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Chapter 6

Single Commodity Flows
with Additional Linear
Constraints

Here we consider the single commodity flow problem (5.3) in the di-
rected connected pure network G = (N ,A, f, k, c, V ) with |N | = n, |A| =
m, in which the flow vector is required to satisfy additional linear con-
straints. Select a node, say n, and fix the root node at it, and eliminate
the flow conservation equation at it as the redundant constraint. After
this our problem is of the form: find f = (fij : (i, j) ∈ A) to

Minimize
3
(cijfij : over (i, j) ∈ A)

Subject to − f(i,N ) + f(N , i) = −Vi, for each i W= n (6.1)3
(i,j)

aijrfij = ( or
<
= ) br, for r = 1 to ρ (6.2)

fij
<
= fij

<
= kij , for all (i, j) ∈ A (6.3)

Because of (6.2) this problem cannot be solved by network methods
alone. To solve it by the bounded variable simplex method, we have to
deal with bases of order n − 1 + ρ which could be very large even if ρ
is small. We discuss an efficient special implementation (belonging to
the area of structured LP ) of the bounded variable primal simplex
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524 Ch. 6. Flows with Additional Constraints

method for this problem due to Chen and Saigal [1977] that exploits the
special structure of this problem. It uses spanning trees in G to handle
the flow conservation constraints (6.1), and maintains the inverse of a
working basis of order ρ (as opposed to that of maintaining the inverse
of bases of order (n− 1 + ρ) in the usual simplex algorithm) to handle
the additional linear constraints (6.2). It is very convenient to solve
this problem as long as ρ is not very large. If ρ is large, it may be
better to solve this problem directly by large scale implementations of
interior point methods mentioned in Section 5.11.
We denote the arcs in A by e1, . . . , em; and by ft, kt, ct, ft, the

lower bound, capacity, unit cost coefficient, and flow amount, respec-
tively, on et for t = 1 to m. ρ0, ρ1 are the numbers of equality, in-
equality constraints in (6.2). Introduce the nonnegative slack variables
fm+1, . . . , fm+ρ1 and convert all the inequality constraints in (6.2) into
equations. For t = 1 to ρ1, let A.t (a column vector of the unit ma-
trix of order ρ) denote the column vector of fm+t in the system (6.2)
after it is transformed into a system of equations. Let H.t be the col-
umn vector of ft in (6.1) for t = 1 to m, and let H.t = 0 ∈ IRn−1 for
t = m + 1 to m + ρ1. Define ft = 0, kt = ∞, ct = 0 for t = m + 1
to m + ρ1. Let f, k, c, f denote the vectors in IRm+ρ1 consisting of
the associated quantities, γ = (−V1, . . . ,−Vn−1)T , b = (b1, . . . , bρ)

T ,
H = (H.1 . . .H.m+ρ1), A = (A.1 . . . A.m+ρ1). Then the problem (6.1), to
(6.3) becomes the following LP

Minimize cf

Subject to Hf = γ (6.4)

Af = b (6.5)

f
<
= f

<
= k (6.6)

By the results in Chapter 1 any basis for just the system of conser-
vation equations (6. 4) corresponds to a spanning tree in G and vice
versa. If {ep1 , . . . , epn−1} are the in-tree arcs in a spanning tree dd of
G arranged in this order, H1 = (H.p1 . . .H.pn−1) is the basis for (6.4)
associated with dd.
For t = m + 1 to m + ρ1, since H.t = 0, (H1)−1H.t = 0. For

1
<
= t

<
= m, let et be an out-of-tree arc wrt dd, and let (λ1t, . . . ,λn−1,t)T
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be the in-tree arc-fundamental cycle incidence vector associated with
it. Then from Chapter 1 we know that (λ1t, . . . ,λn−1,t)T = (H1)−1H.t,
i.e., H.t =

�n−1
u=1 λu,tH.pu. As an example, the in-tree arc-fundamental

cycle incidence vector of the out-of-tree arc e8 wrt the spanning tree
dd with in-tree arcs e1, e2, e3, e4 arranged in this order, in Figure 6.1 is
(1,−1,−1, 1)T . H.t is the column vector of ft among the top 4 rows in
Tableau 6.1. It can be verified that H.8 = H.1 −H.2 −H.3 +H.4.
We will assume that the constraints in (6.4), (6.5) are linearly in-

dependent. Hence if B is a basis for (6.4), (6.5), it has a natural row
partition as in (6.7). Since the submatrix consisting of the first (n− 1)
rows of B is of full row rank, the nonzero columns in it (i.e., those as-
sociated with the flow variables, and not the slack variables discussed
earlier) correspond to arcs in a connected subnetwork which contains a
spanning tree, say dd, of G (in general, there may be several, choose one
and call it dd). Once the choice of dd is made, basic variables associated
with arcs in dd are called key basic variables and the corresponding
columns in B are called key basic columns; the remaining ρ basic
variables are called nonkey basic variables and their columns in
B are called nonkey basic columns. The spanning tree dd itself is
called the key tree in this step. Notice that the choice of key basic
variables in a basic vector for (6.4), (6.5) may not be unique, it depends
on the key tree selected in the subnetwork corresponding to basic flow
variables. All key basic variables are always flow variables, the slack
variables in the additional linear constraints will either be nonkey basic
variables or nonbasic variables in every step. With this, B has been
partitioned as below.

n− 1 key ρ nonkey

basic cols. basic cols.

B =

⎛⎜⎝ H
1

. . .
A1

...

...

H2

. . .
A2

⎞⎟⎠ n− 1 rows from (6.4)

ρ rows from (6.5)
(6.7)

Let the key and nonkey basic variables be (fp1, . . . , fpn−1) and
(fpn, . . . , fpn−1+ρ), arranged in some order. When ordered this way,
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fpr is known as the r-th key basic variable, for r = 1 to n− 1; and
fpg+n−1 is known as the g-th nonkey basic variable, for g = 1 to ρ.
Let λ.u = (λ1,u, . . . ,λn−1,u)T be 0 if fpu+n−1 is a slack variable, or the
in-tree arc-fundamental cycle incidence vector of epu+n−1 wrt dd other-
wise. Then λ = (λ.1 . . .λ.ρ) = (H

1)−1H2 is known as the λ −matrix
corresponding to the present basis B, and the key, nonkey choice. So,
the rth row λr. of λ is associated with the key basic arc epr , and its
gth column λ.g is associated with the nonkey basic variable fpg+n−1 . As
discussed above we have

H.pg+n−1 = λ1,gH.p1 + . . .+ λn−1,gH.pn−1 (6.8)

All entries in the λ- matrix are 0, or ±1, so it can be stored very
compactly (it is only necessary to store the two sets of cells in which
the entries are +1, −1 respectively).
For carrying out the computations in the simplex algorithm in the

step in which B is the present basis, we will make use of the following
square upper triangular matrix M of order (n − 1 + ρ) known as the
transformation matrix. Here, for any t, It is the unit matrix of order
t. Also, verify that BM has the form given below.

M =

⎛⎜⎜⎜⎝
In−1

... −λ
. . . . . .

0
... Iρ

⎞⎟⎟⎟⎠ (6.9)

BM =

⎛⎜⎜⎜⎝
H1 ... 0
. . . . . .

A1
... A2 −A1λ

⎞⎟⎟⎟⎠ (6.10)

The square matrix in the lower right corner of BM , W = A2−A1λ
of order ρ is called the working basis in this step. It depends on the
key, nonkey choice. W must be nonsingular, as otherwise the set of last
ρ columns in (6.10) will be a linearly dependent set, a contradiction
since B and M are both nonsingular. The special implementation of
the bounded variable primal simplex method discussed in this chapter
for solving (6.4) to (6.6), carries out all the computations in the step
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when B is the present basis, using the key tree, and the inverse of the
working basis W ( either the explicit inverse, or the inverse in some
convenient product or factorization form). After each pivot step it
updates the tree labels for the key tree, the λ-matrix, and the inverse
of the working basis, very efficiently.

EXAMPLE 6.1

Tableau 6.1
f1 f2 f3 f4 f5 f6 f7 f8 f9 f10
0 0 0 −1 −1 0 0 −1 −1 0 = −V1
0 0 1 1 0 0 −1 0 0 0 = −V2
−1 0 −1 0 1 1 0 0 0 0 = −V3
0 −1 0 0 0 −1 1 1 0 0 = −V4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 2 3 −1 1 −1 0 2 1 0 = 13
0 1 2 −2 2 0 1 1 2 0 = 7
1 −1 −1 3 −1 1 −1 2 2 1 = 35

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

key nonkey
0 0 0 −1 −1 −1 0
0 0 1 1 0 0 0
−1 0 −1 0 1 0 0
0 −1 0 0 0 1 0
1 2 3 −1 1 2 0
0 1 2 −2 2 1 0
1 −1 −1 3 −1 2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎝ H
1 H2

A1 A2

⎞⎟⎠

We will illustrate the derivation of the working basis in this exam-
ple. Only data relevant to this illustration are given in this example.
Consider the network in Figure 6.1, with arcs numbered e1 to e9. fr
denotes the flow amount on arc er for r = 1 to 9. Node 5 is the root
node. There are 3 additional linear constraints on the variables in this
problem, two equations; and one inequality, the slack variable associ-
ated with which is called f10. The conservation equation corresponding
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to the root node 5 is omitted as a redundant constraint, the remaining
conservation equations, and the additional linear constraints are given
in Tableau 6.1.

1

2 3

4

5

e 1

e2

e3

e4 e5
e

6e
7

e8

e9

Figure 6.1:

Let (f1, f2, f3, f4, f5, f8, f10) be the basic vector under consideration
for this system. Choose (f1, f2, f3, f4) as the key basic variables, and
(f5, f8, f10) as the nonkey basic variables in that order. The associated
basis B, partitioned as in (6.7) is given above.
The subnetwork corresponding to the basic flow variables in this

basic vector consists of the arcs e1, e2, e3, e4, e5, e8. The key tree is
marked with thick arcs in Figure 6.1. In this example we have

λ = (H1)−1H2 =

⎛⎜⎜⎜⎝
0 1 0
0 −1 0
−1 −1 0
1 1 0

⎞⎟⎟⎟⎠

W = A2 − A1λ =
⎛⎜⎝ 5 7 0

6 6 0
−5 −4 1

⎞⎟⎠ , W−1 =
⎛⎜⎝ −1/2 7/12 0

1/2 −5/12 0
−1/2 5/4 1

⎞⎟⎠
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W is the working basis in this example, and its inverse, W−1, is
given above.

To solve (6.4) to (6.6) the bounded variable primal simplex algo-
rithm deals with partitions of the variables in this problem of the form
(B, L, U) where B is the vector of basic variables associated with a
basis B; say, L is the vector of all nonbasic variables whose values are
fixed equal to their lower bound in (6.6) in the current basic solution,
and U is the vector of all nonbasic variables for which the capacity is
finite, and the values of these variables are fixed equal to their capac-
ity. Given the partition (B, L, U), the primal basic solution associated
with it is obtained by fixing the values of all the variables in L, U at the
respective bounds as mentioned above, in (6.4), (6.5); and then solving
the remaining system for the values of the basic variables in B (this
will lead to a system of the form (6.12) given below). The partition is
a feasible partition if the values of all the basic variables in B in the
associated basic solution are within their bounds. The primal simplex
algorithm for (6.4) to (6.6) is initiated with a feasible partition (B, L,
U) which can be generated, if the problem is feasible, by applying the
same algorithm on a Phase I problem set up as discussed later on. In
the algorithm, after each pivot step, the new primal BFS is obtained
by updating the one from the previous step. We will now discuss how
all the computations in a step of this algorithm can be carried out
efficiently using a key tree selected in the basic subnetwork and the
associated working basis inverse.

How to Carry Out All the Computations in a Pivot Step
Using the Key Tree and the Working Basis Inverse

Let B, L, U be the present feasible partition for the problem,
where B is the vector of basic variables associated with the basis B for
(6.4), (6.5). Let dd be the key tree selected in the basic subnetwork as
discussed above, resulting in the partition of the basis B as in (6.7), and
the λ- matrix λ and working basis W . To carry out the computations
in this step, we need to solve systems of equations of the following
forms.
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πB = cB (6.11)

By = d (6.12)

cB is the row vector of the original cost coefficients of the basic vari-
ables, and the solution π of (6.11) is the dual basic solution associated
with the basis B. Once π is obtained, the relative cost coefficient of
the nonbasic variable ft wrt B is

ct = ct − π

⎛⎜⎝ H.t. . .
A.t

⎞⎟⎠
The present feasible partition (B, L, U) and the associated BFS

are optimal if ct
>
= 0 for all t such that ft is in L, and ct

<
= 0 for all t

such that ft is inU. If this optimality criterion is violated, any nonbasic
variable violating it is eligible to be the entering variable in this
step, one of them is selected as the entering variable for a pivot step in
the present partition. Then, we need to compute its updated column
vector, which is the solution y of (6.12), where d is its original column
vector. This updated column vector is the pivot column for the pivot
step. Using the pivot column, and the values of the basic variables in
the current BFS, the minimum ratio test of the bounded variable primal
simplex algorithm is carried out to determine the dropping variable in
this pivot step. If the dropping variable is the same as the entering
variable, it moves from L or U where it is contained in the present
partition, to the other set. In this case these nonbasic sets are revised
appropriately, the primal BFS is updated, and the algorithm moves to
the next step with the same basis. Since there is no change in B in this
case, the key tree, working basis inverse, and the dual basic solution all
remain unchanged. On the other hand, if the dropping variable is not
the same as the entering variable, it will be a basic variable in B, which
should be replaced by the entering variable in this pivot step. In this
case we need to update the key tree, the λ-matrix, and the working
basis inverse, to get the corresponding things for the next partition.
We will now discuss efficient procedures for doing all this work.
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To Solve (6.11)

Let π1 = (π1, . . . , πn−1),π2 = (πn, . . . ,πn−1+ρ). π = (π1, π2) is the
vector of dual variables corresponding to (6.4), (6.5) in that order. Let
M be the transformation matrix discussed in (6.9). Compute cBM =
ν = (ν1, . . . , νn−1+ρ). Let ν1 = (ν1, . . . , νn−1), ν2 = (νn, . . . , νn−1+ρ).
Multiplying both sides of (6.11) by the nonsingular transformation ma-
trix M leads to πBM = cBM = ν. Using (6.10) this reduces to

π1H1 + π2A1 = ν1 (6.13)

π2W = ν2 (6.14)

Hence π2 = ν2W−1, it can be computed directly using ν2 and the
available W−1. Let h = ν1−π2A1. Then from (6.13), π1H1 = h. H1 is
the coefficient matrix of the flow variables on in-tree arcs in dd in the
flow conservation equations (6.4). So, π1 is the vector of node prices of
non-root nodes in dd, determined as in Section 5.4, with h as the vector
of cost coefficients for in-tree arcs in dd, and 0 as the node price for the
root node. So, π1 can be determined by back substitution, beginning
at the root node n, and going down in increasing order of level in the
rooted tree dd as described in Section 5.4.
As an example consider the basis B associated with the key basic

vector (f1, f2, f3, f4) and the nonkey basic vector (f5, f8, f10) discussed
in Example 6.1. Suppose cB = (c1, c2, c3, c4, c5, c8, c10) = (3, −4, 7, 5,
6, −2, 0). In this example, we have ν = cBM = (3, −4, 7, 5, 4, 3, 0)
using the λ derived in Example 6.1. So, ν1 = (3, −4, 7, 5) and ν2 =
(4, 3, 0). Hence π2 = (π5, π6, π7) = (4, 3, 0)W

−1 = (−1/2, 13/12, 0).
So, h = ν1− π2A1 = (7/2, −49/12, 19/3, 20/3). We show the key tree
with h as the arc cost coefficients in Figure 6.2.
Fixing the price of the root node 5 to 0, the equations to solve to

get π1 = (π1, π2, π3, π4) are:

0− π4 = −49/12
0− π3 = 7/2

π2 − π3 = 19/3
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1

2 3

4

5

e 1

e2

e3

e4

20/3

19/3

7/2

_
49/12

Figure 6.2:

π2 − π1 = 20/3

yielding the solution π1 = (−23/6, 17/6, −7/2, 49/12). So, the solution
for (6.11) in this example is π = (−23/6, 17/6, −7/2, 49/12, −1/2,
13/12, 0).

To Solve (6.12)

Define ξ = (ξ1, . . . , ξn−1+ρ)T as a column vector of new variables,
with ξ1 = (ξ1, . . ., ξn−1)T , ξ2 = (ξn, . . . , ξn−1+ρ)T . Define d1 = (d1, . . .,
dn−1)T , d2 = (dn, . . ., dn−1+ρ)T ; (d1, d2) is a partition of d corresponding
to the partition (ξ1, ξ2) of ξ. We will first solve the system of equations
(BM)ξ = d, i.e.,

H1ξ1 = d1 (6.15)

Wξ2 = d2 − A1ξ1 (6.16)

H1 is the coefficient matrix of the flow variables on the in-tree arcs
in dd in the flow conservation equations (6.4). Hence, the solution ξ1
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for (6.15) is the vector of flows on in-tree arcs in dd to satisfy exogenous
flow amounts of pi = di at non-root nodes i = 1 to n− 1, and −(d1 +
. . . + dn−1) at the root node n. Since H1 is a triangular matrix, the
solution ξ1 of (6.15) can be obtained by back substitution as discussed
in Section 5.4, in (n − 1) steps. In each step we find an in-tree arc
e incident to a non-root terminal node i of the remaining tree at this
stage. Make the flow amount on e equal to +pIi or −pIi depending on
whether i is the tail or head node of e, where pIi is the present updated
exogenous flow amount at node i. If j is the other node on e, update the
exogenous flow amount of j by adding (subtracting) the flow amount
on e to (from) it depending on whether e is directed into (or out of) j.
Now delete e from the tree and go to the next step if any in-tree arcs
remain.

Once the solution ξ1 for (6.15) is obtained, we obtain ξ2 from (6.16)
to be W−1(d2 − A1ξ1), which is computed using the available W−1.
Once ξ1, ξ2 are both determined, we compute the solution y for

(6.12) from y =Mξ.

As an example, consider the basis B associated with the key ba-
sic vector (f1, f2, f3, f4) and the nonkey basic vector (f5, f8, f10) dis-
cussed in Example 6.1. Suppose we need to solve (6.12) with d =
(0,−1, 0, 1, 0, 1,−1)T . Here d1 = (0,−1, 0, 1)T and d2 = (0, 1,−1)T .
We show the key tree with exogenous flow amounts of d1 at the non-
root nodes, and exogenous flow amount of −(d1 + d2 + d3 + d4) = 0 at
root node 5 in Figure 6.3.

Following the procedure discussed above, we first select the non-
root terminal node 1 and make ξ4 = 0, and delete e4. Next, we select
node 2, make ξ3 = 1, delete e3, and revise the exogenous flow amount
at node 3 to −1. Next we select node 3 and make ξ1 = −1, delete e1,
and revise the exogenous flow amount at the root node 5 to −1. Next
we select node 4, and make ξ2 = 1. So, in this example, the solution
for (6.15) is ξ1 = (−1, 1, 1, 0)T
We have d2 − A1ξ1 = (4, 4,−4)T . So, ξ2 = W−1(4, 4,−4)T =

(1/3, 1/3,−1)T .
Hence, the solution for (6.15), (6.16) in this example is ξ = (1,

−1, −1, 0, 1/3, 1/3, −1)T . Therefore, the solution for (6.12) in this
example is y =Mξ = (2/3, −2/3, −1/3, −2/3, 1/3, 1/3, −1)T .
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Figure 6.3:

Updating the Key Tree, λ-Matrix, and the
Working Basis Inverse in a Pivot Step

Let B be the basis associated with the basic vector (fp1, . . . , fpn−1+ρ)
at the beginning of a pivot step, with (fp1 , . . . , fpn−1) as the key basic
vector, the key tree dd, the λ-matrix λ, and the working basis W .
Suppose the key, nonkey partition of B, is the one given in (6.7). Let
fs be the entering variable into this basic vector in this pivot step, with
(H.s, A.s) as its original column vector in (6.4), (6.5). For updating the
key tree, the λ-matrix, and the working basis inverse in this pivot step,
we consider three cases depending on which present basic variable is
the dropping variable.

Case 1 : The Dropping Variable Is a Nonkey Basic Variable

Let the dropping variable be the gth nonkey basic variable, fpg+n−1 .
The entering variable fs replaces fpg+n−1 as the gth nonkey basic vari-
able in this pivot step. By definition, the presentW.g = A.pg+n−1−A1λ.g.
Compute δ = A.s −A1(H1)−1H.s. Let δ =W−1δ.
To update the λ-matrix in this case, replace λ.g by (H

1)−1H.s. To
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update the working basis, replace its gth column by δ. To update the
working basis inverse, put the column δ by the side of the presentW−1,
and perform a pivot step with the gth row as the pivot row and δ as
the pivot column. This pivot step updates W−1 into the new working
basis inverse. Because there is no change in the key basic variables, the
key tree remains unchanged.

As an example, consider the basic vector (f1, f2, f3, f4, f5, f8, f10)
with (f1, f2, f3, f4) as the key part, for the problem discussed in Ex-
ample 6.1. Suppose f7 is the entering variable into this basic vector,
replacing the second nonkey basic variable, f8, from it. The column
vector δ defined above, is A.7 − A1(H1)−1H.7 = (4, 4,−4)T in this ex-
ample, and δ = W−1δ = (1/3, 1/3, - 1)T . The new working basis is
obtained by replacing W.2 in the present W by δ. So, it is

New working basis =

⎛⎜⎝ 5 4 0
6 4 0
−5 −4 1

⎞⎟⎠
For updating the working basis inverse, the pivot column δ is en-

tered on the right-hand side following the present working basis inverse
in the tableau given below. The pivot row is row 2, and the pivot el-
ement is in a box. So, the new working basis inverse is the matrix on
the left-hand side bottom of the tableau given below. To update λ,
replace λ.2 from the present λ by (H1)−1h.7 = (1,−1,−1, 0)T .

Working basis Pivot col.
inverse δ

−1/2 7/12 0 1/3

1/2 −5/12 0 1/3

−1/2 5/4 1 −1
−1 1 0 0
3/2 −5/4 0 1
1 0 1 0

The new λ-matrix is
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⎛⎜⎜⎜⎝
0 1 0
0 −1 0
−1 −1 0
1 0 0

⎞⎟⎟⎟⎠
Case 2 : The Dropping Variable Is an Essential Key Basic
Variable

A key basic variable is said to be essential if none of the present
nonkey basic variables can replace it as a key basic variable in the
present basic vector, inessential otherwise.
Consider the uth key basic variable fpu associated with the in-tree

arc epu in the key tree dd. Let [X, X] be the fundamental cutset cor-
responding to epu in dd. ep−u can be replaced by any of the out-of-tree
arcs in the cutset [X, X] to yield another spanning tree in G. So, epu
is an essential key basic arc (and fpu is an essential key basic variable
) iff none of the present nonkey basic variables fpn , . . . , fpn−1+ρ is the
flow variable on an arc in the cutset [X, X], which happens iff λu. = 0.
Here we consider the case where the dropping variable in this pivot

step is an essential key basic variable, say fpu. So in the present λ-
matrix, λu. = 0. The entering variable fs must therefore be a flow
variable corresponding to an arc in the fundamental cutset of epu. Since
λu. = 0, this change in the basic vector leaves the λ-matrix unchanged.
The working basis remains unchanged and so does its inverse. So the
only updating to be done in this case is to update the tree labels for
replacing the in-tree arc epu by es, which is carried out as described in
Section 5.4.
As an example, consider basic vector (f1, f2, f3, f4, f5, f9, f10) for

the problem given in Example 6.1, with (f1, f2, f3, f4) as the key basic
variables, and (f5, f9, f10) as the nonkey basic variables. The λ-matrix
in this case is ⎛⎜⎜⎜⎝

0 1 0
0 0 0
−1 −1 0
1 1 0

⎞⎟⎟⎟⎠
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The key tree is marked with thick lines in Figure 6.1. Suppose f8
is the entering variable into this basic vector, and the second key basic
variable f2 is the dropping variable. Since λ2. = 0 in this case, f2 is
an essential key basic variable. f8 replaces f2 as the second key basic
variable in this pivot step, but there is no change in λ or W .

Case 3 : The Dropping Variable Is an Inessential Key Basic
Variable

Here we consider the case where the dropping variable is an inessen-
tial key basic variable fpr . So, λr. W= 0. Let [X, X] be the fundamental
cutset of the in-tree arc epr in the key tree dd. In this case the updating
will be done in two stages.

In Stage 1, a nonkey basic variable which is a flow variable for an
arc in the cutset [X, X] is selected to replace fpr as the rth key basic
variable. The gth nonkey basic variable fpg+n−1 is eligible to be selected
for this if λrg W= 0. Suppose the nonkey basic variable fpu+n−1 has been
selected for this. This operation just rearranges the basic vector as
(fp1, . . . , fpr−1 , fpu+n−1, fpr+1, . . . , fpu−2+n , fpr , fpu+n, . . ., fpρ+n−1). In this

order the vector corresponds to the basis B̂ that is obtained from B by
interchanging its rth and (u+n−1)th column vectors. Even though B̂
is just the same as B except for the rearrangement of two of its columns,
since the key basic variables are different, there will be a change in the
key tree, the λ-matrix and the working basis.

In the original basis B, each nonkey column in H2 can be expressed
as a linear combination of the key columns in H1, with the coefficients
coming from the λ-matrix. This relationship is expressed in the first
tableau given below. The left hand part of this tableau is −λT , fol-
lowed on the right by the unit matrix of order ρ. To get the λ-matrix
corresponding to the new key basic vector, we need to perform a pivot
step in this tableau with the column vector under H.Pr as the pivot
column, and the uth row as the pivot row. This leads to the second
tableau at the bottom. The matrix under the columns headed with
H.p1 , . . . , H.pr−1, H.pu+n−1, H.pr+1 , . . . , H.pn−1 , in that order in this sec-

ond tableau is −(λ̂)T where λ̂ is the new λ-matrix. Since all the λij , λ̂ij
are 0, ±1, this pivot step can be carried out very efficiently.
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LetW.g, Ŵ.g denote the gth column of the original and new working

bases respectively, for 1
<
= g

<
= ρ. Using the formulas for λ̂ in terms of

λ, and the definition of the working bases, we get the formula for Ŵ.g

given below.

H.p1 . . . H.pr . . . H.pn−1 H.pn . . . H.pu+n−1 . . . H.pρ+n−1
−λ11 . . . −λr1 . . . −λn−1,1 1 . . . 0 . . . 0 0
...

...
...

...
...

...
...

−λ1u . . . −λru . . . −λn−1,u 0 . . . 1 . . . 0 0
...

...
...

...
...

...
...

−λ1ρ . . . −λrρ . . . −λn−1,ρ 0 . . . 0 . . . 1 0

−λ̂11 . . . 0 . . . −λ̂n−1,1 1 . . . −λ̂r1 . . . 0 0
...

...
...

...
...

...
...

−λ̂1u . . . 1 . . . −λ̂n−1,u 0 . . . −λ̂ru . . . 0 0
...

...
...

...
...

...
...

−λ̂1ρ . . . 0 . . . −λ̂n−1,ρ 0 . . . −λ̂rρ . . . 1 0

Ŵ.g =

⎧⎪⎨⎪⎩
W.g − (λrg/λru)W.u, for g W= u

(−1/λru)W.u, for g = u

From this it can be verified that (Ŵ )−1 = Q−1W−1, where Q−1 is
the elementary matrix of order ρ× ρ that differs from the unit matrix
of order ρ in just its uth row, given below. Notice that the λs in Q−1

are those from the λ-matrix corresponding to the original partition of
the basis as in B. Hence, updating the inverse of the working basis in
this Stage 1 consists of multiplying the present working basis inverse
on the left by Q−1.
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Q−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 0 0 . . . 0
0 1 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 0 0 . . . 0
−λr1 −λr2 . . . −λr,u−1 −λru −λr,u+1 . . . −λrρ
0 0 . . . 0 0 1 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . 1

col. u

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

row u

As an example for this Stage 1, consider the basis for the problem in
Example 6.1 with the key basic vector (f1, f2, f3, f4), and the nonkey
basic vector (f5, f8, f10). Suppose we have to replace the third key
basic variable f3 by a nonkey basic variable. In the above notation, r
= 3 (since f3 is the third key basic variable here), and we verify that
the first two entries in λ3. are nonzero. Either the first or the second
nonkey basic variable can replace f3 as a key basic variable, suppose
we select the first one, f5. Thus, in the above notation u = 1 (since
f5 is the first nonkey basic variable presently). After f5 replaces f3
as the third key basic variable, the new key and nonkey basic vectors
will be (f1, f2, f5, f4), (f3, f8, f10), respectively. The λ-matrix changes
to λ̂ given below. And the matrix Q−1 for this operation is also given
below. The working basis inverse changes to (Ŵ )−1 = Q−1W−1.

λ̂ =

⎛⎜⎜⎜⎝
0 1 0
0 −1 0
−1 1 0
1 0 0

⎞⎟⎟⎟⎠ , Q−1 =
⎛⎜⎝ 1 1 0
0 1 0
0 0 1

⎞⎟⎠ , (Ŵ )−1 =
⎛⎜⎝ 0 1/6 0

1/2 −5/12 0
−1/2 5/4 1

⎞⎟⎠

Since there is a change in the key tree, the tree labels for storing it
are updated too, as discussed in Section 5.4.
Once Stage 1 is completed, the dropping variable fpr is a nonkey

basic variable in the new key, nonkey partition of the basis. Replacing
fpr by the entering variable fs is now accomplished as discussed in Case
1, during Stage 2. This completes the updating process in this Case 3.



540 Ch. 6. Flows with Additional Constraints

Setting Up the Phase I Problem

First, select an initial partition (dd0,L0,U0) in G for the constraints
(6.4), (6.6) as in Section 5.4, ignoring the additional linear constraints
(6.5). Let f 0 be the basic flow vector in G associated with (dd0,L0,U0).
If f0 violates the bounds on some of the in-tree arcs in dd0, define, as
in Section 5.4, the type 1, 2 arcs K1,K2; modify the bounds on them
so that f 0 satisfies the modified bounds, and define the Phase I cost
coefficients c∗t on arcs in A. Check whether f 0 satisfies the additional
linear constraints (6.5). To each constraint in (6.5) violated by f 0, add
or subtract a nonnegative artificial variable as appropriate, so that the
constraint becomes satisfied by giving a suitable nonnegative value to
that artificial variable. This completes the construction of the Phase I
problem. The objective function to be minimized in Phase I is

�m
t=1 c

∗
tft

+ the sum of all the artificial variables introduced. We get an initial
feasible partition for the Phase I problem from (dd0,L0,U0) by includ-
ing all the artificial variables as basic variables together with the flow
variables associated with in-tree arcs in dd0. Hence, the Phase I prob-
lem is a problem of the same form as (6.4) to (6.6) with an initial
feasible partition, so it can be solved by the primal simplex algorithm
beginning with this initial partition, using the special implementation
discussed here. During Phase I, after each pivot step we revise the data
and the setsK1,K2 using the current primal solution, as in Section 5.4.
If Phase I terminates with a feasible partition for the original problem,
we then solve it beginning with this feasible partition, by the special
implementation of the primal simplex algorithm again.
The special implementation of the primal simplex method for (6.4)

to (6.6) discussed here can be used conveniently even if the network G
is large, as long as the number of additional linear constraints, ρ is not
very large. It has proven to be practically efficient for solving problems
of this type.

6.1 Exercises

6.1 Find a minimum cost feasible flow vector in the network in Figure
6.4, satisfying the additional linear constraints
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Figure 6.4: All lower bounds are 0, and capacities are 12. cij entered
on arc (i, j). Vi is entered by the side of node i if it is nonzero.

f12 + f13 + f14 + f35 + 2f45
<
= 50

2f13 + f14 + f34 + 2f35 + f45
<
= 50

by the special implementation of the primal simplex method discussed
in this chapter. Use the spanning tree marked with thick arcs in Figure
6.4 to initiate the algorithm.

6.2 Consider the special case of the problem (6.1) to (6.3), in which
(6.2) contains only one constraint. Under appropriate rank assump-
tions, show that any basis for this problem corresponds to a quasitree
as defined in Chapter 8. Develop an efficient special version of the algo-
rithm discussed in this chapter to solve this problem. (Glover, Karney,
Klingman, and Russell [1978])

Comment 6.1 Many real world network applications lead to min-
imum cost flow problems with additional linear constraints. The net-
works encountered in these applications are usually very large, thus
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making it computationally difficult to solve the whole problem as an
LP directly by the simplex method. Here we discussed a variant of a
structured linear programming technique of Chen and Saigal [1977] de-
veloping a special implementation of the revised simplex method that
fully exploits the predominant network structure in this problem. This
implementation leads to significant gains in computational efficiency
and reduction in memory requirements. It is useful for handling prob-
lems in which the number of additional linear constraints is small (up
to a few hundreds). It is based on the GUB techniques of Dantzig
and Van Slyke [1967]. Other methods for handling additional linear
constraints in network models are discussed by Barr, Farhangian, and
Kennington [1986], and McBride [1985].
If the number of additional linear constraints is itself large, this

implementation may not offer any particular advantage for solving the
problem. In this case one may consider solving the overall problem as
an LP using some of the recently developed interior point methods.
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