this iteration r̄, the next list is made into the list
for iteration r̄+1; hence i is in it, and di = π∗i , a

I
i = r̄+1 at that time.

Also, since di = π∗i , a
I
i cannot increase during this iteration, it remains

= r̄ + 1 and node i will be branched out. So, the above statements
hold for r = r̄ + 1. Hence by induction they hold for all r.

(ii) From (i) it follows that if there are no negative length circuits
in G, this algorithm terminates with a shortest chain tree rooted at
node 1 after at most (n−2) iterations. Each iteration involves at most
O(m) effort, so the overall computational complexity of this algorithm
is at most O(nm).

(iii) Now consider the case where there may be negative length
circuits in G. If n(h) = 0 for some h = 1 to r−1 during iteration r, then
the network contains a negative length circuit. This is a consequence
of the fact that di = π∗i for all i ∈ L(r) at the start of iteration r and
thereafter, if there are no negative length circuits in G.

So, this algorithm either finds a shortest chain tree rooted at the
origin, or a negative length circuit, after at most n iterations. The
worst case computational complexity of the algorithm is O(nm).

352 Ch. 4. Shortest Chain Algorithms

This algorithm, due to Goldfarb, Hao, and Kai [1991] is based on
earlier work of Glover, Klingman and Philips [1985]. Computational
results show that its performance is very good. On randomly generated
networks with 100 to 5000 nodes, and 10,000 to 60,000 arcs, it required
between 0.13 to 3.4 CPU seconds of SUN-3 computer to solve each
problem.

Exercises

4.5 Let G = (N ,A, c = (cij)) be a directed network with c as the
vector of arc lengths, and µ = (µi) a vector of node prices in G. For
each (i, j) ∈ A let cIij = cij − (µj − µi), and cI = (cIij). For any circuit
in G, prove that its length with arc length vectors c or cI is the same.
Also prove that for any i, j ∈ N any shortest chain from i to j with c
as the arc length vector is also a shortest chain with cI as the arc length
vector, and vice versa.

4.6 In the BFM method prove that if πr+1j < πrj holds for at least
n − r distinct nodes j for some r = 1 to n − 1, then the method has
detected a negative length circuit which can be located among the set
of arcs E at that stage.

4.7 Find the shortest chains from 1 to all the other nodes in the
network in Figure 4.11. Arc lengths are entered on the arcs.

4.8 Let G = (N ,A, c) be a directed network with |N | = n, |A| = m
and 1 as the origin node. Let e1, . . . , em be an ordering of the arcs in A.
To find the shortest chains from 1 to all the other nodes, the classical
primal method is applied using the following selection rule. Arcs are
examined in the specific order e1, . . . , em for dual feasibility. When all
the arcs are examined once, a sweep is said to have been completed,
and then the method goes to the next sweep. When an entire sweep
produces no improvement in the distance index of any node (i.e., when
every arc satisfies dual feasibility) the method terminates.
If there are no negative length circuits in G, and r is the smallest

number of arcs in a shortest chain from 1 to a node j, prove that the

4.3. Label Correcting Methods 353

12

3
4

5 6

78

91011

12 13 14

15

3

8

12

9 6

8

11

12

15

10

20
5

10

8

7

15

13

14

20

309

4
_

3
_

7_

8
_

6_

Figure 4.11:

present chain in the method becomes a shortest chain to j by the end
of the rth sweep (i.e., the label on j will not change after the rth
sweep). Using this, develop a version whose worst case computational
complexity is O(nm).

4.9 Consider the following implementations of the primal method
for finding a shortest chain tree in G = (N ,A, c) rooted at node 1.
Ancestor checking and correcting the distance index on descendents
operations are not carried out in each step. These implementations
go through several iterations. In each iteration they select nodes for
branching out always from the top of a sequence S1 of nodes, in which
nodes are arranged from top to bottom. As the iteration is progress-
ing, all the nodes whose labels have changed are arranged in another

354 Ch. 4. Shortest Chain Algorithms

sequence S2 according to one of the following disciplines. These im-
plementations differ in the way nodes j whose labels have been revised
during the iteration are entered in the sequence list S2.

FIFO/NO MOVE If j is not in S2, it is inserted at the bottom of
S2. If j is already in S2, it is left in its current position.

FIFO/MOVE If j is not in S2, it is inserted at the bottom of
S2. If j is already in S2, it is moved from its present position to the
bottom of S2.

Both these implementations begin iteration 1 with S1 = {1} after
initialization. If there are no negative length circuits in G, prove that
these implementations terminate with a shortest chain tree after at
most n iterations, with the sequence S2 becoming ∅ at the end of the
last iteration. Using this result show that these implementations can
be operated so that their worst case computational complexity to find
either a negative length circuit or a shortest chain tree is O(nm) (Shier
and Witzgall [1981]).

4.10 Consider the following implementations of the primal method
for finding a shortest chain tree in G = (N ,A, c) rooted at node 1.
Correcting the distance index on descendents operation is not carried
out in each step. The implementations select nodes for branching out
always from the top of a sequence of nodes in which nodes are arranged
from top to bottom. As the algorithm is progressing, each node j whose
label has changed is added to the sequence according to one of the
following disciplines.

LIFO/NO MOVE If j is not in the sequence at this time, it is
added at the top. If it is already in the sequence it is left in its current
position.

LIFO/MOVE If j is not in the sequence at this time, it is added
at the top. If it is already in the sequence, it is moved from its position
to the top.

Both these implementations begin iteration 1 with S1 = {1} after
initialization. Even when there is no negative length circuit in G, show
that the number of nodes branched out before termination in these

4.4. Acyclic Shortest Chain Algorithm 355

implementations can grow exponentially with n in the worst case (Shier
and Witzgall [1981]).

4.4 Shortest Chains From a Specified Ori-

gin in an Acyclic Network

Let G = (N ,A, c = (cij)) be an acyclic network with c as the vector
of arc lengths, |N | = n, and |A| = m. We assume that the nodes in G
are numbered serially using an acyclic numbering, i.e., i < j for each
(i, j) ∈ A. If it is required to find the shortest chains from an origin,
node p, since there are no arcs (j, p) for j < p, there exist no chains
from such nodes j to p. Hence all nodes j < p and all arcs incident to
them can be eliminated. The resulting network is again acyclic, and
the nodes can be renumbered in it by subtracting p−1 from the present
number. This transforms the problem into one in an acyclic network
with node 1 as the origin. Hence in the sequel we assume that node 1
is the origin.
Since G contains no circuits, there are no negative length circuits

even if c < 0, and the following special algorithm always finds the short-
est chains in it. The algorithm is a recursive procedure that comes from
the application of the principle of optimality of dynamic programming
to the problem. Nodes are labeled in it in the order 1 to n at the rate
of one per step, and all node labels assigned are permanent labels.

ACYCLIC SHORTEST CHAIN ALGORITHM

Step 1 Label the origin, node 1, with (∅, 0). Go to Step 2.
General step r, for r

>
= 2 At this stage all nodes 1, . . . , r−1 would

have been labeled already. Let the distance index on node i be
πi, i = 1 to r − 1. Find

πr = min. {πi + cir : i ∈ Br} (4.11)

356 Ch. 4. Shortest Chain Algorithms

1

2

3

4

5

6

7

8

9

1.4

- 3.9

8.7

12.3

5.6

8.8

2.1

3.3

9.2

2.2

2.3

7.8Origin

(4, 9.9)

(1, 8.7)

(5, 13.2)

(4, 14.3)

(7, 16.6)

1.2

(0 , 0)/

(5, 12.0)

8

8

Figure 4.12:

Use the convention that the minimum in the empty set is∞. Let
P(r) be equal to one of the i that attain the minimum in (4.11)
if πr is finite. Label node r with (P(r), πr). If r = n, terminate.
Otherwise go to the next step.

Discussion

Since i < j for all (i, j) ∈ A, (4.11) guarantees that the following
conditions, which are the optimality conditions established earlier for
the present outtree to be a shortest chain tree, will hold.

πj − πi

l
<
= cij for all (i, j) ∈ A
= cij if i = P(j)

So, the final outtree is a shortest chain tree rooted at 1. For i ∈
N if πi = ∞ there exists no chain from 1 to i in G; otherwise π is
the length of a shortest chain to i. The computational effort in Step
r of the algorithm is |Br| additions and comparisons, so the overall
computational complexity of this algorithm is O(m).

4.5. Matrix Methods 357

As an example, consider the acyclic network in Figure 4.12, with
arc lengths entered on the arcs. Nodes are given an acyclic numbering.
Node labels obtained in the algorithm are entered by the side of the
nodes in Figure 4.12. This algorithm finds an important application in
critical path methods on project networks discussed in Chapter 7.

4.5 Matrix Methods for Shortest Chains

Between All Pairs of Nodes

Here we consider the problem of computing shortest chains between
every pair of points in the directed network G = (N ,A, c). This can
be solved by applying the algorithms of Section 4.3 with each node as
the origin separately, but the algorithms discussed in this section will
find all these shortest chains simultaneously.

All the shortest chains and their lengths can be stored very con-
veniently by maintaining two square matrices, a label matrix and
a distance matrix . Both the rows and columns of each matrix are
associated with nodes in N . The entry (called the label) in the label
matrix in the row of node i and the column of node j, is the predecessor
of j in the chain from i to j. So, if this entry is p, (p, j) is the last arc
in the present chain from i to j. The remaining arcs on this chain can
be traced by looking up the the label in the row of i and the column
of p, and continuing until node i is reached. The entry in the distance
matrix in the row of i and the column of j is the length of the present
chain from i to j.

For i, j ∈ N , if (i, j) W∈ A, introduce an artificial arc (i, j) with
length equal to ∞, or a large positive number as discussed before.
The methods discussed in this section work with the distance matrix
using matrix theoretic operations. Hence, these methods are classified
as matrix methods, and they terminate either by finding a negative
length circuit, or by finding all shortest chains. In the latter case if the
shortest chain obtained from a node p to a node q contains an artificial
arc, it implies that there is no chain from p to q in the original network.

An Inductive Algorithm for Finding All Shortest Chains

358 Ch. 4. Shortest Chain Algorithms

This algorithm proceeds inductively on the number of nodes in the
network. It takes exactly n steps. In the rth step, it obtains all the
shortest chains in the partial network induced by the subset of nodes
{1, . . . , r}. In the (r + 1)th step it brings node r + 1 into the set of
included nodes. This algorithm is due to Dantzig [1967].

INDUCTIVE ALGORITHM

Step 1 Begin with the partial network of node 1 alone. The initial
matrices are

Label Matrix Distance Matrix
to 1 to 1

from 1 1 from 1 0

General step r + 1 for r
>
= 1 Let (Lrij : i, j = 1 to r), (d

r
ij) be the

label and distance matrices at the end of Step r. Lrii will be i and
drii will be 0 for all i = 1 to r. Compute

dr+1i,r+1 = min.{ci,r+1; drij + cj,r+1, j = 1 to r, j W= i}(4.12)

dr+1r+1,i = min.{cr+1,i; cr+1,j + drji, j = 1 to r, j W= i}(4.13)

dr+1r+1,r+1 = min.{0; dr+1r+1,j + d
r+1
j,r+1, j = 1 to r} (4.14)

For i = 1 to r, define

Lr+1i,r+1 =

⎧⎪⎨⎪⎩
i, if dr+1i,r+1 = ci,r+1

or a j attaining min. in (4.12) otherwise
(4.15)

Lr+1r+1,i =

⎧⎪⎨⎪⎩
r + 1, if dr+1r+1,i = cr+1,i

or a j attaining min. in (4.13) otherwise
(4.16)

4.5. Matrix Methods 359

Counting the self-loop at node r + 1 of length 0 as a simple cir-
cuit, dr+1r+1,r+1 is the length of the shortest simple circuit containing
node r+ 1 in the partial network induced by the subset of nodes
{ 1, . . . , r+ 1 }. If dr+1r+1,r+1 < 0, let p be a j attaining the min.in
(4.14). Let C1 be the chain consisting of only the arc (r + 1, p) if
dr+1r+1,p = cr+1,p; otherwise it consists of the arc (r + 1, q) and the
chain from q to p determined by the label matrix at the end of
Step r, where q = Lr+1r+1,p. Similarly, let C2 be the chain consisting
of only the arc (p, r + 1) if dr+1p,r+1 = cp,r+1; otherwise it consists
of the chain from p to u determined by the label matrix at the
end of Step r, and the arc (u, r+1), where u = Lr+1p,r+1. Then the

simple circuit
→
CC1 obtained by combining the chains C1 and C2 is

a negative length circuit of length dr+1r+1,r+1; terminate.

If dr+1r+1,r+1 = 0, define L
r+1
r+1,r+1 = r + 1. For i, j = 1 to r, define

dr+1i,j = min. {drij; dr+1i,r+1 + d
r+1
r+1,j} (4.17)

Lr+1ij =

⎧⎪⎨⎪⎩
Lrij , if d

r+1
i,j = dr+1i,j

Lr+1r+1,j , otherwise

(Lr+1ij : i, j = 1 to r + 1), (dr+1ij : i, j = 1 to r + 1) define the new
label and distance matrices respectively. If r + 1 < n go to the
next step; otherwise terminate.

Discussion

Consider the label and distance matrices at the end of Step r. If
no negative length circuits have been detected up to this stage, the
following facts (i), (ii) hold by the manner in which the label and
distance matrices are updated during the algorithm. (iii) follows by
using induction, it establishes the validity of the algorithm.
(i) For all i, j, h between 1 to r,

360 Ch. 4. Shortest Chain Algorithms

dri,h
<
= drij + d

r
jh (4.18)

i.e., the entries in the distance matrix satisfy the triangle inequal-
ity.
(ii) If node j appears on the chain from i to h traced by the labels

in the label matrix, (4.18) holds as a strict equation.
(iii) For all i, j between 1 to r the chain from i to j traced by the

labels in the label matrix is a shortest chain in the partial network
induced by the subset of nodes {1, . . ., r}, and drij is its length.
The computational effort in Step r+1 can be verified to be O((r+

1)2). Hence, the overall computational effort in this algorithm is O(
�
(r+

1)2) = O(n3).

The Floyd-Warshall Algorithm for All Shortest Chains

Let G = (N ,A, c) be the directed network in which the problem
is being solved. Number the nodes in G serially 1 to n = |N |. On
any simple chain, nodes different from the initial and terminal nodes
are called intermediate nodes. A simple chain has no intermediate
nodes iff it consists of a single arc.
This algorithm maintains label and distance matrices of order n×n

throughout, they store the current chains and their lengths respectively.
The algorithm terminates after at most n steps. The distance matrix
obtained at the end of Step r is denoted by (drij), where d

r
ij will be equal

to the length of a shortest chain from node i to node j among those
chains satisfying the condition that every intermediate node on them
is from the set {1, . . . , r} (i, j themselves may or may not be from this
set). The label matrix at that stage storing these constrained shortest
chains is denoted by (Lrij). The main computational tool used repeat-
edly in this algorithm is called the triangle (or triple) operation
given in (4.19) for nodes i, j and fixed node r + 1.

FLOYD-WARSHALL ALGORITHM

Initialization Define the initial label and distance matrices to be
(L0ij), (d

0
ij) respectively, where, for all i, j, L

0
ij = i, and d

0
ij = cij

for i W= j, 0 if i = j. Go to Step 1.

4.5. Matrix Methods 361

General Step r + 1 for r
>
= 0 At this stage we have the matrices

(Lrij), (d
r
ij). For each i, j ∈ N compute

dr+1ij = min. {drij , dri,r+1 + drr+1,j} (4.19)

Lr+1ij = Lrij if d
r+1
ij = drij;L

r
r+1,j otherwise

(Lr+1ij), (d
r+1
ij) are the new label and distance matrices. If d

r+1
ii < 0

for any i ∈ N , the circuit obtained by putting the present chain
from i to r + 1 together with that from r + 1 to i, is a negative
length circuit, terminate. If dr+1ii = 0 for all i, and r+ 1 = n, the
present chains are the shortest chains; terminate. Otherwise, go
to the next step.

Discussion

We will now show that if drii stayed = 0 for all i ∈ N and r = 1
to n, then (dnij) is the matrix of shortest chain lengths in G. For this
we set up an induction hypothesis that (drij) is the matrix of shortest
chain lengths subject to the constraint that every intermediate node
on every chain is numbered

<
= r. This hypothesis clearly holds for r =

0, by initialization.
We will now prove that under the induction hypothesis, the state-

ment in it also remains valid when r is replaced by r + 1. For any
i, j ∈ N , a shortest chain from i to j with intermediate nodes num-
bered

<
= r+1, either does not contain node r+1 (in this case we must

have dr+1ij = drij by the triple operations carried out in Step r + 1), or
it contains node r + 1. In the latter case, since dri,r+1, d

r
r+1,j are both

shortest chain distances with intermediate nodes numbered
<
= r by the

induction hypothesis, dri,r+1+ d
r
r+1,j is the shortest chain distance from

i to j with intermediate nodes numbered
<
= r+1. Hence in either case,

the statement in the induction hypothesis is also valid for r + 1.
Hence, by induction, (dnij) is the matrix of shortest chain lengths in

G in this case.

362 Ch. 4. Shortest Chain Algorithms

In each step there are n2 additions and n2 comparisons to be per-
formed. Hence the overall computational complexity of this method is
O(n3).

4.6 Sensitivity Analysis in the

Shortest Chain Problem

p(o)

p()

p()l

.

.
0

ij
c*

l

8

Figure 4.13: Node 1 is the origin.

Consider the problem of finding a shortest chain from node 1 to node
n in the directed network G = (N ,A, c). Let (i, j) be a particular arc
in A whose length cij is a parameter ξ which can vary, while all the
other data remains unchanged. Let π(ξ) denote the length of a shortest
chain from 1 to n in G as a function of ξ.
If (i, j) is not contained on a shortest chain from 1 to n when ξ =

0, then π(ξ) = π(0) for every ξ
>
= 0, and the same chain not containing

(i, j) remains a shortest for all ξ
>
= 0.

If (i, j) is contained on a shortest chain from 1 to n when ξ = 0, this
chain remains a shortest one as ξ increases from 0 to π(∞)− π(0). If
ξ > π(∞)−π(0), the shortest chain changes, and (i, j) is not contained
on any shortest chain from 1 to n in this range.

4.6. Sensitivity Analysis 363

So, π(ξ) = min. { π(0) + ξ,π(∞) } for all ξ >
= 0. See Figure

4.13. The quantity π(∞)−π(0) where π(ξ) changes slope, is called the
critical length of arc (i, j), and denoted by c∗ij. Destroying an arc
in a network is equivalent to making its length ∞. If arc (i, j) with
present length cij and critical length c

∗
ij is destroyed, the length of the

shortest chain from 1 to n goes up by max. {0, c∗ij − cij}.

Exercises

4.11 Find the shortest chains between all pairs of nodes in the mixed
network in Figure 4.14. The number on each line is its length.

1

2

3

4

5

6 7

21

13

19

18

6

10

5

10

31
12

15

Figure 4.14: Node 1 is the origin.

4.12 Develop an efficient scheme for finding an arc in G, the destruc-
tion of which increases the length of the shortest chain from the origin
to the destination by as much as possible.

4.13 Suppose G is the street network in a city, with nodes represent-
ing street intersections, and arcs representing street segments joining
pairs of adjacent nodes. The length of each arc is the driving time

364 Ch. 4. Shortest Chain Algorithms

through the corresponding segment under normal conditions. By mak-
ing improvements on an arc, its length can be reduced. Discuss how
to pick a single arc for making improvements, to reduce the length of
the shortest chain from the origin to the destination by as much as
possible.

4.7 Algorithm for Ranking Chains in Non-

decreasing Order of Length

Consider the directed network G = (N ,A, c) with |N | = n, |A| = m,
and nodes 1, n as the origin and destination respectively. We assume
that there are no negative length circuits in G. Here we discuss an
adaptation of the ranking approach discussed in Section 3.6 to rank
the chains from 1 to n in G in nondecreasing order of length, due to
Lawler [1972]. Let S = set of all chains from 1 to n in G, simple or
not; and P = set of all simple chains from 1 to n in G. The algorithm
can rank either the chains in S, or only those in P. It obtains one new
chain in the ranked sequence per step with a computational effort of
at most O(n3).
We define a special subset to be the set of chains from 1 to n in

G (from S or P as desired) containing all the arcs in a specified initial
segment which is a chain from 1 to some node, and not containing any
arc from a specified subset of excluded arcs. If the specified initial
segment is C1 = 1, (1, i1), i1, . . ., (ip, r), r; and the specified subset
of excluded arcs is E, we denote the special subset by the symbol F
= [C1; Ē]. It contains all chains (from S or P as desired) obtained by
combining C1 with a chain from r to n in G not containing any arc in
E.
A shortest chain in a special subset F = [C1; Ē], where C1 = 1, (1,

i1), i1, . . ., (ip, r), r; from S or P,can be found efficiently. Let G̃ be
the network obtained by deleting each of the arcs in the set E from A.
Let Ĝ be the network obtained by deleting each of the arcs incident at

4.7. Ranking Chains 365

the nodes 1, i1, . . . , ip and all the arcs incident into node r from G̃. For
ranking the chains in S, find a shortest chain from r to n in G̃ by any
method discussed earlier. If there is no chain from r to n in G̃, F =
∅. If a shortest chain from r to n in G̃ is found, add it at the end of
the specified initial segment C1 to get a shortest chain from 1 to n in
F from S. For ranking the chains in P, carry out the same procedure
replacing G̃ by Ĝ, to get a shortest chain in F from P. The important
thing is that the shortest chain from r to n, found in either of these
cases, is a simple chain (since the algorithms discussed earlier deal only
with simple chains) and hence consists of at most n− 1 arcs.
The algorithm uses an operation called partitioning a special

subset using a shortest chain in it. Let F = [1, (1, i1), i1, . . .,
(ip, r), r ; Ē] be the special subset, and C2 = 1, (1, i1), i1, . . ., (ip, r),
r, (r, ip+1), ip+1, . . ., (ip+h, n), n, be a shortest chain in F obtained as
above. As mentioned above, h + 1, the number of arcs on C2 between
the nodes r to n is at most n − 1. Partitioning F using C2 expresses
F\ {C2} as a disjoint union of h + 1 special subsets. These special
subsets are

F1 = [1, (1, i1), . . . , (ip, r), r;E ∪ {(r, ip+1)}]
F2 = [1, (1, i1), . . . , (ip, r), r, (r, ip+1), ip+1;E ∪ {(ip+1, ip+2)}]

...

Fh+1 = [1, (1, i1), . . . , (ip, r), r, (r, ip+1), . . . , (ip+h−1, ip+h), ip+h;E ∪ {(ip+h, n)}]

THE RANKING ALGORITHM

Step 1 Find a shortest chain in G from 1 to n using any of the
algorithms discussed earlier. If there is no chain from 1 to n, ter-
minate. Otherwise, by our assumption that there is no negative
length circuit in G, a shortest simple chain will be obtained; let
it be C1 = 1, (1, j1), j1, . . ., (ju, n), n. We would have obtained
a shortest chain tree rooted at node 1. Nodes not on this tree
cannot be reached from 1 by a chain, so eliminate them and all
the arcs incident at them from further consideration. Let πi be

366 Ch. 4. Shortest Chain Algorithms

the length of the chain from 1 to i in the shortest chain tree for
remaining nodes i. For each remaining arc (i, j), we replace cij
by cij − (πj − πi) >= 0, this has the effect of subtracting the same
constant (πn − π1) from the length of every chain from 1 to n
and hence does not affect the ranking of these chains. With this
change the arc length vector becomes nonnegative, even though
the original vector may not be, and the efficient Dijkstra’s method
can be used to compute shortest chains in subsequent steps of the
algorithm. Generate the following u+1 (

<
= n−1) special subsets.

[{(1, j1)}]
[1, (1, j1), j1; {(j1, j2)}]
...

[1, (1, j1), . . . , (ju−1, ju), ju; {(ju, n)}]

Find a shortest chain in each, and discard any special subsets
among these which are empty. Arrange the remaining special
subsets together with the shortest chain in each, in a list, in
increasing order of the length of the shortest chain from 1 to n
in it, top to bottom. Go to the next step.

General step p+1, for p
>
= 1 If the list is empty, there are no more

chains from 1 to n in G; terminate. Otherwise, delete the topmost
special subset, say F; from the list. The shortest chain in F, Cp+1,
say, is the next, i.e., (p+1)th chain in the ranked sequence. If you
have enough chains in the ranked sequence already, terminate.
Otherwise, partition F using Cp+1. Find a shortest chain from 1
to n in each of the special subsets generated in this partitioning.
Discard any empty ones among these, but include the nonempty
ones together with the shortest chain in each, in the list in their
proper position according to the length of the shortest chain from
1 to n in it. Go to the next step.

Discussion

4.8. Exercises 367

At the end of Step 1, the list has at most (n−1) special subsets. In
each step, the top special subset is taken out, and at most (n−1) newly
generated special subsets are added to the list. Hence there will be at
most p(n − 1) special subsets in the list at the end of Step p. Hence,
the size of the list grows linearly with the number of chains ranked.
In each step the shortest chains in at most (n − 1) new special

subsets need to be computed, each with a computational effort of at
most O(n2), as pointed out above. Hence the computational effort in
each step is at most O(n3), plus the effort needed to insert the new
special subsets in the list. Thus the overall effort needed to find p
chains in the ranked sequence is at most O(pn3).

4.8 Exercises

4.14 0-1 Knapsack Problem It is required to determine a subset
of n available objects to load into a knapsack to maximize the value
loaded subject to the knapsack’s weight capacity constraint. The jth
object has weight wj kg. and value $vj, j = 1 to n, and the knapsack’s

capacity by weight is w0 kg. All data are positive integers and wj
<
= w0

for all j = 1 to n. Objects cannot be broken; they have to be either
loaded whole or left out.
Let G be a network in which the nodes are integer points [p, q] in

IR2 for 0
<
= p

<
= w0 and 1

<
= q

<
= n, and a sink node t̆. The arcs in G

are: ([w0,1], [w0, 2]) with length 0, ([w0, 1], [w0 − w1,2]) with length
v1; for 2

<
= q

<
= n − 1, ([p, q], [p, q + 1]) with length 0 for 0<= p <

= w0,

([p, q], [p − wq, q + 1]) with length vq for wq <
= p

<
= w0; and ([p, n], t̆)

with length 0 for 0
<
= p

<
= w0.

Show that G is acyclic and that the knapsack problem is equivalent
to that of finding a longest chain from [w0, 1] to t̆ in G.

4.15 We have already seen that the problem of finding a longest sim-
ple chain from node 1 to node n in a directed network G = (N ,A, c)
with c > 0 is a hard problem in general. Using this show that if
a
>
= 0, b > 0 are two edge cost vectors in G, the problem of finding a

simple chain C from 1 to n that minimizes the ratio objective function

368 Ch. 4. Shortest Chain Algorithms

(
�
(aij : over (i, j) ∈ C))/ (�(bij : over (i, j) ∈ C)) is a hard problem

(Ahuja, Batra, and Gupta [1983]).

4.16 Relationship between Assignment and Shortest Chain
Problems Consider the problem of finding a shortest chain from 1
to n in a directed connected network G = (N ,A, c). Define the n× n
matrix D = (dij), where dij = cij if (i, j) ∈ A, = 0 if i = j, and = ∞
if i W= j and (i, j) W∈ A.
Find a minimum cost assignment with D as the cost matrix. Prove

that the unit matrix is a minimum cost assignment in this problem iff
there exist no negative length circuits in G. Conversely show that if
the unit matrix is not optimal to this problem, then a negative length
circuit in G can be identified from an optimum assignment.
Suppose there are no negative length circuits in G. Change dn1 to

−M whereM is a very large positive number, and find a minimum cost
assignment wrt the modified matrix D. If there exists no chain from 1
to n in G prove that the unit matrix is a minimum cost assignment for
this problem and conversely. Otherwise, the allocations in a minimum
cost assignment for this problem correspond to a circuit in G containing
the arc (n, 1) and a shortest chain from 1 to n, and self-loops at the
remaining nodes (Weintraub [1973]).

4.17 Suppose a shortest chain from node 1 to node n in the directed
connected network G = (N ,A, c) without any self-loops or negative
length circuits, has been found using an algorithm for the assignment
problem with the approach discussed in Exercise 4.16. From this infor-
mation, if any of the following types of changes occur in G, show that
a shortest chain from 1 to n in the modified network can be obtained
with a computational effort of at most O(n2): (a) new arcs are added,
all incident at an existing node in G, (b) a subset of arcs incident at
a node in G are deleted, (c) a node and all the arcs incident at it in
G are deleted, (d) a new node is added to G together with some new
arcs incident at it, (e) the lengths of arcs incident at a node have been
modified (Weintraub [1973]).

4.18 Negative Length Simple Cycles in Undirected Networks
Let Ē be the set of negative length edges in an undirected network G

4.8. Exercises 369

= (N ,A, c = (ci;j)) with c as the vector of edge lengths. Assume that
Ē W= ∅, and let N̄ be the set of nodes on edges in Ē. If there is a simple
cycle in (N̄ , Ē), it is a negative length simple cycle in G. So, assume
that there is no simple cycle in (N̄ , Ē); i.e., it is a forest.
Let N̄o be the set of odd degree nodes in (N̄ , Ē). Construct the

complete undirected network H = (N̄o, A, d = (dij)), where A = {
(i; j) : i W= j, i, j ∈ N̄o }, and d is the vector of edge lengths in H with
dij being the length of a shortest path between i and j, Pij, in (N ,A)

2

3

4

1

10

15 18

20
1

11

10

7
1

6

4

1
3

1

1

1

5

6

Figure 4.15:

with (|cij|) as the vector of edge lengths. Let M̄ be a minimum cost
perfect matching in H, and let P(M̄) be the union of the sets of edges
on the paths Pij for (i; j) ∈ M̄.
Prove that G contains a nonpositive length simple cycle if Ē W⊂

P(M̄). Prove that G contains no negative length simple cycles if Ē ⊂
P(M̄). Using these results develop an efficient algorithm for detecting a

370 Ch. 4. Shortest Chain Algorithms

negative length simple cycle in G if one exists. Also, develop an efficient
algorithm for finding shortest paths between every pair of nodes in G
assuming that there are no negative length simple cycles in G (Tobin
[1975]).

4.19 Find the shortest chain tree rooted at node 1 in the network
in Figure 4.15 using the LIFO sequence-list driven labeling methods
discussed in Exercise 4.10. Data on each arc is its length.
In general consider the following sequence of networks of which the

1

21 3

1 11

2 ...

11

2

2 r

2 r - 1 2 r + 1

2 4

5

Figure 4.16:

one in Figure 4.15 is the fifth. The first network consists of two nodes
1, 2, and two arcs (1, 2) and (2, 1) each with length 1. To get the
(r+1)th network from the rth do the following: Add node r+2. Add
arcs (r+2, i) for i = 2 to r+1 with length cr+2,i same as c1,i in the rth
network. Change c1,i to c1,i + 2

r−1 + 1 for i = 2 to r + 1. Add an arc
(1, r + 2) with length 1. Show that node 2 will be branched out 2r−2

times in these methods on the rth network (Kershenbaum [1981]).

4.20 G = (N ,A) is a given directed network. Given three nodes s, t, p
in G, show that the problem of checking whether there exists a simple
chain from s to t via p is an NP-complete problem.
Given nodes s, t in G, show that the problem of checking whether

there exists a simple chain from s to t consisting of an even number of
arcs is an NP-complete problem (Lapaugh and Papadimitriou [1984]).

4.21 G = (N ,A, c) is a directed connected network with c >
= 0. X,

Y are respectively the sets of permanently labeled and temporarily

4.8. Exercises 371

labeled nodes at some stage in the process of finding the shortest chain
tree rooted at node 1 in G by Dijkstra’s algorithm. Let µi be the
present distance index on node i. For every j ∈ X, prove that min.
{µi : i ∈ Y} >

= µj. Hence show that the distance index of a node at

the time that it gets permanently labeled is
>
= the distance indices of

nodes already in X at that time.

4.22 In the network in Figure 4.16 with 2r + 1 nodes and 3r arcs,
show that every one of the 2r simple chains from node 1 to node 2r+1
is a shortest chain.

4.23 A Constrained Shortest Chain Problem An air carrier
is trying to cover r flights with m planes which is known to be inad-
equate. ai, bi are the scheduled start time (at origin), and finish time
(at destination) of ith flight, i = 1 to r. Construct a directed network
G with nodes L1, . . . , Lr for flights, and P1, . . . , Pm for planes. Include
arcs (Li, Pj) and (Pj, Li) of length 0 for each i, j. For each i, j such
that the destination of Li and the origin of Lj are the same, include an
arc (Li, Lj) of length equal to the delay that occurs for flight Lj if the
same aircraft performs Lj after Li.
Show that any chain in G passing through every node once corre-

sponds to an assignment of planes to flights; and that the length of
such a chain is exactly the total delay in all the flights corresponding
to that assignment. Hence show that the problem of covering all the r
flights with m planes, to minimize total delay, is the problem of find-
ing a shortest chain in G subject to the constraint that it must pass
through each node exactly once (Teodorovic and Guberinic [1984]).

4.24 Application to Set Partitioning Problem The following
are three important 0-1 integer programming models, in which the data
consists of a 0-1 integer matrix A = (aij) of order m×n and a column
vector e of all 1’s.

Set partitioning Set covering Set packing
problem problem problem

min. cx min. cx min. cx

s. to Ax = e s. to Ax
>
= e s. to Ax

<
= e

all xj = 0 or 1 all xj = 0 or 1 all xj = 0 or 1

372 Ch. 4. Shortest Chain Algorithms

Consider the special case of the set partitioning problem in which
each column of A consists of a single consecutive segment of ones, i.e.,
for each j = 1 to n there exists gj

<
= hj such that aij = 1 for gj

<
= i

<
= hj

and 0 for all other i. Such problems arise in crew scheduling applica-
tions where each crew must do a single stretch of duty comprising a
consecutive set of trips, known as one-part duty crew scheduling prob-
lems. Construct the network G = (N ,A) where N = {1, . . . ,m + 1}
with node i corresponding to row i of A for 1

<
= i

<
= m, and A consists

of arcs (gj, hj + 1) of length cj corresponding to A.j for j = 1 to n.

Show that G is acyclic, and that this special case of the set parti-
tioning problem is equivalent to the problem of finding a shortest chain
in G from 1 to m+ 1.
A set partitioning problem is infeasible when an exact cover does

not exist, but in practical applications relaxations that overcover or
undercover with a possible penalty expense are typically permitted.
So, consider the following extended set partitioning problem, where
(pi, qi)

>
= 0 for all i. Show that when A satisfies the special property

mentioned above, this extended set partitioning problem can also be
formulated as a shortest chain problem in a network. Develop this
formulation.

min.
3
j

cj xj +
3
i

(piui + qiσi)

s. to
3
j

aij xj +ui − σi = 1, i = 1 to m

xj , ui = 0 or 1 for all i, j

σi
>
= 0 and integer for all i

When A satisfies the special property mentioned above, both the
set covering and the set packing problems can also be formulated as
short chain problems. Derive these formulations (Darby-Dowman and
Mitra [1985], and Shepardson and Marsten [1980]).

4.25 Manpower Planning A construction company requires the
following number of steel erectors over a 6-month horizon.

4.8. Exercises 373

Month March April May June July August
Erectors needed 4 6 7 4 6 2

In February there were 3 steel erectors on site, and in September
this number has to be the same. It costs $1000 to hire an erector,
and $1600 to terminate the services of one. Each erector’s contract is
decided on a month-to-month basis at the start of each month. No more
than 3 erectors can be hired anew at the start of any month. Under a
union agreement no more than a third of the current manpower can be
terminated at the end of a month. The cost of keeping a surplus erector
is $3000 per month. When there is a shortage, it has to be made up
in overtime; this costs $6000 per erector per month. Overtime cannot
exceed 25% of normal time. It is required to determine how many
erectors to hire or terminate each month in order to minimize the total
cost of hiring, terminating, surplus and shortage costs over the horizon,
subject to the given constraints. Formulate this as a shortest chain
problem in an acyclic network and find an optimum solution (Clark
and Hastings [1977]).

4.26 Replacement Problem This problem arises in planning over
a 5-year horizon at a plant. They have a machine which will be 3 years
old at the beginning of the first year of the horizon. The machine is
inspected at the beginning of each year and is either overhauled or
replaced with a new machine. The cost of a new machine is $40,000.
The cost of overhaul and the scrap value of the machine depend on its
age as given below.

Age (years) 1 2 3 4
Overhaul cost ($1000 units) 15 6 18
Scrap value ($1000 units) 20 10 5 2

Company’s policy is that the machine must be replaced at age 4
years. Also, assume that at the end of the 5-year horizon, the then
current machine will be scrapped.
It is required to find the policy that minimizes the present value of

the cost of overhauling or replacing the machine, when the costs are
discounted at the rate of 15% per year. Formulate this as a shortest

374 Ch. 4. Shortest Chain Algorithms

chain problem in an acyclic network and find an optimum solution
(Clark and Hastings [1977]).

4.27 Detecting Negative Cost Circuits by Node Elimination
Consider the problem of finding negative cost circuits in the directed
connected network G = (N ,A, c). A may contain some self-loops.
Look for negative cost self-loops. If

1
3

4

5

6

4
3

4

3

2

2

1

3

5

66

4

4

2

2

6
_

9
_

1
_

5
_

_

Figure 4.17: Elimination of node 1.

there are none, or if self-loops are not to be considered as circuits,
eliminate all self-loops in G. Define (i, j) ∈ A as an original arc
and associate it with the chain from i to j consisting of that arc only.
During the algorithm, new arcs are created by coalescing chains in the
original network into arcs. These will be called created arcs ; each of
them is associated with a chain in G. Some of the created arcs may be
self-loops; each of them is associated with a circuit in G.
Select a node, say 1. If A1 or B1 is empty, 1 is not on any circuit;

eliminate it and all arcs incident at it. If both A1,B1 are nonempty,
for each i ∈ A1, j ∈ B1 do the following: If (i, j) does not exist now,
introduce the created arc (i, j) with cost coefficient ci1+ c1i, associated
with the chain i, (i, 1), 1, (1, j), j in G (if i = j this created arc will
be a self-loop at i and the chain in G associated with it is a circuit). If

(i, j) already exists, and cij
<
= ci1+ c1j leave it as it is. If cij > ci1+ c1j ,

4.8. Exercises 375

change its cost coefficient to ci1 + c1j and change the chain associated
with it to that from i to j obtained by combining the chains associated
with (i, 1) and (1, i) in that order.
Now eliminate node 1 and all the arcs incident at it, and let the

resulting network be G1. See Figure 4.17 where the cost coefficients
are entered on the arcs, and created arcs are thick.
The same process is repeated on the network G1, and the process

continued yielding networks G2, . . ., with decreasing number of nodes.
Prove that G has a negative cost circuit iff Gr has either a negative
cost self-loop or a negative cost circuit. So, if G has a negative cost
circuit, it will be detected by one of the networks in the sequence
having a negative cost self-loop. The circuit associated with such a self-
loop is a negative cost circuit in G. Apply this approach to detect any
negative cost circuits in the following networks in Figure 4.18 with cost
coefficients entered on the arcs. Analyze the computational complexity
of this algorithm (Chen [1975]).

12

3

4 5

3

2

1

9 6

12

3 4

5

5

33 4

6
_

3_

_

1
_

9
_

5
_

4
_

_

1
_

3
_

2
_

1
_

3
_

2 2

Figure 4.18:

4.28 Let G = (N ,A) be an undirected network. For i, j ∈ N define

376 Ch. 4. Shortest Chain Algorithms

dij = 0 if i = j, = ∞ if there is no path from i to j in G, and = the
number of edges on a path with the smallest number of edges between
i and j in G otherwise. Develop efficient methods for computing the
matrix (dij), and for updating this matrix when an edge or a node is
added or deleted (Cheston and Corneil [1982]).

4.29 We consider a vehicle routing problem involving also fleet size
and mix decisions. T is the number of vehicle types. ar, fr are re-
spectively the capacity and the fixed cost of acquiring vehicle type r,
r =

3 4

6
7

8

9

2, 10

5, 6

1, 9

8, 3

7, 6

10, 5

3, 11

1, 15

2, 11

1, 6

2, 9

6, 5

4, 5

4, 11

3, 15

1, 3

1, 10

2

1 5

Figure 4.19: The entries on arc (i, j) are σij , βij .

1 to T . This data satisfies a1 < a2 < . . . < aT , f1 < . . . < fT . 0
denotes the depot, and 1 to n are the customers. All routes originate
and terminate at the depot. cij is the cost of travel from i (depot or
customer) to j, assumed to be symmetric and independent of vehicle
type used. The customers are ordered so that c01 > c02 > . . . > c0n. di
is the demand at customer i, a positive integer, for i = 1 to n, and D =�
di. Splitting of a customer’s demand between two vehicles is allowed.

Develop a method for obtaining a lower bound for the minimum total
cost (sum of fixed costs of acquiring the vehicles and the variable costs
of travel) for making deliveries to meet the customer’s demands, by

4.8. Exercises 377

solving a shortest chain problem on a directed network with D + 1
nodes (Golden, Assad, Levy, and Gheysens [1984]).

4.30 Minimum Bottleneck Cost Chains Let G = (N ,A, c, s̆, t̆)
be a directed network. Define the bottleneck cost of a chain C from s̆
to t̆ to be max. {cij : (i, j) ∈ C}. Develop an efficient algorithm for
finding a minimum bottleneck cost chain from s̆ to t̆ in G. What is
its computational complexity? Develop a special procedure for solving
this problem when G is an acyclic network, that exploits the acyclic
structure.

4.31 Optimal Sum-Bottleneck (SB) Chains Let G = (N ,A, s̆, t̆)
be a directed network which is doubly weighted, i.e., each arc (i, j) has
a sum weight σij, and a bottleneck weight βij associated with
it. The sum weight of a chain C, σ(C) is the sum of σij over arcs (i, j)
on it. The bottleneck weight of C, β(C), is the maximum of βij over
arcs (i, j) on it. The SB weight of C is defined to be equal to max. {
σ(C), β(C) }. Develop an efficient algorithm for finding a minimum SB
weight chain from s̆ to t̆ in G and derive its computational complexity.
Apply this algorithm on the network in Figure 4.19 with s̆ = 1, and t̆
= 9 (Bokhari [1988]).

4.32 The Jogger’s Problem Let G = (N ,A) be a connected
road network at the disposal of a jogger beginning his jog at node
1 ∈ N . Each line in the network possesses some positive measure
of undesirability. The jogger’s problem is to identify a simple circuit
containing node 1 for his jog, of minimum total undesirability. The
route is required to be a simple circuit, so it cannot consist of the
back-and-forth traversal of a single edge. In the directed case it cannot
just consist of a pair of arcs of the form (1, i), (i, 1); the requirement
is that it must consist of 3 or more nodes.
If C1p denotes the chain from 1 to p obtained when the last arc,

(p, 1) say, from an optimum simple circuit is deleted, show that C1p
must be a minimum undesirable chain from 1 to p not containing the
arc (1, p). Use this to develop an algorithm for the jogger’s problem,
and determine its computational complexity.
Now consider several different versions of the problem.

378 Ch. 4. Shortest Chain Algorithms

VERSION 1: Here G is undirected, and the undesirability of an
edge is independent of the direction of travel. Let dd be a shortest (i.e.,
min. cost) path tree rooted at 1 using the undesirability ratings as
the edge cost coefficients. Prove that there exists an optimum jogger’s
route in which all but one of the edges are from dd, and the other, say
(x, y), is such that x and y have no common ancestor in dd other than
1. Use this to develop a more efficient algorithm than that discussed
above for this version.

VERSION 2: Even for a two-way street, the undesirability measure
may depend on the direction of travel (e.g., if there is a gradient); then
it becomes necessary to represent it by a pair of arcs, one in each
direction. In this case G becomes directed, and arcs (i, j), (j, i) may
exist with different undesirability measures. From the requirements of
the route, at most one of these two arcs (i, j), (j, i) can appear on the
jog for any i, j. In this version prove that there is an optimum jogger’s
route which is a concatenation of the form C1x, (x, y), Cy1 where C1x, Cy1
are minimum undesirability chains from 1 to x, and y to 1 respectively.
Using this develop an efficient algorithm in this case.

VERSION 3 : G is undirected as in Version 1. We are given
the length of each edge in G in addition to its undesirability measure.
There is a constraint that the total length on the circuit must be

>
=

some specified quantity. Develop an efficient algorithm for the jogger’s
problem under this constraint.
(Bird [1981]).

4.33 G = (N ,A) is an acyclic network in which a subset of nodes
X⊂ N have weights wi associated with them. It is required to find
a chain from 1 to n in G such that the sum of the weights of the X-
nodes belonging to the chain is maximum. Develop an efficient O(|A|)
complexity algorithm for this problem (Kundu [1978]).

Comment 4.1 As the shortest chain problem (called shortest path
problem in some books) is so fundamental for modeling distribution and
routing applications, it has been a major focus of research in network
optimization, and the literature on it is vast. Deo and Pang [1984]
contains an extensive bibliography.

4.9. References 379

The first label setting algorithm is due to Dijkstra [1959], and inde-
pendently by Dantzig [1960] and Whiting and Hillier [1960]. Its worst
case computational complexity of O(n2) is the best possible running
time in dense networks, since any algorithm for this problem must
examine every arc. However, in sparse networks, it is possible to im-
prove the performance of this algorithm through the use of appropri-
ate data structures. Dial’s implementation [1965] is very popular and
gives excellent computational performance. For other improvements in
Dijkstra’s algorithm see Denardo and Fox [1979], Dial, Glover, Karney,
and Klingman [1979], Fredman and Tarjan [1987], and Johnson [1973,
1977].

Label correcting methods were introduced by Ford [1956], Moore
[1957] and Bellman [1958]. Many improvements in the basic algorithm
are discussed in Gilsinn and Witzgall [1973], Glover, Glover, and Kling-
man [1984], Glover, Klingman, and Phillips [1985], Glover, Klingman,
Phillips, and Schneider [1985], Goldfarb, Hao, and Kai [1989a, 1989b],
Pape [1974], Shier and Witzgall [1981], and Yen [1970]. With these
improvements, label correcting methods are very efficient in practice,
particularly in sparse networks.

Computational studies comparing various shortest chain algorithms
may be found in Denardo and Fox [1979], Dial, Glover, Karney, and
Klingman [1979], Gallo and Pallatino [1988], Gilsinn and Witzgall
[1973], Glover, Klingman, Phillips, and Schneider [1985], Imai and Iri
[1984], Kelton and Law [1978], Pape [1974], and Van Vliet [1978].

4.9 References

R. K. AHUJA, J. L. BATRA, and S. K. GUPTA, May 1983, “Combinatorial Op-
timization With Rational Objective Functions: A Communication,” MOR, 8, no.
2(314).
R. BELLMAN, 1958, “On a Routing Problem,” QAM, 16(87-90).
R. S. BIRD, Dec. 1981, “The Jogger’s Problem,” IPL, 13, no.(114-117).
S. H. BOKHARI, Jan. 1988, “Partitioning Problems in Parallel, Pipelined and Dis-
tributed Computing,” IEEE Transactions on Computers , 37, no. 1(48-57).
I-NGO CHEN, June 1975, “A node Elimination Method for Finding Negative Cy-
cles in a Directed Graph,” INFOR, 13, no. 2(147-158).
G. A. CHESTON and D. G. CORNEIL, Aug. 1982, “Graph Property Update Al-

380 Ch. 4. Shortest Chain Algorithms

gorithms and Their Application to Distance Matrices,” INFOR, 20, no. 3(178-201).
N. CHRISTOFIDES, A. MINGOZZIA, and P. TOTH, 1981, “Exact Algorithms for
the Vehicle Routing Problem, Based on Spanning Trees and Shortest Path Relax-
ations,” MP, 20(255-282).
J. A. CLARK and N. A. J. HASTINGS, 1977, “Decision Networks,” ORQ, 28, no.
1i(51-68).
G. B. DANTZIG, 1960, “On the Shortest Route Through a Network,” MS, 6(187-
190).
G. B. DANTZIG, 1967, “All Shortest Routes in a Graph,” in P. Rosentiehl (Ed.),
Theory of Graphs, Dunod, Paris(91-92).
K. DARBY-DOWMAN and G. MITRA, Aug. 1985, “An Extension of Set Parti-
tioning With Applications to Scheduling Problems,” EJOR, 21, no. 2(200-205).
E. DENARDO and B. FOX, 1979, “Shortest-route Methods; 1. Reaching, Pruning
and Buckets,” OR, 27(161-186).
N. DEO and C. - Y. PANG, 1984, “Shortest Path Algorithms: Taxonomy and An-
notation,” Networks, 14(275-323).
R. DIAL, 1965, “Algorithm 360: Shortest Path Forest With Topological Ordering,”
CACM, 12(632-633).
R. DIAL, F. GLOVER, D. KARNEY, and D. KLINGMAN, 1979, “A Compu-
tational Analysis of Alternative Algorithms and Labeling Techniques for Finding
Shortest Path Trees,” Networks, 9(215-248).
E. DIJKSTRA, 1959, “A Note on Two Problems in Connection With Graphs,”
Numerische Mathematik, 1(269-271).
P. DOULBIEZ and M. RAS, 1975, “Optimal Network Capacity Planning: A Short-
est Path Scheme,” OR, 23(810-818).
S. DREYFUS, 1969, “An Appraisal of Some Shortest-path Algorithms,” OR, 17(395-
412).
J. EDMONDS, 1970, “Exponential Growth of the Simplex Method for Shortest
Path Problems,” unpublished report, University of Waterloo.
M. FLORIAN, S. NGUYEN, and S. PALLOTINO, 1981, “A Dual Simplex Algo-
rithm for Finding All Shortest Paths,” Networks, 11(367-378).
R. W. FLOYD, 1962, “Algorithm 97, Shortest Path,” CACM, 5(345).
L. R. FORD, Jr. 1956, “Network Flow Theory,” Rand report P-923.
M. L. FREDMAN and R. E. TARJAN, 1987, “Fibonacci Heaps and Their Uses in
Improved Network Optimization Algorithms,” JACM, 34(596-615).
G. GALLO and S. PALLOTINO, 1988, “Shortest Path Algorithms,” in B. Simeone,
P. Toth, G. Gallo, F. Maffioli, and S. Pallotino (Eds.), Fortran Codes for Network
Optimization, AOR, 13(3-79).
A. GARCIA-DIAZ and J. LIEBMAN, 1980, “An Investment Staging Model for a
Bridge Replacement Problem,” OR, 28(736-753).
J. GILSINN and C. WITZGALL, 1973, “A Performance Comparison of Labeling
Algorithms for Calculating Shortest Path Trees,” Technical note 772, NBS, Wash-
ington, D.C.
F. GLOVER, R. GLOVER, and D. KLINGMAN, 1984, “Computational Study of

4.9. References 381

an Improved Shortest Path Algorithm,” Networks, 14, no. 1(25-36).
F. GLOVER, D. KLINGMAN, and N. PHILLIPS, 1985, “A New Polynomially
Bounded Shortest Path Algorithm,” OR, 33(65-73).
F. GLOVER, D. KLINGMAN, N. PHILLIPS, and R. F. SCHNEIDER, 1985, “New
Polynomial Shortest Path Algorithms and Their Computational Attributes,” MS,
31(1106-1128).
B. GOLDEN, A. ASSAD, L. LEVY, and F. GHEYSENS, 1984, “The Fleet Size
and Mix Vehicle Routing Problems,” COR, 11, no. 1(49-66).
B. GOLDEN and T. MAGNANTI, 1978, “Transportation Planning: Network Mod-
els and Their Implementation,” Studies in Operations Management, North Holland,
Amsterdam(365-518).
D. GOLDFARB, J. HAO, and S. R. KAI, July-Aug. 1990, “Efficient Shortest Path
Simplex Algorithms,” OR, 38, no. 4(79 - 91).
D. GOLDFARB, J. HAO, and S. R. KAI, 1991, “Shortest Path Algorithms Using
Dynamic Breadth-First Search,” Networks, 21(29-50).
H. IMAI and M. IRI, 1984, “Practical Efficiencies of Existing Shortest Path Algo-
rithms and a New Bucket Algorithm,” Journal of the OR Society of Japan, 27(43-
58).
D. B. JOHNSON, July 1973, “A Note on Dijkstra’s Shortest Path Algorithm,”
JACM, 20(385-388).
D. B. JOHNSON, Jan. 1977, “Efficient Algorithms for Shortest Paths in Sparse
Networks,” JACM, 24, no. 1(1-13).
W. D. KELTON and A. M. LAW, 1978, “A Mean-time Comparison of Algorithms
for all Pairs Shortest Path Problem With Arbitrary Arc Lengths,” Networks, 8(97-
106).
A. KERSHENBAUM, 1981, “A Note on Finding Shortest Path Trees,” Networks,
11, no. 4,(399-400).
M. KLEIN and R. K. TIBREWALA, Feb. 1973, “Finding Negative Cycles,” IN-
FOR, 11, no. 1(59-65).
S. KUNDU, Jan. 1978, “Note on a Constrained-path Problem in Program Testing,”
IEEE Transactions on Software Engineering, SE-4, no. 1(75-76).
A. S. LAPAUGH and C. H. PAPADIMITRIOU, 1984, “The Even Path Problem
for Graphs and Digraphs,” Networks, 14, no. 4(507-513).
E. L. LAWLER, Mar. 1972, “A Procedure for Computing the k Best Solutions to
Discrete Optimization Problems and its Application to the Shortest Path,” MS,
18(401-405).
K. MALIK, A. K. MITTAL, and S. K. GUPTA, Aug. 1989, “The k-most Vital Arcs
in the Shortest Path Problem,” OR Letters, 8, no. 4(223-227).
G. J. MINTY, 1958, “A Variant on the Shortest Route Problem,” OR, 6(882-883).
E. F. MOORE, 1957, “The Shortest Path Through a Maze,” in Proc. of the In-
ternational Symposium on the Theory of Switching, Part 2; The Annals of the
Computation Laboratory of Harvard Univ. 30(285-292).
U. PAPE, 1974, “Implementation and Efficiency of Moore-algorithms for the Short-
est Route Problem,” MP, 7(212-222).

382 Ch. 4. Shortest Chain Algorithms

A. R. PIERCE, 1975, “Bibliography on Algorithms for Shortest Path, Shortest
Spanning Tree and Related Circuit Routing Problems,” Networks, 5(129-143).
M. SCHWARTZ and T. STERN, 1980, “Routing Techniques Used in Computer
Communication Networks,” IEEE Transactions on Comm., COM-28(539-552).
F. SHEPARDSON and R. E. MARSTEN, 1980, “A Lagrangian Relaxation Algo-
rithm for the Two Duty Period Scheduling Problem,” MS, 3(274-281).
D. SHIER and C. WITZGALL, 1981, “Properties of Labeling Methods for Deter-
mining Shortest Path Trees,” Journal of Research of the NBS, 86(317-330).
D. TEODOROVIC and S. GUBERINIC, Feb. 1984, “Optimal Dispatching Strategy
on an Airline Network After a Schedule Perturbation,” EJOR, 15, no. 2(178-182).
R. L. TOBIN, 1975, “Minimal Complete Matchings and Negative Cycles,” Net-
works, 5, no. 4(371-387).
D. VAN VLIET, 1978, “Improved Shortest Path Algorithms for Transport Net-
works,” Transportation Research, 12(7-20).
S. WARSHALL, 1962, “A Theorem on Boolean Matrices,” JACM, 9(11-12).
A. WEINTRAUB, 1973, “The Shortest and the k-shortest Routes as Assignment
Problems,” Networks, 3(61-73).
P. D. WHITTING and J. A. HILLIER, 1960, “A Method for Finding the Shortest
Route Through a Road Network,” ORQ, 11(37-40).
J. YEN, 1970, “An Algorithm for Finding Shortest Routes From All Source Nodes
to a Given Destination in General Networks,” QAM, 27(526-530).

Index

For each index entry we provide the
page number where it is defined or
discussed first.

Ancestor checking 343

Bellman-Ford eqs. 333

BFM method 347

Branching out 345

Critical length 363

DBFS algorithm 349

Distance matrix 357

Floyd-Warshall 360

Greedy 336

Algorithm 336

Selection 336

Inductive algorithm 358

Label 337

Correcting method 342

Depth index 349

Matrix 357
Permanent 337

Setting method 336

Temporary 337

Matrix methods 357

Next list 349

Primal method 343

Ranking algorithm 364

Sensitivity analysis 362
Shortest Chain problem 329

Acyclic 355
LP formulation 329
Relation to assignment 368
Set partition application 371

Shortest chain tree 329
Shortest path tree 329

Triangle inequality 360
Triangle operation 360
Triple operation 360

383

