
Contents

5 Algorithms for Minimum Cost Flow Problems in Pure
Networks 384
5.1 Different Types of Single Commodity Minimum Cost

Flow Models . 385
5.2 Optimality Conditions 389
5.3 The Out-of-Kilter Algorithm 399
5.4 The Primal Network Simplex Method 424
5.5 The Shortest Augmenting Path Method 448
5.6 A Class of Primal-Dual Methods 452
5.7 The Dual Network Simplex Method for Minimum Cost

Flow Problems . 466
5.8 A Strongly Polynomial Algorithm for Minimum Cost

Flow Problems . 469
5.9 Minimum Separable Piecewise Linear Convex Cost Flow

Problems . 482
5.10 Dynamic Network Flow Problems 484
5.11 Multicommodity Flow Problems 489
5.12 Exercises . 494
5.13 References . 515

i

ii

Chapter 5

Algorithms for Minimum
Cost Flow Problems in Pure
Networks

This chapter will consider algorithms for minimum cost flow problems
in pure networks. We begin by considering pure single commodity lin-
ear static minimum cost flow problems in Sections 5.1 to 5.8. The
assignment, transportation, and shortest chain problems discussed in
Chapters 3, 4 are special cases of these problems. Section 5.9 treats
the case of a piecewise linear convex cost function. In Section 5.10 we
consider dynamic flow problems in pure networks briefly. Finally, in
Section 5.11 we present the arc-chain approach for solving multicom-
modity flow problems in pure networks.

As discussed in Chapter 1, we assume without any loss of generality
that our problems are defined on the directed network G = (N ,A, f =
(fij), k = (kij), c = (cij)), with f, k, c as the lower bound, capacity, and
unit cost coefficient vectors for flows on the arcs in A. We assume
that k

>
= f

>
= 0. Some, or all, of the entries in k may be ∞. If a

feasible flow vector exists in G, it will be shown later that the cost
function is unbounded below on the set of feasible solutions iff there

384

5.1. Single Commodity Flow Models 385

exists an uncapacitated negative cost circuit (i.e., a negative cost circuit
consisting only of arcs (i, j) with kij = ∞). By forcing a flow amount
of ∞ around an uncapacitated negative cost circuit, the cost can be
driven to −∞. We saw this phenomenon also in the shortest chain
problem in Chapter 4.

5.1 Different Types of Single Commodity

Minimum Cost Flow Models

A common problem, occurring on a directed network G = (N ,A, f, k, c, s̆, t̆, v),
is to ship a specified quantity, v units of the commodity from the spec-
ified sources s̆, to the specified sink t̆ in G at minimum cost. It is to
find f = (fij : (i, j) ∈ A) to

Minimize
3
(cijfij : over (i, j) ∈ A)

Subject to − f(i,N) + f(N , i) =

⎧⎪⎨⎪⎩
−v if i = s̆
0 if i W= s̆, t̆
v if i = t̆

(5.1)

fij
<
= fij

<
= kij, for all (i, j) ∈ A

A special case of (5.1) has f = 0, and kij =∞ for all (i, j) ∈ A. If
it is feasible, and there are no negative cost circuits in G, an optimum
flow for this special problem is obtained by sending all the v units along
a shortest chain from s̆ to t̆ with c as the arc length vector. So, this
special case is equivalent to a shortest chain problem.

Minimum Cost Circulation Problem

Another problem, known as theminimum cost circulation prob-
lem , is that of finding a minimum cost circulation in a directed network
G = (N ,A, f, k, c). It is to find f = (fij) to

Minimize
3
(cijfij : over (i, j) ∈ A)

Subject to − f(i,N) + f(N , i) = 0, for each i ∈ N (5.2)

386 Ch. 5. Pure Min. Cost Flows

fij
<
= fij

<
= kij , for all (i, j) ∈ A

(5.1) is equivalent to a minimum cost circulation problem on an
augmented network GI obtained by including in G a new arc (t̆, s̆)
associated with lower bound and capacity both equal to v, and unit
cost coefficient of 0.

Minimum Cost Flow Model with Exogenous Flow Values

Another model, (5.3), is to find a feasible flow vector f = (fij) in
the directed network G = (N ,A, f, k, c, V = (Vi)), which is a minimum
cost flow satisfying specified exogenous flows at the nodes, given by
the vector V . In this model, node i is a source node if Vi > 0, a
sink node if Vi < 0, and an intermediate or transit node if Vi =
0. (5.3) can easily be transformed into a problem of type (5.1) on an
augmented network obtained by including a super source and a super
sink in G as in Section 2.1.

Minimize
3
(cijfij : over (i, j) ∈ A)

Subject to − f(i,N) + f(N , i) = −Vi, for each i ∈ N (5.3)

fij
<
= fij

<
= kij, for all (i, j) ∈ A

The transportation problem is a special case of (5.3) in which the
network is bipartite, every node is either a source or a sink node, and
all the arcs are directed from a source to a sink node. In a directed
network, a node i is called a shipping node if Bi = ∅, a receiving
node if Ai = ∅, and a transshipment node if both Bi,Ai W= ∅. The
transportation problem is a minimum cost flow problem on a network
containing no transshipment nodes and vice versa. A minimum cost
flow problem on a directed network containing some transshipment
nodes is called a transshipment problem in the literature.
A necessary condition for (5.3) to be feasible, obtained by summing

all the equality constraints in it, is

3
(Vi : over i ∈ N) = 0 (5.4)

In this model, finite nonzero lower bounds on the variables can
easily be transformed into zeros. If fij W= 0 and finite for some (i, j) ∈ A,

5.1. Single Commodity Flow Models 387

transform fij by substituting fij = f
I
ij+fij, where f

I
ij is the new variable

replacing fij . This leads to the transformation of the data on arc
(i, j) as shown in Figure 5.1. Verify that in the transformed problem,
(5.4) continues to hold if it does so in the original problem. A similar
transformation can be carried out for every arc with finite nonzero
lower bound.

i

Original arc with data . Lower

bound is finite .

j
Vi

V

1 11
l , k , c j i

Transformed arc with 0 as

lower bound .

1 11
0 , k - l , c

V - li 1 V + lj 1

j

Figure 5.1:

Suppose (5.4) does not hold and U =
�
(Vi : over i ∈ N) W= 0. In

this case we have excess supply if U > 0, shortage otherwise, and
the equality constraints in (5.3) cannot be satisfied exactly. If there is
excess supply, introduce an artificial sink node t̆ with exogenous flow
value, Vt̆ = −U ; and artificial arcs (i, t̆) with lower bound, capacity,
unit cost coefficient equal to 0, ∞, 0 respectively, for each source node
i. Flows on each of these artificial arcs represent the amount of ma-
terial unutilized in G at the source nodes on those arcs. Data on the
augmented network now satisfy (5.4). We can find an optimum flow
vector in G which meets all the requirements at the sink nodes exactly
at minimum cost, while leaving U units of material unutilized at the
source nodes, by solving the problem of type (5.3) in the augmented
network.
If there is shortage, there will be an unfulfilled demand of |U | units.

Introduce an artificial source node s̆ with an exogenous flow of |U |
units; and artificial arcs (s̆, j) with lower bound, capacity, unit cost
coefficient equal to 0,∞, cs̆j respectively for each sink node j. Flow on
the artificial arc (s̆, j) represents the unfulfilled requirement at node j.
All cs̆j are made 0 if it is just required to find how the existing supply
can be used to meet as much of the demand as possible at minimum

388 Ch. 5. Pure Min. Cost Flows

shipping cost, without giving any special preference to any of the sink
nodes. Otherwise cs̆j can be taken to be the per-unit shortage at sink
j if such data is available and it is desired to minimize the sum of
the shipping costs and the costs of shortage. Or, we can make cs̆j to
be suitable positive weights to reflect the priorities for fulfilling the
demands at sinks j. With these modifications, data on the augmented
network satisfy (5.4), and we can solve the problem of type (5.3) on it.

A General Minimum Cost Flow Model

In this model S, T, the sets of source, sink nodes in G = (N ,A, f, k, c)
are specified. For each i ∈ S, we are given numbers aIi >= ai > 0, and
the net amount of material shipped out of i is required to be between ai
and aIi. For each j ∈ T, we are given numbers bIj >= bj > 0, and the net
amount of material reaching j is required to be between bj and b

I
j . So,

this model is a generalization of the model (5.3), with the exogenous
flow amounts Vis being themselves variables subject to lower and upper
bound constraints. Introduce two new nodes, s̆, t̆, a supersource and
supersink. For each i ∈ S, introduce the arc (s̆, i) with lower bound,
capacity, cost coefficient equal to ai, a

I
i, 0 respectively. For each j ∈

T, introduce the arc (j, t̆) with lower bound, capacity, cost coefficient
equal to bj , b

I
j, 0 respectively. Introduce the arc (t̆, s̆) with lower bound,

capacity, cost coefficient equal to 0,∞, 0 respectively. Clearly, this gen-
eral model is equivalent to the minimum cost circulation problem of the
form (5.2) in the augmented network.

The Maximum Profit Flow Problem

This problem, (5.5), is the same as (5.1), with the exception that
each unit shipped to the sink can be sold there at a premium (this is
the difference between the selling prices per unit of the material at the
sink and the source) of λ. In this problem the data typically satisfies

f = 0, k > 0, c
>
= 0. The objective is to maximize the net profit which

is the total premium minus the shipping cost. The flow value v is also
a variable in this problem, and typically it is required to be solved as
a parametric problem with λ as a nonnegative parameter. For any λ,
(5.5) can be posed as a minimum cost circulation problem of the form

5.2. Optimality Conditions 389

(5.2) by introducing the arc (t̆, s̆) into the network and making v the
flow variable associated with it.

Maximize P (f,λ) = λv −3(cijfij : over (i, j) ∈ A)

Subject to − f(i,N) + f(N , i) =
⎧⎪⎨⎪⎩
−v if i = s̆
0 if i W= s̆, t̆
v if i = t̆

(5.5)

0
<
= fij

<
= kij, for all (i, j) ∈ A

In each of the flow models discussed above on the directed network
G with c = (cij) as the cost vector, c can be replaced by the reduced
cost vector c = (cij = cij − (πj − πi)), where π = (πi) is any node price
vector in G. For any feasible flow vector f , cf = cf+ a constant, where
the constant is independent of f , but depends only on π and the data
in the problem such as V etc. Hence replacing c by c does not change
the set of optimum solutions, and thus leads to an equivalent problem.
Some algorithms make use of this idea.

We have seen that the various flow models discussed above are
equivalent. In presenting algorithms, this gives us the freedom to select
any of these models, and describe the algorithm as it applies to that
model.

5.2 Optimality Conditions

Complementary Slackness Optimality Conditions

Consider the problem (5.3) in the network G. The equality con-
straints in it are −Ef = −V , where E is the node-arc incidence matrix
of G. Each of these constraints corresponds to a node, and so the dual
variable associated with that constraint can be interpreted as the price
of that node in the dual problem. So, the variables in the dual problem
are node prices. Given the node price (row) vector π, the complemen-
tary slackness optimality conditions (see (1.10) in Chapter 1) for (5.3)
and its dual are stated in terms of f and the vector c− (−πE). From

390 Ch. 5. Pure Min. Cost Flows

the definition of E, it can be seen that −πE is the row vector of ten-
sions (πj − πi : (i, j) ∈ A) on the arcs in A wrt π. From this, it can
be verified that these conditions (1.10) simplify to (5.6) given below
for this primal dual pair. In the same manner, in each of the problems
(5.1), (5.2), or (5.3) on G, a feasible flow vector f = (fij) is optimal
iff there exists a vector π of dual variables (or node prices, or node
potentials) such that f, π together satisfy: for each (i, j) ∈ A

if πj − πi > cij then kij is finite and fij = kij

if πj − πi < cij then fij = fij (5.6)

.

.

�������
j i

ijk

ijl

Tension

on arc

(i,)j

Flow amount

on arc (i,)j

f
ij

c
ij

Figure 5.2: C.S. diagram for an arc (i, j) with finite capacity.

These conditions, known as the complementary slackness opti-
mality conditions, or c.s. conditions in short, can be illustrated
in a diagram known as the complementary slackness diagram or
c.s. diagram for arc (i, j). See Figures 5.2, 5.3, in which fij is plot-
ted on the horizontal axis, and the tension πj − πi is plotted on the

5.2. Optimality Conditions 391

.

ijl

�������
j i

Tension

on arc

(i,)j

Flow amount

on arc (i,)j

f
ij

c
ij

…

Figure 5.3: C.S. diagram for an arc (i, j) with infinite capacity.

vertical axis. The feasible flow vector-dual vector pair (f, π) satisfies
the c.s. conditions for arc (i, j) iff the point (fij , πj − πi) lies on the
chair-shaped curve in Figures 5.2, 5.3.

Optimality Conditions in Terms of Negative Cost Residual
Cycles

Consider any of the single commodity minimum cost flow problems
(5.1), (5.2), or (5.3) in the directed network G = (N ,A, f, k, c). Given
any path, or an oriented cycle in G, define its cost to be = (the sum of
the costs of forward arcs in it)− (the sum of the costs of the reverse arcs
in it). Theorem 5.1 given below establishes that a feasible flow vector
for this problem is optimal iff there exists no negative cost residual
cycle wrt it. The proof of this theorem requires a couple of lemmas
which we state and prove first.

392 Ch. 5. Pure Min. Cost Flows

LEMMA 5.1 G is a directed network with c as the vector of cost co-
efficients on the arcs, and g0 = (g0ij)

>
= 0 is a circulation in it satisfying

cg0 < 0. W0 = {(i, j) : g0ij > 0}. Then there exists a negative cost
simple circuit among the set of arcs W0.

Proof Since g0 is a circulation, if node i lies on an arc in W0,
there must exist at least one arc inW0 in both the forward and reverse
stars of i. Start with such a node i and arcs of the form (j1, i), (i, p1)
in W0. Using the same statement again and again trace a chain
of the form i, (i, p1), p1, (p1, p2), p2, (p2, p3), . . . and a path of the form
i, (j1, i), j1, (j2, j1), j2, (j3, j2), . . ., both beginning at i and consisting of
arcs fromW0 only; until either the chain and the path have a common
node, say s; or a node is repeated in the chain or the path. The path
traced from i to s is actually a chain from s to i in reverse order. When
either of these events occur, either the chain, or the path, or both of

them put together, have a simple circuit, say
→
CC0 from the set of arcs

W0. If the cost of
→
CC0 is < 0, we are done. Otherwise let α = min. {

g0ij : (i, j) on
→
CC0 }, subtract α from g0ij for each arc (i, j) on

→
CC0 and

let g1 = (g1ij) be the resulting flow vector in G. Verify that g
1 is again

a circulation in G and g1
>
= 0. The cost of g1 is cg1 = cg0 − α (cost

of
→
CC0) < 0 since cg0 < 0,α > 0 and the cost of

→
CC0 is

>
= 0. Also,

W1 = {(i, j) : g1ij > 0} ⊂ W0 and |W1| <= |W0| − 1. Now apply the
same procedure on W1, and repeat in the same way. This leads to a
sequence of nonnegative circulations g1, g2, . . . in G, all of negative cost
with Wr = {(i, j) : grij > 0} satisfying |Wr| <= |Wr−1| − 1 for all r,
and W0 ⊃ W1 ⊃ W2 ⊃ So, for some r <

= |W0| − 2, the simple
circuit found when the procedure is applied onWr must have negative
cost. This circuit is a negative cost simple circuit inW0, proving the
lemma. .

LEMMA 5.2 Let G be a directed network with c as the vector of arc
cost coefficients, and g = (gij) a negative cost circulation in G (i.e., g

satisfies flow conservation at all the nodes), but g may not be
>
= 0. W

= { (i, j) : gij W= 0 }. Then there exists a negative cost oriented cycle
CC among the set of arcsW such that gij > 0 on all forward arcs (i, j)
on CC, and gij < 0 on all reverse arcs (i, j) on CC.

5.2. Optimality Conditions 393

Proof If arc (i, j) is such that gij > 0, label it with + and leave it
as it is. If (i, j) is such that gij < 0 reverse its orientation (i.e., replace
it with (j, i)), change the cost coefficient on it to −cij, and the flow
on it to −gij , and label it with −. Let the resulting network and the
flow vector on it be Ĝ, ĝ. Then ĝ

>
= 0, it is a circulation in Ĝ, and its

cost in Ĝ = the cost of g in G, which is < 0. So, by Lemma 5.1 there

exists a negative cost simple circuit
→
CC in Ĝ among the set of arcs on

which ĝ has positive flow. Verify that changing the orientations of the

− labeled arcs on →CC converts it into a simple cycle CC in G. Orient CC
so that the + labeled arcs on it are forward arcs, and verify that it
satisfies all the properties stated in the lemma.

THEOREM 5.1 Let f = (f) be a feasible flow vector in G = (N ,A, f, k, c)
for a minimum cost flow problem of the form (5.1), (5.2), or (5.3). f
is a minimum cost feasible flow vector for this problem iff there exists
no negative cost residual cycle wrt f in G.

Proof Suppose CC0 is a negative cost residual cycle wrt f in G. Let
60 be the residual capacity of CC0. Let f̂ be the flow vector obtained
by increasing (decreasing) the flow amount in f on forward (reverse)
arcs of CC0 by 60. Since these flow changes are made along the arcs on
a simple cycle, we have f̂(i,N) − f̂(N , i) = f(i,N) − f(N , i) for all
i ∈ N . From this and the definition of 60, it follows that f̂ is a feasible
flow vector and cf̂ = cf + 60 (cost of CC0) < cf since 60 > 0 and the
cost of CC0 is < 0, so f is not a minimum cost flow for the problem.
To prove the “only if” part, suppose f is a feasible but not a min-

imum cost flow vector for the problem. Then there must exist a fea-
sible flow vector f0 whose cost is strictly less than that of f . Define
g = (gij) = f0 − f . g is a negative cost circulation in G, but it may
not be nonnegative or satisfy the lower or upper bound conditions on
the arcs. Let W+ = {(i, j) : gij > 0}, W− = {(i, j) : gij < 0}, W =
W+∪W−. Since both f 0 and f are feasible flow vectors in G, we have

kij
>
= f0ij > f ij , for all (i, j) ∈W+

fij
<
= f0ij < f ij , for all (i, j) ∈W−

394 Ch. 5. Pure Min. Cost Flows

By applying Lemma 5.2 to g in G, we conclude that there must exist
a negative cost oriented cycle CC0 consisting of arcs fromW satisfying:
gij > 0 for forward arcs on CC0 and gij < 0 for reverse arcs on CC0.
Verify that CC0 is a negative cost residual cycle wrt f .
An equivalent statement to Theorem 5.1 is that a feasible flow vec-

tor f in G for problems (5.1), (5.2), or (5.3) is optimal iff the residual
networks G(f) or G(f,π) for any node price vector π contain no neg-
ative cost circuits.

Canceling a Residual Cycle

Let f be a feasible flow vector in the directed network G = (N ,A, f, k, c)
for (5.1), (5.2), or (5.3). Let CC be a residual cycle wrt f of residual
capacity α. Let f̂ be the flow vector in G obtained by increasing (de-
creasing) the flow amount in f on forward (reverse) arcs of CC by α.
Clearly f̂ is also a feasible flow vector for the problem. The operation
of obtaining f̂ from f is called canceling the residual cycle CC in f .
cf̂ = cf+α (cost of CC). Since α > 0, canceling a negative cost residual
cycle strictly reduces the cost. As an example consider the network in
Figure 5.7 later on. The data on the arcs is the lower bound, capacity,
cost coefficient, in that order. A feasible flow vector of value 12 and
cost 126 is marked in Figure 5.7 with the flow on each arc entered in-
side a box by the side of the arc if it is nonzero. The cycle 1, (1, 3),
3, (3, 5), 5, (2, 5), 2, (1, 2), 1 with (1, 2), (2, 5) as reverse arcs and
(1, 3), (3, 5) as forward arcs, is a negative cost residual cycle wrt this
flow vector. Its residual capacity is min. {10− 7, 4− 3, 6, 5} = 1, and
its cost is −7. Canceling this residual cycle leads to the feasible flow
vector marked in Figure 5.8 with cost 119.
Many of the algorithms for solving minimum cost flow problems,

such as the out-of-kilter algorithm (Section 5.3), the primal simplex
algorithm (Section 5.4), the Goldberg-Tarjan algorithm (Section 5.8),
are all based on the operation of finding and canceling negative cost
residual cycles repeatedly.

Some Results on Optimum Solutions

LEMMA 5.3 In (5.1) suppose f = 0, k > 0 and there exists no neg-

5.2. Optimality Conditions 395

ative cost circuit in G. Let δ = min. {kij : (i, j) ∈ A}. If there is a
chain from s̆ to t̆ in G, any flow vector which sends a flow amount of
v along all the arcs of a shortest chain from s̆ to t̆ with c as the vector
of arc lengths, is an optimum flow for (5.1) for all 0

<
= v

<
= δ.

Proof Let C be any such shortest chain from s̆ to t̆. By the results
in Chapter 4, there exists a node price vector π̃ = (π̃i) such that

π̃j − π̃i

l
= cij for all arcs (i, j) on C
<
= cij for all other arcs.

(5.7)

Define f̃ij = v for (i, j) on C, = 0 otherwise, and let f̃ = (f̃ij). Then
f̃ is feasible to (5.1) and by (5.7), (f̃ , π̃) satisfy (5.6). So, f̃ is optimal
to (5.1) for this value v.

Under the hypothesis in Lemma 5.3, one is tempted to think of the
following scheme for solving (5.1) in G for any v

>
= 0. The scheme

begins with an initial optimum flow vector of small value obtained as
in the proof of Lemma 5.3. Then it tries to augment flow successively
on the cheapest available chain from s̆ to t̆ in each step, dropping arcs
from further consideration once they become saturated, until the value
reaches v. Since flow augmentation is carried out only along chains,
from Chapter 2 we know that when (5.1) is feasible, this scheme may
not even find a feasible flow vector at termination. However, it seems
highly intuitive that if a feasible flow vector is obtained at termination
of this scheme, it will be a minimum cost flow. Unfortunately, this
may not be true, as in the network in Figure 5.4 constructed by Mike
Plantholt. All lower bounds are 0, and the data on the arcs is the
capacity, unit cost coefficient, in that order. We require a minimum
cost flow of value 2. With the cost coefficients as the lengths, the
shortest chain from 1 to 6 is 1, (1, 2), 2, (2, 5), 5, (5, 6), 6. The
capacity of this chain is 1, so, applying the above scheme, we get the
initial flow vector of f1 = (f 112, f

1
13, f

1
24, f

1
25, f

1
34, f

1
35, f

1
46, f

1
56) = (1, 0,

0, 1, 0, 0, 0, 1) of value v1 = 1. In all the flow vectors, we will order
the arcs in the same order as in f 1. In f 1 arcs (1, 2), (2, 5), (5, 6) are
saturated, which we eliminate from further consideration. The shortest
chain from 1 to 6 in the remaining network is 1, (1, 3), 3, (3, 4), 4, (4,
6), 6 with a cost of 1003. Augmenting the flow on each of the arcs of

396 Ch. 5. Pure Min. Cost Flows

this chain by 1 leads to the flow vector f 2 = (1, 1, 0, 1, 1, 0, 1, 1), of
value 2 and cost 1006. f2 is not a minimum cost flow vector for this
problem since the flow vector f = (1, 1, 1, 0, 0, 1, 1, 1) is feasible and
has a cost of only 8.

1

2

3 4

5

6

0,1,1

0,1,1

0,1,1

0,1,10,1,1

0,1,2 0,1,2

0,1,1000

Source

Sink

Figure 5.4:

Given a minimum cost feasible flow vector f of value v, to get
minimum cost flow vectors of value > v one may have to reduce the
flow amounts in f on some of the arcs, and reroute those amounts.
The above scheme never reduces the flow amount on any arc and that’s
why it didn’t work. However, see Exercise 5.21 for minimum cost flow
problems on a very special class of networks, for which this scheme
works.
We have seen that flow augmentation along a minimum-cost FAC

may not preserve optimality. However, we now show that flow augmen-
tation along any minimum cost FAP does always preserve optimality.

THEOREM 5.2 Let f be a minimum cost flow vector in G = (N ,A, f,
k, c, s̆, t̆) of value v. G(f) = (N ,A(f), 0,κ, cI) is the residual network
wrt f .

(i) The cost of any chain from s̆ to t̆ in G(f) is the same as the cost
of the corresponding FAP in G. So, every shortest chain from s̆

5.2. Optimality Conditions 397

to t̆ in G(f) with cI as the arc length vector, corresponds to a
minimum cost FAP from s̆ to t̆ wrt f in G.

(ii) If there exists no chain from s̆ to t̆ in G(f), f is a maximum
value flow in G.

(iii) Let C0 be a shortest chain from s̆ to t̆ in G(f). Its capacity is δ
= min. {κpq : (p, q) on C0}. Define a flow vector f(λ) = (fij(λ) :
(i, j) ∈ A) in G, where

fij(λ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f ij if (i, j) does not correspond to an arc on C0

f ij + λ if (i, j) corresponds to a + arc on C0

f ij − λ if (i, j) corresponds to a - arc on C0

Then δ > 0, and f(λ) is a minimum cost feasible flow vector in

G of value v + λ, for all 0
<
= λ

<
= δ.

Proof (i) follows directly from the definitions. If there is no
chain from s̆ to t̆ in G(f), there exists no FAP from s̆ to t̆ wrt f in G,
hence f is a maximum value feasible flow vector in G by Theorem 2.3,
establishing (ii).
Clearly f(λ) is a feasible flow vector in G of value v + λ, for all

0
<
= λ

<
= δ. Since C0 is a shortest chain in G(f), by the results in

Chapter 4 there must exist a node price vector µ = (µi : i ∈ N)
satisfying

µq − µp <
= cIpq, for all (p, q) ∈ A(f) (5.8)

and (5.8) holds as an equation for each arc on C0.
If (i, j) ∈ A is such that fij < f ij < kij , both (i, j) and (j, i) are in

A(f); by applying (5.8) to both these arcs we have µj − µi = cij.
If (i, j) is such that f ij = fij, and fij < kij, then (i, j) is in A(f)

but not (j, i), and from (5.8) we have µj − µi <= cij. Similarly, if (i, j)
is such that f ij = kij , and fij < kij , then (j, i) is in A(f) but not
(i, j), and from (5.8) we have µj − µi >

= cij . For all arcs (i, j) ∈ A

398 Ch. 5. Pure Min. Cost Flows

which correspond to an arc in C0, µj − µi = cij, since (5.8) holds as an
equation for those arcs.
These facts together imply that f(λ), µ together satisfy the comple-

mentary slackness optimality conditions (5.6). So, f(λ) is an optimum

feasible flow vector for all 0
<
= λ

<
= δ.

Since shortest chains in G(f) and G(f,π) for any node price vector
π are the same, the results in Theorem 5.2 continue to hold if we re-
place G(f) by G(f, π). Given a minimum cost flow vector for (5.1) for
some v, these results can be used to find minimum cost flow vectors
of higher values by augmenting successively along cheapest FAPs until
the desired value is reached. This is the incremental, or build-up
approach for solving this problem. It is the basis for the shortest
augmenting path method for minimum cost flows (Sections 5.3, 5.5).
This approach is also useful when it is required to solve (5.1) paramet-
rically, treating v as a parameter. Also, since the maximum profit flow
problem (5.5) is basically a parametric problem, the algorithm for it
discussed in Section 5.3 is derived by applying this approach to that
problem.
There are three approaches on which most of the practical minimum

cost flow algorithms are based. They are: (1) the shortest augmenting
path, or the incremental approach, (2) the negative cost residual cycle
approach, and (3) the primal-dual approach. We discuss several of
these algorithms next.

Exercises

5.1 Let f be a minimum cost feasible flow vector for (5.1) in G, and
P a shortest (i.e., minimum cost) augmenting path wrt f from s̆ to t̆ of
residual capacity 6. Let f(λ) be the flow vector obtained by augmenting

the flow by λ along P , for 0 <
= λ

<
= 6. Let C be the shortest chain

in G(f) corresponding to P. If the residual network G(f(λ)) has a
negative cost circuit

→
CC, show that

→
CC must have some common arcs

with C (use Theorem 5.1) and that
→
CC ∪C contains a chain in G(f)

shorter than C, a contradiction. Hence provide an alternate proof of
(iii) of Theorem 5.2 using Theorem 5.1.

5.3. OK Algorithm 399

5.2 Show that the minimum cost flow problem (5.3) can be trans-
formed into a problem of the same type on an augmented network in
which the lower bounds associated with all the arcs are 0, and all the
capacities are all ∞.

5.3 G = (N ,A, 0, k, s̆, t̆) is a directed connected single commodity
flow network, with the following additional features. On each arc
(i, j) ∈ A, any flow amount <= the capacity kij goes through absolutely
free of cost. It is possible however to send on this arc any amount of
flow > the capacity, at a cost of $dij per additional unit. d = (dij) is
given. The second feature is that we get a reward of $µ for each unit
of material reaching t̆ from s̆. It is required to find a conservative flow
vector (i.e., one satisfying flow conservation equations at every node)
in G that maximizes the net return. Formulate this as a minimum cost
circulation problem.

5.4 Consider the minimum cost flow problem (5.1). [X, X] is an
arbitrary cut separating s̆ and t̆ in G. Determine the new cost vector
cI = (cIij), where c

I
ij = cij + α if (i, j) ∈ (X, X), cij − α if (i, j) ∈ (X,

X), or cij otherwise, for some α. Consider the same problem with c
changed to cI. Is there any relationship between the sets of optimum
solutions for the two problems? Explain why.

5.3 The Out-of-Kilter Algorithm

Consider any of the minimum cost flow problems discussed in Section
5.1 on the directed network G = (N ,A, f, k, c) with |N | = n, |A| = m.
To solve it, the OK method can be initiated with an arbitrary flow
vector, node price vector pair (f, π). The practical efficiency of the al-
gorithm improves considerably if the initial f is a feasible flow vector;
this can be obtained using the methods discussed in Chapter 2. If initi-
ated with a feasible flow vector, all flow vectors in the algorithm will be
feasible. The method alternates between a flow change subroutine (dur-
ing which the node price vector remains unchanged) and a node price

400 Ch. 5. Pure Min. Cost Flows

change subroutine (during which the flow vector remains unchanged).
So, in each step, on each arc (i, j), the point (fij ,πj − πi) either moves
horizontally (flow change), or vertically (node price change), and it al-
ways moves closer to the chair-shaped c.s. diagram for that arc. We
first discuss the version of the algorithm that begins with an initial
feasible flow vector.

The kilter status of an arc (i, j) wrt a feasible flow vector, node
price vector pair (f = (fij),π = (πi)) is determined by the position
of the point (fij ,πj − πi) on the c.s. diagram. There are five possible
states which are determined by the following conditions. (i, j) is an:

α− arc if πj − πi < cij and fij = fij

β − arc if πj − πi = cij and fij
<
= fij

<
= kij

γ − arc if πj − πi > cij and kij is finite and fij = kij

a− arc if πj − πi < cij and fij > fij

b− arc if πj − πi > cij and fij < kij

See Figure 5.5. The pair (f, π) satisfies the c.s. conditions (5.6)
corresponding to α−, β−, γ−arcs, hence these arcs are said to be in
kilter. It violates the c.s. conditions (5.6) corresponding to a-, b-arcs;
hence these arcs are said to be out-of-kilter.

The β-arcs can be further classified into 3 distinct classes by the
flow amount on them. In the pair (f,π) a β-arc (i, j) is: an upper
boundary or saturated β-arc if kij is finite and fij = kij ; an inte-
rior β-arc if fij < fij < kij; a lower boundary β-arc if fij = fij .

For each arc (i, j) we define a number called its kilter number,
denoted by KN(i, j), wrt a pair (f,π), to measure how far away the
point (fij , πj − πi) is from satisfying the c.s. condition. KN(i, j) is
always > 0 if (i, j) is out-of-kilter, 0 if it is in-kilter. The kilter numbers
are not used in the execution of the algorithm, but only in proving its
finite termination property. One possible definition is:

5.3. OK Algorithm 401

.

.

�������
j i

.

.
a

b

�

�

�

ijk

ijl

Tension

on arc

(i,)j

Flow amount

on arc (i,)j

f
ij

c
ij

Figure 5.5: Kilter classes and possible changes in fij, πj − πi in each
class for a capacitated arc (i, j).

KN(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if (i, j) is an α-, β-, or γ-arc

fij − fij if (i, j) is an a-arc

kij − fij if (i, j) is a capacitated b-arc

(5.9)

With this definition, at any stage of the algorithm, the sum of the
kilter numbers on all the arcs is a measure (in terms of flow units) of the
extent of nonoptimality of the current pair (f, π). Other definitions of
kilter numbers are sometimes used; these are given later. In this algo-
rithm, the kilter number of every arc will be monotone nonincreasing,
and the algorithm terminates whenever all of them become 0.
Only certain types of flow and tension changes are permitted in this

402 Ch. 5. Pure Min. Cost Flows

algorithm in order to make sure that in-kilter arcs always stay in-kilter,
and out-of-kilter arcs always move closer to the in-kilter status. These
permissible changes are summarized below (also see Figure 5.5).

a− arc fij can only decrease, up to fij ,
πj − πi can increase only, up to cij

b− arc fij can only increase, up to kij,
πj − πi can decrease only, up to cij

β − arc fij can change freely within fij to kij ,
πj − πi cannot change for interior β-arcs

can decrease arbitrarily for lower boundary β-arcs
can increase arbitrarily for upper boundary β-arcs

α− arc fij can’t change, πj − πi can decrease arbitrarily, or
increase up to cij

γ − arc fij can’t change, πj − πi can increase arbitrarily, or
decrease up to cij

Notice that an uncapacitated b-arc can never be brought any closer
to in-kilter status by flow changes only; it can come closer to kilter
only by reducing its tension up to its cost coefficient. For this reason,
when there are uncapacitated arcs in G, we select the initial node price
vector by a special procedure to guarantee that there will never be any
uncapacitated b-arcs.
In each stage the algorithm selects an out-of-kilter arc and tries to

bring it closer to kilter; this arc is called the distinguished arc in
that stage. Suppose it is (p, q). The algorithm first tries to bring it
into kilter through flow change. If (p, q) is an a-arc, the flow on it, fpq,
has to be decreased. In order to maintain feasibility, any decrease in
fpq has to be sent from p to q by a different route. Hence, this flow
change operation is called flow rerouting, p is the rerouting source
and q is the rerouting sink for it.
If the distinguished arc (p, q) is a b-arc, fpq has to be increased, and

so the rerouting source, sink are q, p respectively. See Figure 5.6.

5.3. OK Algorithm 403

p p

q q

Rerouting

source

Rerouting

source

Rerouting

sink

Rerouting

sink

�-arc �-arc

Figure 5.6: Definition of rerouting source and sink on distinguished arc
(p, q).

Let (f = (fij), π) be the current pair and (p, q) the distinguished
arc. Denote the rerouting source, sink respectively by s, t. Define
ν = fpq − fpq (kpq − fpq) if (p, q) is an a-arc (b-arc). To bring (p, q)
into kilter by flow change alone we need to reroute ν units from s to
t. For this, we need to find an FRP (flow rerouting path) from s
to t in G which is an admissible path in the sense that flow changes
on it are permissible as described above; i.e., all forward (reverse) arcs
on it, in which the flow amount increases (decreases) are b- or β-arcs
(a- or β-arcs). The algorithm tries to find a shortest (in terms of the
number of arcs on it) FRP from s to t using the tree growth routine
described in Section 2.3.3, paying attention to allowable flow changes
on the various arcs while growing the tree.

So, any FRP that is obtained in the algorithm will be a simple
path, and it can be verified that the distinguished arc (p, q) cannot be
contained on it. If an FRP, P say, is obtained, its capacity is 61 =
min. {kij − fij : (i, j) a forward arc on P }∪{ fij − fij : (i, j) a reverse
arc on P}, and let 60 = min. { ν, 61}. Flow rerouting using P consists
of adding 60 to the flow amounts on all the forward arcs on P and
(p, q) if it is a b-arc, and subtracting 60 from the flow amounts on all

404 Ch. 5. Pure Min. Cost Flows

the reverse arcs on P and (p, q) if it is an a-arc.
Since the distinguished arc joins the rerouting source and sink, when

we combine P with the distinguished arc we get a simple cycle, CC say.
Orient CC so that all the forward, reverse arcs on P remain forward,
reverse arcs respectively. Then verify that CC is a residual cycle wrt f ,
and that its residual capacity is 60 computed above. Also, all forward
arcs on CC are b- or β-arcs, and all reverse arcs on it are a- or β-arcs.
So, we have

πj − πi

l >
= cij for forward arcs (i, j) on CC
<
= cij for reverse arcs (i, j) on CC

(5.10)

Multiplying (5.10) by +1 over forward arcs (i, j) on CC, and by −1
over reverse arcs (i, j) on CC, and summing, we get 0 > cost of CC.
Hence, CC is a negative cost residual cycle wrt f . It can also be verified
that the operation of flow rerouting using P is exactly the same as
canceling the negative cost residual cycle CC in f .
If the tree growth routine is unable to find an FRP it will terminate

with a set of labeled nodes X containing the rerouting source s and
not t. This implies that at this stage, it is impossible to bring the
distinguished arc any closer to kilter by flow changes. So, we try to do
it by node price changes. Let X be the complement of X. Forward arcs
of the cut [X, X] at this stage can be a-, α-, γ-, or saturated β-arcs,
but cannot be b-arcs (otherwise the node on that b-arc in X would have
been labeled in the tree growth process). Similarly reverse arcs in the
cut [X, X] can be b-, γ-, α-, or lower boundary β-arcs, but cannot be
a-arcs for similar reasons. Define

A1 = {(i, j) : (i, j) is a forward a-, or α-arc in (X, X) }(5.11)

A2 = {(i, j) : (i, j) is a reverse b-, or γ-arc in (X, X) } (5.12)

δ = min. {|πj − πi − cij| : (i, j) ∈ A1 ∪A2} (5.13)

It can be verified that the distinguished arc (p, q) is contained in
A1∪A2, so A1∪A2 W= ∅. Also, on each arc in A1 (A2) it is permissible

5.3. OK Algorithm 405

to increase (decrease) the tension. These facts imply that δ is a finite
positive quantity. It can also be verified that δ is the largest amount
by which the tension on all the arcs in A1 can be increased, and that
on all the arcs in A2 decreased simultaneously, while keeping all these
changes permissible as defined above.

The new node price vector will be a vector of the form π̂ = (π̂i)
where π̂i = πi if i ∈X, or = πi + θ if i ∈ X; for a positive quantity
θ to be selected suitably. As a result of this change, the tension on
an arc does not change if both nodes on it are either in X or in X,
increases by θ if the arc is in (X, X), and decreases by θ if that arc
is in (X, X). These changes are permissible as defined earlier, but we
must make sure that the tension on α-, a-arcs does not increase beyond
the cost coefficient, and that on γ-, b-arcs does not decrease below the
cost coefficient. For this we need to have θ

<
= δ. So, δ is the largest

value that θ can have, and giving it this value brings the distinguished
arc closest to the in-kilter status possible by these changes; hence we
choose θ = δ for defining the new node price vector. Verify that in the
new pair (f, π̂), the kilter number of every arc in G is either the same
as before, or smaller, and all in-kilter arcs remain in kilter. The kilter
status of the arcs in the cut [X, X] may change; this is determined for
all arcs in the cut. If (p, q) still remains out-of-kilter, it continues to
be the distinguished arc, and the algorithm now resumes tree growth
from where it was left earlier. When this is done, if there are any α-
arcs or unsaturated a-arcs in (X, X), or γ-arcs or b-arcs with flow >
lower bound in (X, X), which tied for the minimum in (5.13) in the
definition of δ, all the unlabeled nodes on them will get labeled. And
the method continues.

We are now ready to describe the OK algorithm. We will begin
with the routine for selecting the initial node price vector.

SELECTION OF THE INITIAL NODE PRICE
VECTOR IN THE OK ALGORITHM

If there are no uncapacitated arcs, i.e., if k is finite, the initial node
price vector π0 can be selected arbitrarily. So, assume that U = {(i, j):
kij =∞} W= ∅. In this case we will select π0 so that

406 Ch. 5. Pure Min. Cost Flows

π0j − π0i
<
= cij for all (i, j) ∈ U (5.14)

(5.14) guarantees that there will be no uncapacitated b-arcs in the
algorithm. Let V be the set of nodes on arcs in U, and c1 = (cij :
(i, j) ∈ U). P = (V, U, c1) is the partial subnetwork consisting of the
uncapacitated arcs in G. If c1

>
= 0, select π0 = (π0i) where π

0
i = 0 if i ∈

V, and arbitrary if i W∈ V.
If c1 W>= 0, select any node in V, say i1, and find a shortest chain tree

rooted at i1 in P by any of the efficient algorithms of Section 4.3. If

this algorithm terminates by discovering a negative cost circuit
→
CC in P,

our minimum cost flow problem in G is unbounded below (start with
any feasible flow, and add an amount η to the flow amount on each arc

of
→
CC, as η →∞ the cost of this feasible flow → −∞), so terminate.
If the unboundedness termination did not occur, the shortest chain

algorithm will obtain a shortest chain tree rooted at i1 in P spanning
all the nodes that can be reached from i1 by a chain in it. Let this tree
be dd1. For each node i in dd1 select π0i to be the shortest chain length
(with c1 as the arc length vector) from i1 to i in dd1. If dd1 does not
span all the nodes in V, any arc in U joining a node in V outside of
dd1 and a node in dd1 must be directed towards the node in dd1 (since
there are no chains from i1 to any node outside of dd1 in P). Delete all
the nodes in dd1 and all the arcs incident at them from P and suppose
this leads to P1 = (V1,U1, cI1). Select any node i2 in V1 and find a
shortest chain tree rooted at i2 in P

1; let it be dd2. Let µ be the vector
of shortest chain lengths from i2 in dd2. For each node i in dd2 choose
π0i to be µi + ϑ, where ϑ is a positive quantity, same for all nodes in

dd2, selected so that π0j − π0i
<
= cij holds for all arcs (i, j) ∈ U with i

in dd2 and j in dd1. If dd2 does not span the nodes in V1, repeat the
same process. If c1 W>= 0, and there is no negative cost circuit in P, by
a suitable choice of ϑ in each step of this procedure, it is possible to
select a spanning tree in each connected component of P, so that the
node price vector (π0j) satisfying (5.14) in P obtained in the procedure
is the node price vector corresponding to these trees.

If c1 W>=0, another method for obtaining an initial node price vector
π0 satisfying (5.14) is the following. Add an artificial origin node s to

5.3. OK Algorithm 407

the set V, and arcs (s, i) of cost 0 for each i ∈ V. Let V2 = V ∪ {s},
U2 = U∪{(s, i) : i ∈ V}, and c2 the cost vector on (V2,U2) with cost
coefficients of arcs in U given by those in c1 and for those of the form
(s, i) given by 0. In (V2,U2) with arc length vector c2, find a shortest
chain tree rooted at s. Since there is an arc of the form (s, i) for each
i ∈V, every node in (V2,U2) can be reached from s by a chain. So, the
shortest chain algorithm on (V2,U2) will terminate either by finding a
negative cost circuit or a shortest chain tree rooted at s. In the former

case, let the circuit be
→
CC. Since there are no arcs incident into s in

(V2,U2),
→
CC cannot contain the node s, so it is a negative cost circuit

in the subnetwork P. In the latter case, let νs = 0, νi for i ∈ V be the
shortest chain distances from s to i in the shortest chain tree obtained.
From the optimality conditions for the shortest chain tree, we verify
that selecting π0i = νi for all i ∈ V satisfies (5.14).
Applying either of these methods, we will find a node price vector π0

in G satisfying (5. 14), if there is no negative cost circuit consisting only
of uncapacitated arcs in it. The version of the out-of-kilter algorithm
discussed next is initiated with such a node price vector and a feasible
flow vector.

THE OUT-OF-KILTER ALGORITHM INITIATED
WITH A FEASIBLE FLOW VECTOR

Step 1 Initialization Let f 0 be a feasible flow vector for the prob-
lem. Select a node price vector by the routine described above.
If a negative cost circuit consisting only of uncapacitated arcs is
discovered in this process, the cost function is unbounded below
in the problem; terminate. Otherwise, let π0 be the node price
vector obtained. (f0,π0) is the initial pair. If this pair satisfies
the c.s. conditions, it is an optimum pair; terminate. Otherwise
go to Step 2.

Step 2 Selecting a distinguished arc Select an out-of-kilter arc,
say (p, q) as the distinguished arc. Go to Step 3.

Step 3 Labeling routine Identify the rerouting source s and label
it with ∅. List = {s}. Go to Substep 1.

408 Ch. 5. Pure Min. Cost Flows

Substep 1 Select the node to scan from list If list = ∅
go to Step 5. Otherwise select the node from the top of the
list to scan, delete it from the list, and go to Substep 2.

Substep 2 Scanning Let i be the node to be scanned. Let
(f = (fij), π) be the present pair.

(i) Forward labeling Label each node j unlabeled at
this stage, such that (i, j) is either a b- or β-arc and
fij < kij with (i,+) and include it at the bottom of the
list.

(ii) Reverse labeling Label each node j unlabeled at
this stage, such that (j, i) is either an a- or β-arc and
fji > fji with (i,−) and include it at the bottom of the
list.
If the rerouting sink t is now labeled, there is a break-
through, and an FRP from s to t has been identified;
go to Step 4. Otherwise, go back to Substep 1.

Step 4 Flow rerouting Find the FRP, P, from s to t, by a back-
ward trace of the labels beginning at t. When P is combined
with the distiguished arc we get a negative cost residual cycle,
CC. Orient CC so that all forward, reverse arcs on P remain for-
ward, reverse arcs respectively on CC. Cancel CC in f , leading to
the new flow vector f̂ . Find the new kilter status of each arc on
CC wrt the new pair (f̂ , π). If all the arcs in the network are now
in-kilter, the present pair is an optimum pair; terminate. If there
are still some out-of-kilter arcs, but the distinguished arc is now
in-kilter, go back to Step 2. If the distinguished arc continues to
be out-of-kilter, erase the labels on all the nodes and go back to
Step 3 with the same distinguished arc.

Step 5 Node price vector change Let X be the set of labeled
nodes at this stage, and X its complement. Find the quantity δ
as in (5.11), (5.12), (5.13). Define the new node price vector to
be π̂ = (π̂i) where π̂i = πi for i ∈ X, and = πi + δ for i ∈ X.
Find the new kilter status of each arc in the cut [X, X] wrt the
new pair (f, π̂). If all the arcs in the network are now in-kilter,

5.3. OK Algorithm 409

the present pair is an optimum pair; terminate. If there are still
some out-of-kilter arcs, but the distinguished arc is now in-kilter,
go back to Step 2. If the distinguished arc continues to be out-
of-kilter, make the list = X, and resume tree growth by going to
Substep 1 in Step 3.

EXAMPLE 5.1

The network G = (N ,A, f = 0, k, c, s̆ = 1, t̆ = 6, v = 12) for a minimum
cost flow problem is given in Figure 5.7. Data on each arc are lower
bound, capacity, cost coefficient, in that order. A feasible flow vector
of specified value 12 is entered inside little boxes by the side of the arcs
with nonzero flow amounts. Node prices in an initial node price vector
are entered by the side of the nodes. The kilter status of each arc is
also marked on the arcs.

6

Original

source

Original

sink
0,7,4

0,10,0

0,2,1

0,7,2

0,6,4 0,3,11

0,4,1

0,1,2

0,10,5

0,7,2�

�

�

�

�

�

�

�

�

�
ø

0

0 14

3 4

16

(5, -)

(1, +) (3, +)

(4, +)

5

7

3

5

1 1

1

5

3

7

1

2

3

4

5

Figure 5.7: Arc (1, 2) is the distinguished arc. Nodes 1, 2 are the
rerouting source, sink.

We select the a-arc (1, 2) as the distinguished arc. The rerouting
source, sink are 1, 2 respectively. The labeling routine is applied and

410 Ch. 5. Pure Min. Cost Flows

the labels are entered by the side of the nodes. Breakthrough has
occurred, an FRP has been identified, and the negative cost residual
cycle is 1, (1, 3), 3, (3, 5), 5, (2, 5), 2, (1, 2), 1, with residual capacity 1
and cost −7. The new flow vector obtained when this cycle is canceled
is shown in Figure 5.8, together with the new kilter status of all the
arcs. Notice that this step has resulted in a change in the objective
value of −7.

1

2

3

4

5

6

Original

source

Original

sink
0,7,4

0,10,0

0,2,1

0,7,2

0,6,4 0,3,11

0,4,1

0,1,2

0,10,5

0,7,2

ø

(1, +)

0

3
4

14

16�

�

�

�

�

�
�

�

�

�

0

X X

_

4

8

1

1

4

3

4

1

5

7

Figure 5.8: Arc (1, 2) is the distinguished arc. 1, 2 are the rerouting
source, sink. Labeling ends in a nonbreakthrough with the cut [X =
{1, 3 }, X = { 2, 4, 5, 6 }].

Arc (1, 2) continues to be an a-arc in Figure 5.8, so it remains the
distinguished arc. Labeling routine is entered afresh resulting in the
node labels shown in Figure 5.8. It ends in a nonbreakthrough, with
the cut [X = { 1, 3 }, X = { 2, 4, 5, 6 }]. A1 = { (1, 2), (3, 2) }, A2

= ∅. So, δ = min. { 4, 4} = 4. The new node price vector and the new
kilter status of each arc are shown in Figure 5.9. Arcs (2, 4), (5, 6) are
still out-of-kilter. One of these can be selected as the distinguished arc
and the algorithm continued.
An optimum flow vector, node price vector pair for this problem is

5.3. OK Algorithm 411

1

2 4

5

6

Original

source
Original

sink
0,7,4

0,10,0

0,2,1

0,7,2

0,6,4 0,3,11

0,4,1

0,1,2

0,10,5

0,7,2

0

3

4

8

18

20

�

�

�
�

�

�

�

�

�

�

4

8

1

4

1

3

4

1

5

7

3

Figure 5.9: Arc (1, 2) is now in kilter.

(f = (f12, f13, f32, f34, f35, f25, f24, f54, f46, f56), π = (π1, to π6)) = ((6,
6, 2, 0, 4, 1, 7, 0, 7, 5), (11, 15, 11, 21, 19, 24)).

Discussion

When Step 4 occurs in the algorithm, if the cycle canceled is CC
with residual capacity 6 and cost γ, the cost function changes by 6γ
which is < 0 as 6 > 0 and γ < 0. Hence each time Step 4 occurs, the
objective value strictly decreases.
Whenever Step 4 occurs, the kilter status of the arcs on the cycle

CC canceled may change (there won’t be any changes for arcs not on
CC as the flow remains unaltered on them). KN(i, j) decreases by the
residual capacity of CC for all a-, b-arcs on CC. An a-arc on CC may
remain an a-arc, or become an α-arc. A b-arc may remain a b-arc or
become a γ-arc. β-arcs on CC remain β-arcs, but their classification
into lower boundary, interior, saturated β-arcs may change.

412 Ch. 5. Pure Min. Cost Flows

Whenever Step 5 occurs, the kilter status for arcs in the cut [X, X]
may change, but there won’t be any change for arcs not in this cut.
Tension increases by δ for each arc in (X, X), and decreases by δ for
each arc in (X, X). An a-arc in (X, X) may remain an a-arc or become
a β-arc. An α-arc in (X, X) may remain an α-arc or become a lower
boundary β-arc. A γ-arc in (X, X) remains a γ-arc, and a saturated
β-arc in (X, X) becomes a γ-arc. A b-arc in (X, X) may remain a b-arc
or become a β-arc. A γ-arc in (X, X) may remain a γ-arc or become a
saturated β-arc. A lower boundary β-arc in (X, X) becomes an α-arc.

Finiteness of the OK Algorithm

1. First consider the case where f, k and the initial feasible flow
vector f0 are all integer vectors (c may be arbitrary). Let L
denote the sum of the kilter nunbers KN(i, j) over all arcs (i, j) ∈
A. Let ∆0 be the value of L in the initial pair (f

0, π0). By our
assumption, if (f0, π0) is not an optimum pair, ∆0 is a positive
integer. Also, all flow vectors obtained will be integer vectors,
KN(i, j) will be a positive integer for all out-of-kilter arcs (i, j),
and whenever Step 4 is carried out in the algorithm, L decereases
by at least 1.

At an occurrence of Step 5 in this algorithm, there are two possi-
bilities. One, denoted by P1, is that either an a-arc in (X, X), or
a b-arc in (X, X) ties for the minimum in (5.13) for the definition
of δ in that step. Under this possibility these arcs become β-arcs
and come into kilter as a result of the node price change in this
step, and L undergoes a decrease of at least 1 right away. The
second possibility, denoted by P2, is that the only arcs which tie
for the minimum in (5.13) in this step are some α-arcs in (X, X),
or γ-arcs in (X, X). Under this possibility, all unlabeled nodes
on these arcs get labeled once tree growth is resumed after com-
pleting this step, and the number of labeled nodes increases by
at least 1.

Thus if Step 5 occurs with possibility P1, L undergoes a decrease
of at least 1 right in this step. Step 5 with possibility P2 can
occur consecutively at most n times; then it must be followed by

5.3. OK Algorithm 413

Step 4, which results in a decrease of at least 1 in L.

From these facts we verify that the algorithm is finite in this case,
and that its overall complexity is at most O(n2∆0), but this grows
exponentially with the size of data in the worst case. See Zadeh
[1973a, 1973b] for examples in which this exponential growth of
computational effort occurs.

2. Now consider the case where c and the initial node price vector π0

are integer vectors, but f, k, f0 may be real. In this case the quan-
tity δ in Step 5 of the algorithm will always be a positive integer,
and all the node price vectors obtained will be integral. Here we
will define the kilter number of an arc (i, j) to be KN1(i, j) where

KN1(i, j) =

l
0, if (i, j) is an α-,β-, or γ-arc

|cij − (πj − πi)|, if (i, j) is an a-, or b-arc
(5.15)

KN1(i, j) is 0 for all in-kilter arcs, and a strict positive integer
for all out-of-kilter arcs. Let L1 denote the sum of KN1(i, j) over
all (i, j) ∈ A, and ∆1 the value of L1 in the initial pair (f

0,π0).
Whenever Step 5 occurs in this algorithm, the distinguished arc
at that stage is in the set A1∪A2 and its kilter number decreases
by δ, so L1 decreases by at least 1. Consider the interval between
two consecutive occurrences of Step 5. Only flow changes take
place in this interval. Two types of events can occur in this in-
terval. One is the transformation of a b-arc into a γ-arc by flow
increase until saturation. The other is the transformation of an
a-arc into an α-arc by flow decrease to its lower bound. Both
these events result in an out-of-kilter arc coming into kilter, and
hence a strict decrease of L1 by a positive integer. In between two
consecutive events, or between the beginning of the interval and
the first event, or between the last event and the end of the inter-
val, the kilter status of every arc remains unchanged, and hence
the subnetwork on which flow changes are permitted remains the
same. The work during this time can be posed as a maximum
value flow problem in that permissible subnetwork, which can be

414 Ch. 5. Pure Min. Cost Flows

solved with at most O(n3) effort. So, between two consecutive
instances of the value of L1 decreasing (by either Step 5, or one
of the two events mentioned above between two consecutive oc-
currences of Step 5) in this algorithm, the computational effort
expended is at most O(n3). And each time L1 decreases, it de-
creases by a positive integer. Hence the overall complexity of the
algorithm in this case is at most O(n3∆1).

3. We now consider the general case in which all the data may be
real. For any feasible flow vector f , define Vi = f(i,N)− f(N , i)
for each i ∈ N . In the problems (5.1), (5.2), (5.3) that we are
considering, all these Vi are specified data and do not depend on
the particular feasible f .

Consider a stage during which a particular arc, (p, q) say, is the
distinguished arc. Let f be the feasible flow vector, and [X, X]
the cut when the algorithm has just reached Step 5 some time
during this stage. So, at this time there are no b- or unsaturated
β-arcs in (X, X); or a- or non-lower boundary β-arcs in (X, X)
(otherwise labeling can continue and we would not have arrived
at Step 5). Define H1,H2,H3 to be the set of α-, saturated β-, γ-
arcs respectively in (X, X); H4,H5,H6 to be the set of α-, lower
boundary β-, γ-arcs respectively in (X, X); H7 to be the set of
a-arcs in (X, X) other than (p, q); H8 to be the set of b-arcs in
(X, X) other than (p, q); and H0 = {(p, q)}. So, H0 to H8 is a
partition of the cut [X, X].

Let g0 =
�
(fij : over (i, j) ∈ H7) −�(fij : over (i, j) ∈ H8). Let

ω = −1 if (p, q) is an a-arc, + 1 if (p, q) is a b-arc. We have

3
i∈X
Vi = V (X) = f(X,X)− f(X,X)

= g0 +
3
(fij : over (i, j) ∈ H1)

+
3
(kij : over (i, j) ∈ H2 ∪H3)

−3(fij : over (i, j) ∈ H4 ∪H5)

−3(kij : over (i, j) ∈ H6)− ωfpq

5.3. OK Algorithm 415

Define g1 = V (X)−�(fij : over (i, j) ∈ H1)−�(kij : over (i, j) ∈
H2∪H3) +

�
(fij : over (i, j) ∈ H4∪H5) +

�
(kij : over (i, j) ∈

H6). Then we have

g0 = g1 + ωfpq (5.16)

g1 depends only on the data in the problem, the set X of nodes,
and the partition of the arcs in the set [X, X] \ (H0 ∪ H7 ∪
H8) into H1 to H6, and not on the flow vector. The quantity
ωfpq on the right-hand side of (5.16) strictly increases during
flow change steps in this stage for bringing (p, q) into kilter. By
the permissible flow changes in the algorithm, the quantity g0 on
the left hand side of (5.16) can only decrease during flow change
steps in this stage. So, (5.16) implies that any given partition
of the set of nondistinguished arcs in the cut [X, X] into H1 to
H8 can appear at most once when the algorithm arrives at Step
5 during this stage. Since there are only a finite number of cuts
separating the rerouting source and sink, and finite number of
partitions of the nondistinguished arcs in each into the sets H1

to H8, this implies that the overall computational effort involved
in this stage for bringing the distinguished arc (p, q) into kilter
is finite. There are at most m out-of-kilter arcs to be brought
into kilter, and once an arc comes into kilter, it remains in kilter
subsequently. This shows that the overall computational effort
in the algorithm is finite.

The Parametric Value Minimum Cost Flow Problem

Suppose it is required to solve the minimum cost flow problem (5.1)
in G = (N ,A, f, k, c, s̆, t̆, v) treating the flow value v as a parameter for
all possible values of v. Let g(v) denote the minimum objective value
in this problem as a function of v.

THEOREM 5.3 Let (f,π) be an optimum pair of value v in G. So,
all arcs in G are in-kilter (i.e., α−, β−, or γ-arcs) in the pair (f, π).
Any FAP, P0 say, from s̆ to t̆ wrt f consisting of β-arcs only has cost
= πt̆ − πs̆, and is a least cost FAP from s̆ to t̆ wrt f .

416 Ch. 5. Pure Min. Cost Flows

Proof Since all the arcs (i, j) on P0 are β-arcs, they satisfy πj −
πi = cij . So, the cost of P0 = � (cij : (i, j) forward on P0) - �(cij :
(i, j) reverse on P0) = �((πj−πi): (i, j) forward on P0) - � ((πj−πi):
(i, j) reverse on P0) = πt̆ − πs̆.
If P is any other FAP from s̆ to t̆ wrt f , all forward arcs (i, j) on

it must be α- or β-arcs and hence satisfy πj − πi
<
= cij ; and all reverse

arcs (i, j) on it must be β- or γ-arcs and hence satisfy πj − πi
>
= cij .

Substituting these in the expression for the cost of P, we see that the
cost of P >

= πt̆ − πs̆ = the cost of P0.
THE PARAMETRIC VALUEMINIMUMCOST FLOWALGORITHM

Step 1 Initialization Start with an optimum pair of some value,
say (f1,π1) of value v1. To find optimum pairs for v > v1, define
the flow changing source s = s̆, and flow changing sink t = t̆. Go
to Step 2.

Step 2 Labeling routine Label s with ∅. Make list = { s }. Go
to Step 3.

Step 3 Select a node for scanning If list = ∅ go to Step 6. Oth-
erwise, select the topmost node from the list for scanning. Delete
this node from the list and go to Step 4.

Step 4 Scanning Let (f = (fij),π = (πi)) be the present optimum
pair of value v. Let i be the node being scanned.

Substep 1 Forward labeling For each unlabeled node j such
that (i, j) is a β-arc satisfying fij < kij , label it with (i,+)
and include it at the bottom of the list.

Substep 2 Reverse labeling For each unlabeled node j such
that (j, i) is a β-arc satisfying fji > fji, label it with (i,−)
and include it at the bottom of the list.

If t is labeled there is a breakthrough; go to Step 5. Other-
wise, go back to Step 3.

Step 5 Flow augmentation Trace the FAP from s to t using the
labels. Suppose it is P with residual capacity 6. For 0

<
= θ

<
= 6

5.3. OK Algorithm 417

define the flow vector f(θ) = (fij(θ)) obtained by augmenting the
flow along P by amount θ. Then (f(θ), π) is an optimum pair of

value v + θ for all 0
<
= θ

<
= 6. In this range the slope of g(v) is

πt̆ − πs̆. To find optimum pairs for values beyond v + 6, erase all
the node labels and go back to Step 2 with the new pair (f(6), π).

Step 6 Node price change Let (f, π) be the present pair, X the
set of labeled nodes, and X its complement. Define A1 = {(i, j) :
(i, j) a forward α-arc in (X, X) }, A2 = {(i, j) : (i, j) a reverse γ-
arc in (X, X) }. If A1∪A2 = ∅ f is a maximum value flow in G,
terminate. If A1 ∪A2 W= ∅, let δ = min. {|πj − πi − cij| : (i, j) ∈
A1 ∪A2}. Find the new node price vector π̂ = (π̂i) where π̂i =
πi if i ∈ X, = πi+δ if i ∈ X. (f, π̂) is the new optimum pair, find
the new kilter status of each arc in the cut [X, X] wrt it. Make
the list = X and return to Step 3.

Discussion

Since all the FAPs used in this algorithm are least cost FAPs at
the time they are used, this is a shortest augmenting path method for
finding optimum flows of increasing value, implemented using the OK
method. Once initiated with an optimum pair, the method preserves
the in-kilter status of every arc; hence all the pairs obtained in the
method are optimal pairs for their value. To find optimum pairs of
value < the initial value v1, begin with the original pair (f 1, π1), and
choose t̆, s̆ as the flow changing source, sink respectively, and repeat the
same process. Here the FAPs identified will actually be flow reducing
paths in the original network, and the flow value in G will decrease
with each flow change. This process terminates when the minimum
possible flow value in G is reached.
For all v between two consecutive node price change steps in this

algorithm g(v) is linear with slope πt̆−πs̆. By the node price updating
formula we see that at each node price change step, this slope changes
by δ in that step. Hence the slope of g(v) is nondecreasing with v,
establishing its convexity. It is piecewise linear convex. So, slope of
g(v) changes whenever node prices change in the algorithm, i.e., in Step
6. From LP theory we know that the number of distinct values of the

418 Ch. 5. Pure Min. Cost Flows

slope of g(v) is finite, so, Step 6 occurs only a finite number of times.
In between two consecutive occurrences of Step 6, the kilter status of
each arc remains unchanged, and hence the work carried out in this
interval is the solution of a maximum value flow problem on the β-arc
subnetwork at that stage; this takes only finite effort by the results
in Chapter 2. So, this algorithm finds optimum pairs for all possible
values after a finite amount of computation.

OK Algorithm Initiated with an Arbitrary Flow Vector

We consider the minimum cost flow problems (5.1), (5.2), (5.3) on
the directed network G = (N ,A, f, k, c). Here we discuss the version
of the OK algorithm that can be used to solve this problem beginning
with a flow vector f that satisfies the conservation conditions at all the
nodes (i.e., the equality conditions in the problem), but may violate
the bounds on the nodes. Let (f, π) be such a pair where f is a flow

New Kilter Status for (i, j) wrt (f,π)
Status Condition Permissible Flow Change KN(i, j)
a1-arc fij < fij, πj − πi < cij Increase up to fij fij − fij

a2-arc fij > kij, πj − πi < cij Decrease up to fij fij − fij

β1-arc fij < fij, πj − πi = cij Increase up to kij fij − fij

β2-arc fij > kij, πj − πi = cij Decrease up to fij fij − kij

b1-arc fij < fij, πj − πi > cij Increase up to kij kij − fij

b2-arc fij > kij, πj − πi > cij Decrease up to kij fij − kij

vector of this type. We have the new kilter statuses for arcs wrt (f, π),
in addition to the ones discussed earlier, see table above. All these new
statuses are out-of-kilter statuses. For each new status we also specify
the permissible flow changes on them, and the appropriate definition of
the kilter number KN(i, j). There are no constraints on tension changes

5.3. OK Algorithm 419

on arcs with these new statuses. For arcs with the kilter statuses
defined earlier, permissible flow and tension changes remain exactly
the same as before.

Let f 0 be the initial flow vector satisfying node conservation at
all the nodes. Obtain an initial node price vector π0 by the special
procedure described earlier to satisfy π0j−π0i <

= cij for all uncapacitated
arcs (i, j). (f 0, π0) is the initial pair.

As before the algorithm selects an out-of-kilter arc as the distin-
guished arc, and tries to bring it into kilter by flow rerouting and node
price changes alternately. In flow rerouting steps, the flow rerouting
source, sink on the distinguished arc (p, q) are p, q respectively if (p, q)
is a b2-, β2-, a2-, or a-arc; or q, p respectively if it is an a1-, b1-, β1-, or
b-arc.

The labeling step is the same as before with the following excep-
tions. Node j can be forward labeled (i,+) while scanning node i if
fij < kij and (i, j) is a b-, β-, a1-, β1-, or b1-arc. Node j can be reverse
labeled (i,−) while scanning node i if fji > fji and (j, i) is an a-, β-,
a2-, β2-, or b2-arc.

In the node price change step it may happen that A1 ∪A2 = ∅. If
this occurs, it can be verified that the cut defined by the labeled and
unlabeled nodes at that stage provides an instance where the conditions
for the existence of a feasible flow vector (Chapter 2) are violated; hence
terminate with the conclusion that no feasible flow vector exists in G.

It can be verified that all the finiteness proofs hold good for this
version of the OK algorithm too.

Other Sensitivity Analysis

If changes take place in cij, fij , or kij after an optimum pair is
obtained, redefine the kilter status of arc (i, j) using the new values,
and apply the OK algorithm again until this arc comes into kilter.
Thus the OK algorithm is a very convenient tool for doing sensitivity
analysis on minimum cost flow problems.

A Polynomially Bounded Implementation
of the OK Algorithm Based on Scaling

420 Ch. 5. Pure Min. Cost Flows

We consider the minimum cost circulation problem (5.2) in the
directed network G = (N ,A, f, k, c), with |N | = n, |A| = m. Since
all the other minimum cost flow problems discussed in Section 5.1 can
be transformed into this, it covers all those models. We assume that
f, k are integer vectors, and that 0

<
= f

<
= k. Let p be the smallest

positive integer such that all the fij and the finite capacities kij are

all
<
= 2p. Here we present an implementation of the OK algorithm

based on the scaling technique discussed earlier in Section 3.2 in the
context of the transportation problem, that can solve this problem with
a computational complexity of O((p+ 1)mn2).

The implementation applies the OK algorithm on a series of (p+1)
subproblems which provide successively closer approximations to the
original problem. The subproblems differ in only the lower bound
and capacity vectors. fr = (frij), k

r = (krij), where (f
r
ij) = ufij/2p−rJ,

(krij) = {kij/2p−rQ, are the lower bound and capacity vectors for the rth
subproblem for r = 0 to p. Since frij

<
= fij/2

p−r, and krij
>
= kij/2

p−r,
for all r = 0 to p, and for each (i, j) ∈ A, if f is a feasible circula-
tion for the original problem, f/2p−r is a feasible circulation for the
rth subproblem. Thus if the original problem is feasible, so is every
subproblem.

If there are some uncapacitated arcs in G, determine the initial
node price vector π0 = (π0i) so that π

0
j − π0i

<
= cij for all (i, j) with

kij =∞. This takes O(nm) effort using the efficient methods discussed
in Chapter 4. This either finds an uncapacitated negative cost circuit,
or finds the vector π0. In the former case, we terminate, since the
objective function is unbounded below in (5.2) if it is feasible.

The 0th subproblem is to find a minimum cost circulation problem
in G0 = (N ,A, f0, k0, c). f0 = 0 and k0ij = 0 or 1 for all (i, j) with
kij finite. So, f

0 = 0 is a feasible circulation in G0. Use (f 0, π0) as
the initial pair to solve the 0th subproblem by the OK algorithm. The
kilter number KN(i, j) wrt (f 0,π0) is 0 or 1 for all arcs (i, j). So, solving
the 0th problem by the OK algorithm takes at most O(mn2) effort.

In general, suppose we have an optimum pair (f r−1, πr−1) for the
(r − 1)th subproblem. The rth subproblem is to find a minimum cost
circulation in Gr = (N ,A, fr, kr, c). Solve it by the OK algorithm using
(2f r−1,πr−1) as the initial pair. Since (f r−1, πr−1) is an optimum pair

5.3. OK Algorithm 421

for the (r − 1)th subproblem, we have for all (i, j) ∈ A

πr−1j − πr−1i > cij implies f r−1ij = kr−1ij (5.17)

πr−1j − πr−1i < cij implies f r−1ij = fr−1ij (5.18)

Arcs (i, j) satisfying (5.17), (5.18) are the γ-, α-arcs respectively
at the end of the (r − 1)th subproblem. Since krij is either 2kr−1ij − 1
or 2kr−1ij , if (i, j) satisfies (5.17), it will either be a γ-arc or a b-arc
with KN(i, j) of 1 in the pair (2f r−1, πr−1) for the rth subproblem. By
similar arguments it can be verified that every arc has kilter number
of 0 or 1 wrt the initial pair in the rth subproblem. So, solving the
rth subproblem by the OK algorithm takes a computational effort of
at most O(mn2).
We continue this way, using (2f r−1, πr−1) as the initial pair for the

rth subproblem, where (f r−1, πr−1) is the optimal pair obtained for
the (r − 1)th subproblem, for r = 1 to p. Since the initial flow vector
may not always be feasible, we may have to use the general version
of the OK algorithm that can begin with an infeasible flow satisfying
node conservation but not the bounds. If any of the subproblems in
the sequence turns out to be infeasible, the original problem must be
infeasible too; terminate. Otherwise, the pth subproblem is the original
problem itself, and when we come to it and solve it, we will have an
optimum pair for it.
The overall computational effort in this implementation is bounded

above by O(pmn2), so it is polynomially bounded. This implemen-
tation is basically of theoretical interest; it shows a way of solving
minimum cost circulation problems in polynomial time using scaling
and the OK algorithm.

The Parametric Maximum Profit Flow Problem

Consider the maximum profit flow problem (5.5) in the directed

network G = (N ,A, f = 0, k, c, s̆, t̆,λ), where k > 0, c
>
= 0 and λ is

the premium per unit material reaching t̆ from s̆. The problem is to
be solved parametrically in λ in the range λ

>
= 0. The c.s. optimality

conditions for the feasible flow vector, node price vector pair (f, π) are:

422 Ch. 5. Pure Min. Cost Flows

for each (i, j) ∈ A

πj − πi > cij implies kij is finite and fij = kij

(5.19)

πj − πi < cij implies fij = 0

πt̆ − πs̆ = λ (5.20)

Therefore, a feasible flow vector, node price vector pair (f, π) is an
optimum pair for a λ iff (5.20) holds, and every arc in the network has
kilter status α-, β-, or γ- wrt (f, π) as defined earlier. This is also a
consequence of the fact that if (f, π) is an optimum pair for (5.5) for λ,
and the value of f is v, then f must minimize

�
cijfij among all feasible

flow vectors of value v. So, (5.5) can be solved by the OK algorithm
for the parametric value minimum cost flow problem discussed earlier.
That algorithm generates a series of optimal pairs (f, π) wrt which all
the arcs are α-, β-, or γ-arcs, and hence f will be an optimum feasible
flow vector for λ = πt̆−πs̆, the current value of λ. λ = πt̆−πs̆ changes
only whenever a node price change step occurs in this algorithm. In
between two consecutive node price change steps, flow changes may
occur several times with the consequent increase in flow value. Each
FAP obtained in that interval will be a least-cost FAP at that stage, of
cost = the current λ, and all the flow vectors generated are therefore
alternate optimum feasible flow vectors for the current value of λ.
The algorithm is initiated with (f 0 = 0,π0 = 0) which is an opti-

mum pair for λ = λ0 = 0.
In a general step let (f, π = (πi)) be the current optimum pair for

λ = λ = πt̆ − s̆. The parametric value minimum cost flow algorithm is
continued. If an FAP, P say, from s̆ to t̆ wrt f is identified at this stage,
its cost will be λ, and let 6 be its residual capacity. We get the new
feasible flow vector f(θ) by carrying out flow augmentation by amount
θ on this FAP. Each unit of this quantity arrives at t̆ at an incremental
cost of λ which is canceled by the premium earned by this unit when it
reaches there; hence the net profit does not change. So, for 0

<
= θ

<
= 6

5.3. OK Algorithm 423

f(θ) is an alternate optimum feasible flow vector for λ = λ.
If this 6 = ∞ (this can only happen if P has no reverse arcs, i.e.,

P is an FAC, and all arcs on it are uncapacitated), f(θ) is feasible for
all θ

>
= 0, and the profit associated with f(θ) diverges to∞ as θ →∞,

for any λ > λ, terminate.
If 6 is finite, continue with the new optimum pair (f(6), π).
Suppose a nonbreakthrough occurs when the current optimum pair

is (f̂ , π̂ = (π̂i)),λ = λ̂ = π̂t̆ − π̂s̆. Let X be the set of labeled nodes at
this stage and X its complement. Determine the sets A1,A2 as in the
algorithm. If A1 ∪A2 = ∅, then we have f̂ij = kij for all (i, j) ∈ (X,
X), and f̂ij = 0 for all (i, j) ∈ (X, X), and so [X, X] is a minimum
capacity cut separating s̆ and t̆ in G, and f̂ is a maximum value flow.
Since all the arcs are in-kilter in the present pair, we know that f̂ is a
maximum value flow that minimizes

�
cijfij among all maximum value

flows. This implies that f̂ remains a maximum profit flow for all λ
>
=

its present value λ̂. Terminate.
If A1 ∪A2 W= ∅, compute δ as in the algorithm and define the new

node price vector π(∆) = (πi(∆)) where πi(∆) = π̂i for i ∈ X, or =
π̂i +∆ for i ∈ X. It can be verified that (f̂ , π(∆)) satisfies (5.19) for
all 0

<
= ∆

<
= δ. So, (f̂ , π(∆)) is an optimum pair, i.e., f̂ is an optimum

flow for λ = λ̂+∆, for all 0
<
= ∆

<
= δ. Continue the algorithm with the

new pair (f̂ ,π(δ)) and λ = λ̂+ δ. Verify that at least one arc which is
an α-arc in (X, X), or a γ-arc in (X,X) in the pair (f̂ , π̂), will become
a β-arc in the new pair (f̂ , π(δ)), and when tree growth is resumed,
the node in X on that arc will get labeled. Hence the total number of
consecutive occurrences of a nonbreakthrough before a breakthrough
occurs can never exceed n.
Let Q(λ) denote the maximum profit, i.e., the optimum objective

value in the maximum profit flow problem as a function of the premium
λ. In this algorithm, there may be consecutive node price changes with-
out any flow change in between. (f 0, π0) is the initial pair. Let (f r, πr)
denote the pair after the rth node price change step is completed and
tree growth is about to be resumed again. Let vr be the value of f r.
vr is monotonic nondecreasing with r. Let g1 = smallest r such that
f r W= f 0, and for d >

= 1 let gd+1 = smallest r > gd such that f
r W= f gd .

So, there is no change in the flow vector f r for gd
<
= r

<
= gd+1 for all

424 Ch. 5. Pure Min. Cost Flows

d. λ0 = 0, and let λr = πr
t̆
− πrs̆. For λ0 = 0

<
= λ

<
= λg1−1, Q(λ) = 0.

For λgd−1
<
= λ

<
= λgd+1−1, Q(λ) is linear with slope vgd. It is piecewise

linear, and convex since its slope is nondecreasing with λ. See Figure
5.10.
f 0 = 0 is optimal for λ0 = 0

<
= λ

<
= λg1−1. For d

>
= 1, f gd is optimal

for λgd−1
<
= λ

<
= λgd+1−1.

....

.

.

.

slope vg
d

.

.

.

slope vg1

Q(�)

g
1

- 1
� g

2
- 1

�

g
d

- 1�

g
d+1

- 1
�

�
0

Figure 5.10: Q(λ) is piecewise linear and convex.

5.4 The Primal Network Simplex Method

We consider the minimum cost flow problem (5.3) in the directed
network G = (N ,A, f, k, c, V). If there is an arc (p, q) for which
fpq = kpq = α, say, fix fpq = α, delete (p, q) from further consider-

5.4. Network Simplex Method 425

ation, and change Vp to Vp − α and Vq to Vq + α. Repeat with other
arcs of this type. After this we will have fij < kij for each remaining arc
(i, j). If the network is not connected, each connected component can
be solved separately. So, in the sequel we assume that G is connected,
that f < k, and that the necessary condition for feasibility, (5.4), holds.
Let |N | = n, |A| = m.
A basic solution for this problem corresponds to a partition of the

set of arcs A into (dd, L, U), where dd is a spanning tree in G, and (L,
U) is a partition of the out-of-tree arcs subject to the condition that all
the arcs inU are capacitated. The primal basic solution corresponding
to this partition is f = (fij) where fij = fij for (i, j) ∈ L, = kij for
(i, j) ∈ U, and (fij : (i, j) ∈ dd) are determined so as to satisfy the
equality constraints in (5.3) after fixing the flow amounts on all the
arcs in L∪U as defined above. In the partition (dd, L, U), arcs in dd
are called basic arcs, and those in L∪U are called nonbasic arcs.
The partition (dd, L, U) is said to be a primal feasible partition if
the flow amounts in the corresponding primal basic solution on all the
in-tree arcs satisfy the bound constraints in them, primal infeasible
partition otherwise.

Because of (5.4), the system of equality constraints in (5.3) is re-
dundant; any one of the constraints from them can be eliminated as a
redundant constraint. We select the constraint corresponding to node
n, say, as the one to eliminate, and fix n as the root node. This has
the effect of setting the node price of n, πn to 0 in the dual problem.

The dual basic solution corresponding to a partition (dd, L, U),
is the node price vector π = (πi) where

πn = 0 (n is the root node in dd)
πj − πi = cij for all (i, j) ∈ dd (5.21)

The node price πi in this dual basic solution can be verified to be
equal to the cost of the predecessor path of node i, treated as a path
from root node to i (see Exercise 5.7).

The optimality conditions for a primal feasible partition (dd, L, U)
to be optimal to the problem are

426 Ch. 5. Pure Min. Cost Flows

cij = cij − (πj − πi)

l >
= 0 for all (i, j) ∈ L
<
= 0 for all (i, j) ∈ U (5.22)

cij is called the reduced (or relative) cost coefficient of arc
(i, j) wrt the partition (dd, L, U). From the fact that cpq = πq − πp for
all in-tree arcs (p, q) in dd, it can be verified that for any out-of-tree
arc (i, j), cij is the cost of its fundamental cycle wrt dd, oriented such
that (i, j) is a forward arc in it.
The primal network simplex algorithm is the specialization

of the bounded variable primal simplex algorithm of LP to our prob-
lem. It needs an initial primal feasible partition, (dd0,L0,U0), say.
So, to implement this algorithm we need an efficient scheme to do the
following.

1. Find the primal and dual basic solutions associated with the initial
partition (dd0,L0,U0).

The general step in this algorithm, called a pivot step, begins with
the primal feasible partition, (dd, L,U), say, the associated feasible flow
vector, node price vector pair (f, π), obtained at the end of the previous
step, and carries out the following work.

2. Identify the set of arcs, E say, violating the optimality conditions
(5.22) for the current partition (dd, L, U). E is called the set of
arcs which are eligible to enter the basic set in this step.
If E = ∅, the present partition and the pair (f, π) are optimal;
terminate. Otherwise, one of the arcs from E is selected as the
entering arc by an entering arc selection (or pivot choice)
rule.

There are several entering arc selection rules, and extensive com-
putational studies have been carried out to determine which work
best. One which performed very well is the outward-node most
negative evaluator rule. This rule examines arcs leaving out
of the nodes until it encounters the first node containing an arc
violating the optimality criterion. It then selects the outward arc
at this node which violates the optimality criterion by the largest
amount, as the entering arc.

5.4. Network Simplex Method 427

3. If the entering arc selected is (i, j), an effort is made to increase the
flow amount on it if it is from L, or decrease the flow amount
if it is from U, while leaving the flow amounts on all the other
arcs in L∪U unchanged. This involves making flow changes on
the fundamental cycle, CC, of (i, j) wrt dd. CC is called the pivot
cycle in this pivot step. Orient CC such that the entering arc
(i, j) is a forward (reverse) arc if (i, j) is in L (U). With this
orientation, it can be verified that the cost of CC is −|cij|, hence
CC is a negative cost cycle. Find θ, the residual capacity of CC; it
is known as the primal simplex minimum ratio in this pivot
step. The set of arcs, D on CC which tie in the inequality for
defining its residual capacity, is called the set of arcs eligible
to be dropping arcs in this pivot step.

If θ = ∞ (this can only happen if there are no reverse arcs on
CC, i.e., it is a negative cost circuit, and all arcs on it are un-
capacitated), the objective function is unbounded below in our
problem; terminate.

If θ = 0, CC is not a residual cycle, and the pivot step is said to
be a degenerate pivot step. In this case define f̂ = f .

If θ > 0 and finite, CC is a negative cost residual cycle, and the
pivot step is said to be a nondegenerate pivot step. Cancel
CC in f and let the new flow vector be f̂ .

Select a dropping arc (p, q) say, from D. If (p, q) = (i, j) (this
can only happen if θ > 0; this happens if the flow amount on
the entering arc moves from its lower bound to its capacity or
vice versa in the flow change just carried out) move (i, j) to the
appropriate set in L, U based on the new flow amount on it. Let
(dd1 = dd, L1,U1) be the new partition, and (f̂ , π̂ = π) the new
pair.

If (p, q) W= (i, j), let dd1 be the tree obtained by replacing (p, q)
in dd by (i, j), delete (i, j) from L or U where it was before, and
insert (p, q) in the appropriate set among these depending on the
value of f̂pq, and let (dd1 = dd, L1,U1) be the new partition.

If dd1 W= dd, update the node labels and the node price vector.

428 Ch. 5. Pure Min. Cost Flows

Then go to the next step.

If a primal feasible partition is not known initially, the primal sim-
plex algorithm described above cannot be applied directly. This is
where the primal simplex method comes in; one should clearly
distinguish it from the primal simplex algorithm. It selects an arbi-
trary spanning tree dd in G (the algorithms discussed in Section 1.2.2
can be used for this), and by partitioning the out-of-tree arcs into L,
U arbitrarily, generates an initial partition (dd, L, U). If (dd, L, U)
is primal feasible, the original problem is solved by initiating the pri-
mal simplex algorithm with it. Otherwise, the primal simplex method
begins a Phase I which modifies the lower bounds and capacities on
arcs in dd so that (dd, L, U) becomes primal feasible on the modified
network. A Phase I objective function, which measures the extent
of infeasibility of the current partition to the original problem, is con-
structed. The Phase I problem is that of minimizing the Phase I
objective function on the modified network. Since the current parti-
tion is primal feasible on the modified network, the Phase I problem
can be solved by the primal simplex algorithm initiated with it. When
the Phase I problem is solved, we will either conclude that the original
problem has no feasible solution, or obtain a primal feasible partition
for it. In the later case, we go into a Phase II in which the original
problem is solved by the primal simplex algorithm initiated with the
primal feasible partition for it obtained at the end of Phase I.
We will now describe how the various operations in the primal sim-

plex method can be carried out efficiently.

To Compute the Primal and Dual Basic Solutions
Associated with a Given Partition

Let (dd, L, U) be a partition in G for (5.3), and let f̂ = (f̂ij) be

the primal basic solution associated with it. We know that f̂ij = fij
for (i, j) ∈ L, and = kij for (i, j) ∈ U. We substitute these values
in the system of equality constraints in (5.3) and then obtain f̂ij for
(i, j) ∈ dd by applying a procedure to solve the remaining system by
back substitution. This procedure processes each non-root node exactly
once. Once a node is processed, the flow amounts in f̂ on all the arcs

5.4. Network Simplex Method 429

incident at it are known. At any stage, Y denotes the set of processed
nodes at that stage. The procedure also maintains another set of nodes
X satisfying the property that for each i ∈X, flow amounts on all the
arcs incident at i are already known at this time except on the arc
joining it to its immediate predecessor.
The procedure is initiated with X = set of non-root terminal nodes

in dd, Y = ∅. In a general step, select a node from X, say i, and delete
it from X. Find the flow amount on the arc joining i and its immediate
predecessor from the equation f(i,N) − f(N , i) = Vi and the known
flow amounts on all the other arcs incident at i. Include i in Y. If all
the brothers of i are already in Y, and the immediate predecessor of
i is not the root, include it in X. If X = ∅, the flow vector has been
completely determined; terminate. Otherwise, go to the next step.
The node price vector π̂ associated with the spanning tree dd is de-

termined from (5.21). These equations are solved by back substitution
beginning at the root node, and going down in increasing order of level.

EXAMPLE 5.2

Consider the network in Figure 5.11. The exogenous flow at each
node is entered by its side if it is nonzero. dd is the spanning tree of
thick arcs. cij is entered on arc (i, j). The flow amount on each out-
of-tree arc, which is either the lower bound or the capacity depending
on whether the arc is in L or U, is entered in a little box by the side
of the arc. All the other data is omitted.
To find the primal basic solution corresponding to this partition, we

begin with X = {1,2,3,4,8,10}, the set of non-root leaf nodes in dd, and
Y = ∅. We select 1 fromX for processing. There is a demand of 3 units
at node 1, 6 units arriving along arc (2, 1), and 5 units leaving through
arc (1, 10). For conservation to hold at node 1, the flow amount on
in-tree arc (5, 1) must be 2 units. Transfer 1 from X to Y and proceed.
Continuing, we are lead to the following flow amounts on in-tree arcs:
(f5,1, f2,5, f3,6, f4,6, f6,7, f12,7, f12,13, f9,5, f9,11, f11,10, f11,8, f13,11) = (2,
16, 8, 5, 13, 8, −5, 2, 3, 7, 1, 6).
The node price vector associated with dd is π = (π13, to π1) = (0,

−6, 21, 26,−12, 38, 34, 19, −5, −11, −18, −21, 30).

430 Ch. 5. Pure Min. Cost Flows

1 2 3 4

5 6

78910

11 12

13

21

5

33
17

7

35 16

40

15

37 30

11

10

3

2
- 25

22 - 3 5V = - 31

Root node

- 4

6

5

14

6

12

11

3
9

- 18

Figure 5.11:

Updating the Tree Labels and the Node Price Vector

Letdd denote the current spanning tree in G associated with the tree
labels P(i), S(i), YB(i), EB(i) for i ∈ N . Let ddI be the new spanning
tree obtained after the entering arc replaces the dropping arc. The
root node is never changed in this implementation. For i ∈ N let PI(i),
SI(i), YBI(i), EBI(i) denote the tree labels corresponding to ddI. We
now define some symbols used in the updating process. See Figure
5.12.

5.4. Network Simplex Method 431

i1, j1 j1 specifically denotes the node on entering
arc whose predecessor path contains the
dropping arc, and i1 is the other node on the
entering arc.

i0 apex node, it is the first common node on the
predecessor paths of i1 and j1.

i2, j∗ being an in-tree arc, the dropping arc consists
of a parent and a son node; these are called i2,
j∗ respectively.So, P(j∗) = ±i2.

j1, j2, . . . , jt+1 = j∗ the sequence of nodes on the predecessor path
of j1 up to j∗.

The portion of the predecessor path of j1 in dd up to the node j∗ is
known as the pivot stem in this pivot step. The updating formulas
can be viewed as those arising from a gravity model of the rooted
tree. Think of the rooted tree dd standing with the root at the top
and successive levels going down. ddI is obtained by introducing the
entering arc into dd, and then snipping off the dropping arc. When
this is done, the points along the path containing the entering arc and
the pivot stem fall down by gravity, revolving around each node as the
path falls down, giving the new tree ddI. In this process if some nodes
acquire a new son, we assume that this son joins at the left of the
existing sons of that point (i.e., as an elder brother of all the existing
sons of that point). It is convenient to do the updating in the order
indicated below.
Updating the predecessor indices The predecessor indices change
only for nodes on the pivot stem. Set PI(j1) = +i1 or −i1 depending
on whether the entering arc is (i1, j1) or (j1, i1). For u = 2 to t+ 1 set
PI(ju) = (minus the sign of P(ju−1))ju−1.

Updating the successor indices The successor indices change
only for nodes on the entering arc, pivot stem and dropping arc. Set
SI(i1) = +j1 or −j1 depending on whether the entering arc is (j1, i1) or
(i1, j1). For u = 1 to t, set S

I(ju) = (sign of P(ju))ju+1. If S(i2) W= ±j∗,

432 Ch. 5. Pure Min. Cost Flows

Pivot cycle

Pivot

stem

.
.

.
.

.

.

Entering arc

i 2

j = j
t+1*

j
t

j
1

i1

i 0

D A

Figure 5.12: Fundamental cycle of the entering arc wrt dd. Arc orien-
tations are not shown in the figure. DA is the dropping arc.

make SI(i2) = S(i2). If S(i2) = ±j∗, make SI(i2) = (minus the sign of
P(YB(j∗)))YB(j∗). If S(j∗) W= ±jt, make SI(j∗) = S(j∗). If S(j∗) = ±jt,
make SI(j∗) = (minus the sign of P(YB(jt)))YB(jt).

Updating the brother indices Let |S(i)| denote the successor index
of i without its sign. We assume that if a point is removed from the
set of immediate successors of a node, then the elder-younger brotherly
relationships among the remaining points in this set remain unchanged.
The brother indices may change only for nodes in the set H(dd, j∗), the
family of j∗ in dd, and for the nodes |S(i1)|, YB(j∗), and EB(j∗) if these
are not empty.

Set YBI(j1) = |S(i1)|. For each u = 1 to t + 1, if EB(ju) W= ∅,
set YBI(EB(ju)) = YB(ju); and if YB(ju) W= ∅, set EBI(YB(ju)) =
EB(ju). If S(i1) W= ∅, set EBI(|S(i1)|) = j1. For each u = 1 to t + 1,
set EBI(ju) = ∅, because these points join as the eldest to their new

5.4. Network Simplex Method 433

set of brothers. If S(j1) W= ∅, set EBI(|S(j1)|) = j2. For each u = 2 to
t if |S(ju)| W= ju−1, set EBI(|S(ju)|) = ju+1; otherwise, if YB(ju−1) W= ∅,
set EBI(YB(ju−1)) = ju+1. YBI(j2) = S(j1). For each u = 3 to t + 1,
if |S(ju−1)| W= ju−2, set YBI(ju) = |S(ju−1)|, and if |S(ju−1)| = ju−2,
set YBI(ju) = YB(ju−2). If YB(j∗) W= ∅, EBI(YB(j∗)) = EB(j∗). If
EB(j∗) W= ∅, YBI(EB(j∗)) = YB(j∗)). Leave all other brother indices
unchanged.

i
0

i
2

,

i
1

j
1

j
2

j
*

1

11

10 Entering arc

5

9

D A

Figure 5.13: DA is the dropping arc.

As an example, consider the spanning tree dd in Figure 1.14, Section
1.2.2. Let (1, 10) be the entering arc into dd, and let the in-tree arc (9,
11) be the dropping arc. The pivot cycle for this pivot step is in Figure
5.13, the updated spanning tree ddI is in Figure 5.14, and the updated
node labels are shown below.

434 Ch. 5. Pure Min. Cost Flows

Updated Tree Labels Corresponding to dd
Node i 1 2 3 4 5 6 7 8 9 10 11 12 13

Root
P(i) -10 -5 -6 -6 -1 -7 +12 +11 -5 +11 +13 -13 ∅
S(i) +5 ∅ ∅ ∅ +9 +3 +6 ∅ ∅ +1 -10 -7 -11
YB(i) ∅ ∅ 4 ∅ ∅ ∅ ∅ ∅ 2 8 12 ∅ ∅
EB(i) ∅ 9 ∅ 3 ∅ ∅ ∅ 10 ∅ ∅ ∅ 11 ∅

If other node labels such as the distance label, thread label, number
of successors label, preorder distance label, last successor label, etc. are
used in the implementation, they are updated in a manner similar to
the above. The updating of the thread label is easy, as it changes only
for the nodes on the pivot stem and their eldest and youngest children.
See Glover and Klingman [1982], and Glover, Klingman, and Stutz
[1974].

Updating the node price vector Let π = (πi), π
I = (πIi) be the

node price vectors corresponding to the spanning tree dd, the updated
spanning tree ddI respectively. cij = cij − (πj − πi) are the relative cost
coefficients wrt π. H(dd, j∗) is the family of j∗ in dd. Then

πIi =

l
πi for i W∈ H(dd, j∗)
πi + αce for all i ∈ H(dd, j∗) (5.23)

where ce is the relative cost coefficient of the entering arc wrt π, and
α = +1 if the entering arc is (i1, j1), or −1 if it is (j1, i1). It can be
verified that πI defined by (5.23) satisfies (5.21) for the tree ddI; hence
it is the node price vector corresponding to ddI
As an example, consider the spanning tree dd consisting of the thick

arcs in Figure 5.11. The node price vector π corresponding to dd in
this network has been obtained in Example 5.2. Let ddI obtained by
replacing the dropping arc (9, 11) by the entering arc (1, 10). Suppose
the cost coefficient c1,10 = 5. wrt π, the relative cost coefficient c1,10 =
5 − (26 − 30) = 9. j∗ = 9 in this example, and the family H(dd, 9) =
{ 9, 5, 1, 2 }. The new node price vector πI wrt ddI is (πI13 to πI1) = (0,
−6, 21, 26, −21, 38, 34, 19, −14, −11, −18, −30, 21).
Updating the node price vector when one cost coefficient
changes Let π be the node price vector corresponding to the span-
ning tree dd in G. Suppose the cost coefficient cpq of one in-tree arc

5.4. Network Simplex Method 435

1

2

435

6

78

9

10

11 12

13

Figure 5.14: The updated spanning tree ddI.

(p, q) is changed to cpq + δ while the tree itself and other data remains
unchanged. This kind of change occurs during Phase I of the simplex
method. Let H denote the family of son(p, q) in dd. π̂ = (π̂i), the new
node price vector is given by: π̂i = πi for all i W∈ H, and = πi + αδ for
i ∈ H; where α = +1 if son(p, q) = q, and = −1 if son(p, q) = p.
Setting up the Phase I problem Let (dd0,L0,U0) be an initial
partition selected in G, associated with the primal basic solution f 0 =
(f 0ij). If f

0 is primal infeasible, we set up a Phase I problem whose aim
is to find a primal feasible partition in G. Define

K1 = {(i, j) : (i, j) ∈ dd0, f 0ij < fij}
K2 = {(i, j) : (i, j) ∈ dd0, f 0ij > kij}

436 Ch. 5. Pure Min. Cost Flows

Arcs in K1,K2 are called type 1, 2 arcs respectively. The Phase I
problem is defined on the same network (N ,A) but has modified data:
lower bound vector fI = (fIij), capacity vector k

I = (kIij), cost vector
c∗ = (c∗ij), where

for (i, j) W∈ K1 ∪K2, fIij = fij , kIij = kij , c∗ij = 0

for (i, j) ∈ K1, fIij = f
0
ij , kIij = fij, c∗ij = −1

for (i, j) ∈ K2, fIij = kij, kIij = f
0
ij, c∗ij = +1

For the Phase I problem (N ,A, fI, kI, c∗, V), (dd0,L0,U0) is a fea-
sible partition associated with the primal feasible basic solution f0.
Starting with this partition we minimize the Phase I objective function�
(c∗ijfij : over (i, j) ∈ A) in Phase I, by the primal network simplex

algorithm. From the definition of c∗, this has the effect of increasing
the flow amounts on type 1 arcs, and decreasing the flow amounts on
type 2 arcs, thereby bringing the flow vector closer to feasibility for the
original problem. The type 1, 2 arcs play the role of artificial variables
in Phase I problems for general LPs.
Whenever the flow vector changes in Phase I, the data and the sets

K1,K2 are revised. Suppose f̂ = (f̂ij) is a new flow vector obtained

during Phase I. For each arc (i, j) which was a type 1 arc before f̂ was
obtained, cancel its type 1 status and make it a regular arc and change
c∗ij , f

I
ij , k

I
ij to 0, fij , kij respectively if f̂ij = fij; otherwise just change

fIij to f̂ij. Make a corresponding alteration for each arc which was a
type 2 arc before f̂ was obtained. Hence, the data changes in every
nondegenerate step in Phase I.
At some stage during Phase I let f be the present flow vector, and

π∗ the node price vector computed using the current c∗ as the cost
vector. If there are no type 1, 2 arcs, f is feasible to the original
problem; move to Phase II with the present partition. Even if there
are type 1, 2 arcs, Phase I terminates if for each (i, j) ∈ A

fij = current fIij if c∗ij > 0
fij = current kIij if c∗ij < 0

5.4. Network Simplex Method 437

where c∗ij = c∗ij − (π∗j − π∗i). These are the optimality conditions for
the Phase I problem. If these conditions hold, and K1 ∪K2 W= ∅, the
original problem is infeasible; terminate.

Resolution of Cycling in the Primal Network Simplex Algo-
rithm

With respect to a feasible flow vector f̄ = (f̄ij) in G for (5.3), an
arc (i, j) ∈ A is said to be an

interior arc if fij < f̄ij < kij
lower boundary arc if fij = f̄ij

upper boundary or saturated arc if f̄ij = kij

A primal feasible partition (dd, L, U) and the associated BFS f are
said to be primal nondegenerate if all the arcs in dd are interior
arcs wrt f , primal degenerate if at least one arc in dd is a lower
boundary or saturated arc wrt f .
It can be verified that a feasible flow vector f̄ for (5.3) is a BFS iff

the set of interior arcs wrt f̄ forms a forest, and a primal nondegenerate
BFS iff this set forms a spanning tree in G.
The residual capacity, θ, of the pivot cycle in a pivot step of the

primal simplex algorithm can be verified to be strictly > 0 if the flow
vector, f at that stage is primal nondegenerate. If f is degenerate,
θ could be 0, and in this case the pivot step becomes a degenerate
pivot step. During a nondegenerate pivot step the BFS changes and
the objective value strictly decreases. During a degenerate pivot step,
the objective value and the BFS do not change, but the spanning tree
and the node price vector change. Since the objective value is monotone
nonincreasing in this algorithm, if a nondegenerate pivot step occurs in
a partition, that partition can never reappear in the sequel. However,
the algorithm may go through a sequence of consecutive degenerate
pivot steps without any change in the objective value or the flow vec-
tor, and return again to the partition at the beginning of this sequence,
thus creating a cycle of degenerate pivot steps. The algorithm can
repeat this cycle indefinitely, and never terminate. This phenomenon is
called cycling under degeneracy in the primal network simplex

438 Ch. 5. Pure Min. Cost Flows

algorithm. It is an indefinite repetition of the same finite cycle of
degenerate pivot steps again and again, without ever satisfying a ter-
mination condition. An example of cycling in an assignment problem
of order 4 has been constructed by L. Johnson and is reported in the
paper Gassner [1964]. The cost matrix for the problem is

c =

⎛⎜⎜⎜⎝
3 5 5 11
9 7 9 15
7 7 11 13
13 13 13 17

⎞⎟⎟⎟⎠
It is a minimum cost flow problem on a complete bipartite network

of order 4×4, in which all the arcs are uncapacitated. So, a partition
for this problem is of the form (dd, L), basic and nonbasic arcs, with
the flow amounts on all nonbasic arcs being 0 in the associated basic
solution. We denote by the ordered pair (i, j) the arc joining row node
i to column node j. A cycle of degenerate pivot steps for the primal
network simplex algorithm in this problem is given below. It consists
of 12 pivot steps at the end of which we get the initial partition back.
In the following table, we give the basic set of arcs in each pivot step.

Pivot Basic set of arcs Entering Dropping
step arc arc
1 {(1,1), (2,2), (3,3), (4,4), (1,2), (2,3), (3,4)} (1,3) (2,3)
2 {(1,1), (2,2), (3,3), (4,4), (1,2), (1,3), (3,4)} (4,2) (1,2)
3 {(1,1), (2,2), (3,3), (4,4), (4,2), (1,3), (3,4) } (3,2) (3,4)
4 {(1,1), (2,2), (3,3), (4,4), (4,2), (1,3), (3,2) } (4,1) (4,2)
5 {(1,1), (2,2), (3,3), (4,4), (4,1), (1,3), (3,2) } (4,3) (1,3)
6 {(1,1), (2,2), (3,3), (4,4), (4,1), (4,3), (3,2) } (2,1) (4,1)
7 {(1,1), (2,2), (3,3), (4,4), (2,1), (4,3), (3,2) } (3,1) (3,2)
8 {(1,1), (2,2), (3,3), (4,4), (2,1), (4,3), (3,1) } (2,4) (2,1)
9 {(1,1), (2,2), (3,3), (4,4), (2,4), (4,3), (3,1) } (2,3) (4,3)
10 {(1,1), (2,2), (3,3), (4,4), (2,4), (2,3), (3,1) } (1,4) (2,4)
11 {(1,1), (2,2), (3,3), (4,4), (1,4), (2,3), (3,1) } (3,4) (3,1)
12 {(1,1), (2,2), (3,3), (4,4), (1,4), (2,3), (3,4) } (1,2) (1,4)
13 {(1,1), (2,2), (3,3), (4,4), (1,2), (2,3), (3,4) }

5.4. Network Simplex Method 439

It can be verified that all these pivot steps are degenerate pivot
steps, and that every one of these basic sets is associated with the
same BFS in which fii is 1 for all i = 1 to 4, and flows on all the other
arcs are 0. The relative cost coefficient of the entering cell in each pivot
step is - 2.
The occurrence of cycling is extremely rare in real-world applica-

tions. But, since the possibility of cycling exists, we cannot mathemat-
ically guarantee that the primal network simplex algorithm is finite
unless methods for resolving it are used. One such method which is
purely combinatorial, has been developed originally by Cunningham
[1976, 1979]; we will show later that it is exactly the specialization of
the lexicographic bounded variable primal simplex algorithm for gen-
eral LP discussed in Section 11.4 of Murty [1983 of Chapter 1], to the
minimum cost flow problem.
Let (dd, L, U) be a primal feasible partition in G associated with

the BFS f = (fij). This partition is said to be a strongly feasible
partition if for each (i, j) ∈ dd

fij = ij implies (i, j) is directed away from root, i.e., P(j) =+i

(5.24)

fij = kij implies (i, j) is directed towards the root,i.e., P(i) =−j

i.e., a strongly feasible partition is one in which all lower boundary in-
tree arcs are directed away from the root node, and all upper bound-
ary in-tree arcs are directed towards the root node. The method for
resolving cycling initiates the primal algorithm with a strongly feasi-
ble partition and maintains strong feasibility throughout by a special
dropping arc selection rule in each pivot step. We will summarize the
main features of this method. The details and proofs are mainly of
theoretical interest; the interested reader should consult Cunningham
[1976, 1979].
Cunningham [1976] has given an efficient procedure for obtaining a

strongly feasible partition from an arbitrary feasible partition. Let β
be the number of bad arcs, i.e.,boundary in-tree arcs which are wrongly
oriented for strong feasibility, in the initial partition. Then the proce-
dure goes through β stages. Each stage tries to replace a bad arc with

440 Ch. 5. Pure Min. Cost Flows

a nonbasic arc. Each stage may require up to (n− 1) such pivot steps
and leads to a reduction in the number of bad arcs by 1.
Once the primal algorithm is initiated with a strongly feasible par-

tition, strong feasibility can be preserved by adopting the following
dropping arc choice rule in each pivot step (there is no restriction on
the entering arc choice).

Dropping Arc Choice Rule to Preserve Strong Feasibility

Let (p, q) be the entering arc in the pivot step in the strongly feasible
partition (dd, L, U) associated with the pair (f,π), and CC the pivot
cycle in this pivot step with g as the apex node. Let D denote the set
of eligible dropping arcs in this pivot step.

1. If cpq = cpq − (πq − πp) > 0 and fpq = kpq, select the dropping
arc in this pivot step to be the first arc encountered in D while
traveling along CC from g back to g in the direction opposite to
the orientation of (p, q).

2. If cpq < 0 and fpq = fpq, select the dropping arc in this pivot step to
be the first arc encountered in D while traveling along CC from g
back to g in the same direction as (p, q).

This rule identifies the dropping arc uniquely by unambiguous and
simple combinatorial rules. If (ddI,LI,UI) is the partition obtained after
this pivot step operated using this dropping arc choice rule, it will also
be strongly feasible. Also, let (f I, πI) be the basic pair associated with
this partition. If this pivot step is a degenerate pivot step (i.e., f I = f),
then πI <= π and

�
i∈N πIi <

�
i∈N πi (these inequalities relating π and

πI may not hold if the pivot step is nondegenerate). See Cunningham
[1976] for proofs of these results.
The primal network simplex algorithm initiated with a strongly

feasible partition, and operated using the above dropping arc choice
rule, is called the method of strongly feasible partitions. In
this method, the entering arc can be chosen arbitrarily among those
eligible to enter in each pivot step. In each nondegenerate pivot step

5.4. Network Simplex Method 441

of this method, the primal objective value decreases strictly. In each
degenerate pivot step, the primal objective value remains unchanged,
but

�
i∈N πi strictly decreases. So, a partition can never reappear in

this method, cycling cannot occur, and the method terminates finitely.
Like some of the other methods for resolving cycling in the pri-

mal simplex algorithm for general LP, the method of strongly feasible
partitions also can be given a perturbation interpretation. Let 6 be a
small positive number, and consider the perturbed problem obtained
by changing Vi in (5.3) into V

1
i for all i ∈ N , where V 1i = Vi + 6 for

i W= n, and = Vn− (n− 1)6 for i = n. Then it can be shown that when
6 is positive but sufficiently small, a partition in G is feasible to the
perturbed problem iff it is strongly feasible to the original problem. So,
the method of strongly feasible partitions can be viewed as the usual
primal network simplex algorithm applied to solve the perturbed prob-
lem, treating 6 as a sufficiently small positive number without giving it
a specific value.
The method of strongly feasible partitions can also be shown to be

a specialization of the lexicographic bounded variable primal simplex
algorithm for general LP (see Section 11.4 in Murty [1983 of Chapter
1]). Consider the bounded variable LP (1.7) discussed in Section 1.2.1.
A feasible partition (xB, xL, xU), where xB = (xi1, . . . , xim) say, associ-
ated with the basis B and the BFS x = (xj) for (1.7), is said to be a
strongly feasible partition if for each r

xir = fir implies the rth row of B−1 is lexico positive
(5.25)

xir = kir implies the rth row of B−1 is lexico negative

Our minimum cost flow problem (5.3) will be in the form (1.7) if
we eliminate the flow conservation equation corresponding to the root
node n. Let B be the basis associated with a spanning tree dd for the
resulting problem. From Theorem 1.8 we know that all nonzero entries
in any row of B−1 always have the same sign. From this we conclude
that the row corresponding to (p, q) ∈ dd in B−1 is lexico positive iff
(p, q) is directed away from the root node in dd, and lexico negative iff
(p, q) is directed towards the root node. Hence for a feasible partition

442 Ch. 5. Pure Min. Cost Flows

for (5.3), the definition of strong feasibility using (5.24) is identical to
that using (5.25).
Also, the dropping arc choice rule in the method of strongly feasible

partitions turns out to be exactly the same as the dropping variable
choice rule in the lexicographic bounded variable primal simplex al-
gorithm. Hence, the method of strongly feasible partitions is exactly
the specialization of the lexicographic bounded variable primal sim-
plex algorithm to our minimum cost flow problem. This specialization
is made possible by the result in Theorem 1.8.
Two disadvantages of the method of strongly feasible partitions

are that it needs an initial strongly feasible partition, and that the
special dropping arc choice rule has to be used in every pivot step,
even during sequences of nondegenerate pivot steps, since otherwise
strong feasibility will be lost. Another method for resolving cycling
in the primal network simplex algorithm developed by Gamble, Conn,
and Pulleyblank [1988] is much simpler computationally. It can be
initiated with any primal feasible partition, without the need to convert
it into a strongly feasible one. The core of this method is also a special
dropping arc choice rule. But the special rule needs to be invoked
only when a degenerate pivot step occurs, and can be turned off when
the next nondegenerate pivot step occurs. Because of this, finiteness
is guaranteed in this method even though the anti-cycling mechanism
is only maintained during degenerate pivot steps. See their paper for
details.

Simultaneous Resolution of Cycling and Stalling
in the Primal Network Simplex Algorithm

Cycling is the infinite repetition of the same cycle of degenerate
pivot steps in the primal simplex algorithm. The method of strongly
feasible partitions resolves cycling and converts the primal simplex al-
gorithm into a finite algorithm. But the method of strongly feasible
partitions could encounter another computationally expensive phenom-
enon called stalling, which is a finite but very long sequence of con-
secutive degenerate pivot steps, in which the number of steps is not
bounded above by any polynomial in |N | or the size of the problem.
An example of stalling has been constructed by Cunningham [1979]

5.4. Network Simplex Method 443

e 2

e 0
0,

e 0

e 2

e 0

e 2
1,r-1,

r-1

e 0
4,r-2,

e 0
2,r-2,

e 2
3,r-2,

r-2

2r

2r+1
2r-1

2r-2

2r-3

2r-4

4,r-1,

3,r-1,
r-1

2,r-1,

r-2

1,r-2,

e
41,

0

e 0
21,

e 2
31,

e 2
11,

e
10,

1

e
40,

0

1

2

3

4

5

. . .

...

...

Figure 5.15: Network for the rth problem in the class for r
>
= 2. All

lower bounds are 0, and capacities are +∞. Source = node 2r, with
1 unit available, sink = node 2r + 1 with requirement 1 unit. Cost
coefficients are entered on the arcs.

using a class of problems developed by J. Edmonds to show that the
primal simplex algorithm for the shortest chain problem is an expo-
nential growth algorithm in the worst case. This class has a minimum
cost flow problem for each r

>
= 2, the rth problem being on a directed

network with 2r + 1 nodes and 4r − 1 arcs. See Figure 5.15. Arcs
are grouped into 5 groups, the bth arc in the ath group being denoted
by ea,b. For example, a = 1 corresponds to the group of arcs at the
top of the network in Figure 5.15, etc. All lower bounds are 0, and
all capacities are ∞. It is required to ship 1 unit of material from the
source node, 2r, to the sink node, 2r+ 1, at minimum cost. Since it is
an uncapacitated minimum cost flow problem with a specified source
and sink node, it is a shortest chain problem. Arc cost coefficients are

444 Ch. 5. Pure Min. Cost Flows

entered on the arcs.
The only feasible flow vector for the rth problem is f̃ with a flow

of 1 on the arc e0, and 0 flow on all the other arcs. Hence f̃ is the
optimum solution to the problem.
Fix the root at the source node 2r. Since all the capacities are

∞, partitions for this problem are of the form (dd, L), where dd is a
spanning tree, and every such partition corresponds to the flow vector
f̃ and is therefore feasible. e0 is contained in every spanning tree, and
it is an interior arc in every partition since the flow on it is 1, and all
the other arcs are lower boundary arcs.
Define the partition (dd0,L0) where dd0 = {e0, e1,0; and e1,b, e3,b for

b = 1 to r − 1 }, L0 = {e4,0; and e2,b, e4,b for b = 1 to r − 1}. All arcs
in dd0 other than e0 are lower boundary arcs directed away from the
root node; hence (dd0,L0) is a strongly feasible partition. Consider the
following order for the arcs in the network in the rth problem.

e1,0, e4,0, e1,b, e2,b, e3,b, e4,b for b = 1 to r − 1, e0 (5.26)

If the rth problem in the class is solved by the method of strongly
feasible partitions initiated with the partition (dd0,L0) and executed
using the entering arc choice rule: always choose as the entering arc the
first arc in the order listed in (5.26) which is eligible to enter; then it
goes through a sequence of 3(2r− 1)− 2r consecutive degenerate pivot
steps before terminating. See Cunningham [1979] for a proof. This is
stalling.
Cunningham [1979] has shown that a simple entering arc selection

strategy will resolve stalling in the method of strongly feasible parti-
tions for the class of minimum cost flow problems in pure networks.
The requirement is that the entering arc selection strategy examine
every arc periodically (say once in every γm pivot steps for some γ)
and select it as the entering arc if it is eligible at that time. One such
rule is LRC (least recently considered) entering arc choice rule.
This rule arranges all the arcs in the network in a fixed order, say
e1, . . . , em, at the beginning of the algorithm. The entering arc in a
pivot step is the first eligible arc in the list et+1, et+2, . . . , em, e1, . . . , et,
where et was the entering arc in the previous step. So, this rule circles
through the list of arcs beginning with the entering arc in the previous

5.4. Network Simplex Method 445

1

2

3

4

0,6,0

0,10,5

0,5,1

0,2,3 0,7,4

0,8,0

Source Sink

Figure 5.16:

step, looking for the entering arc. Hence each arc is examined once
in every m pivot steps and given a chance to become the entering
arc. Under this rule in the method of strongly feasible partitions, it
has been shown that the total number of consecutive degenerate pivot
steps can never exceed nm, and hence stalling cannot occur. Several
other entering arc choice rules to prevent stalling in the method of
strongly feasible partitions are discussed in Cunningham [1979].

The related problem in general LP: are there any entering and drop-
ping variable choice rules for the primal simplex algorithm to solve an
LP which resolve both cycling and stalling, still remains an open ques-
tion at this time. It is the most important open question in LP theory.
It can be shown that any such scheme consisting of entering and drop-
ping variable choice rules which resolve both cycling and stalling in the
primal simplex algorithm for LP at a degenerate BFS, would provide a
polynomially bounded pivotal algorithm for checking the feasibility of
a system of linear inequalities, and conversely. Hence the question of
resolving both cycling and stalling in general LP is intimately related
to the more fundamental question: is there a polynomially bounded
primal simplex algorithm for solving an LP with rational data?

446 Ch. 5. Pure Min. Cost Flows

1

2 3

4 5

4,5,6

0,4,1

5,9,2

0,3,2

2,3,4

8,11,21,4,10

2,2,3

0,1,1

Source

Sink

Figure 5.17:

Exercises

5.5 Let π̂ = (π̂i) be the node price vector associated with the rooted
spanning tree dd rooted at node n in G, obtained by solving (5.21). For
each i ∈ N prove that −π̂i is the cost of the predecessor path of i in
dd, as a path from i to n.

5.6 Find a minimum cost flow vector of value 5 in the network in Fig-
ure 5.16 by the OK algorithm. Draw the curve depicting the optimum
objective value as a function of the value.

Find a minimum cost maximum value feasible flow vector in the
network in Figure 5.17 by the OK algorithm. In both networks, the
data on the arcs is lower bound, capacity, cost coefficient, in that order.

5.7 Let f̂ = (f̂ij) be the basic solution of (5.3) corresponding to the
partition (dd, L, U). Let (p, q) ∈ dd and t = son(p, q). Define ω = +1
if t = q, −1 if t = p. For any i ∈ N let H(dd, i) denote the complement
of H(dd, i). Prove that

5.4. Network Simplex Method 447

1

2

3

4

5

6

7

30,60,5

0,7,8 10,20,9

0,3,1

0,6,13

12,20,9

0,10,5

1,5,3

6,27, - 6

0,10,6

15,65,2

15,35,6

9,25,18

V = 371 V = - 37
7

10,20,3

5,12,2

7

3

12

10

27
9

Figure 5.18:

f̂pq = ω(
3

j∈H(dd,t)
Vj −

3
(f̂ij : over (i, j) ∈ (A\dd) ∩ (H(dd, t),H(dd, t)))

+
3
(f̂ij : over (i, j) ∈ (A\dd) ∩ (H(dd, t),H(dd, t))))

5.8 Suppose (p, q) is the entering arc in a pivot step during Phase II
of the primal network simplex method for solving (5.3). Prove that the
relative cost coefficient cpq at that time is the cost of the fundamental
cycle of (p, q) wrt the spanning tree at that time.

5.9 In the network in Figure 5.18, fij, kij, cij are marked on the arcs
in that order. Vi is entered by the side of node i if it is nonzero. A
spanning tree dd is marked in thick arcs, and flow amounts chosen on
out-of-tree arcs are entered in little squares on them if they are nonzero.
Solve this problem by the primal network simplex method beginning
with the partition provided by this information.

5.10 Consider the bipartite network representation of the assignment
problem of order n on the bipartite network G = (N1 = {R1, . . . , Rn

448 Ch. 5. Pure Min. Cost Flows

}, N2 = { C1, . . . , Cn }, A = {(Ri, Cj) : i, j = 1 to n }). The arc
(Ri, Cj) in A is directed from Ri to Cj for all i, j, and has lower bound
0 and capacity 1. Each node in N1 is a source with 1 unit of material
available for shipment, and each node in N2 is a sink with 1 unit of
material required. Letdd be a spanning tree in G with column signature
vector (2,. . ., 2,1) with only node Cn having degree 1. Treat dd as a
rooted tree with Cn as the root node. Define L = A\dd and U = ∅.
In the basic solution associated with the partition (dd, L, U), prove

that the flow on an in-tree arc is 1 if the arc is directed towards the
root node, and 0 if it is directed away from the root node. Using this
prove that (dd, L, U) is a highly degenerate strongly feasible partition
for this problem. (Akgul and Ekin [1990 of Chapter 3]).

5.5 The Shortest Augmenting Path Method

This method is based on successive augmentations along cheapest FAPs.
It solves the minimum cost flow problem by repeated application of a
shortest chain algorithm in the residual network, each time saturating
the FAP in the original network corresponding to the shortest chain
obtained in the residual network at that stage. Thus the basic ap-
proach behind the algorithm is an incremental approach, since the
flow value is incremented in each iteration by the least costly incre-
ment available at that stage. Hence, the algorithm has also been called
a buildup algorithm, as it builds up the flow value at minimum cost
thereby obtaining a sequence of flows of increasing value, each of min-
imum cost for its value.
This algorithm is essentially the same as the parametric value min-

imum cost flow algorithm discussed earlier. There it was based on
the OK method; here we will discuss the version based on Dijkstra’s
shortest chain algorithm.
We consider the minimum cost flow problem in the form (5.1) in the

directed network G = (N ,A, f = 0, k, c, s̆, t̆.v), where |N | = n, k > 0,
and v is the value required to be shipped from s̆ to t̆ at minimum

5.5. Shortest Augmenting Path Method 449

cost. The method obtains a sequence of flow vector, node price vector
pairs (f r, πr), r = 0, 1, . . ., where πr will always be dual feasible, and
f r always satisfies the lower bound and capacity conditions on all the
arcs, and flow conservation at all the nodes, and its value vr strictly
increases in each step. When vr reaches v, primal feasibility is attained
and the method terminates. Hence, the method is a dual method.
In each step the method solves a shortest chain problem in the

residual network wrt the pair at that time. Since all the cost coefficients
in it are

>
= 0, the shortest chain problem can be solved by Dijkstra’s

method with a computational effort of at most O(n2). To initiate the
method, we need an optimum pair of zero value. For this reason we
consider the case where either c

>
= 0, or a node price vector π = (πi) is

known satisfying cij = cij− (πj−πi) >= 0 for all (i, j) ∈ A. In the latter
case we replace c by c = (cij); this leads to an equivalent problem.

Hence without any loss of generality we consider the case c
>
= 0.

Given an optimum pair (f, π) of value v, let (cij = cij − (πj − πi))
be the reduced cost vector wrt π. By optimality, we know that the
following c.s. conditions hold for each (i, j) ∈ A

0 < fij < kij implies cij = 0

cij < 0 implies fij = kij <∞ (5.27)

cij > 0 implies fij = 0

By these optimality conditions, the cost vector cI in the residual
network G(f, π) = (N ,A(f), 0,κ, cI) is >= 0.
THE SHORTEST AUGMENTING PATH ALGORITHM

Initialization Begin with the optimum pair (f 0 = 0,π0 = 0) of

value 0. This is optimal because c
>
= 0.

General step Let (f r, πr) be the present pair of value vr. Find a
shortest chain tree rooted at s̆ in G(f r, πr) using Dijkstra’s algo-
rithm. Terminate Dijkstra’s algorithm as soon as t̆ is permanently
labeled.

450 Ch. 5. Pure Min. Cost Flows

If there exists no chain from s̆ to t̆ in G(f r, πr), there exists no
FAP from s̆ to t̆ in G wrt f r, and since vr < v, there is no feasible
flow of value v in G; terminate.

If a shortest chain, Cr, from s̆ to t̆ in G(f r, πr) has been found,
define for i ∈ N , µri = cost of shortest chain from s̆ to i in
G(f r, πr) if i is permanently labeled before Dijkstra’s algorithm
is terminated, or = µr

t̆
otherwise. Let Pr be the FAP from s̆ to

t̆ wrt f r in G corresponding to Cr, and 6r its residual capacity.
Let γr = min. {6r, v − vr }. Carry out flow augmentation along
Pr by γr units, and let f r+1 be the new flow vector obtained. Its
value is vr+1 = vr + γr. Define π

r+1
i = πri + µ

r
i for all i ∈ N and

πr+1 = (πr+1i). If vr+1 = v, (f r+1, πr+1) is an optimum pair in G,
terminate. Otherwise go to the next step with this new pair.

Discussion

1. For simplicity of notation, let (f,π) denote the pair satisfying
(5.27) at the beginning of a step in this algorithm, and by (f̂ , π̂)
the pair obtained at the end of this step. Then (f̂ , π̂) also satisfies
(5.27).

To prove this, let X be the set of permanently labeled nodes at
the stage that Dijkstra’s algorithm was terminated in this step.
Let cij = cij − (πj −πi), ĉij = cij − (π̂j − π̂i) be the reduced costs
of arc (i, j) wrt the node price vectors π, π̂ respectively. cI, ĉ

I

denote the cost vectors in the residual networks G(f, π), G(f̂ , π̂)
respectively.

For each j ∈ X, let µj denote the cost of a shortest chain from s̆
to j in G(f, π). For j W∈X, let µj = µt̆ as defined in the algorithm.
By Theorem 4.2 and the result in Exercise 4.21, we have

µj − µi <= cIij for all arcs (i, j) in G(f, π) (5.28)

Let C denote the shortest chain from s̆ to t̆ in G(f,π) identified
in Dijkstra’s algorithm in this step, and P the FAP in G wrt f
corresponding to C. (5.28) holds as a strict equation for arcs (i, j)
on C.

5.5. Shortest Augmenting Path Method 451

So, for arcs (i, j) on C we have µj − µi = cIij . Therefore if (i, j)
on C has a + label in G(f,π), then (i, j) ∈ A and µj−µi = cIij =
cij− (πj−πi), and hence cij = (πj+µj)− (πi+µi) = (π̂j− π̂i). If
(i, j) has a − label in G(f, π), then (j, i) ∈ A and µj−µi = cIij =
−(cji − (πi − πj)) and hence cji = π̂i − π̂j. Hence all arcs in G
corresponding to arcs on C continue to satisfy (5.27) in the new
pair (f̂ , π̂). In fact, for all arcs (p, q) on P we have cpq = π̂q− π̂p.
For any arc (i, j) in G not corresponding to an arc on C, we have
f̂ij = fij . From this and (5.28) it can be verified that all these

arcs continue to satisfy (5.27) in the new pair (f̂ , π̂).

2. Using the notation in 1., all the arc cost coefficients in G(f̂ , π̂)

are
>
= 0.

To see this, consider an arc (i, j) in G(f̂ , π̂). If it has a + label,

then (i, j) ∈ A and f̂ij < kij and ĉ
I
ij = ĉij = cij − (π̂j − π̂i)

>
= 0,

by (5.27). If it has a - label, then (j, i) ∈ A and f̂ji > fji and

ĉ
I
ij = −ĉji >

= 0 by (5.27). Hence all the arc cost coefficients in

G(f̂ , π̂) are
>
= 0.

From this, we see that in every step of this algorithm, the shortest
chain problem to be solved is on a residual network in which the
arc cost coefficients are

>
= 0. So, Dijkstra’s algorithm can be

applied to solve the shortest chain problem in every step.

3. Each FAP used to augment the flow in this algorithm is a least
cost FAP among all the FAPs at that stage.

To see this, let us use the notation in 1. From 1. we know that
cpq = π̂q − π̂p for all arcs (p, q) on the FAP P used to generate f̂
from f . Hence the cost of this FAP P is π̂t̆ − π̂s̆.

Suppose P I is an FAP from s̆ to t̆ in G wrt f . If (i, j) is a common
arc on P and P I we have cij = π̂j − π̂i. If (i, j) is a forward arc

on P I which is not on P , then f̂ij = fij < kij and by the result
in (a), π̂j − π̂i

<
= cij . If (i, j) is a reverse arc on P I which is not

on P , then f̂ij = fij > fij and by the result in 1., π̂j − π̂i
>
= cij .

These facts imply that the cost of P I is >= π̂t̆ − π̂s̆ = cost of P .

452 Ch. 5. Pure Min. Cost Flows

So, the FAP P is the cheapest among all the FAPs available at
the time it is used in the algorithm. Hence the name shortest
augmenting path method for this algorithm.

4. The finiteness of this algorithm follows from the finiteness of the
parametric value minimum cost flow algorithm discussed in Sec-
tion 5.3.

5. When this method is specialized to solve the assignment problem
(see Jonker and Volgenant [1987]), it leads to the shortest aug-
menting path algorithm for the assignment problem. Each aug-
menting path used in this method will be an alternating path.
Since the assignment problem of order n needs at most n aug-
mentations, the method terminates after at most n steps. The
work in each step involves solving a shortest chain problem, which
takes at most O(n2) effort by Dijkstra’s method. So, the over-
all computational complexity of this method for an assignment
problem of order n is also O(n3).

5.6 A Class of Primal-Dual Methods

We consider the minimum cost circulation problem (5.2) in the directed
network G = (N ,A, f, k, c) in which f, k, c are all finite integer vectors
satisfying f

<
= k, and |N | = n, |A| = m. In this section we discuss

a class of primal-dual algorithms for this problem. These methods
maintain in every step; a flow vector, node price vector pair (f, π) called
an admissible pair which always satisfies the following conditions

1. f is always an integer, bound feasible flow vector (i.e., f
<
= f

<
= k).

π is always an integer vector.

2. all arcs in A are always α-, β-, or γ-arcs as defined in Section 5.3,
in the pair (f, π).

By 2., we know that an admissible pair satisfies the c.s. optimality
conditions. All but the final admissible pair obtained in these methods
violate flow conservation at some nodes.

5.6. Primal-Dual Methods 453

0

ij j i
Q (����������

c
ij

j i
������

Figure 5.19: The slope of this piecewise linear function is −fij when
tension < cij , and −kij when tension > cij .

Given a flow vector f in G, define the deficit at node i in f to be
di = f(N , i)− f(i,N).
Given a node price vector π = (πi) in G, for each (i, j) ∈ A define

Qij(πj − πi) = min.{gij(cij − (πj − πi)) : over fij
<
= gij

<
= kij }. Define

Q(π) =
�
(Qij(πj − πi) : over (i, j) ∈ A). Qij(πj − πi) is a piecewise

linear concave function. A plot of it is shown in Figure 5.19.

It can be verified that
�
(di : over i ∈ N) = 0. So, in a flow vector

f if some node deficits are W= 0, there must exist a node with a positive
deficit, and another with a negative deficit. In an admissible pair (f, π)
if deficits are 0 at all the nodes, f is a feasible flow vector, and the pair
is an optimal pair. The methods discussed in this section always try
to move to a pair in which all node deficits are 0, while maintaining

454 Ch. 5. Pure Min. Cost Flows

admissibility, by various types of moves described below.

THEOREM 5.4 Under the assumption that f, k are finite vectors, the
dual of the minimum cost circulation problem (5.2) in G is equivalent
to the following unconstrained maximization problem

Maximize {Q(π) : over π ∈ IRn} (5.29)

Proof Let π be the node price vector. Associate the dual variable
vectors µ = (µij), ν = (νij) to the lower, upper bound constraints on f
respectively. Then the dual of (5.2) is

Maximize µf− νk

Subject to (πj − πi) + µij − νij = cij, for (i, j) ∈ A (5.30)

µ, ν
>
= 0

Since f
<
= k, in an optimum solution of (5.30), we will have µij =

max.{0, cij − (πj − πi)} and νij = − min.{0, cij − (πj − πi)}, for each
(i, j) ∈ A. Using these we can eliminate the variables µij, νij from the
dual problem and express it purely in terms of the node prices πis.
Since at least one of the quantities among max. {0, cij − (πj − πi)},
min. {0, cij− (πj−πi)} is always 0, it can be verified that the problem
(5.30) expressed in terms of π is exactly equivalent to (5.29).

In the algorithms discussed in this section, we use two criteria for
measuring progress. One criterion is the total absolute deficit,

�
(|di| :

over i ∈ N), which should be reduced to 0. When it is 0, the current
pair is optimal. The second criterion is the dual functional Q(π); it
should be maximized. When it is maximum, the node price vector π
is optimum.
The methods use three types of steps called flow adjustment

steps (FAS), price adjustment steps (PAS), and ascent steps
to solve the problem. All adjustment steps, FAS or PAS, move from
one admissible pair (f, π) with a node deficit vector d = (di), to an-
other admissible pair (f̂ , π̂) with node deficit vector d̂ = (d̂i) subject
to the following conditions

5.6. Primal-Dual Methods 455

If di > 0 then d̂i
<
= di and π̂i

<
= πi

(5.31)

If di
<
= 0 then d̂i

<
= 0 and π̂i

>
= πi

The adjustment step is called an FAS if d̂i < di for at least one
node i with di > 0, and a PAS if π̂i > πi for at least one node i with
di

<
= 0.
An ascent step is a move from an admissible pair (f, π) to another

admissible pair (f̂ , π̂) satisfying Q(π̂) > Q(π).
An adjustment step, FAS or PAS, will never increase the total ab-

solute deficit, but an FAS strictly decreases it. To see this let an
adjustment step move from the admissible pair (f, π) associated with
deficit vector d = (di) to (f̂ , π̂) associated with d̂ = (d̂i). We have�
di =

�
d̂i = 0. So,

1

2

3 |di| =
3
(di : over i satisfying di > 0)

>
=
3
(di : over i satisfying d̂i > 0) by (5.31)

>
=
3
(d̂i : over i satisfying d̂i > 0)

=
1

2

3 |d̂i|

Also, we see that
� |di| = � |d̂i| iff d̂i = di for all i satisfying

di > 0, and hence this cannot happen in an FAS. Hence an FAS strictly
decreases the total absolute deficit, and a PAS never increases it.
An FAS or PAS may decrease the value of Q(π). We will call an

adjustment step (FAS or PAS) harmless if it does not decrease the
value of Q(π).
An ascent step may not always qualify as an adjustment step. In-

deed in an ascent step, the total absolute deficit may increase.
There are several means by which we can look for ways of making

adjustment steps. One is to search for the so-called flow altering
paths or FAfPs. Given an admissible pair (f,π), an FAfP wrt it is a

456 Ch. 5. Pure Min. Cost Flows

path from a node with a positive deficit to one with a negative deficit,
all of whose arcs are β-arcs, and all forward arcs have residual capacity,
and all reverse arcs have flow > its lower bound. Given an FAfP wrt
the pair (f, π), define its capacity to be 6 = min. { deficit of start node,
−deficit of terminal node, residual capacities of forward arcs, fij − fij
for reverse arcs (i, j) }.
Given an FAfP P of capacity 6 wrt the admissible pair (f, π), the

flow change operation using it leads to the admissible pair (f,π), in
which f is obtained from f by increasing (decreasing) the flow amount
on forward (reverse) arcs of P by 6. As a result of this flow change,
the deficits of both the start and terminal nodes remain of the same
sign (could be 0), but each of their absolute values decrease by 6, and
the deficits of all other nodes remain unaltered. Since an FAfP always
consists of β-arcs only, the c.s. conditions continue to hold in the new
pair. Also, if f, k, f are all integer vectors, 6 is an integer, and hence
the new flow vector f will also be an integer vector.
We will now describe a procedure, Procedure 1, which carries out

adjustment steps by searching for FAfPs using a tree growth scheme.
To avoid confusion with steps in the main methods, we will call the
steps in the procedure items.

PROCEDURE 1 : TO CARRY OUT AN ADJUSTMENT STEP
BY SEARCHING FOR AN FAfP

Initialization Let (f, π) be the current admissible pair with d = (di)
as the deficit vector. If d = 0, (f, π) is an optimum pair, terminate
the method. Otherwise select a negative deficit node i0 and label
it with ∅. List = {i0}. Go to Item 1.

Item 1 Select a node for scanning If list = ∅, go to Item 3.
Otherwise select a node from the list, say p, for scanning. Delete
p from the list, and go to Item 2.

Item 2 Scanning Let p be the node to be scanned. Find all un-
labeled nodes j such that (p, j) is a β-arc with fpj > fpj , label
them with (p,−) and include them in the list. Find all unlabeled
nodes i such that (i, p) is a β-arc with fip < kip, label them with
(p,+) and include them in the list.

5.6. Primal-Dual Methods 457

Terminate this procedure if a node with positive deficit is labeled.
If that node is q, the predecessor path of q is an FAfP wrt (f, π).
Carrying out the flow change operation with that FAfP is an
FAS. Since there is no change in the node price vector this is a
harmless FAS.

If no node with a positive deficit is labeled go back to Step 1.

Item 3 Node price change We come to this item if no node with
positive deficit is labeled, and list = ∅. Let X = set of labeled
nodes, and X its complement. Let A1 be the set of γ-arcs in (X,
X), and A2 the set of α-arcs in (X, X).

If A1 ∪A2 = ∅, then k(X,X)− f(X,X) = f(X,X)− f(X,X) =
f(N ,X) − f(X,N) = d(X) < 0, by Theorem 2.11 this implies
that there is no feasible circulation in G; terminate the method.

If A1 ∪A2 W= ∅, let δ = min. {|cij − (πj −πi)| : (i, j) ∈ A1 ∪A2}.
δ is finite and > 0. Define π̂ = (π̂i) where π̂i = πi + δ for i ∈ X,
or = πi for i ∈ X. Since di <= 0 for all i ∈ X, changing (f, π) to
(f, π̂) satisfies all the conditions for being a PAS. Terminate the
procedure.

Now we will describe another procedure that tries to make adjust-
ment steps that involve a single node together with its immediate neigh-
bors, For each i ∈ N define the following wrt an admissible pair (f, π)
in G.

B+i (f,π) = {j : (j, i) is a β-arc and fji < kji}
A−i (f,π) = {j : (i, j) is a β-arc and fij > fij}

PROCEDURE 2: SEQUENCE OF SINGLE NODE FAS AND PASs

Single node FASs Let (f, π) be the present admissible pair with
d = (di) as the node deficit vector. Select a node q with dq < 0.

Look for a node j ∈ B+i (f, π) for which dj > 0. If such a node
j exists, let 6 = min. {−dq, dj, kjq − fjq}. Add 6 to fjq and dq;
subtract 6 from dj . This is a single node FAS.

458 Ch. 5. Pure Min. Cost Flows

If there is no node j like the above, look for a node p ∈ A−i (f, π)
for which dp > 0. If such a node p exists, let 6 =min. {−dq, dp, fqp−
fqp}. Subtract 6 from fqp, dp and add 6 to dq. This is a single node
FAS too.

Repeat with the new pair and node q if its deficit is still < 0.
If its deficit became 0, select another node with negative deficit
and repeat.

Single node PASs Let (f,π) be the present admissible pair with
d = (di) as the node deficit vector. Select a node q with dq < 0.
If there are no β-arcs of form (j, q) with fjq < kjq, or (q, j) with
fqj > fqj go to Item 1; otherwise go to Item 2.

Item 1 Define E = {(j, q) : fjq < kjq} ∪{(q, j) : fqj > fqj}. If E
= ∅, all arcs incident into q are saturated, and all those incident
out of q are lower boundary arcs, and yet dq < 0, so there is no
feasible circulation in G; terminate the method.

If E W= ∅, let δ = min. {|cuw − (πw − πu)| : (u, w) ∈ E}. δ > 0.
Add δ to πq; this operation is a single node PAS.

Item 2 If

6 =
3

j∈B+q (f,π)
(kjq − fjq) +

3
j∈A−q (f,π)

(fqj − fqj)
<
= −dq (5.32)

change fjq to kjq for each j ∈ B+q (f, π), and fqj to fqj for each
j ∈ A−q (f,π). Both these sets become ∅ wrt the new flow vector.
With the new pair go back to Item 1.

Discussion

The flow change in Item 2 decreases the total absolute deficit iff
some node in the original B+q (f, π) ∪ A−q (f,π) had positive deficit;
otherwise, the total absolute deficit remains unchanged by this flow
change.

5.6. Primal-Dual Methods 459

It can be shown that the directional derivative of Q(π) along the
direction of increasing πq and leaving other node prices unchanged is�
(kqj : over (q, j) is a γ-arc) +

�
(fqj : over (q, j) an α- or β-arc)

−�(kjq : over (j, q) a γ-, or β-arc) −�(fjq : over (j, q) an α-arc) = −dq
−�(kjq − fjq : over j ∈ B+q (f,π)) −�(fqj − fqj : over j ∈ A−q (f, π)).
From this it follows that the single node PAS above increases Q(π)
iff strict inequality holds in (5.32). If (5.32) holds as an equation,
the single node PAS at q leaves Q(π) unchanged, but the flow change
carried out reduces the deficit at node q to 0.

When we are in Item 2 for making a single node PAS at node q, if
(5.32) is violated, i.e., if (5.33) holds

3
j∈B+q (f,π)

(kjq − fjq +
3

j∈A−q (f,π)
(fqj − fqj) > −dq (5.33)

then no further progress is possible at node q by single node PASs. We
can now attempt a single node FAS, but if

dq < 0 and dj
<
= 0 for all j ∈ B+q (f, π) ∪A−q (f, π) (5.34)

no further progress can be made at node q with either a single node
PAS or FAS. When (5.33), (5.34) both hold, we need to perform FAS or
PAS involving multiple nodes. We will now describe a procedure that
leads to a multiple node adjustment step that helps also to achieve
large price increases consistent with the philosophy of a single node
PAS.

PROCEDURE 3: MULTIPLE NODE ADJUSTMENT STEPS

Item 1 Let (f,π) be the current admissible pair with d = (di) as
the deficit vector. Select a node q with dq < 0 satisfying (5.33),
(5.34).

Item 2 LetD be either ∅ or a subset ofB+q (f, π)∪A−q (f, π) satisfying

460 Ch. 5. Pure Min. Cost Flows

3
j∈B+q (f,π)∩D

(kjq − fjq) +
3

j∈A−q (f,π)∩D
(fqj − fqj)

<
= −dq (5.35)

Let D = (B+q (f, π) ∪A−Q(f, π))\ D. Because of (5.33) and (5.35)
D W= ∅. Proceed similar to Procedure 1, with the only difference
being that the initial labels will be given only to nodes in the
subset D rather than the entire set B+q (f, π)∪A−Q(f,π). Label q
with ∅. Label each of the nodes in B+q (f,π)∩D with (q,+), and

each of the nodes in A−q (f,π) ∩D with (q,−). Put all nodes in
D in the list of labeled and unscanned nodes (in this procedure,
the root node q is not put in the list unlike Procedure 1)

Continuation now consists of deleting a node p from the list and
scanning it as in Procedure 1. If a node with positive deficit
is labeled, an FAfP has been identified; stop tree growth and
carry out an FAS using it as under Procedure 1. This procedure
terminates after this FAS.

If tree growth stops without a node having positive deficit getting
labeled, carry out a PAS using the cut of labeled and unlabeled
nodes as under Procedure 1. Then change fjq to kjq for all j ∈
B+q (f, π) ∩D, and fqj to fqj for all j ∈ A−q (f,π) ∩D.

Discussion

If no FAfP is identified in Procedure 3, it can be verified that the
work carried out at the end is a PAS. The flow changes in this PAS
increase the deficit of each node inD, while the deficit of q still remains
nonpositive because of (5.35). The adjustment step in Procedure 3
is harmless. This procedure coincides with Procedure 1 if D = ∅.
However, taking D W= ∅ is advantageous if strict inequality holds in
(5.35) as this makes the multiple node PAS in Procedure 3 an ascent
step.
We will now discuss a procedure for carrying out an ascent step.

Let (f,π) be the present admissible pair. Let S be a proper subset
of nodes, and let its incidence vector be x(S) = (xi(S)) where xi(S)

5.6. Primal-Dual Methods 461

= 1 if i ∈ S, 0 otherwise. Let S be the complement of S. Define
a(S, π) =

�
(i,j)∈A aij(S, π), where

aij(S, π) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fij if (i, j) ∈ (S,S) is an α− or β − arc

kij if (i, j) ∈ (S,S) is a γ − arc

−fij if (i, j) ∈ (S,S) is an α− arc

−kij if (i, j) ∈ (S,S) is a β − or γ − arc

0 otherwise

(5.36)

It can be verified that a(S,π) is the directional derivative of the dual
functional Q(π) along the direction x(S). So, if a(S, π) > 0, to increase
Q(π) we can move in the direction x(S), i.e., increase node prices of
nodes in S by equal amounts while keeping node prices outside of S
unchanged. The ascent step uses this fact.
The main feature of this procedure is that the choice of ascent

directions is very simple. A node i0 with nonzero deficit is chosen,
and an ascent is attempted along the coordinate direction of πi0 . If
such an ascent is not possible and a reduction in the absolute deficit
cannot be effected through flow change, an adjacent node of i0, say
i1, is chosen and an ascent attempted along the sum of the coordinate
vectors corresponding to πi0 and πi1 . If such an ascent is not possible,
and flow change is not possible either, an adjacent node of either i0 or
i1 is chosen and the process is continued.

PROCEDURE 4 : ASCENT STEP

Item 1 Let (f, π) be the present admissible pair with nonzero deficit
vector d = (di). Select a node, say i0 with di0 < 0. Root a tree
at i0 by labeling it with ∅. List = {i0}, S = ∅.

General item Delete a node, say p, from the list, insert it into S,
and scan it. Scanning p involves labeling all unlabeled nodes in

462 Ch. 5. Pure Min. Cost Flows

B+p (f, π) with the label (p,+), and unlabeled nodes in A
−
p (f, π)

with the label (p,−) and inserting all these newly labeled nodes
in the list.

If a node with positive deficit is labeled, but a(S, π)
<
= 0, an FAfP

has been identified. Carry out an FAS using this FAfP as under
Procedure 1, and terminate this procedure.

On the other hand, if we have S = N\S W= ∅ and a(S, π) > 0,
carry out the following ascent step. Let E = {(i, j) : (i, j) is a γ-
arc in (S, S), or an α-arc in (S, S)}. If E = ∅, there is no feasible
circulation in G; terminate the method. Otherwise, define

δ = min. {|cij − (πj − πi)| : (i, j) ∈ E} (5.37)

and the new flow vector, node price vector pair (f̂ = (f̂ij), π̂ =
(π̂i)), where

f̂ij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

kij if (i, j) is a β-arc in (S, S) and i labeled

fij if (i, j) is a β-arc in (S, S) and j labeled

fij otherwise

π̂i =

⎧⎪⎨⎪⎩
πi + δ if i ∈ S

πi if i ∈ S

The procedure terminates with the new pair (f̂ , π̂).

If the conditions for neither FAS nor ascent step are satisfied, go
to the next item in tree growth.

Discussion

If E = ∅ at the occurrence of an ascent step, from (5.36) we have
0 < a(S, π) = −k(S,S) + f(S,S), i.e., k(S,S) − f(S,S) < 0, which
implies that there is no feasible circulation in G by Theorem 2.11.

5.6. Primal-Dual Methods 463

If tree growth stops without the conditions for an FAS being satis-
fied, let X be the set of labeled nodes at that time. Since all nodes in X
are scanned, S = X at this stage. Since the conditions for an FAS were
not satisfied so far, di

<
= 0 for all i ∈X. So, X = N\X = S = N\S W= ∅,

since all nodes with positive deficit are in it. We also have fij = kij
for all β-arcs (i, j) ∈ (S,S), and = fij for all β-arcs (i, j) ∈ (S,S). By
(5.36) this implies that a(S, π) > 0 at this stage and an ascent step can
therefore be carried out now.

Hence, Procedure 4 will either terminate by carrying out an FAS
(which is harmless since there is no change in the node price vector)
or by carrying out an ascent step. However, in the ascent step, the
total absolute deficit may strictly increase. In this procedure, often
the condition for an ascent step is likely to be satisfied well before
tree growth stops; hence this procedure tends to terminate earlier than
Procedure 3.

ALGORITHMS FORMINIMUMCOST CIRCULATION PROBLEMS

These algorithms can be initiated with any node price vector π,
and a bound feasible flow vector selected so that (f, π) is an admissible
pair.

The classical Primal-Dual algorithm is based solely on Proce-
dure 1. It carries out FAS or PAS by applying Procedure 1 repeatedly
until all the node deficits are converted to 0, at which stage we have an
optimum pair (f, π). This algorithm is guaranteed to terminate after
a finite number of iterations, either with an optimum pair, or with the
conclusion that there is no feasible circulation in G.

Other Primal-Dual algorithms consist of a sequence in any order,
of FAS, PAS, and ascent steps through Procedures 2, 3, 4. These
procedures can be combined in different ways to yield a variety of algo-
rithms. This flexibility allows the construction of algorithms that can
be tailored to the problem at hand for maximum effectiveness. In these
algorithms, most of the ascent directions tend to be single coordinate
directions, leading to the interpretation of these algorithms as coordi-
nate ascent or relaxation methods. This is an important characteristic
and a key factor in the practical efficiency of these algorithms. We will

464 Ch. 5. Pure Min. Cost Flows

now show that any algorithm in this class terminates with an optimum
solution in a finite number of steps if the problem is feasible.

THEOREM 5.5 Suppose the minimum cost circulation problem in
G is solved by an algorithm consisting of repeated applications of Pro-
cedures 2, 3, 4 in any order beginning with an initial admissible pair
(f 0, π0). The algorithm terminates with an optimum pair after a finite
number of steps, if the problem is feasible, under the following assump-
tions.

1. f, k, c, f 0, π0 are all finite integer vectors

2. either all steps in the algorithm are adjustment steps (FAS or
PAS) or all adjustment steps used are harmless.

Proof By assumption (a), all the quantities 6 and δ in every step
of the algorithm will always be positive integers, and all the pairs (f, π)
obtained in the algorithm are always integer vector pairs.
Q(π) is piecewise linear in arc tensions, πj − πi, and a(S,π) is the

rate of change of Q(π) along x(S). The actual change in Q(π+ λx(S))
as a function of the step size λ is linear up to the point where its
slope changes. The value of λ > 0 closest to 0 where the slope of
Q(π + λx(S)) changes, is the one for which a new arc incident to S

becomes a β-arc; i.e., it is δ given by (5.37), and hence
>
= 1. For all

0
<
= λ

<
= δ, we therefore have Q(π + λx(S)) = Q(π) + λa(S, π). Hence

whenever an ascent step is carried out, Q(π) increases by a positive
integer amount. Therefore, if the problem is feasible, under assumption
(b), it is not possible to carry out an infinite number of ascent steps in
the algorithm, so after some iteration all steps will be adjustment steps,
or else the algorithm will terminate finitely. Hence it is sufficient to
prove this theorem under the assumption that all steps are adjustment
steps. We will do this now.
Each time an FAS is carried out the total absolute deficit strictly

decreases, while each time a PAS is carried out the total absolute deficit
does not increase. So, if the algorithm does not terminate finitely,
after a finite number of iterations it must execute PAS exclusively. Let
(f r,πr), with deficit vector dr = (dri), r = 1, 2, . . . refer to the sequence

5.6. Primal-Dual Methods 465

of admissible pairs in the algorithm after it began to execute PAS
exclusively. In this sequence, the deficits of nodes with positive deficits
will be constant, and the deficits of nodes with nonpositive deficits
will remain nonpositive. The node price of each node with nonpositive
deficit will not decrease, and for at least one of these nodes it strictly
increases. Hence N = { i : πri → ∞ as r → ∞ } W= ∅. Let N be the
complement of N.
dri

<
= 0 for all i ∈ N, and this inequality is strict for at least one i,

hence
�
(dri : over i ∈ N) < 0. By the definition of N all arcs in (N,

N) are γ-arcs, and those in (N, N) are α-arcs. Using this in
�
(dri :

over i ∈ N) < 0, we have k(N,N)− f(N,N) < 0, implying that there
is no feasible circulation in G.

In our description of the procedures, scanning operations started
at nodes with negative deficit only. It is possible to start scanning at
nodes with positive deficit as well. In practice, it was found that this
modification improves the running time by at least a factor of two.
The finite termination property for the method, in feasible networks,
is preserved, provided that all PASs originating from positive deficit
nodes strictly improve the dual functional value.
If the primal problem is infeasible, then it is possible for the methods

based solely on Procedures 2, 3, 4, as described, to cycle forever. An
easy way to circumvent this difficulty is to switch to Procedure 1 after
some fixed number of iterations. This guarantees that the method will
either conclude that the problem is infeasible, or find an optimum pair,
after a finite number of iterations.

Comment 5.1 The new Primal-Dual methods in this section are
from Bertsekas [1985], Bertsekas, Hosein, and Tseng [1987], and Bert-
sekas and Tseng [1988]. These papers provide results from computa-
tional experiments comparing the performance of these methods with
other Primal-Dual methods, OK methods, primal network simplex and
dual network simplex methods, on networks with number of nodes up
to 8000, and number of arcs up to 35,000, and randomly generated
data. The typical time to solve a minimum cost circulation problem on
a network with 100 nodes and 5000 arcs by these methods is 12 seconds
on a VAX 11/750 mainframe computer; this increases to 171 seconds

466 Ch. 5. Pure Min. Cost Flows

when the number of nodes and arcs increases to 3000 and 35,000 re-
spectively.

5.7 The Dual Network Simplex Method

for Minimum Cost Flow Problems

We consider the minimum cost flow problem (5.3) in the connected

directed network G = (N ,A, f, k, c, V) where f is finite and f <
= k. Let

A∞ = {(i, j) : kij =∞}. Let (dd, L, U) be a partition in G associated
with the primal and dual basic solution pair (f = (fij), π = (πi)). Let
c = (cij = cij − (πj − πi)) be the reduced cost vector wrt π. (dd, L, U)
is said to be a dual feasible partition if

cij

⎧⎪⎪⎨⎪⎪⎩
>
= 0 for all (i, j) ∈ A∞
>
= 0 for all (i, j) ∈ L
<
= 0 for all (i, j) ∈ U

(5.38)

If A∞ = ∅, we can generate a dual feasible partition in G by select-
ing an arbitrary spanning tree dd in G, computing the associated π, c
vectors, and then classifying the out-of-tree arcs into L, U based on
the sign of their reduced cost coefficients.
If A∞ W= ∅, we can apply the initialization procedure discussed in

Section 5.3 to generate shortest chain trees in each connected compo-
nent of (N ,A∞), so that the node price vector corresponding to each
of these trees satisfies πj−πi <= cij for all arcs (i, j) in that component.
The procedure may terminate either by finding a negative cost circuit
in the subnetwork (N ,A∞), or by finding such trees in each connected
component of this subnetwork. In the former case, the dual of (5.3) is
infeasible, and the objective value is unbounded below in (5.3) if it is
feasible, so, we terminate. In the latter case we augment the shortest
chain trees in the connected components of (N ,A∞) with arcs from
A\A∞ selected arbitrarily, to get a spanning tree dd in G, and then by
partitioning the out-of-tree arcs as mentioned above, generate a dual
feasible partition.
The dual feasible partition (dd, L, U) associated with the reduced

5.7. Dual Network Simplex 467

cost vector c is said to be dual nondegenerate if cij > 0 for all
(i, j) ∈ L, and cij < 0 for all (i, j) ∈ U; dual degenerate otherwise.
The procedure outlined above for finding an initial dual feasible

partition is the Phase I of the dual network simplex method. The dual
network simplex algorithm needs an initial dual feasible partition to
solve (5.3).

THE DUAL NETWORK SIMPLEX ALGORITHM

Initialization Begin with a dual feasible partition.

General step Let (dd, L, U) be the present dual feasible partition
associated with the basic solution pair (f = (fij), π = (πi)) and
reduced cost vector c = (cij).

Check primal feasibility of the partition If fij
<
= fij

<
= kij

for all (i, j) ∈ dd, (dd, L, U) is primal feasible and hence
optimal, terminate.

Select dropping arc Let D = set of all in-tree arcs (i, j)
satisfying either fij < fij or fij > kij. D is the set of arcs
eligible to be dropping arcs in this step. Select one arc
from D, (r, s) say, to be the dropping or leaving arc.

Select entering arc Let [X, X] be the fundamental cutset of
(r, s) wrt dd, with r ∈ X. Define

S1 = L ∩ (X,X) , S2 = U ∩ (X,X), if frs < frs

S1 = L ∩ (X,X) , S2 = U ∩ (X,X), if frs > krs

If S1 ∪ S2 = ∅, (5.3) is infeasible, terminate.
If S1∪S2 W= ∅, define δ = min. { |cij|: over (i, j) ∈ S1∪S2}.
δ is called the dual simplex minimum ratio in this pivot
step. Let E be the set of arcs in S1 ∪ S2 which tie for the
minimum in the definition of δ. E is the set of arcs eligible
to enter in this pivot step. Select one arc from E, (p, q)
say, as the entering arc. Let CC be the fundamental cycle

468 Ch. 5. Pure Min. Cost Flows

of (p, q) wrt dd. CC will contain (r, s). Orient CC so that (r, s)
is a forward arc on it.

Delete (p, q) from L or U where it was. Replace (r, s) in dd
by (p, q) and let ddI be the resulting spanning tree. Include
(r, s) in L if frs < frs, and in U if frs > krs. This gives the
new partition. Let 6 = frs − frs if frs < frs, or krs − frs if
frs > krs. The basic flow vector corresponding to the new
partition is obtained from f by adding 6 to the flow amounts
on the forward arcs of CC, and subtracting 6 from the flow
amounts on reverse arcs on CC. Go to the next step.

The entering arc choice guarantees that dual feasibility is main-
tained throughout the algorithm. It can be verified that if the entering
arc (p, q) replaces the dropping arc (r, s) in a pivot step, then in the
flow vector obtained immediately after this step, the flows on both the
arcs (p, q), (r, s) satisfy the respective bounds on them.
The flow vector changes in every step of this algorithm. The node

price vector changes in a pivot step if the quantity δ > 0, remains
unchanged if δ = 0. Hence, a pivot step in this algorithm is said to be
degenerate if δ = 0 in that step, nondegenerate if δ > 0.
In large networks, in particular if |A| is much larger than |N |, the

selection of the entering arc by the dual simplex minimum ratio cri-
terion is a time consuming process, and is inherently wasteful. In all
LPs in which the number of variables is much greater than the num-
ber of constraints, this problem exists for applying the dual simplex
algorithm.

Exercises

5.11 Prove that the dual objective function strictly increases in every
nondegenerate pivot step in the dual network simplex method.

5.12 Research Problem It is not known whether cycling can occur
under dual degeneracy in the dual network simplex algorithm. Either
construct an example of its occurrence, or prove that it cannot occur.

5.8. Strongly Polynomial Algorithm 469

5.13 Develop combinatorial methods for resolving cycling under de-
generacy in the dual network simplex algorithm (Partovi[1984]).

5.14 Develop dropping and entering arc choice rules in the dual net-
work simplex algorithm which simultaneously resolve both cycling and
stalling in it.

5.8 A Strongly Polynomial Algorithm for

Minimum Cost Flow Problems

Consider a single commodity minimum cost flow problem on a directed
network G = (N ,A, f, k, c) with |N | = n, |A| = m. If all the data is
rational, the size of this problem is defined to be the total number of
binary bits of storage needed to store all the data in the problem. The
dimension of this problem is defined to be the total number of data
elements in the statement of the problem, irrespective of whether the
data is rational or not. So, the dimension of our minimum cost flow
problem is proportional to n and m; it is 5m+n+2 (number of nodes
and arcs; lower bound, capacity, cost coefficient, head node, and tail
node on each arc; and the exogenous flow amount at each node).
The concept of polynomial boundedness of an algorithm is

defined in the context of problem instances with rational data of finite
size. An algorithm for this problem is said to be a polynomially
bounded algorithm if the total number of arithmetic operations
(additions, multiplications and divisions, comparisons, etc.) in the
algorithm, when applied on an instance with rational data, is bounded
above by a polynomial in the size of the instance; and the size of each of
the numbers occurring during the algorithm is always bounded above
by a polynomial in the size of the original instance.
The first polynomially bounded algorithms for minimum cost flow

problems were developed by Edmonds and Karp [1972 of Chapter 2];
they are based on the scaling technique (see Sections 3.2 and 5.3).

470 Ch. 5. Pure Min. Cost Flows

An algorithm for this problem is said to be a strongly polyno-
mial algorithm if the total number of arithmetic operations in the
algorithm is bounded above by a polynomial in the dimension of the
problem even when the algorithm is applied on instances with real (i.e.,
non-rational) data, as long as the required operations are carried out
exactly; and when the algorithm is applied on instances with rational
data, the size of each of the numbers occurring during the algorithm
is always bounded above by a polynomial in the size of the original
instance.

The scaling based polynomially bounded algorithms for minimum
cost flow problems discussed in Sections 3.2 and 5.3 are not strongly
polynomial since the total number of arithmetic operations in those al-
gorithms grows with the size of the instance, even when the dimension
remains fixed. For the maximum value flow problem, strongly polyno-
mial algorithms have been known since the early 1970’s. The shortest
augmenting path method, Dinic’s method, Dinic-MKM method, and
the preflow-push method discussed in Chapter 2 are all strongly poly-
nomial algorithms for the maximum value flow problem. However, the
problem of developing a strongly polynomial algorithm for the mini-
mum cost flow problem remained open until 1985. In fact in their 1972
paper Edmonds and Karp stated the following challenge: “A chal-
lenging open problem is to give a method for the minimum cost flow
problem having a bound of computation which is a polynomial in the
number of nodes, and is independent of both costs and capacities.”
The first strongly polynomial algorithm for minimum cost flow prob-
lems is due to Tardos [1985]. Since then several strongly polynomial
algorithms have been developed for minimum cost flow problems. In
this section we discuss a strongly polynomial algorithm for minimum
cost flow problems, perhaps the simplest conceptually among all those
known, based on canceling minimum mean residual cycles.

We consider the minimum cost circulation problem (5.2) in G. From
Theorem 5.1 we know that a feasible circulation f is a minimum cost
circulation iff there exist no negative cost residual cycles wrt it. One
of the earliest algorithms for finding minimum cost circulations, due
to Klein [1967], called the cycle canceling algorithm, begins with
a feasible circulation and repeats the step of finding a negative cost

5.8. Strongly Polynomial Algorithm 471

residual cycle and canceling it. If the cycles to cancel are selected ar-
bitrarily, the computational requirements of this algorithm may grow
exponentially with the size, and the algorithm may not even terminate
finitely under irrational data (an example of this can be constructed
from Ford and Fulkerson’s maximum value flow problem discussed in
Example 2.1 posed as a minimum cost circulation problem). A natural
question to ask is whether the cycle canceling algorithm can be made
efficient, in fact strongly polynomial, by a judicious choice of the cy-
cles to cancel. This question has been answered in the affirmative by
Goldberg and Tarjan [1989], and we present their results here.

Define the average or mean cost of a simple cycle to be its cost
divided by the number of arcs in it. A simple cycle whose average cost
is as small as possible is called a minimum mean cycle. A minimum
mean cycle can be found by an algorithm of Karp [1978] in at most
O(nm) time. Goldberg and Tarjan showed that if the cycle to cancel
in the cycle canceling algorithm is selected to be a minimum mean
residual cycle in each step, then it terminates after at most O(nm2log
n) cycles have been canceled. Hence, with this selection rule, the cy-
cle canceling algorithm solves the minimum cost circulation problem
in at most O(n2m3 log n) time, which makes it an elegant strongly
polynomial algorithm.

An Algorithm to Find a Minimum Mean Simple Circuit
in a Directed Network

Let H = (V, E, d) be a directed network with d as the vector of arc
weights (or lengths, or cost coefficients). The vector d is not required

to be
>
= 0; it can be arbitrary. Let e1, . . . , ep be the arcs in a simple

circuit
→
CC in H, with weights d1, . . . , dp respectively. Then the mean

cost (or weight) of
→
CC is defined to be a(

→
CC) = 1

p

�
(dt : over t = 1 to p).

A minimum mean simple circuit in H is one which has the least mean
cost among all the simple circuits in H. Here we discuss an algorithm
for finding a minimum mean simple circuit due to Karp [1978].

If H is not strongly connected, its strong components can be found
in O(|E|) effort. The minimum mean simple circuit can be computed
separately in each strongly connected component of H, and the best

472 Ch. 5. Pure Min. Cost Flows

of these is the minimum mean simple circuit in H. So, henceforth we
assume that H is strongly connected.
The cost of a minimum mean simple circuit is called the minimum

circuit mean. Let λ∗ denote the minimum circuit mean in H. Let |V| =
n, |E| = m. Select any node from V, say s, as the origin node. For

each node i ∈ V, and r >
= 0 integer define Fr(i) to be the minimum

cost of a chain (not necessarily simple) from s to i in H containing
exactly r arcs, ∞ if no such chain exists. These quantities Fr(i), for
all i ∈ V and r = 0 to n can be computed from the following recursive
equations.

F0(i) = ∞ for all i W= s, and 0 for i = s
Fr(i) = min. {Fr−1(j) + dji : over j such that (j, i) ∈ E}(5.39)

where dji is the weight or cost of arc (j, i) in E. Computation of Fr(i)
for all i ∈ V, r = 0 to n by this recursive method takes O(nm) effort.
ALGORITHM FOR MINIMUM MEAN SIMPLE CIRCUIT
IN A STRONGLY CONNECTED NETWORK

Step 1 Compute Fr(i) for all i ∈ V, r = 0 to n.
Step 2 Compute λ∗ from

λ∗ = min. i∈V

l
max.

0
<
=r

<
=n−1

l
Fn(i)− Fr(i)

n− r
MM

(5.40)

To get a simple circuit yielding the minimum circuit mean, find
a minimizing i and r in (5. 40), find a minimum cost chain con-
sisting of n arcs from s to i, and extract a simple circuit of n− r
arcs within that chain.

Validity of the Minimum Mean Simple Circuit Algorithm

1. First we will prove that (5.40) holds when λ∗ = 0. Since λ∗ =
0, there are no negative cost circuits in H, and there is a 0-cost circuit.
Also, H is strongly connected. So, there is a shortest simple chain from

5.8. Strongly Polynomial Algorithm 473

s to i consisting of < n arcs for every i ∈V; let its cost be πi. Then
Fn(i)

>
= πi, and πi = min. { Fr(i) : r = 0 to n− 1 }. So, Fn(i)− πi =

max. { Fn(i)− Fr(i) : r = 0 to n− 1 } >
= 0. Hence

max.

l
Fn(i)− Fr(i)

n− r : r = 0, . . . , n− 1
M

>
= 0 (5.41)

Equality holds in (5.41) iff i is such that Fn(i) = πi. We will now

show that there exists a node i satisfying this condition. Let
→
CC be

a simple circuit in H of cost 0, and w a node on it. Let C(w) be a
shortest simple chain from s to w. Then any chain consisting of C(w)
followed by any nonnegative integer number of repetitions of

→
CC is also

a shortest chain from s to w in H. But the initial part of any shortest
chain must also be a shortest chain from the origin to that point. After

some repetitions of
→
CC at the end of C(w) an initial part consisting of

exactly n arcs will appear; suppose its end point is wI. This implies
that this part has cost Fn(w

I) = πwI . So, (5.41) holds as an equation
when i = wI. This establishes (5.40) in this case.
2. We now prove that (5.40) holds in general. Let us study the

effect of subtracting a constant α from the weight of every arc in H.
This subtracts α from λ∗, and subtracts rα from Fr(i) for all i and r.
Hence it subtracts α from the right hand side of (5.40). Hence both
sides of (5.40) are affected by the same quantity when the cost vector
d is translated by a constant. Choosing α to be the unknown λ∗ and
using the result in 1., establishes (5.40) in general.
3. The computation of Fr(i) using the recursive equations (5.39)

can be accomplished with O(nm) effort. Using the Fr(i), λ
∗ can be

computed from (5.40) and a minimum mean simple circuit identified
as discussed earlier, with an additional effort of O(n2). Thus the overall
effort in this algorithm for the minimum mean simple circuit is O(nm).

The Minimum Mean Cycle Canceling Algorithm

Let f be a feasible circulation in G. Every residual cycle wrt f in G
becomes a simple circuit in the residual network G(f) with the same
cost, and vice versa. So, by finding a minimum mean simple circuit in
G(f) by the algorithm described above, we can find a minimum mean

474 Ch. 5. Pure Min. Cost Flows

residual cycle wrt f in G.

THE MINIMUM MEAN CYCLE CANCELING ALGORITHM
FOR MINIMUM COST CIRCULATION PROBLEMS

Initialization Find a feasible circulation in G using the algorithms
discussed in Chapter 2.

General step Let f be the present feasible circulation in G. Find
a minimum mean residual cycle wrt f in G, CC say. If the cost
of CC is

>
= 0, f is a minimum cost circulation in G; terminate.

Otherwise cancel CC in f and go to the next step with the new
feasible circulation obtained.

Proof of Strong Polynomiality of the
Minimum Mean Cycle Canceling Algorithm

(i) 6-optimality For 6
>
= 0, a feasible circulation f = (fij) in G is

said to be an 6-optimal circulation if there exists a node price vector
π = (πi) such that for all (i, j) ∈ A

if cij = cij − (πj − πi)

⎧⎪⎨⎪⎩
> 6 then fij = fij

< −6 then fij = kij

(5.42)

By the c.s. optimality conditions, a 0-optimal feasible circulation
is a minimum cost circulation in G.

(ii) Let α > 0, and (f I, πI) a feasible circulation, node price vector
pair in G satisfying

if cIij = cij − (πIj − πIi)

⎧⎪⎪⎨⎪⎪⎩
>
= α then f Iij = fij

<
= −α then f Iij = kij

(5.43)

for every (i, j) ∈ A. Then for any arc (p, q) ∈ A if |cIpq| >= nα, then

f pq = f
I
pq in every minimum cost feasible circulation f = (f ij) in G.

5.8. Strongly Polynomial Algorithm 475

To prove this, let f be a minimum cost feasible circulation in G
such that f pq W= f Ipq for an arc (p, q) ∈ A satisfying |cIpq| >= nα. Suppose
f pq > f

I
pq (a proof similar to the following can be constructed if f pq <

f Ipq). If c
I
pq

<
= −nα, then f Ipq = kpq and fpq > kpq cannot hold, so we

must have cIpq
>
= nα. f − f I is a nonzero circulation in G; by Lemma

5.2 there exists an oriented simple cycle CC containing the arc (p, q)
such that on all forward arcs (i, j) on CC we have f ij − f Iij > 0, and on
all the reverse arcs (i, j) on CC we have f ij − f Iij < 0. Let 6 = min. {
|f ij − f Iij| : (i, j) on CC }. So, 6 > 0. Obtain the circulation f II from f
by decreasing the flow amount on all the forward arcs of CC by 6 and
by increasing the flow amount on all the reverse arcs of CC by 6. f II is
easily verified to be a feasible circulation in G.

On the forward arc (p, q) on CC, cIpq
>
= nα. On all the other forward

arcs (i, j) on CC other than (p, q) we have kij
>
= f ij > f

I
ij, i.e., f

I
ij < kij

which by (5.43) implies that cIpq
>
= −α. On all the reverse arcs (i, j)

on CC we have fij
<
= f ij < f Iij, i.e., f

I
ij > fij , which by (5.43) implies

cIpq
<
= α. Let r be the number of arcs on CC, since CC is simple r

<
= n.

Cost of CC = cIpq+
�
(cIij : over forward arcs (i, j) W= (p, q) on CC)−

�
(cIij :

over reverse arcs (i, j) on CC)
>
= nα− (r− 1)α = (n+1− r)α > α > 0.

So cost of f II = cf II = cf I − 6(cost of CC) < cf I since the cost of CC > 0
by the above. Since f II is a feasible circulation, we have a contradiction
to the hypothesis that f I is a minimum cost feasible circulation in G.
Hence the statement given above must be true.

(iii) Let |N | = n. If c is an integer vector, for every 0
<
= 6 <

1/n, every 6-optimal feasible circulation is a minimum cost feasible
circulation.

To prove this, let f be an 6-optimal feasible circulation in G for
some 0

<
= 6 < 1/n. Let CC be a residual cycle wrt f . So, by definition,

there exists a node price vector π = (πi) such that for any arc (i, j) on
CC

cij = cij − (πj − πi)

l >
= −6 if (i, j) is a forward arc on CC
<
= 6 if (i, j) is a reverse arc on CC

(5.44)

476 Ch. 5. Pure Min. Cost Flows

Since CC is a simple cycle, it has at most n arcs. Hence by (5.44)
the cost of CC =

�
(cij : over forward arcs (i, j) on CC) − �(cij : over

reverse arcs (i, j) on CC)
>
= −n6 > −1. However, as c is an integer

vector, the cost of CC is an integer, and since it is > −1, it must be >= 0.
Hence every residual cycle wrt f has a nonnegative cost; by Theorem
5.1, f is a minimum cost feasible circulation.

(iv) Definitions Let f be a feasible circulation in G. Define 6(f)

to be the minimum 6
>
= 0 for which f is 6-optimal. Define µ(f) to be

the mean cost of a minimum mean residual cycle wrt f .

(v) If f is an 6-optimal feasible circulation wrt a node price vector π
(i.e., f, π together satisfy (5.42)) then on every arc (i, j) in the residual

network G(f, π) = (N ,A(f), cI), the cost coefficient cIij >
= −6. This

follows because if (i, j) is an arc in G(f, π) with a + (−) label, then
it corresponds to: (i, j) in G satisfying fij < kij ((j, i) in G satisfying

fji > fji), and by 6-optimality of f wrt π we must have c
I
ij
>
= −6.

(vi) Relationship Between 6(f), µ(f) Let f be a feasible cir-
culation in G. Then 6(f) = max. {0,−µ(f)}.
To prove this, let π be a node price vector in G satisfying (5.42)

with f for 6 = 6(f). Let CC be any residual cycle wrt f , c(CC) its cost,
and l the number of arcs in it. By the definition of 6(f), (5.42) holds
for f, π and 6 = 6(f), and the cost of CC wrt c, c as cost vectors is the

same. So, c(CC)
>
= −l6(f), or c(CC)/l >= −6(f), i.e., the mean cost of

the residual cycle CC is
>
= −6(f). Since this holds for all residual cycles

wrt f , we have µ(f)
>
= −6(f), or 6(f) >= −µ(f).

If µ(f)
>
= 0, by Theorem 5.1 f is a minimum cost circulation, hence

6(f) = 0 = max. {0, −µ(f)} in this case.
Now assume µ(f) < 0. Every residual cycle in G wrt f corresponds

to a simple circuit in G(f) with the same cost, and vice versa, and µ(f)
is the minimum circuit mean in G(f) = (N ,A(f), cI). Let δ = −µ(f) >
0. Adding δ to the cost of every arc in G(f) has the effect of adding
δ to the mean cost of every circuit in it; hence after this change there
will be no negative cost circuits in G(f). Obtain a directed network H
= (N 1,A1, c1) where N 1 = N ∪ {s}, s being an artificial origin node.

5.8. Strongly Polynomial Algorithm 477

A1 = A(f) ∪ {(s, i) : i ∈ N}. c1, the cost vector on A1 is defined by
making the cost of all arcs of the form (s, i) to be 0, and the cost of
all arcs (i, j) ∈ A(f) to be cIij + δ. So, H is a directed network with no
negative cost circuits, and all nodes in H can be reached from s by a
chain, since (s, i) is an arc in H for all i ∈ N . Find a shortest chain
tree rooted at s in H with c1 as the arc cost vector, and let νi be the
cost of the shortest chain from s to i in H for each i ∈ N . From the
optimality properties for shortest chains, we know that νj−νi <= cIij+δ
for all (i, j) ∈ A(f).
If (i, j) is a + labeled arc in A(f) but there is no arc (j, i) in A(f),

we must have (i, j) ∈ A and fij = fij < kij , and νj−νi <= cIij+δ = cij+δ,
or cij − (νj − νi)

>
= −δ.

If (i, j) is a - labeled arc in A(f) but there is no arc (j, i) inA(f), we
must have (j, i) ∈ A and fji = kji > fji, and νj−νi <= cIij+δ = −cji+δ,
so cji − (νi − νj)

<
= δ.

If (i, j) with a + label, and (j, i) with a - label are both in A(f),
we must have (i, j) ∈ A, fij < fij < kij , and νj − νi

<
= cIij + δ, and

νj − νi
<
= cIji + δ, which together imply −δ <

= cij − (νj − νi)
<
= δ.

Hence on arcs (i, j) ∈ A satisfying cij − (νj− νi) >= δ, we must have

fij = fij ; and on arcs (i, j) ∈ A satisfying cij − (νj − νi)
<
= −δ, we

must have fij = kij. This means that with ν as the node price vector
f satisfies (5.42) for 6 = δ, i.e., f is δ-optimal, or (−µ(f))-optimal. So,
6(f)

<
= −µ(f). We have already proved above that 6(f) >= −µ(f). So,

in this case 6(f) = −µ(f) = max. {0, −µ(f)}.
Hence, in general, 6(f) = max. { 0, −µ(f) }.

(vii) Definition Admissible Network Let (f, π) be a feasible
circulation, node price vector pair, and G(f, π) = (N ,A(f), cI) the
residual network wrt it. The admissible network wrt (f, π) denoted by
GI(f, π) is the subnetwork of G(f, π) consisting of all the arcs (i, j) in
it for which cIij < 0.

(viii) Let (f, π) be an 6-optimal feasible circulation, node price
vector pair in G satisfying (5.42). If the admissible network GI(f, π) is
acyclic, then f is actually (1− 1/n)6-optimal.

478 Ch. 5. Pure Min. Cost Flows

To prove this, let
→
CC be a simple circuit in G(f, π) consisting of l

arcs, say. By (v), the cost coefficients of all the arcs in G(f, π) are
>
= −6.

However, since GI(f, π) is acyclic by hypothesis,
→
CC cannot completely

lie in GI(f, π), and hence at least one arc on
→
CC has cost in G(f,π)

>
= 0.

So the mean cost of
→
CC is

>
= (l− 1)(−6)/l = −6+ (6/n) >= −(1− 1/n)6.

Thus the mean cost of every simple circuit in G(f,π) is
>
= −(1−1/n)6.

Thus, µ(f)
>
= −(1−1/n)6. By (vi), 6(f) <= (1−1/n)6, so f is (1−1/n)6-

optimal.

(ix) Let f be a nonoptimal feasible circulation in G. Canceling a
minimum mean cycle in f leads to a feasible circulation f̃ satisfying
6(f̃)

<
= 6(f).

To prove this, let π be a node price vector wrt which f is 6-optimal

for 6 = 6(f). Let CC be the minimum mean cycle canceled, and
→
CC the

simple circuit in G(f,π) corresponding to it. By (v), the cost coefficient

of arc (i, j) on G(f, π), cIij
>
= −6(f) for all arcs (i, j) on →CC. But →CC is a

minimum mean circuit in G(f, π), whose cost is −6(f) by (vi), which
implies that cIij = −6(f) for all (i, j) on

→
CC. So, every new residual arc

created after the cancellation (such an arc must be the reversal of an

arc on
→
CC) has cost coefficient of 6(f) in G(f̃ , π). So, every arc (i, j) in

G(f̃ , π) has cost coefficient
>
= −6(f) too. Hence the minimum circuit

mean in G(f̃ ,π) is
>
= −6(f). This implies that µ(f̃) >

= −6(f). Hence
6(f̃)

<
= 6(f) by (vi).

(x) Let f be a feasible circulation in G, and f̃ the feasible circulation
obtained after m minimum mean cycle cancellations beginning with f .
Then 6(f̃)

<
= (1− 1/n)6(f).

The proof of this goes as follows. Let π be a node price vector
wrt which f is 6-optimal for 6 = 6(f). The admissible network GI(f, π)
changes with every change in the flow vector. By (v) the cost coefficient

of every arc in G(f, π) is
>
= −6(f). Canceling a cycle with all its arcs

in the admissible network only adds arcs of positive reduced cost to
the residual network and deletes at least one arc from the admissible
network, as established in (ix). Consider two cases.

5.8. Strongly Polynomial Algorithm 479

Case 1 Suppose none of the cycles canceled contains an arc (i, j)
of nonnegative reduced cost. Then each cancellation deletes at least
one arc from the admissible network. So, after m cancellations, the
admissible network has no arcs, which implies that the flow vector at
that time is optimal; hence 6(f̃) = 0, establishing the result in this
case.

Case 2 Suppose some cycle canceled contains an arc of nonnega-
tive reduced cost. Let the first such cycle correspond to the circuit
→
CC in the residual network, and let the flow vector be f1 just be-
fore that cancellation. Using the same arguments as in the proof of

(viii) we verify that the mean cost of
→
CC is

>
= −(1 − 1/n)6(f). Hence

6(f 1)
<
= (1− 1/n)6(f) by (vi). By the argument in (ix) applied repeat-

edly, we have 6(f̃)
<
= 6(f 1), and hence 6(f̃)

<
= (1− 1/n)6(f) in this case

too.

(xi) If the cost vector c = (cij) is an integer vector, let γ = max.
{ |cij| : (i, j) ∈ A }. Then this algorithm terminates after at most
O(nmlog(nγ)) cancellations.
To prove this, let f 0 denote the initial feasible circulation. Taking

π0 = 0 we verify that 6(f 0)
<
= γ. Let f r denote the feasible circulation

obtained in the algorithm after r cancellations. By (iii) we know that
if r is such that 6(f r) < 1/n, then f r is a minimum cost circulation,
and the algorithm can terminate. From (x) we know that

6(f r)
<
= (1− 1/n)u r−1m J6(f 0) <= (1− 1/n)u r−1m Jγ

and from the above argument it is sufficient to make this < 1/n. Hence
the maximum number of cancellations required in the algorithm is r
where r satisfies

(1− 1/n)u r−1m J < 1/nγ i.e., ur − 1
m
J >= −log(nγ)

log(1− 1/n)
>
= n log(nγ)

since log(1 - 1/n)
<
= −1/n for n > 1. Hence it is sufficient to take

r = O(nm log(nγ)). This shows that the algorithm is polynomially
bounded when the cost vector is integral.

480 Ch. 5. Pure Min. Cost Flows

(xii) Definition For given 6 > 0, define an arc (p, q) ∈ A to be
6-fixed iff the flow fpq is the same for all 6-optimal feasible circulations
f = (fij).

(xiii) Let 6 > 0 and (f, π) an 6-optimal feasible circulation, node
price vector pair satisfying (5.42) together. cij = cij − (πj − πi) is
the reduced cost coefficient of (i, j) ∈ A wrt π. If (p, q) ∈ A satisfies

|cpq| >= 2n6, then (p, q) is 6-fixed.
This follows from (ii).

(xiv) From (ix) we know that 6(f) is nonincreasing as the algorithm
progresses. So, at some stage of the algorithm, if an arc (p, q) becomes
fixed, then the flow fpq remains the same in the sequel. Therefore,
when all arcs are fixed, the current circulation must be optimal (since

an optimal circulation is 6-optimal for any 6
>
= 0, and therefore must

agree with the current circulation on all the fixed arcs).

(xv) For arbitrary real valued cost vector c, the algorithm termi-
nates after at most O(nm2log n) cancellations.

To prove this, let a = mn{(1+logn)Q. We divide the cancellations in
the algorithm into groups of a consecutive cancellations each. We will
now show that each group of cancellations fixes the flow on a distinct
arc, i.e., the flow on that arc will not change in subsequent iterations.

Consider a group of cancellations. Let f 0 denote the circulation at
the beginning of the first iteration in this group, and fa the circulation
at the end of the last iteration in this group. Let 60 = 6(f 0), 6a = 6(fa),
and let πa be a node price vector wrt which fa satisfies the 6a-optimality
criterion. Let CC0 be the cycle canceled in the first iteration of the
group. By the result in (x), and the choice of a, we have

6a
<
= 60(1− 1/n)n{(1+log n)Q <=

60
2n

By (vi) the mean cost of CC0 is −60. The mean cost of CC0 remains
the same even when the arc cost coefficients are the reduced cost coef-
ficients cij − (πaj − πai). Since the mean cost of CC0 is - 60, at least one

arc (i, j) on CC0 must have reduced cost cij− (πaj −πai) <= −60 <
= −2n6a,

5.8. Strongly Polynomial Algorithm 481

and by the arguments in (ix), (xiii), (xiv), the flow on this arc will not
change after this group of iterations is completed.

Thus each group of cancellations fixes at least one distinct arc.
Hence the algorithm terminates after at most m groups, or nm2{(1 +
log n)Q cancellations in all. Hence the total number of cancellations
needed in the algorithm is at most O(nm2log n).

Each cancellation involves O(nm) effort to find the cycle to cancel
by Karp’s algorithm discussed earlier, and O(m) for the cancellation
itself, leading to a total effort of O(nm) per iteration. So, the over-
all computational effort in this algorithm is at most O(n2m3log n),
establishing the strong polynomiality of the algorithm.

Based on a more flexible selection of cycles to cancel, versions of
this algorithm in which the effort per iteration is O(log n) instead of
O(nm) have been developed in Goldberg and Tarjan [1989].

There are several other strongly polynomial algorithms developed
for minimum cost flow problems; see Fujishige [1986], Galil and Tardos
[1986], Orlin [1984, 1988], and Tardos [1985]. Some of these algorithms
are based on making modifications to a non-strongly-polynomial algo-
rithm to convert it into a strongly polynomial algorithm. However,
the kind of tricks needed to make an algorithm amenable to a strongly
polynomial proof do not normally work well in practical computation.
Hence the major impact of these algorithms is mathematical and the-
oretical.

The question of whether strongly polynomial algorithms exist for
the general LP remains an open question. Again, it is one of the most
mathematically challenging open questions in LP theory. Outside of
the special class of pure minimum cost flow problems, results on this
question are practically unknown. The class of generalized network
flow problems discussed in Chapter 8 is slightly more general than the
class of pure network flow problems. Even for that class no strongly
polynomial algorithms are known at the moment.

482 Ch. 5. Pure Min. Cost Flows

5.9 Minimum Separable Piecewise Linear

Convex Cost Flow Problems

Interval Slope of cij(fij)
in the interval

fij to x
1
ij c1ij

x1ij to x
2
ij c2ij

...
...

xr−1ij to kij crij

Consider a directed single commodity flow network G = (N ,A, f, k,
s̆, t̆, v) in which the cost of flow on each arc (i, j) ∈ A is a piecewise
linear convex function cij(fij), i.e., the interval fij to kij is divided into
a finite number, say r, of intervals, and in each interval cij(fij) is linear
with slopes given above.
The break points and slopes satisfy the conditions fij < x

1
ij < x

2
ij <

. . . < xr−1ij < kij and c
1
ij < c2ij < . . . < crij; these are the conditions

for the continuous piecewise linear function cij(fij) to be convex. The
problem is to find a feasible flow vector which minimizes

�
(cij(fij) :

over (i, j) ∈ A), given the break points and slopes associated with each
arc.
One way of interpreting the objective function cij(fij) is the fol-

lowing. Each unit of flow on arc (i, j) between fij and x
1
ij flows at a

cost of c1ij per unit. Once the flow amount on arc (i, j) reaches x
1
ij ,

every additional unit flow on it pays a cost of c2ij until the flow amount
reaches the value x2ij. This can be handled by treating this flow as if it
were flowing through another parallel directed arc from i to j on which
the cost coefficient is c2ij per unit flow. And so on. So, for the cost
function given in the above tableau, we replace the original arc (i, j)
with r parallel arcs with data as in Figure 5.20. These r parallel arcs
correspond to the arc (i, j) in the original network. The flow fij in the
original problem corresponds to the sum of the flow amounts on the
parallel arcs corresponding to it in the transformed problem.
Each arc in the original network is transformed separately in the

same way. The linear minimum cost flow problem in the transformed

5.9. Separable PL Convex Cost Flows 483

l , x , c
1 1

ij ij ij

0 , x - x , c
2 1 2

ij ij ij

0 , k - x , c
r-1 r

ij ij ij

.

.

.
ji

Figure 5.20: Data on the arcs is lower bound, capacity, and unit cost
coefficient, in that order.

network is solved by any of the methods discussed earlier. If that
problem is infeasible, or unbounded, the same holds for the original
piecewise-linear minimum cost flow problem. Otherwise, the flow vec-
tor in the original network, corresponding to an optimum solution in
the transformed network, is optimal for the original problem.
Suppose the parallel arcs in the transformed network corresponding

to the arc (i, j) in the original network, are (i, j)1, . . . , (i, j)r in increas-
ing order of the interval of the original flow variable fij corresponding
to them. Then, because of the monotone increasing property of the
slopes, the following property will hold in any optimum flow for the
transformed problem

flow on (i, j)t is 0 unless (i, j)1, . . . , (i, j)t−1 are all saturated (5.45)

It is this property which makes the original piecewise linear cost
minimization problem equivalent to the linear cost minimization prob-
lem in the transformed network.
For any arc (i, j) in the original problem, if cij(fij) is piecewise linear

and continuous, but not convex, then the slopes will not be monotone
increasing. In this case, in a minimum cost flow in the transformed
network (5.45) may not hold. The original problem is equivalent to the
linear minimum cost flow problem in the transformed network, subject
to conditions of the form (5.45) for each arc (i, j) ((5.45) holds au-
tomatically if the original objective function is convex because of the

484 Ch. 5. Pure Min. Cost Flows

monotonicity of the slopes). The constraints (5.45) are not linear con-
straints; finding a minimum cost flow problem subject to them in the
transformed network is not an LP. This can of course be transformed
into an integer programming problem, or solved directly by enumera-
tive methods. Thus the transformation of the original piecewise linear
minimum cost flow problem into the linear minimum cost flow problem
on the transformed network is only valid if the piecewise linear function
is convex.

5.10 Dynamic Network Flow Problems

In all the flow problems discussed so far, we ignored any consideration
of traversal time, and there was at most one flow amount entering each
arc; that’s why flow vectors in those problems are referred to as static
flows. In this section we consider flow models called dynamic flow
models; here the traversal time for each arc in the network is provided
as input, and a separate flow amount can enter each arc at its tail node
at every integer point of time, even while there may be other units of
material that entered this arc earlier still in transit on it. One may
either impose a requirement that all the units of the commodity must
make the trip from the source to the sink within a given amount of
time, or want to determine the maximum amount of the commodity
that can reach the sink from the source in a specified amount of time.
In dynamic flow models, the transit of each unit of flow has to be
completely organized along the time axis. We have to specify when
it would enter each arc along the chain that it travels, whether it will
be temporarily held over or stored at certain nodes for one or more
time periods before it can resume its journey across the next arc, and
so forth. Thus, time delays are associated with both arcs (because
of transit time across the arc) and nodes (because of any holdover or
storage) in this model.
Static problems are those in which a single optimum solution is

desired. In dynamic problems we need the optimum solution for each
point of time over a time horizon.
Dynamic flow problems occur in many areas. Examples are com-

munication systems and traffic and railway systems. In these systems,

5.10. Dynamic Flows 485

the networks used are called store and forward networks. Other areas
in which these problems arise are production systems, material han-
dling systems, military logistics systems etc. In modern automatic pro-
duction systems, material flows from one process to the next through
conveyor belts or is transshipped automatically by robots. In these
systems there may be buffer zones where material may be held over
or stored before it is transshipped to the next process, and different
processes may have different cycle times. To analyze the flow of ma-
terial through such a dynamic system one discretizes time by dividing
the time horizon into equal intervals called time slices; and approxi-
mates the processing time of each process, and the transit time between
processes by integer multiples of the common discrete time unit (the
length of a time slice). The material flow can then be modeled using a
dynamic network flow model.

Let G = (N ,A, 0, k, s̆, t̆) be the network on which the problem is
defined, with |N | = n, |A| = m. Here k = (kij) where kij is the
maximum number of units of the commodity that can enter arc (i, j)
at its tail node i at the beginning of each time period. We are also
given the vector a = (aij : (i, j) ∈ A), where aij is the traversal time
across arc (i, j). We assume k > 0, a

>
= 0 and that they are both integer

vectors. We assume that all the action begins at time point 0, and that
material can enter any arc at its tail only at integer points of time in
amounts limited by the arc’s capacity, and since all transit times are
assumed integer, the material will always finish its travel across an arc
reach the head node of that arc at an integer point of time.

For each i ∈ N , we define aii = 1; this represents the fact that
material stored or held over at a node is available for change of status
(either continue to be stored again, or begin journey across an arc
incident out of that node) at the beginning of the next time period.

For each i ∈ N , kii denotes the maximum amount of material that
can be held over or stored at node i. Let T , a positive integer, denote
the time horizon in the problem. It is the maximum number of time
periods for which the program has to be worked out. The decision
variables in the problem are clearly: for each (i, j) ∈ A and each τ =
0, 1, . . . , T

486 Ch. 5. Pure Min. Cost Flows

f(i, j, τ) = amount of material entering (i, j) at time point τ

f(i, i, τ) = amount of material held over at i from time point τ to τ + 1

The vector (f(i, j, τ)) is known as a dynamic flow on the network
G. Flow units in it travel across G over time, obeying node and arc
capacity constraints and conservation at each node and at each point
of time. The node-arc flow vectors discussed earlier, which do not have
any concept of time, will be referred to as static flows for the sake
of distinction.
The constraints that the dynamic flows have to satisfy for feasibility

appear more complex than those for static flows. However, in actuality,
the T -period dynamic flow on G can be viewed as a static flow on a
time-expanded version G(T) of G. The procedure for constructing
G(T) from G is the following:

1. For each node i in G, there are T +1 nodes denoted by i(τ), τ =

0, 1, . . . , T in G(T), and arcs (i(τ), i(τ +1)), 0
<
= τ

<
= T − 1 with

capacity kii to represent holdover at node i.

2. For each arc (i, j) in G, there are arcs (i(τ), j(τ + aij)), τ =
0, . . . , T − aij with capacity kij in G(T).

Associate the flow variable f(i, j, τ) in the dynamic flow, with the
arc (i(τ), j(τ + aij)), and the flow variable f(i(τ), i(τ + 1), τ) with the
arc (i(τ), i(τ + 1)), in G(T). Treat the nodes s̆(0), . . . , s̆(T) as the
source nodes, and the nodes t̆(0), . . . , t̆(T) as the sink nodes in G(T)
(in fact, since there are hold-over arcs at s̆ and t̆, we could equally well
treat s̆(0) as the only source node, and t̆(T) as the only sink node in
G(T).
With these associations, it can be verified that the constraints for

the feasibility of the dynamic flow vector in G become the usual flow
conservation and capacity constraints for a static node-arc flow vector
in the time expanded network G(T). So, feasible static node-arc flow
vectors in G(T) become feasible dynamic flows in G with a complete
specification of how much material enters each arc or passes through
each node at each point of time, and vice versa.

5.10. Dynamic Flows 487

s t

y

z

2

1

1 1 1

2

Figure 5.21: The network G, with arc traversal time data.

As an example in Figure 5.21 we show a network G consisting of
nodes s, t, y, z with traversal time data entered on the arcs. Other data
such as capacities are not shown. In Figure 5.22 we show G(5), the
5-period time-expanded version of G. In drawing the time-expanded
version in Figure 5.22, we represented time intervals horizontally, and
the nodes of the original network vertically at each time point.

Since an item released from a node at a specific time does not return
to that location at the same or an earlier time, G(T) cannot contain
any circuits, and is therefore acyclic always. The number of nodes in
G(T) is n(T + 1), and the number of arcs is (n +m)T +m −�(aij :
over (i, j) ∈ A). In the time-expanded network there are no parallel
arcs and it is usually sparse, with its density decreasing as T increases.

A dynamic flow problem is said to be stationary if the network
parameters such as capacities, arc traversal times, and so on, are con-
stant over time.

Ford and Fulkerson [1962 of Chapter 1] introduced a remarkably
simple and effective algorithm for the stationary maximum value dy-
namic flow problem, i.e., one in which the objective is to maximize
the amount of material reaching the sink node. It does not require
the construction of the time-expanded network G(T) for solving this

488 Ch. 5. Pure Min. Cost Flows

s(0) s(1) s(5)s(4)s(3)s(2)

y(5)y(4)y(3)y(2)y(1)y(0)

z(0) z(1) z(2) z(3) z(4) z(5)

t(0) t(1) t(2) t(3) t(4) t(5)

Figure 5.22: The time-expanded network G(5).

problem for any T !. They show that a maximum value dynamic flow in
the stationary case can be generated from a static flow f in the smaller
network G that maximizes the linear function w(f, v) = (T + 1)v −�
(aijfij : over (i, j) ∈ A), where v is the value of f in G. Decompose

f into a set of arc-chain flows from s̆ to t̆ in G. Start each chain flow in
this set at time 0 and repeat it after each time period so long as there
is enough time left in the horizon for the flow along the chain to arrive
at the sink. This leads to a maximum value dynamic flow in this case.
We do not discuss the proof of validity of this algorithm here since it
only handles a special problem; the interested reader should consult
Ford and Fulkerson’s book.

In the most general dynamic model, the arc capacities kij and tra-
versal time aij may not be constant over time, but may vary. Surpris-
ingly, the technique of time expansion provides a general way of reduc-
ing the complicated dynamic situation into the familiar static one in
the space-time framework by replicating the physical network over the

5.11. Multicommodity Flows 489

time domain. But we do pay a price for this transformation, as the
size of the time-expanded network blows up linearly with the length
of the time horizon studied. If T is large, even a relatively modest
network G expanded through T periods can lead to an enormous time-
expanded network G(T) which may be computationally very expensive
to deal with. Thus, even though the technique of time-expansion is
conceptually very nice and simple, the blowup in size makes it un-
appealing, particularly when the time horizon is large. Unfortunately,
efficient techniques such as the one mentioned earlier for the stationary
dynamic maximum value flow problem are not known at the moment
for other dynamic network flow problems. But research continues with
the aim of devising efficient techniques for finding at least approximate
solutions.

5.11 Multicommodity Flow Problems

In this section we discuss static multicommodity flow problems, i.e.,
those involving p (

>
= 2) commodities on a directed connected pure

network G = (N ,A, 0, k) with 0 < k <∞. To model these problems,
we should measure quantities of all commodities in common units, for
example, truck loads. The capacities of the arcs are also stated in
the same units. Under this, it is possible to add the flows of different
commodities on an arc to yield the total flow of all commodities put
together on that arc, and we assume that the capacity of the arc applies
to this total flow.
By introducing a supersource and supersink for each commodity

if necessary, as discussed in Chapter 2, it is possible to formulate the
multicommodity flow problem in such a way that each commodity orig-
inates at some specified source, and is required to be transported to
a specified sink node. Let s̆r, t̆r be the source and sink respectively
for the rth commodity, r = 1 to p. In the node-arc flow model flow
conservation must hold at each node for each commodity separately.
We denote the node-arc flow amount of the rth commodity on arc

(i, j) by f rij, and f
r = (f rij : (i, j) ∈ A) is the flow vector of this

commodity, r = 1 to p. Let cr = (crij : (i, j) ∈ A) be the original cost
vector for the rth commodity, where crij is the cost of shipping one unit

490 Ch. 5. Pure Min. Cost Flows

of this commodity across (i, j) ∈ A, r = 1 to p. Let E be the node-arc
incidence matrix of G. Suppose a specified flow value of vr units of the
rth commodity is required to be transported from s̆r to t̆r, r = 1 to p.
This leads to the following multicommodity minimum cost flow
problem.

f 1 f 2 . . . f p

I I . . . I
<
= k

.
E 0 . . . 0 = q1v1
0 E . . . 0 = q2v2
...

...
. . .

...
...

0 0 . . . E = qpvp
f r

>
= 0 for all r

where qr is a column vector of the hypothetical arc (s̆r, t̆r). The con-
straint at the top representing the arc capacities for the sum of the
flows of all the commodities is called the bundle constraint. With-
out the bundle constraint the problem breaks down into several single
commodity flow problems, one for each commodity, and can be solved
efficiently by the algorithms discussed earlier. The bundle constraint
makes the problem difficult, the main difficulty being that of optimally
splitting the capacity of each arc among the various commodities. If
|N | = n, |A| = m, this problem is an LP in pm variables, subject to
m + p(n − 1) constraints. In applications, the networks tend to be
large, n = 1000, m = 10,000 is very common even in small scale appli-
cations. Even if there are only 3 commodities to be considered on such
a network, the problem is an LP in 30,000 variables subject to 12,997
constraints, a large scale LP.
Applications for multicommodity flow models are many; most of

these tend to be large-scale problems. Its wide applicability has made
the multicommodity flow problem a focus of intense research activity
by groups working in large scale LP.
The coefficient matrix in this problem is in general not totally uni-

modular, and hence it may not have an optimum integer solution even
if all the data are integral.

5.11. Multicommodity Flows 491

One of the earliest approaches proposed for solving multicommodity
flow problems based on network methodology is by Ford and Fulker-
son [1958] using an arc-chain formulation of the problem. Inspired by
it, Dantzig and Wolfe [1960] later extended it into the decomposition
principle for general LP. The arc-chain formulation leads to an LP in-
volving only m+p constraints but an enormously large number (grow-
ing exponentially with n) of variables. The remarkable thing about
this approach is that it is able to process this problem without having
the data for all the variables on hand at any point of time. Using the
revised simplex format, the method solves the problem by maintaining
the data corresponding to only m + p variables in the problem at any
time, and in each step it generates the data corresponding to exactly
one additional variable as needed. Hence the approach is called a col-
umn generation approach. The column generation approach is of
fundamental importance in large scale optimization and combinatorial
optimization.

Minimize
p3
r=1

dr3
h=1

grhx
r
h

subject to
p3
r=1

(
3
(xrh : over h s. t. Crh contains eu)) +

yu = ku, u = 1 to m (5.46)
dr3
h=1

xrh = vr, r = 1 to p

all xrh , yu
>
= 0

In the parlance of the decomposition principle of LP, we decompose
along the dotted line in the original problem. This leads to the arc-
chain formulation of the problem. Denote the arcs in A by e1, . . . , em;
and their capacities by k1, . . . , km. For r = 1 to p, let dr be the total
number of distinct simple chains from s̆r to t̆r in G (typically this
is likely to be a very large number); let these chains themselves be
Cr1 , . . . , Crdr . Let xrh be the amount of the rth commodity shipped along
Crh, h = 1 to dr, r = 1 to p; these are the variables in the arc-chain
formulation. Let grh =

�
(cru: over u s.t. eu is on Crh) = cost of the

492 Ch. 5. Pure Min. Cost Flows

chain Crh for the rth commodity. Then the arc-chain formulation of
this minimum cost flow problem is (5.46) given above.
The number of constraints in (5.46) ism+p, and hence basic vectors

for it consist of m+ p variables. To get in initial feasible basic vector,
we introduce the artificial variables ym+1, . . . , ym+p and construct the
following Phase I problem.

Minimize w =
p3
r=1

ym+r

subject to
p3
r=1

(
3
(xrh : over h s. t. Crh contains eu)) +

yu = ku, u = 1 to m (5.47)
dr3
h=1

xrh +ym+r = vr, r = 1 to p

all xrh , yu
>
= 0

y = (y1, . . . , ym+p) is an initial feasible basic vector for (5.47) with
which Phase I is initiated. The original column vector of yt in (5.47)
is the tth column vector of I, the unit matrix of order m+ p, for t = 1
to m + p. The original column vector of the arc-chain flow variable
xrh associated with the simple chain Crh in (5.47) is (a1h, . . . , am+p,h)T ,
where aih = 1 if the arc ei is on Crh, 0 otherwise, for i = 1 to m; and
am+t,h = 1 if t = r, 0 otherwise, for t = 1 to p.
If (σ1, . . . , σm+p) is the Phase I dual basic solution corresponding

to a feasible basic vector for (5.47), the Phase I relative cost coefficient
wrt this basic vector, of yu is −σu, and that of xrh is −σm+r −

�
(σu :

over u s. t. eu is on Crh).
Thus to check whether the present basic vector satisfies the Phase I

termination criterion in the simplex method, we need to check whether
for each r = 1 to p

−σm+r −
3
(σu : over u s. t. eu is on Crh) >= 0 (5.48)

i.e., for all h = 1 to dr, the length of every simple chain from s̆r to t̆r in
G with (−σ1, . . . ,−σm) as the vector of arc lengths, is >

= σm+r. Even

5.11. Multicommodity Flows 493

though dr is very large, this can be carried out efficiently by finding
the shortest chain from s̆r to t̆r. Hence, even though there are a lot of
variables in (5.47), we can check whether any feasible basic vector for
it satisfies the primal simplex termination criterion, or otherwise select
an entering variable to carry out a primal simplex pivot step, using the
following procedure. First check whether −σu < 0 for some u between
1 to m; if so, select yu as the entering variable into the present basic
vector. If −σu >

= 0 for all u = 1 to m, find the shortest chains from s̆r
to t̆r in G with (−σ1, . . . ,−σm) as the vector of arc lengths, for r = 1
to p in some order. Since (−σ1, . . . ,−σm) >= 0 at this stage, Dijkstra’s
algorithm can be used to solve these shortest chain problems. If the
length of the shortest chain from s̆r to t̆r is

>
= σm+r for all r = 1 to

p, then Phase I termination criterion is satisfied by the present basic
vector; terminate Phase I. If the present Phase I objective value w > 0,
the original problem is infeasible. If w = 0, go to Phase II with the
present basic vector. If, for some r, the length of the shortest chain
from s̆r to t̆r, Crh0 say, is < σm+r, associate the variable xh0 with Crh0
and choose xrh0 as the entering variable into the present basic vector
for a Phase I primal simplex pivot step, and continue.

In Phase II the procedure is very similar. Let (γ1, . . . , γm+p) be the
Phase II dual basic solution corresponding to a feasible basic vector
for (5.47). The Phase II relative cost coefficient wrt the present basic
vector, of yu is −γu, for u = 1 to m, and of xrh is grh − γm+r −�(γu :
over u s. t. eu is on Crh). Hence, if −γu < 0 for some u between 1 to
m, select yu as the entering variable into the present basic vector for
a primal simplex pivot step. If −γu >

= 0 for all u = 1 to m; for r = 1
to p compute a shortest chain from s̆r to t̆r in G with (−γ1, . . . ,−γm)
as the vector of arc lengths using Dijkstra’s algorithm. If for some
r, Crh1 is the shortest chain obtained in this process and its length is
< γm+r−grh1 , select the arc-chain flow variable xrh1 associated with it as
the entering variable into the present basic vector for a primal simplex
pivot step. Otherwise, if the length of the shortest chain Crh1 from s̆r
to t̆r obtained in this process is

>
= γm+r − grh1 for all r = 1 to p, then

the Phase II optimality criterion is satisfied and the present BFS is an
optimum solution to the problem.

In each step we need to solve at most p shortest chain problems,

494 Ch. 5. Pure Min. Cost Flows

which takes O(pn2) effort by Dijkstra’s method. Once an entering
variable is selected, if its original column is d, we need to find its
updated column d, by solving the system of equations Bd = d, where
B is the present basis consisting of the original columns of the present
basic variables, for carrying out the primal simplex pivot step. B is of
order (m+p)× (m+p). If m is large (say,

>
= 10, 000) unless techniques

that can take advantage of its special structure (it is a 0-1 matrix, and
is usually very sparse) are used, finding the updated column of the
entering variable itself could be a big computational burden.

There are several other approaches proposed for solving multicom-
modity flow problems. At the moment, the most practically useful
algorithms for these problems seem to be interior point methods for
LP implemented on parallel processing supercomputers taking advan-
tage of the special nature of the coefficient matrix (all entries being 0,
±1) and its sparsity. See Adler, Resende, Veiga and Karmarkar [1989],
and Kapoor and Vaidya [1985, 1988].

5.12 Exercises

5.15 G = (N ,A) is a connected network. If dd1 and dd2 are any two
spanning trees in G, and e1 is a line in dd1 not in dd2, then show that
there exists a line e2 in dd2 not in dd1 such that replacing e1 by e2 in
dd1 leads to another spanning tree.

5.16 Consider the assignment problem, (3.1), of order n. Let x̄ be
the assignment
{(1, a1), . . . , (n, an)} where (a1, . . . , an) is a permutation of (1, . . . , n).
Let G = (N1,N2;A) be the bipartite network whereN1 = {1, . . . , n},N2 =
{1, . . . , n},A = N1×N2. Let (dd, L) be a partition in G corresponding
to the assignment x̄. dd has 2n− 1 arcs of G, and L has n2− 2n+1 =
(n − 1)2 nonbasic arcs. x̄ is a degenerate BFS of (3.1), dd consists of
the arcs (i, ai), i = 1 to n, and n− 1 other arcs corresponding to basic
arcs with zero flow. Given the partition (dd, L), we are interested in
counting the number of possible pivots in this partition which are non-
degenerate, while attempting to enter each of the (n−1)2 nonbasic arcs

5.12. Exercises 495

in L one at a time. In particular, we are interested in determining the
maximum and minimum number of potential nondegenerate pivots.

(i) Of all the alternate partitions representing x̄, prove that the maxi-
mum number of nondegenerate pivots admitted by any such par-
tition is 1

2
n(n− 1). Show that this maximum number is achieved

by the partition (dd, L) only if dd is a path. One such parti-
tion is obtained when dd consists of the arcs {(i, ai) : i = 1 to
n} ∪ {(i, ai+1) : i =1 to n− 1}.

(ii) Of all the alternate partitions representing x̄, prove that the mini-
mum number of nondegenerate pivots admitted by any such par-
tition is (n− 1). Show that this minimum number is achieved by
the partition (dd, L) where dd consists of the arcs {(i, ai) : i = 1
to n} ∪ {(i, a1) : i = 2 to n}.

(Bazaraa and Sherali [1982])

5.17 Determining single commodity equilibrium trade flow.
This problem deals with a simple equilibrium model of interregional
trade in a single commodity. We have the following data: N = number
of regions, ai > 0 is the equilibrium price in the ith region in the
absence of imports and exports, bi > 0 is the elasticity of supply and
demand in the ith region, cij is the cost per unit shipped from region i
to region j. The cij obey triangle inequality, that is, cij ≤ cih + chj for
all i, j, h. The decision variables in the problem are: pi = equilibrium
price in the ith region, yi = net imports into the ith region, xij =
actual exports from region i to region j.

If pi > ai then supply locally exceeds demand in the ith region,
the difference being available for export. yi is not restricted in sign;
negative values of yi are interpreted as exports. The following linear
relation holds.

pi = ai − biyi (5.49)

Interregional trade equilibrium conditions are

496 Ch. 5. Pure Min. Cost Flows

pi + cij
>
= pj, for all i, j (5.50)

(pi + cij − pj)xij = 0, for all i, j (5.51)

If (5.50) does not hold, exports from i to j will increase until the
elasticity effects in markets i and j rise, and prices will adjust so that
additional profit for export no longer exists. If xij > 0, we must have
pi+cij = pj; hence the complementary slackness conditions (5.51) hold.
The yi and xij are linked through the flow conservation equations.

yi −
N3
j=1

xji +
N3
j=1

xij = 0, i = 1 to N. (5.52)

The problem is to develop a procedure for computing the equilib-
rium prices pi and flows xij , given the data. Consider the quadratic
program (QP):

maximize z =
N3
i=1

(aiyi −1
2
biy

2
i −

N3
j=1

cijxij) (5.53)

subject to xij
>
= 0, and (5.52)

The objective function z in (5.53) can be interpreted as a net social
payoff function. Show that the KKT optimality conditions for (5.53)
are the equilibrium conditions (5.49) to (5.52). The dual of the QP
(5.53) is the following problem, and an optimum λ for it is an equilib-
rium price vector p.

minimize
�N
j=1

(ai − λi)
2

2bi
(5.54)

subject to λj− λi
<
= cij, for all i, j

(i) Prove that there exists an equilibrium solution in which the trade
routes of positive flows from a forest.

5.12. Exercises 497

(ii) Using (i) show that there exists an equilibrium solution in which
the set of regions is partitioned into trading coalitions. The mem-
bers of each coalition trade only with each other and the set of
trade routes with positive flows within each coalition forms a
spanning tree for the coalition. Formally, a coalition is a set C of
r nodes and r − 1 trade routes with positive flows among them
having the following properties

(a) Internal equilibrium: (5.49) to (5.52) are satisfied for
all nodes and routes within C, with no flows between the
set C and regions outside of C.

(b) Tree structure: The set of trade routes with positive
flows inside C form a spanning tree for C.

Prove that any coalition satisfying (a) and (b) has an equilibrium
solution in which the following property holds

(c) Alternating arc orientation: A coalitionC with |C| >=
2 satisfying (a) and (b) has an equilibrium solution in which
each node is either an exporter or an importer, i.e., no trans-
shipment occurs.

(iii) Develop a tree growing algorithm for finding an equilibrium solu-
tion, which builds up a set of coalitions that are, at termination,
in equilibrium with each other as well as being in internal equi-
librium.

(Glassey [1978]).

5.18 The Flow Circulation Sharing Problem Consider a region
in which there are p power plants dependent on coal supplies. Over a
horizon of w weeks, let dij = normal amount of coal used by ith plant
in jth week. Suppose there is a prolonged strike at some coal mines
in the region during the horizon. Let: yij = amount of coal assigned
to ith plant in jth week, xij =

�j
t=1 yit = cumulative amount of coal

shipped to plant i through week j, Dij =
�j
t=1 dij = normal demand

from plant i through week j. An equitable distribution scheme for coal
deliveries in this period of shortage should try to

498 Ch. 5. Pure Min. Cost Flows

maximize {minimum { xij
Dij

: i = 1 to p, j = 1 to w}} (5.55)

Let kj = total amount of coal available for distribution in week j for
all the plants, j = 1 to w. Now the problem of finding equitable sharing
of coal among the plants can be posed as that of finding a circulation
in a directed network, to minimize an objective function of the form in
(5.55). For example, the network for such a circulation problem when
p = 2, w = 2 is given in Figure 5.23.

Plant 1

Week 1

Super

node

Plant 2

Week 1

Plant 2

Week 2

Plant 1

Week 2

y
11

y
21

y
12

y
22

x
11

x12

x 22

x21

k
1 k 2

Figure 5.23:

Formulate the general problem in the following form: given a single
commodity directed network G = (N ,A, f, k) and a subset of arcs
A⊂ A with a positive constant Dij for each arc (i, j) ∈ A, among
feasible circulations f = (fij) in G find one that maximizes minimum
{fij/Dij : (i, j) ∈ A}. Develop a network flow algorithm for this
problem (Brown [1983]).

5.12. Exercises 499

5.19 The “More-for-Less” or “More-for-Nothing” Paradoxes
in the Distribution Model Consider the m × n balanced trans-
portation problem (5.56) with supply vector a = (a1, . . . , am) > 0,

demand vector b = (b1, . . . , bn) > 0, and unit cost matrix c = (cij)
>
= 0.

minimize
m3
i=1

n3
j=1

cij xij

subject to
n3
j=1

xij = ai, i = 1 to m (5.56)

m3
i=1

xij = bj, j = 1 to n

xij
>
= 0, for all i, j

As usual, we assume that
�
ai =

�
bj , and denote the optimum

objective value in this problem by g(a, b), as a function of the supply-
demand vectors a, b, while c is fixed. It is sometimes possible to find
vectors aI = (aI1, . . . , a

I
m) ≥ a, bI = (bI1, . . . , bIn) ≥ b satisfying

�
aIi =�

bIj >
�
ai, such that g(a

I, bI) ≤ g(a, b). If g(aI, bI) < g(a, b) we
are able to ship more total goods for less total cost (even though all

cij
>
= 0, and we ship the same amount or more from each source, and

to each destination, than in the original problem (5.56)). Hence this is
known as the more for less paradox. If g(aI, bI) = g(a, b) under the
same conditions, it is called the more for nothing paradox. As an
example, consider the problem with the following data.

cost of shipping ($/unit) supply
to destination j = 1 2 3 4 ai
from source i = 1 1 6 3 5 20

2 7 3 1 6 10
3 9 4 5 4 25

demand bj 11 13 17 14

(a) In this numerical example, verify that the optimum objective value
strictly decreases if a2 and b1 are increased by the same positive
quantity δ up to 9.

500 Ch. 5. Pure Min. Cost Flows

(b) Assuming that a primal optimum BFS for this problem is nonde-
generate, give an explanation for these paradoxes based on mar-
ginal analysis, by deriving the marginal value associated with
such a change from the optimum dual solution.

(c) Show that an optimum solution for (5.56) may not be optimal to
(5.57) even if c > 0

minimize
m3
i=1

n3
j=1

cij xij

subject to
n3
j=1

xij
>
= ai, i = 1 to m (5.57)

m3
i=1

xij
>
= bj, j = 1 to n

xij
>
= 0, for all i, j

(d) Let x̄ = (x̄ij) be a nondegenerate optimal BFS for (5.56), and
(ū, v̄) the corresponding dual optimum solution. If i, j are such
that ūi+ v̄j ≤ 0, both ai and bj can be increased by the same pos-
itive quantity δ while decreasing (if ūi + v̄j < 0) or not changing
(if ūi + v̄j = 0) the optimum objective value. Give δ the max-
imum possible value which keeps the basis associated with the
BFS x̄ primal feasible. Repeat with other pairs i, j satisfying the
same condition. So we are increasing the supplies and demands
maximally to where the “more for less (nothing) paradox” just
stops. Let aI, bI be the resulting supply, demand vectors obtained
at the end of this operation. Prove that every optimum BFS for
the balanced transportation problem (5.56) with aI, bI replacing
a, b, must be degenerate.

(Charnes and Klingman [1971], Szwarc [1971], Charnes, Duffuaa
and Ryan [1980])

5.20 Consider the single commodity flow network G = (N ,A, 0, k, c, s̆, t̆),
with k > 0 and finite. Let the “parametric value problem” refer to the

5.12. Exercises 501

problem of finding a minimum cost flow of value v in G, for each pos-
sible value v. Let v̄ be the maximum flow value in G from s̆ to t̆. For
0
<
= v

<
= v̄, let g(v) be the minimum cost for a flow value of v in G.

Then g(v) is a piecewise linear convex function defined over the inter-

val 0
<
= v

<
= v̄. A breakpoint for g(v) is a v where the slope of g(v)

changes.

Let x, y be real variables. For any convex function p(x) : IR1 →
IR1 ∪ {∞} the conjugate of p(x) is defined to be

p∗(y) = minimum {p(x)− yx} over x ∈ IR1.
The function p∗(y) is called the conjugate of p(x). It can be shown

that p∗(y) is a well-defined convex function and that p∗∗ = p. Also, if
p(x) is piecewise linear and {x : p(x) < ∞} is bounded, then p∗(y)
is also piecewise linear and the number of breakpoints of p∗(y) is one
less than the number of breakpoints of p(x). In fact, each breakpoint
of p∗(y) corresponds to an interval of constant slope for p(x) and vice
versa. See Rockafellar [1970].

Let [X, X̄] be any cut separating s̆ and t̆ in G with s̆ ∈ X, t̆ ∈ X̄.
Introduce one new arc (s̆, t̆) with 0 lower bound, 0 cost, and infinite
capacity and let GI denote the resulting network. Define parametric
cost-coefficients cij(λ) on G

I by the following

cij(λ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

cij − λ if (i, j) ∈ (X, X̄).

cij + λ if (i, j) ∈ (X̄,X).

cij otherwise.

Let parametric cost problem refer to the problem of finding a fea-
sible flow vector f = (fij) of value v̄ in G

I that minimizes
�
(cij(λ)fij :

over (i, j) ∈ AI). Let h(λ) denote the minimum objective value in this
parametric cost problem as a function of the parameter λ.

Prove that h(λ) = −g∗(λ), and therefore that h(λ) is a piecewise-
linear concave function in which the number of breakpoints is one less
than that for g(v) (Carstensen [1983], Zadeh [1973]).

502 Ch. 5. Pure Min. Cost Flows

5.21 Minimum Cost Flow Problems in Series- Parallel Net-
works A two-terminal series-parallel network is a directed network
with exactly one source and one sink, which is generated recursively as
follows:

i) a single arc together with its tail and head as the source and sink
nodes is a series parallel network.

ii) If S1 and S2 are series-parallel networks, so is the network obtained
by either of the following operations.

a) parallel composition: identify (i.e., make into a single node)
the source of S1 with the source of S2, and the sink of S1
with the sink of S2.

b) Series composition: identify the sink of S1 with the source of
S2.

Let G = (N ,A, 0, k, c, s̆, t̆) be a directed acyclic single commodity
flow network. Let v̄ denote the maximum value of flow from s̆ to t̆ in
G. Prove that G is a two terminal series-parallel network iff for every
arbitrary nonnegative capacity vector k and arbitrary cost vector c and
0
<
= v

<
= v̄, a minimum cost flow of value v in G can be obtained by the

scheme discussed in Section 5.2 beginning with f = 0 for value 0, and
augmenting flow along a shortest chain from s̆ to t̆ consisting of arcs in
G with positive residual capacity at that stage until the required value
is reached, reverse arcs are never used and flow is never reduced on any
arc (Bein, Brucker and Tamir [1985]).

5.22 Let G = (N ,A) be a connected directed single commodity flow
network with V = (Vi) as the vector of exogenous flow amounts at
the nodes satisfying

�
i∈N Vi = 0. dd is a spanning tree in G with

a node, say 1, selected as the root node. Fix the flow amounts on
all the out-of-tree arcs at 0, and let f̄ denote the resulting basic flow
vector corresponding to dd. For each i ∈ N , i W= 1, let P(i) denote the
immediate predecessor of i in dd and let H(dd, i) be the family of node
i in dd. For each i W= 1, prove that the flow amount in f̄ on the in-tree
arc joining i and P(i) is

�
(αjVj : over j ∈H(dd, i)) where αj = +1 or

5.12. Exercises 503

−1 for all j ∈H(dd, i). Discuss how to determine whether αj = +1 or
−1 for each j in H(dd, i).
5.23 Consider the ordinary uncapacitated transportation problem

minimize
m3
i=1

n3
j=1

cij xij

subject to
n3
j=1

xij = ai, i = 1 to m (5.58)

m3
i=1

xij = bj, j = 1 to n

xij
>
= 0, for all i, j

where all the cost coefficients satisfy L ≤ cij ≤ 2L for some positive
L and ai > 0, bj > 0 for all i, j and

�
ai =

�
bj . Now consider

the following optimization problem, with the same data, in which the
variables are unrestricted in sign.

minimize
m3
i=1

n3
j=1

cij |xij|

subject to
n3
j=1

xij = ai, i = 1 to m (5.59)

m3
i=1

xij = bj , j = 1 to n

(i) Prove that both these problems have the same optimal solutions.

(ii) Prove that if x̄ = (x̄ij) is feasible to (5.59), it is optimal iff
there exists u = (ui), v = (vj) satisfying the following for all
i = 1 to m, j = 1 to n.

|ui + vj| ≤ cij
x̄ij > 0 implies cij − ui − vj = 0 (5.60)

x̄ij < 0 implies cij + ui + vj = 0

504 Ch. 5. Pure Min. Cost Flows

(iii) Consider the following algorithm for solving (5.59). It moves
along a path of basic solutions of (5.59); the solutions are not
necessarily positive. It starts with any basic solution of (5.59)

(which may not be
>
= 0) and generates a sequence of basic solu-

tions using operations (a) and (b) given below, until the termi-
nation criterion is satisfied.

(a) Let β be the set of basic cells associated with the current
solution x̄ of (5.59). Define for (p, q) ∈ β

c∗p,q =

l
cpq, if x̄pq ≥ 0
−cpq, if x̄pq < 0.

Determine u = (ui), v = (vj) to satisfy up + vq = c∗pq for
(p, q) ∈ β, and the additional condition vn = 0, say, to take
care of the redundancy in the constraints in (5.59).

Termination condition: If |ui + vj| ≤ cij for all i, j, then
the present solution x̄ is optimal for (5.59); terminate.

Go to (b) if termination condition is not satisfied.

(b) Select a cell (h, g) such that |uh + vg| > chg as the entering
cell into the basic set β. To determine the dropping basic
cell, find the unique cycle in β ∪ {(h, g)}. Make xhg a small
positive quantity and determine the modified values of xij
for (i, j) on the cycle. Let ∆+ be the set of cells in the cycle
that decrease their absolute value in this operation, and ∆−

the remaining cells in the cycle.

1. Prove that ∆+ W= ∅ if uh + vg > chg, and ∆
− W= ∅ if

uh + vg < −chg. If uh + vg > chg, select the dropping
cell from β to be (p, q) corresponding to the smallest
|x̄ij| among cells in ∆+. If uh + vg < −chg, select the
dropping cell from β to be (p, q) corresponding to the
smallest |x̄ij| among cells in ∆−.

2. Find the basic solution of (5.59) corresponding to the
new basic set, and repeat the whole process with it.

5.12. Exercises 505

Prove that the change in the objective value of the so-
lution for (5.59) in this step is |x̄pq|(chg−uh−vg), if uh+
vg > chg, or |x̄pq|(chg + uh + vg), if uh + vg < −chg.

(iv) Discuss a method for solving (5.58), through (5.59) using this
method.

(Finke and Ahrens [1978])

5.24 The Bottleneck Transportation Problem Bottleneck trans-
portation problems usually arise in shipping perishable commodities
which have to be distributed quickly. Suppose there are m sources and
n destinations. Let ai > 0

minimize (maximum {tij : xij > 0})
subject to

n3
j=1

xij = ai, i = 1 to m (5.61)

m3
i=1

xij = bj , j = 1 to n

0
<
= xij ≤ kij , for all i, j

be the units available at the ith source, and bj > 0 the units required
at the jth destination, satisfying

�
ai =

�
bj . Let kij > 0 be the

capacity of the arc (i, j) joining source i and destination j, and tij ≥ 0
be the time necessary to carry out the shipment on this arc. Then
the balanced capacitated bottleneck transportation problem with this
data is (5.61). Given a feasible solution x̄ = (x̄ij), develop necessary
and sufficient optimality conditions for it to be optimal for (5.61). Also
develop an algorithm for solving (5.61). Apply the algorithm to solve
the problem with data, m = n = 5, kij = 24 for all (i, j), and

506 Ch. 5. Pure Min. Cost Flows

tij in days ai
j = 1 2 3 4 5 ai
i = 1 13 16 3 12 28 15

2 22 28 15 12 20 15
3 21 29 6 18 14 12
4 17 29 3 25 29 32
5 4 14 4 15 2 26

bj 3 39 27 7 24

The transportation paradox which occurs in the linear transporta-
tion problem can also occur in the bottleneck problems. For example,
consider the following version of (5.61) with overshipments allowed at
both the sources and destinations.

minimize (maximum {tij : xij > 0})

subject to
n3
j=1

xij ≥ ai, i = 1 to m (5.62)

m3
i=1

xij ≥ bj , j = 1 to n

0 ≤ xij ≤ kij
Develop conditions for the occurrence of the paradox (i.e., the op-

timum objective value in (5.62) being strictly less than that in (5.61)),
and give an explanation for the paradox in terms of dual solutions and
marginal analysis.
Show that the paradox occurs in the numerical problem with the

data given above (the optimum objective value strictly decreases as a1
and b1 are both increased by the same positive quantity, keeping all
other data unchanged).
Let BT(OS) denote the bottleneck time (optimum objective value

in (5.62)) as a function of overshipment amount
�
i

�
j xij −

�
i ai. De-

velop an algorithm to draw the complete curve of BT(OS). Apply this
algorithm on the numerical example discussed above, and draw the
BT(OS) curve for it (Finke [1983]).

5.12. Exercises 507

5.25 Applications in Portfolio Management Consider the prob-
lem of selecting a dynamic portfolio of securities in order to maximize
total return over a fixed planning horizon. This problem can be mod-
eled as a network flow problem in which each arc represents a security
and each node (other than a terminal sink node representing the end of
the planning horizon) signifies the beginning of an investment period.
For example, if the investor has the option of purchasing one-year

bonds that return 4% per annum, two-year bonds at 6% per annum,
or four-year bonds at 5% per annum, the network corresponding to a
four year planning horizon is given in Figure 5.24.

1

2

3

4

5

Figure 5.24:

(i) Show that the network for this model is acyclic. Show that the
problem of finding the best investment policy over an n period
planning horizon can be formulated as that of finding a longest
chain from node 1 to node n+1 in this network. Using this, find
the best investment policy in the example cited above for a 4 year
planning horizon.

(ii) Assume that the accumulated interest is considered as profit and
not reinvested. Consider the problem of maximizing this total
profit over the entire planning horizon, where the original amount
can be reinvested as many times as necessary until the end of the
planning horizon. Also, suppose we are given lower and upper
bounds on the amount to be invested in each possible security
at each time point (these bounds may vary with time for each
security). Formulate this problem as a maximum profit network
flow problem.

508 Ch. 5. Pure Min. Cost Flows

Construct this model for the three bond examples discussed above
over a six year planning horizon. Assume that the money avail-
able to be invested is $100, and that the bounds are as in the
table given below. Find an optimum investment policy in this
numerical example.

First two years Next three years Final year
Security Lower Upper Lower Lower

1-year bonds 15 35 15 40 0-100
2-year bonds 30 60 40 70 x
4-year bonds 20 40 0 25 x

(Golden and Keating [1982])

5.26 Consider the ordinary transportation problem

minimize
m3
i=1

n3
j=1

cij xij

subject to
n3
j=1

xij ≤ ai, i = 1 to m
m3
i=1

xij ≥ bj, j = 1 to n

xij
>
= 0, for all i, j

with the usual assumptions that ai > 0, bj > 0 for all i, j and
�
ai ≥�

bj. Suppose there is the additional condition that each demand cen-
ter j must be entirely supplied from a single source. This requirement
appears in many practical applications. It appears frequently in the
supplying of supermarket orders from a network of central warehouses.
It is commonly required in military applications as troops going in the
same mission usually leave from the same staging area, etc. Discuss
approaches for solving the transportation problem with this additional
condition (Nagelhout and Thompson [1980]).

5.27 Consider a stationary dynamic maximum value flow problem on
the network G = (N ,A, 0, k, s̆, t̆) with a = (aij) as the vector of arc

5.12. Exercises 509

traversal times, over a T -period horizon. Let v1, . . . , vT represent the
flow value reaching the sink in periods 1, . . . , T . Prove that any feasible
flow of value v = v1 + . . . + vT over the horizon which satisfies either
of conditions (a), (b) below, also satisfies the other two.

(a) Maximize
�p

τ=1 vτ for p = 1, . . . , T (i.e., maximize the output for
the first p periods for all p).

(b) Minimize
�T

τ=1 cτvτ , where c1 < c2 < . . . < cτ (i.e., minimize the
weighted sum of flow values in the various time periods, where
the weights are increasing with time).

(c) Minimize p such that vp+τ = 0 for τ = 1, . . . , T − p (i.e., minimize
the number of time periods required to send a flow of v from s̆
to t̆).

(Jarvis and Ratliff [1982]).

5.28 Warehousing Problem In this problem, we are required to
plan the operations of a warehouse over an n-period planning hori-
zon. The warehouse purchases, stores and sells in each period, a single
commodity that is subject to known fluctuations in selling prices and
purchasing costs. The warehouse has a fixed capacity (γ units) and all
new purchases and hold-overs from previous periods are stored there
before selling. In each period any amount can be purchased, stored and
sold at the known specified prices, subject to the warehouse capacity.
We have the additional data and variables listed below.

bi = warehousing cost per unit in period i (this applies to zi defined below)
ci = purchase cost per unit in period i, i = 1 to n
di = selling price per unit in period i, i = 1 to n
so = initial stock in warehouse, given
sn = specified final stock desired in warehouse after selling in period n
xi = amount purchased in period i, i = 1 to n
si = amount held in warehouse after selling in period i, i = 1 to n

(sn is specified in the data given above)
zi = si−1 + xi = amount in warehouse after purchasing (but before selling) in

period i, this has to be
<
= capacity γ for i = 1 to n

yi = amount sold in period i (this is
<
= zi), i = 1 to n

510 Ch. 5. Pure Min. Cost Flows

It is required to determine a purchasing and selling plan which
will maximize the total net profit. Formulate this as a network flow
problem. Prove that the maximum total net profit is a multiple of the
warehouse capacity γ.

5.29 Consider anm-source, n-sink, p-commodity transportation prob-
lem denoted by MCTP(m,n, p): it is to find (xrij : i = 1 to m, j = 1 to
n, r = 1 to p) to

Minimize
3
i

3
j

3
r

crijx
r
ij

subject to
3
j

xrij = ari , for all i, r3
i

xrij = brj , for all j, r (5.63)3
r

xrij +sij = kij, for all i, j

xrij, sij
>
= 0, for all i, j, r

where the data satisfy
�
i a
r
i =

�
j b
r
j , for all r. Prove that the con-

straint coefficient matrix of MCTP(m,n, 2) is totally unimodular if all
capacitated arcs are incident to a common node.
Prove that the necessary and sufficient condition for the constraint

coefficient matrix of a capacitated MCTP(m,n, p) with p
>
= 2, and k

finite, to be unimodular is that either m or n to be
<
= 2.

Show that every MCTP(m, 2, p), or MCTP(2, n, p) can be trans-
formed into a one commodity capacitated transportation problem (Reb-
man [1974]; Evans, Jarvis, and Duke [1977]; Evans [1976]).

Comment 5.2 The minimum cost flow problem is a classical prob-
lem. Historically it is among the first linear programming problems to
be modeled and studied. The problem was posed and a rudimentary
algorithm discussed for it in Kantorovitch [1939]. A computational
method for the transportation model that would now be called “pri-
mal simplex” has been proposed by Hitchcock [1941] where he shows
that an optimum solution will be at an extreme point, and develops

5.12. Exercises 511

methods to iteratively construct better extreme point solutions. Later
Koopmans [1949] developed node potentials and the optimality crite-
rion, and showed that an extreme point is based on a spanning tree.
Dantzig [1951] developed the special variant of the primal simplex al-
gorithm for the transportation problem. He observed the spanning
tree property of the basis, the integrality properties of the optimum
solutions, and the Dantzig property. Orden [1956] showed that these
results extend to the transshipment problem.

The first combinatorial algorithms based on the primal-dual ap-
proach were developed by Ford and Fulkerson [1957]. This work was
motivated by the Hungarian method of Kuhn [1955 of Chapter 3] for
the assignment problem.

The shortest augmenting path (or the build-up) method based on
successive shortest chain computations was developed independently in
Jewell [1958], Iri [1960], and Busacker and Gowan [1961]. Originally, all
these approaches were based on solving the minimum cost flow problem
through a sequence of shortest chain computations on residual networks
which may have arbitrary arc lengths. Later, Tomizawa [1971] pointed
out that the approach can be implemented using node potentials in
such a way that all shortest chain computations are on networks with
nonnegative arc lengths.

Minty [1960] and Fulkerson [1961] independently developed the out-
of-kilter method for minimum cost flow problems. Edmonds and Karp
[1972 of Chapter 2] showed that the out-of-kilter method can be con-
verted into a polynomially bounded algorithm by implementing it using
a special capacity scaling technique developed by them. This technique
applies the out-of-kilter method on a series of problems which provide
successively closer approximations to the original problem. It is the
first polynomial time algorithm for the minimum cost flow problem,
and the first polynomial time algorithm for a significant special class
of linear programs. The practical significance of scaling techniques is
not very clear, but it has great theoretical value.

The original negative cycle canceling algorithm is due to Klein
[1967]. This simple, classical algorithm may not even terminate if the
capacities are irrational. On problems with integer data it is a finite
algorithm, but the number of iterations can grow exponentially with

512 Ch. 5. Pure Min. Cost Flows

the size of the data in the worst case. Recently Goldberg and Tarjan
[1989] have shown that this algorithm can be converted into a strongly
polynomial algorithm by an appropriate choice of the cycle to cancel
in each iteration (a minimum mean residual cycle).

Zadeh [1973a, b] has presented examples of network flow problems
on which the classical methods, the primal simplex algorithm with
Dantzig’s pivot rule, the dual simplex algorithm, the original negative
cycle canceling algorithm, the shortest augmenting path algorithm, and
the out-of-kilter algorithm, all require an amount of effort growing ex-
ponentially with the size of the problem.

The fact that these algorithms displayed exponential growth on
one specially constructed pathological class of problems does not mean
that they won’t work well on network models arising in applications.
Computational experience with these methods has always turned out
to be much better than their bleak performance on these pathological
examples. In the 1950s and 1960s, primal-dual and then the out-of-
kilter were popular methods for solving network models. In those days
data structures for generating efficient implementations of the primal
simplex method for network flow problems were not available. The
first tree label data structures for manipulating trees were suggested
by Scions [1964] and Johnson [1966]. Early implementations based on
them for the primal simplex method for minimum cost flow problems,
by Srinivasan and Thompson [1972]; Glover, Karney and Klingman
[1974]; and Glover, Karney, Klingman, and Napier [1974] performed
much better than implementations of the primal-dual and out-of-kilter
methods available at that time. They not only showed that the pri-
mal implementations are faster, but also that they require less storage
and are most suitable when using secondary storage devices, and are
more compatible as embedded parts of more general optimization sys-
tems. Improved data structures were developed in Glover, Karney,
and Klingman [1972]; Glover, Klingman, and Stutz [1974]; Bradley,
Brown, and Graves [1977]; and Barr, Glover, and Klingman [1979];
and numerous others. With these breakthroughs in coding, the primal
simplex method has replaced the other methods as the computational
workhorse of commercial network software in the 1970s.

The primal simplex method and efficient ways of implementing it

5.12. Exercises 513

to solve minimum cost flow problems have been the subject of very rig-
orous investigations by many groups in the 1970s and 1980s. There is a
gulf of difference between the mathematical statement of an algorithm
and its implementation using appropriate data structures, and methods
for updating them from one step to the next. Empirical computational
tests comparing different algorithms or different implementations of
the same algorithm on representative classes of problems of varying
sizes, sparsity and other characteristics, are an important research ac-
tivity. Substantial reductions in computational effort can typically be
achieved through appropriate implementation of an algorithm. Data
structure design must go hand in hand with pivot selection strategy in
implementing the primal simplex method. Any change in pivot strat-
egy requires a commensurate change in data structures to be effective.
Mulvey [1978] describes the results of an organized experimental de-
sign and a detailed series of empirical tests to compare various pivot
strategies, methods for attaining feasibility (big-M, Phase I, etc.) and a
variety of other features. He found that the internal tactics of the code
are very important. His most successful implementation uses a candi-
date list of nonbasic arcs (about 40) to select the entering arc from,
and re-forms it periodically (every 20 pivots or so) to improve perfor-
mance. Some of the other papers dealing with computational studies
and implementation issues are Aashtiani and Magnanti [1976]; Ali,
Helgason, Kennington, and Lall [1978]; Clausen [1968]; Gibby, Glover,
Klingman, and Mead [1983]; Glover and Klingman [1982]; Grigoriadis
[1986]; Grigoriadis and Hsu [1980]; Hatch [1975]; and Helgason and
Kennington [1977].

The supremacy of the primal simplex method for solving minimum
cost flow problems has continued into the 1980s. Recently, however,
a new class of relaxation algorithms (Section 5.6) were proposed by
Bertsekas and his associates, and investigations reported in Bertsekas
[1985]; Bertsekas, Hosein, and Tseng [1987]; and Bertsekas and Tseng
[1988] indicate that these algorithms exhibit nice empirical behavior,
and are competitive or better than the primal simplex method.

Public domain computer codes for the minimum cost flow problems
are available from Bertsekas and Tseng [1988]; Grigoriadis and Hsu
[1980]; Kennington and Helgason [1980 of Chapter 1]; and Simeone,

514 Ch. 5. Pure Min. Cost Flows

Toth, Gallo, Maffioli, and Pallotino [1988].

Armacost and Mehrotra [1991] compared an implementation of the
network primal simplex method with an implementation of the recently
developed interior point method (the dual affine scaling method) on
sparse minimum cost flow problems. They found that the network
simplex method outperforms the affine scaling method by a substantial
margin on these problems; also its advantage seems to grow with the
number of nodes and the density of the network.

The first strongly polynomial time minimum cost flow algorithm is
due to Tardos [1985]. This method is based on the repeated use of a
concept of approximate optimality. Theoretically, the simplest strongly
polynomial time algorithm for minimum cost flow problems is perhaps
that of Goldberg and Tarjan [1989]. Many other strongly polynomial
time algorithms are now available for minimum cost flow problems,
among them are Fujishige [1986]; Galil and Tardos [1988]; Orlin [1984,
1988]; and Tardos [1986]. The corresponding question in general LP
(is there a strongly polynomial algorithm for it?) still remains an open
question.

Many different approaches for obtaining exact or approximate op-
timum solutions for multicommodity network flow problems have been
suggested over the years. In this chapter we discussed an approach sug-
gested by Ford and Fulkerson [1958] based on column generation for the
problem in arc-chain formulation. This approach subsequently inspired
Dantzig and Wolfe [1960] to develop the decomposition principle for
LP. For other approaches for multicommodity flow problems based on
partitioning or decomposition, see the survey papers of Ali, Helgason,
Kennington and Lall [1980]; Assad [1978]; Geoffrion and Graves [1974];
Grigoriadis and White [1972]; Hartman and Lasdon [1972]; Kenning-
ton [1978]; Kennington and Shalaby [1977]; Kleitman [1971]; Swoveland
[1973]; Tomlin [1966]; and Kennington and Helgason [1980 of Chapter
1]. Since 1984, the highly publicized success of interior point methods
based on barrier functions, or method of centers, or other approaches
of nonlinear programming specialized to LP, has resulted in many re-
searchers shifting their attention to these new methods for solving large
scale LPs and multicommodity flow problems in particular. See Adler,
Resende, Veiga, and Karmarkar [1989], and Kapoor and Vaidya [1985].

5.13. References 515

5.13 References

H. A. AASHTIANI and T. L. MAGNANTI, June 1976, “Implementing Primal-Dual
Network Flow Algorithms,” OR Center report 055-76, MIT, Cambridge, Mass.
I. ADLER, M. G. C. RESENDE, G. VEIGA and N. KARMARKAR, 1989, “An
Implementation of Karmarkar’s Algorithm for Linear Programming,” MP A, 44,
no. 3(297-335).
R. K. AHUJA, J. BATRA, and S. K. GUPTA, May 1984, “A Parametric Algorithm
for Convex Cost Network Flow and Related Problems,” EJOR, 16, no. 2(222-235).
A. ALI, R. HELGASON, J. KENNINGTON, and H. LALL, 1978, “Primal Simplex
Network Codes: State of the Art Implementation Technology,” Networks 8(315-
339).
A. ALI, R. HELGASON, J. KENNINGTON, and H. LALL, 1980, “Computational
Comparison Among Three Multicommodity Network Flow Algorithms,” OR, 28,
no. (995-1000).
A. ARMACOST and S. MEHROTRA, 1991, “A Computational Comparison of the
Network Simplex Method with the Dual Affine Scaling Method,” Opsearch, to ap-
pear.
A. A. ASSAD, 1978, “Multicommodity Network Flows, A Survey,” Networks, 8(37-
91).
F. BARAHONA and E. TARDOS, 1989, “Note on Weintraub’s Minimum Cost
Circulation Algorithm,” SIAM Journal on Computing , 18(579-583).
R. BARR, F. GLOVER, and D. KLINGMAN, Feb. 1979, “Enhancements of Span-
ning Tree Labeling Procedures for Network Optimization,” INFOR 17, no. 1(16-34).
M. S. BAZARAA and H. D. SHERALI, 1982, “A Property Regarding Degenerate
Pivots for Linear Assignment Networks,” Networks, 12, no. 4(469-474).
W. W. BEIN, P. BRUCKER, and A. TAMIR, 1985, “Minimum Cost Flow Algo-
rithms for Series-Parallel Networks,” DAM 10,no. 2(117-124).
D. P. BERTSEKAS, 1985, “A Unified Framework for Primal-Dual Methods in Min-
imum Cost Network Flow Problems,” MP, 32(125-145).
D. P. BERTSEKAS, P. HOSEIN, and P. TSENG, 1987, “Relaxation Methods for
Network Flow Problems With Convex Arc Costs,” SIAM J. on Control and Opti-
mization, 25(1219-1243).
D. P. BERTSEKAS and P. TSENG, Jan.-Feb. 1988, “Relaxation Methods for
Minimum Cost Ordinary and Generalized Network Flow Problems,” OR 36, no.
1(93-114).
R. G. BLAND and D. L. JENSEN, 1985, “On the Computational Behavior of a
Polynomial Time Network Flow Algorithm,” Tech. report 661, SORIE, Cornell
University, Ithaca, N.Y.
G. H. BRADLEY, G. G. BROWN and G. W. GRAVES, 1977, “Design and Imple-
mentation of Large Scale Transshipment Algorithms,” MS, 24(1-34).
J. R. BROWN, 1983, “The Flow Circulation Sharing Problem,” MP, 25, no. 2(199-
227).
R. G. BUSACKER and P. J. GOWAN, 1961, “A Procedure for Determining a Fam-

516 Ch. 5. Pure Min. Cost Flows

ily of Minimum-Cost Network Flow Patterns,” ORO Tech. report 15, John Hopkins
University.
P. J. CARSTENSEN, 1983, “Complexity of Some Parametric Integer and Network
Programming Problems,” MP, 26, no. 1(64-75).
A. CHARNES and D. KLINGMAN, 1971, “The More-for-Less Paradox in the Dis-
tribution Model,” Cahiers de Centre d’Etudes Recherche Operationelle, 13, no. 1(11-
22).
A. CHARNES, S. DUFFUAA, and M. RYAN, 1980, “Degeneracy and the More-for-
Less Paradox,” Journal of Information and Optimization Sciences, 1, no. 1(52-56).
R. J. CLAUSEN, March 1968, “The Numerical Solution of Network Problems Us-
ing the Out-of-Kilter Algorithm,” RAND Corp. memo RM-5456-PR, Santa Monica,
Calif.
W. H. CUNNINGHAM, 1976, “A Network Simplex Method,” MP, 11(105-116).
W. H. CUNNINGHAM, 1979, “Theoretical Properties of the Network Simplex
Method,” MOR, 4(196-208).
W. H. CUNNINGHAM and J. G. KLINCEWICZ, 1983, “On Cycling in the Net-
work Simplex Method,” MP, 26(182-189).
G. B. DANTZIG, 1951, “Application of the Simplex Method to a Transportation
Problem,” in T. C. Koopmans(ed.) Activity Analysis of Production and Allocation,
Wiley, N.Y.
G. B. DANTZIG and P. WOLFE, 1960, “Decomposition Principle for Linear Pro-
grams,” OR, 8(101-111).
J. R. EVANS, 1976, “A Combinatorial Equivalence Between a Class of Multicom-
modity Flow Problems and the Capacitated Transportation Problem,” MP, 10(401-
404).
J. R. EVANS, J. J. JARVIS, and R. A. DUKE, 1977, “Graphic Matroids and the
Multicommodity Transportation Problem,” MP, 13(323-328).
S. EVEN, A. ITAI, and A. SHAMIR, Dec. 1976, “On the Complexity of Timetable
and Multicommodity Flow Problems,” SIAM J. on Computing, 5, no. 4(691-703).
G. FINKE, May 1983, “Minimizing Overshipments in Bottleneck Transportation
Problems,” INFOR, 21, no. 2(121-135).
G. FINKE and J. H. AHRENS, Feb. 1978, “A Variant of the Primal Transportation
Algorithm,” INFOR,16, no. 1(35-46).
C. O. FONG and V. SRINIVASAN, 1977, “Determining All Nondegenerate Shadow
Prices for the Transportation Problem,” TS, 11, no. 3(199-222).
L. R. FORD and D. R. FULKERSON, 1958, “A Suggested Computation for Max-
imal Multicommodity Network Flows,” MS, 5(97-101).
H. FRIESDORF and H. HAMACHER, 1982, “Weighted Minimum Cost Flows,”
EJOR, 11(181-192).
S. FUJISHIGE, 1986, “A Capacity Rounding Algorithm for Minimum Cost Circu-
lation Problem: A Dual Framework of the Tardos Algorithm,” MP, 35(298-308).
D. R. FULKERSON, 1961, “An Out-of-Kilter Method for Minimum Cost Flow
Problems,” SIAM J. on Applied Mathematics, 9(18-27).
Z. GALIL and E. TARDOS, 1988, “An O(n2(m+ n log n) log n) Min. Cost Flow

5.13. References 517

Algorithm,” JACM, 35(374-386).
A. R. GAMBLE, A. R. CONN, and W. R. PULLEYBLANK, 1988, “A Network
Penalty Method,” Tech. report, Dept. of Combinatorics and Optimization, Univer-
sity of Waterloo, Waterloo, Ontario, Canada.
B. J. GASSNER, 1964, “Cycling in the Transportation Problem,” NRLQ, 11(43-
58).
B. GAVISH, P. SCHWEITZER, and E. SHLIFER, 1977, “The Zero Pivot Phe-
nomenon in Transportation Problems and its Computational Implications,” MP,
12(226-240).
A. M. GEOFFRION and G. W. GRAVES, 1974, “Multicommodity Distribution
System Design by Benders Decomposition,” MS, 20(822-844).
D. GIBBY, F. GLOVER, D. KLINGMAN, and M. MEAD, 1983, “A Comparison
of Pivot Selection Rules for Primal Simplex Based Network Codes,” OR Letters,
2(199-202).
C. R. GLASSEY, 1978, “A Quadratic Network Optimization Model for Equilibrium
Single Commodity Trade Flows,” MP, 14(98-107).
S. GLICKSMAN, L. JOHNSON, and L. ESELSON, June 1960, “Coding the Trans-
portation Problem,” NRLQ, 2(169-184).
F. GLOVER, K. KARNEY, D. KLINGMAN, 1972, “The Augmented Predecessor
Index Method for Locating Stepping Stone Paths and Assigning Dual Prices in
Distribution Problems,” TS, 6, no. 1(171-180).
F. GLOVER, D. KARNEY, and D. KLINGMAN, 1974, “Implementation and Com-
putational Comparisons of Primal, Dual and Primal-Dual Computer Codes for Min-
imum Cost Network Flow Problems,” Networks, 4(191-212).
F. GLOVER, D. KARNEY, D. KLINGMAN, and A. NAPIER, 1974, “A Computa-
tional Study on Start Procedures, Basis Change Criteria and Solution Algorithms
for Transportation Problems,” MS, 20, no. 5(793-813).
F. GLOVER and D. KLINGMAN, 1977, “Network Applications in Industry and
Government,” AIIE Transactions, 9, no. 4(363-376).
F. GLOVER and D, KLINGMAN, Nov. 1982, “Recent Developments in Computer
Implementation Technology for Network Flow Algorithms,” INFOR, 20, no. 4(433-
452).
F. GLOVER, D. KLINGMAN, and A. NAPIER, 1972, “An Efficient Dual Ap-
proach to Network Problems,” Opsearch, 9, no. 1(1-18).
F. GLOVER, D. KLINGMAN, and J. STUTZ, 1974, “Augmented Threaded Index
Method for Network Optimization,” INFOR, 12, no. 3(293-298).
A. V. GOLDBERG and R. E. TARJAN, Oct. 1989, “Finding Minimum-Cost Cir-
culations by Canceling Negative Cycles,” JACM, 36, no. 4(873-886).
A. V. GOLDBERG and R. E. TARJAN, Aug. 1990, “Finding Minimum-Cost Cir-
culations by Successive Approximation,” MOR, 15, no. 3(430-466).
B. L. GOLDEN and K. D. KEATING, 1982, “Network Techniques for Solving As-
set Diversification Problems in Finance,” COR, 9, no. 3(173-195).
M. D. GRIGORIADIS, July 1978, “Algorithms for Minimum Cost Single and Multi-
Commodity Network Flow Problems,” Notes for Summer School in Combinatorial

518 Ch. 5. Pure Min. Cost Flows

Optimization, SOGESTA, Urbino, Italy.
M. D. GRIGORIADIS, 1986,“An Efficient Implementation of the Network Simplex
Method,” MPS, 26(83-111),
M. D. GRIGORIADIS and T. HSU, 1979, “The Rutgers Minimum Cost Network
Flow Subroutines,” SIGMAP Bulletin of the ACM, 26(17-18).
M. D. GRIGORIADIS and T. HSU, Nov. 1980, “The Rutgers Minimum Cost Net-
work Flow Subroutines,” RNET Documentation, Dept. of Computer Science, Rut-
gers University, New Brunswick, N.J.
M. D. GRIGORIADIS and W. W. WHITE, 1972, “A Partitioning Algorithm for
the Multicommodity Network Flow Problem,” MP, 3(157-177).
H. W. HAMACHER and S. TUFEKCI, 1987, “On the Use of Lexicographic Min
Cost Flows in Evacuation Modeling,” NRLQ, 34(487-503).
J. K. HARTMAN and L. S. LASDON, 1972, “A Generalized Upper Bounding Al-
gorithm for Multicommodity Network Flow Problems,” Networks, 1(333-354).
R. HASSIN, 1983, “The Minimum Cost Flow Problems, a Unifying Approach to
Dual Algorithms and a New Tree Search Algorithm,” MP, 25(228-239).
R. S. HATCH, 1975, “Bench Marks Comparing Transportation Codes Based on
Primal Simplex and Primal-Dual Algorithms,” OR, 23(1167-1172).
R. V. HELGASON and J. L. KENNINGTON, March 1977, “An Efficient Procedure
for Implementing a Dual Simplex Network Flow Algorithm,” AIIE Transactions,
9(63-68).
F. L. HITCHCOCK, April 1941, “The Distribution of a Product From Several
Sources to Numerous Localities,” Journal of Mathematics and Physics 20, no.
2(224-230).
M. IRI, 1960, “A New Method for Solving Transportation-Network Problems,” J.
OR Society of Japan, 3(27-87).
J. J. JARVIS and H. D. RATLIFF, Jan. 1982, “Some Equivalent Objectives for
Dynamic Network Flow Problems,” MS, 28, no. 1(106-109).
W. S. JEWELL, 1958, “Optimal Flow Through Networks,” Tech. report 8, OR
Center, MIT, Cambridge, Mass.
E. JOHNSON, 1966, “Networks and Basic Solutions,” OR, 14(619-623).
L. V. KANTOROVITCH, 1939, “Mathematical Methods in the Organization and
Planning of Production,” Publication House of the Leningrad University, translated
in MS, 6, 1960(366-422).
S. KAPOOR and P. M. VAIDYA, 1985, “Fast Algorithms for Convex Quadratic
Programming and Multicommodity Flows,” Proc. 18th annual ACM Symp. on
Theory of Computing, (147-159).
S. KAPOOR and P. M. VAIDYA, 1988, “Speeding Up Karmarkar’s Algorithm for
Multicommodity Flows,” Tech. report, Dept. of Computer Science, University of
Illinois at Urbana-Champaign, Il.
R. M. KARP, 1978, “A Characterization of the Minimum Cycle Mean in a Di-
graph,” Discrete Mathematics, 23(309-311).
J. L. KENNINGTON, Mar. -Apr. 1978, “A Survey of Linear Cost Multicommodity
Network Flow,” OR, 26, no. 2(209-236).

5.13. References 519

J. L. KENNINGTON and M. SHALABY, 1977, “An Effective Subgradient Proce-
dure for Minimal Cost Multicommodity Flow Problems,” MS, 23(994-1004).
M. KLEIN, Nov. 1967, “A Primal Method for Minimum Cost Flows With Appli-
cations to Assignment and Transportation Problems,” MS, 14, no. 3(205-220).
D. L. KLEITMAN, 1971, “An Algorithm for Certain Multicommodity Flow Prob-
lems,” Networks, 1(75-90).
T. C. KOOPMANS, 1949, “Optimum Utilization of the Transportation System,”
Proceedings of the International Statistical Conference, Vol. 5.
E. MINIEKA, 1974, “Dynamic Network Flows with Arc Changes,” Networks, 4(255-
265).
G. J. MINTY, 1960, “Monotone Networks,” Proceedings of the Royal Society of
London, 257A(196-212).
J. M. MULVEY, 1978, “Pivot Strategies for Primal Simplex Network Codes,”
JACM, 25(266-270).
J. M. MULVEY, 1978,“Testing of a Large Scale Network Optimization Program,”
MP, 15(291-314).
R. V. NAGELHOUT and G. L. THOMPSON, 1980, “A Single Source Transporta-
tion Algorithm,” COR, 7, no. 3(185-198).
M. NANIWADA, 1969, “Multicommodity Flows in a Communication Network,”
Electronics Commun. , Japan, 52-A(34-41).
A. ORDEN, April 1956, “The Transshipment Problem,” MS, 2, no. 3(276-285).
J. B. ORLIN, 1984, “Genuinely Polynomial Simplex and Non-Simplex Algorithms
for the Minimum Cost Flow Problem,” OR 1615-84, Sloan School of Mgt. MIT,
Cambridge, Mass.
J. B. ORLIN, 1988, “A Faster Strongly Polynomial Minimum Cost Flow Algo-
rithm,” Proc. 20th ACM Symp. Theory of Computing, (377-387).
M. H. PARTOVI, 1984, “A Study of Degeneracy in the Simplex Algorithm for Lin-
ear Programming and Network Flow Problems,” Ph. D. dissertation, IOE Dept.
University of Michigan, Ann Arbor, Mich.
K. R. REBMAN, 1974, “Total Unimodularity and the Transportation Problem: A
Generalization,” Linear Algebra and its Applications, 8(11-24).
H. ROCK, 1980, “Scaling Techniques for Minimal Cost Network Flows,” in U. Page
(ed.) Discrete Structures and Algorithms, Carl Hanser, Munchen,(181-191).
R. T. ROCKAFELLAR, 1970, Convex Analysis, Princeton University Press, Prince-
ton, N.J.
R. SAIGAL, 1967, “Multicommodity Flows in Directed Networks,” ORC 67-38,
University of California, Berkeley, Calif.
S. R. SCHMIDT, P. A. JENSEN, and J. W. BARNES, 1982, “An Advanced Dual
Incremental Network Algorithm,” Networks, 12, no. 4(475-492).
H. I. SCOINS, 1964, “The Compact Representation of a Rooted Tree and the
Transportation Problem,” International Symposium on Mathematical Program-
ming, London.
B. SIMEONE, P. TOTH, G. GALLO, F. MAFFIOLI, and S. PALLOTINO (eds.),
Fortran Codes for Network Optimization, AOR, 13.

520 Ch. 5. Pure Min. Cost Flows

S. SINGH, July 1986, “Improved Methods for Storing and Updating Information
in the Out-of-Kilter Algorithm,” JACM, 33, no. 3(551-567).
V. SRINIVASAN and G. L. THOMPSON, 1972, “Accelerated Algorithms for Label-
ing and Relabeling of Trees With Applications to Distribution Problems,” JACM,
19, no. 4(712-726).
V. SRINIVASAN and G. L. THOMPSON, 1973, “Benefit Cost Analysis of Coding
Techniques for the Primal Transportation Algorithm,” JACM, 20(194-213).
C. SWOVELAND, 1973, “A Two-Stage Decomposition Algorithm for a General-
ized Multicommodity Flow Problem,” INFOR, 11(232-244).
W. SZWARC, 1971, “The Transportation Paradox,” NRLQ, 18(185-202).
E. TARDOS, 1985, “A Strongly Polynomial Minimum Cost Circulation Algorithm,”
Combinatorica, 5(247-256).
N. TOMIZAWA, 1971, “On Some Techniques Useful for Solution of Transportation
Network Problems,” Networks, 1(173-194).
J. A. TOMLIN, 1966, “Minimum Cost Multicommodity Network Flows,” OR,
14(45-51).
R. R. VEMUGANTI and M. BELLMORE, 1973, “On Multicommodity Maximal
Dynamic Flows,” OR, 21, no. 1(10-21).
A. WEINTRAUB, 1974, “A Primal Algorithm to Solve Network Flow Problems
with Convex Costs,” MS, 21(87-97).
W. W. WHITE, 1972, “Dynamic Transshipment Networks: An Algorithm and its
Application to the Distribution of Empty Containers,” Networks, 2(211-236).
N. ZADEH, 1973a, “A Bad Network Flow Problem for the Simplex Method and
Other Minimum Cost Flow Algorithms,” MP, 5(255-266).
N. ZADEH, 1973b, “More Pathological Examples for Network Flow Problems,”
MP, 5(217-224).

Index

For each index entry we provide the
page number where it is defined or
discussed first.

basic arcs 425

Boundary arcs 400
Build-up approach 398, 448
Bundle constraint

C. S. diagram 390

1 Commodity flow models 385
Parametric value 415

Distinguished arc 402
Distribution paradox 499

Dropping arcs 427
Dual network simplex 466
Dynamic flows 484

Entering arc 426

FRP 403

Capacity of 403

Incremantal approach 398, 448
Interior arcs 400

Kilter 400
In 400

Number 400
Out of 400
Status 400

LRC 444

Max. profit flow 388, 421
Min. cost circulation 385
Min. mean cycle 471
Min. ratio 427

Multicommodity flows 489

Node labels 430

Updating of 430
Nodes 386

Intermediate 386
Receiving 386
Shipping 386
Sink 386
Source 386

Transit 386
Transshipment 386

Nonbasic arcs 425

OK algorithm 399
Optimality conditions 389

C. S. 389

Partition 425
Pivot choice rule 426
Pivot stem 431
Pivot step 427

Degenerate 427
Nondegenerate 427

Primal-dual methods 452, 463
Primal feasible 425
Primal infeasible 425
Primal network simplex 424

Cycling resolution in 437

521

522 Ch. 5. Pure Min. Cost Flows

Strongly feasible 440

Rerouting 402
Flow 402
Path 403
Sink 402
Source 402

Residual cycles 391
Canceling of 394

Scaling 420
Sensitivity analysis 419
Shortest augmenting path 448
Stalling 442
Strongly feasible 439
Strongly polynomial method 469

Time expanded network 486
Transshipment problem 386

