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Chapter 7

Critical Path Methods
in Project Networks

Critical path methods (CPM in abbreviation) deal with the applica-
tion of shortest chain and minimum cost flow algorithms to schedule the
jobs in a project along the time axis. Large civil engineering projects
(construction of a skyscraper, a highway, etc.); projects that involve
the manufacture of large items like ships, generators; projects that in-
volve the development, planning, and launching of new products; large
scale research and development projects; etc.; consist of a collection of
many individual jobs or activities with a partial ordering defined
among them, which arises from technological constraints that require
certain jobs to be completed before others can be started (for example,
the job “painting the walls” can only be started after the job “erecting
the walls” is completed). The words job, activity are used synony-
mously in this chapter. We assume that each job in the project can be
started and completed independently of the others within the techno-
logical sequence defined by the partial ordering among the jobs. The
partial ordering among the jobs defines a directed network known as
the project network. The simplest CPM derives the project duration
and a schedule for the various jobs to achieve this duration, given the
project network and the time needed to complete each job. Another
critical path model takes as input the cost of applying more workers
or other resources to shorten the job durations, and determines which
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jobs need to be expedited to achieve a specified project duration at
minimum cost. In this sense, CPM are concerned with obtaining the
trade-off between cost and duration of the project. CPM are most use-
ful in projects such as construction projects, for which there has been
considerable experience, and a data base is available to derive reliable
cost estimates. CPM are among the most commonly used optimiza-
tion techniques. Software based on CPM for project planning, analysis,
scheduling, and control, is one of the biggest money-makers among all
OR software.

If job 2 cannot be started until after job 1 has been completed,
then job 1 is known as a predecessor or ancestor of job 2; and job
2 is known as a successor or descendent of job 1. If job 1 is a
predecessor of job 2, and there is no other job which is a successor of
job 1 and predecessor of job 2, then job 1 is known as an immediate
predecessor of job 2, and job 2 is known as an immediate successor
of job 1. A job may have several immediate predecessors, it can be
started as soon as all its immediate predecessors have been completed.
If a job has two or more immediate predecessors, by definition every
pair of them must be unrelated in the sense that neither of them is a
predecessor of the other.

If 1 is a predecessor of 2, and 2 is a predecessor of 3, then obviously
1 is a predecessor of 3. This property of precedence relationships is
called transitivity. Given the set of immediate predecessors of each
job, it is possible to determine the set of predecessors, or the set of
successors of any job, by recursive procedures using transitivity. The
predecessor relationships are inconsistent if they require that a job has
to be completed before it can be started, so, no job can be a predecessor
of itself.

Because of these properties, the precedence relationships define an
ordering among the jobs in a project called a partial ordering in
mathematics. The planning phase of the project involves the breaking
up of the project into various jobs using practical considerations, iden-
tifying the immediate predecessors of each job based on engineering
and technological considerations, and estimating the time required to
complete each job.

Inconsistencies may appear in the predecessor lists due to human
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error. The predecessor data is said to be inconsistent if it leads to
the conclusion that a job precedes itself, by the transitivity property.
Inconsistency implies the existence of a circuit in the predecessor data,
i.e., a subset of jobs 1, . . ., r, such that j is listed as a predecessor of
j + 1 for j = 1 to r − 1, and r is listed as a predecessor of 1. Such
a circuit represents a logical error and at least one link in this circuit
must be wrong. As it represents a logical error, inconsistency is a
serious problem.

Also, in the process of generating the immediate predecessors for an
activity, an engineer may put down more than necessary and show as
immediate predecessors some jobs that are in reality more distant pre-
decessors. When this happens, the predecessor data is said to contain
redundancy. Redundancy poses no theoretical or logical problems,
but it unnecessarily increases the complexity of the network used to
represent the predecessor relationships. Given the list of immediate
predecessors of each job, one must always check it for any inconsis-
tency, and redundancy, and make appropriate corrections.

As an example, we give below the precedence relationships among
jobs in the project: building a hydroelectric power station. In
this example, we have not gone into very fine detail in breaking up the
project into jobs. In practice, a job like 11 (dam building) will itself be
divided into many individual jobs involved in dam building. The job
duration is the estimated number of months needed to complete the job.
This is followed by a discussion of two different ways of representing
the precedence relationships among the jobs in a project as a directed
network.
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Hydroelectric Power Station Building Project
No. Job Description Immediate Job

Predecessors Duration
1. Ecological survey of dam site 6.2
2. File environmental impact report 1 9.1

and get EPA approval
3. Economic feasibility study 1 7.3
4. Preliminary design and cost 3 4.2

estimation
5. Project approval and commitment 2, 4 10.2

of funds
6. Call quotations for electrical 5 4.3

equipment (turbines, generators, . . .)
7. Select suppliers for electrical 6 3.1

equipment
8. Final design of project 5 6.5
9. Select construction contractors 5 2.7
10. Arrange construction materials supply 8, 9 5.2
11. Dam building 10 24.8
12. Power station building 10 18.4
13. Power lines erection 7, 8 20.3
14. Electrical equipment installation 7, 12 6.8
15. Build up reservoir water level 11 2.1
16. Commission the generators 14, 15 1.2
17. Start supplying power 13, 16 1.1

Activity on Node (AON) Diagram of the Project

As the name implies, each job is represented by a node in this net-
work. Let node i represent job i, i = 1 to n = number of jobs. Include
arc (i, j) in the network iff job i is an immediate predecessor of job j.
The resulting directed network called the Activity on Node (AON)
diagram, is very simple to draw, but not too convenient for project
scheduling, so we will not use it in the sequel. The AON diagram of
the hydroelectric power station building project is given in Figure 7.1.

Arrow Diagram of the Project
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Figure 7.1: AON diagram for the hydroelectric power station building
project.

The Arrow diagram or the Activity on Arc (AOA) diagram
represents jobs by arcs in the network. We refer to the job correspond-
ing to arc (i, j) in this network, as job (i, j) itself. Nodes in the arrow
diagram represent events over time. Node i represents the event
that all jobs corresponding to arcs incident into node i have been com-
pleted, and after this event any job corresponding to an arc incident
out of node i can be started. The arrow diagram is drawn so as to
satisfy the following property.

Property 1 If (i, j), (p, q) are two jobs, job (i, j) is a predecessor
of job (p, q) iff there is a chain from node j to node p in the arrow
diagram.

In order to represent the predecessor relationships through Property
1, it may be necessary to introduce dummy arcs which correspond
to dummy jobs. The need for dummy jobs is explained with illustra-
tive examples later on. In drawing the arrow diagram, the following
Property 2 must also be satisfied.

Property 2 If (i, j), (p, q) are two jobs, job (i, j) is an immediate
predecessor of job (p, q) iff either j = p, or there exists a chain from
node j to node p in the arrow diagram consisting of dummy arcs only.

In drawing the arrow diagram, we start with an initial node called
the start node representing the event of starting the project, and
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Figure 7.2: Arrow diagram. Dashed arcs represent dummy jobs.

represent each job that has no predecessor, by an arc incident out
of it. In the same way, at the end we represent jobs that have no
successors by arcs incident into a single final node called the finish
node representing the event of the completion of the project.
A dummy job is needed whenever the project contains a subset A1

of two or more jobs which have some, but not all, of their immediate
predecessors in common. In this case we let the arcs corresponding to
common immediate predecessors of jobs in A1 to have the same head
node and then add dummy arcs from that node to the tail node of each
of the arcs corresponding to jobs in A1. As an example consider the
following project, the arrow diagram corresponding to which is given
in Figure 7.2.

Job Immediate predecessors
e1
e2
e3
e4 e1, e2
e5 e3, e2

Suppose there are r (
>
= 2) jobs, say 1, . . . , r, all of which have

the same set A1 of immediate predecessors and the same set A2 of
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Figure 7.3: Representing jobs with identical sets of immediate prede-
cessors and immediate successors. Arc (ih, j) represents job h, for h =
1 to r. The dashed arcs represent dummy jobs.

immediate successors; and there are no other immediate successors for
any of the jobs in A1, or immediate predecessors for any of the jobs in
A2. Then, all jobs in the setA1 can be represented by arcs incident into
a common node, i, say; and all jobs in the set A2 can be represented by
arcs incident out of a common node j, say. Then the jobs 1,. . ., r, can
be represented by r parallel arcs joining nodes i, j. However project
engineers do not usually like to deal with parallel arcs, so we introduce
additional nodes i1, . . . , ir and represent job h by the arc (ih, j), h = 1
to r; and include dummy arcs (i, ih) for each h = 1 to r. See Figure
7.3.

If a job b has a single immediate predecessor a, then b can be repre-
sented by an arc incident out of the head node of the arc representing
a.

If job b has more than one immediate predecessor, let p1, . . . , pr be
the head nodes of all the arcs representing its immediate predecessors.
If no other job has the same set of immediate predecessors, see if it
is possible to represent b by an arc incident out of one of the nodes
p1, . . . , pr with dummy arcs emanating from the other nodes in this set
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into that node. If this is not possible, or if there are other jobs which
have identically the same set of immediate predecessors as b, introduce
a new node q and represent b and each of these jobs by an arc incident
out of q, and include dummy arcs (p1, q), . . . , (pr, q).

If some jobs have identical sets of immediate successors, make the
head node of the arcs representing these jobs the same.

We continue this way, at each stage identifying the common im-
mediate pred- ecessors of two or more jobs, and representing these
immediate predecessors by arcs with the same head node, and letting
dummy arcs issue out of this node if necessary. In introducing dummy
arcs, one should always watch out to see that precedence relationships
not implied by the original data are not introduced, and those in the
original specification are not omitted.

After the arrow diagram is completed this way, one can review and
see whether any of the dummy arcs can be deleted by merging the two
nodes on it into a single node, while still representing the predecessor
relationships correctly. For example, if there is a node with a single
arc incident out of it, or a single arc incident into it, and this arc is
a dummy arc, then the two nodes on that dummy arc can be merged
and that dummy arc eliminated. Other simple rules like these can be
developed and used to remove unnecessary dummy arcs.

In this way it is possible to draw an arrow diagram for a project
using simple heuristic rules. There are usually many different ways of
selecting the nodes and dummy arcs for drawing the arrow diagram to
portray the specified precedence relationships through Properties 1,2.
Any of these that leads to an arrow diagram satisfying Properties 1,2
correctly and completely is suitable for project planning and schedul-
ing computations. For example, a procedure is described in Exercise
7. 2 for converting the AON diagram into an arrow diagram. However,
the resulting arrow diagram has too many nodes and dummy arcs and
hence it is not efficient to use it. One would prefer an arrow diagram
with as few nodes and dummy arcs as possible. But the problem of con-
structing an arrow diagram with the minimum number of dummy arcs
is in general a hard problem (see Krishnamoorthy and Deo [1979], and
Exercise 7.11). In practice, it is not very critical whether the number
of dummy arcs is the smallest that it can be or not. Any arrow
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Figure 7.4: Arrow diagram for hydroelectric power plant building prob-
lem. Numbers by side of job arcs are job durations. Critical path is
marked with thick arcs. If earliest and latest occurrence times for a
node are the same, that value is entered by the side of the node, oth-
erwise they are both entered in this order.

diagram obtained using the simple rules discussed above is quite rea-
sonable and satisfactory.

As an example, the arrow diagram for the hydroelectric power plant
building project discussed above is given in Figure 7.4.

Since dummy arcs have been introduced just to represent the prede-
cessor relationships through Properties 1,2, they correspond to dummy
jobs, and the time and cost required to complete any dummy job are
always taken to be 0.

The transitive character of the precedence relationships, and the
fact no job can precede itself, imply that an arrow diagram cannot
contain any circuits (i.e., it is acyclic). By the results in Chapter 1,
an acyclic numbering of nodes in the arrow diagram is possible, i.e., a
numbering such that if (i, j) is an arc in the network, then i < j. In the
sequel we assume that the nodes in the arrow diagram are numbered
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this way.

Exercises

7.1 Given the predecessor data for a project, develop efficient proce-
dures for checking the data for consistency and for removing redundan-
cies in the specified immediate predecessor lists if the data is consistent.

7.2 Let G be the AON diagram for a project. Replace each node i in
G by an arc of the form (iI, iII). Let GI be the resulting network. In GI

let the arc (iI, iII) represent the same job that node i represented in G.
Also, let all arcs in GI which correspond to arcs in G be dummy arcs.
Show that GI is an arrow diagram for the project.

7.3 Write a practically efficient computer program to derive an arrow
diagram for a project, given the list of immediate predecessors of each
job. Include in your program simple rules to try to keep the number
of nodes and the number of dummy arcs as small as possible.

7.1 Project Scheduling

Let G = (N ,A), with |N | = n, be the arrow diagram for a project with
an acyclic numbering for its nodes, and nodes 1, n as the start, finish
nodes, respectively. Given the job durations, project scheduling deals
with the problem of laying out the jobs along the time axis with the
aim of minimizing the project duration. It is concerned with temporal
considerations such as (1) how early would the event corresponding to
each node materialize, (2) how far can an activity be delayed without

causing a delay in project completion time, etc. For (i, j) ∈ A let tij >= 0
be the time duration required for completing job (i, j) (tij = 0 if (i, j)
is a dummy arc), make tij the length of arc (i, j) in G. The minimum
time needed to complete the project, known as theminimum project
duration, is obviously the length of the longest chain from 1 to n in
G, a longest chain like that is known as a critical path in the arrow
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diagram. There may be alternate critical paths in G. Any arc which
lies on a critical path is called a critical arc, it represents a critical
job or critical activity. Jobs which are not on any critical path are
known as slack jobs in the arrow diagram.

For each i ∈ N let ti denote the length of a longest chain from
start node 1 to node i in G. tn, the length of a critical path in G,
is the minimum time duration required to complete the project. The
quantity ti is the earliest occurrence time of the event associated with
node i assuming that the project has commenced at time 0. For each
arc (i, j) incident out of node i, ti is the earliest point of time at which
job (i, j) can be started after the project has commenced, hence it is
known as the early start time of job (i, j) and denoted by ES(i, j).
For all arcs (i, j) incident out of node i, ES(i, j) is the same, and ti+ tij
is the earliest point of time that job (i, j) can be completed. This time
is known as the early finish time of job (i, j), and denoted by
EF(i, j).

Since G is acyclic, the tis can be computed by applying the algo-
rithm discussed in Section 4.4, with appropriate modifications to find
the longest instead of the shortest chain, on G, this process is called
the forward pass through the arrow diagram. Once the forward pass
has been completed, one schedule that gets the project completed in
minimum time is to start each job at its early start time. If the dura-
tion of any critical job increases by 6 while all the other data remain
unchanged, the project duration also increases by 6. If it is required
to complete the project in less than tn units of time, it is necessary to
reduce the time required to complete at least one job on every critical
path. For this it is helpful if all the critical arcs can be identified. The
forward pass identifies only one critical path, it does not identify all
the critical arcs.

Slack jobs can be delayed to a limited extent without causing any
delay in the whole project. It is interesting to know how late the
starting and completion of a job (i, j) can be delayed without affecting
the project completion time. We define the late start time of job
(i, j) to be the latest time that this job can be started without affecting
the project completion in minimum time and denote it by LS(i, j). The
late finish time of job (i, j), denoted by LF(i, j) is LS(i, j) + tij. To
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compute the late finish times, we begin at the finish node at time point
tn and work backwards, this process is known as the backward pass
through the arrow diagram. An arc (i, j) is a critical arc iff ES(i, j)
= LS(i, j). Hence when both forward and backward passes have been
completed, all the critical and slack arcs in the arrow diagram can be
identified easily. The combined algorithm comprising the forward and
backward passes is described below. In these passes tij are given data.
In the forward pass, node i acquires the forward label (Li, ti) where
ti is the quantity defined above, it is the earliest event time associated
with node i ; and Li is the predecessor of node i on a longest chain from
1 to i. In the forward pass nodes are labeled in serial order from 1 to n.
In the backward pass node i acquires the backward label denoted
by µi; it is the latest event time associated with node i so that the
project completion will still occur in minimum time. In the backward
pass, nodes are labeled in decreasing serial order beginning with node
n.

FORWARD PASS

Step 1 Label the start node, node 1, with the forward label (∅, 0).

General step r , r = 2 to n At this stage, all the nodes 1, . . . , r−
1 would have been forward labeled, let these forward labels be
(Li, ti) on node i = 1 to r − 1. Find

tr = Maximum {ti + tir : i ∈ Br} (7.1)

where Br is the set of tail nodes on arcs incident into node r. Let
Lr be any of the i that attains the maximum in (7.1). Label node
r with the forward label (Lr, tr). If r = n go to the backward
pass, otherwise go to the next step in the forward pass.

BACKWARD PASS

Step 1 Label the finish node, node n, with µn = tn.
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General Step r , r = 2 to n At this stage all the nodes n, n −
1, . . . , n− r+2 would have received backward labels, let these be
µn, . . . , µn−r+2, respectively. Find

µn−r+1 = Minimum {µj − tn−r+1,j : j ∈ An−r+1} (7.2)

where An−r+1 is the set of head nodes on arcs incident out of
n − r + 1. If r = n terminate; otherwise go to the next step in
the backward pass.

Discussion

The fact that ti in the forward label on node i is the length of the
longest chain from node 1 to i follows from the results in Section 4.4.
We will now show that the backward label, µi, on node i is the latest

point of time at which the event associated with node i has to occur if
the project is to be completed in minimum time. This is clearly true
for i = n. Set up an induction hypothesis that this statement is true
for i

>
= n− r+2 for some r between 2 and n. Suppose the minimum in

(7.2) is attained by j = p. So, (n− r+1, p) ∈ A (this implies that p >
=

n− r+ 2), and µn−r+1 defined in (7.2) satisfies µn−r+1+ tn−r+1,p = µp.
Thus, if the event associated with node (n−r+1) does not occur before
µn−r+1, then the event associated with node p cannot occur before µp,
and since p

>
= n− r + 2, by the induction hypothesis this implies that

the project will not be completed in minimum time. Also, from (7.2) it
is clear that if the event associated with node (n−r+1) occurs at time
µn−r+1, then the events associated with nodes i

>
= n− r + 1 can occur

by time µi. All these facts together imply that under the induction
hypothesis, the statement made at the beginning must also be true for
i = n− r + 1. By induction, it is true for all i.
Hence, for any (i, j) ∈ A, LF(i, j) = µj , and so LS(i, j) = µi −

tij . We have already seen that ES(i, j) = ti. The difference LS(i, j) -
ES(i, j) = µj − tij − ti is known as the total slack or the total float
of job (i, j) and denoted by TS(i, j). Also, the following activity floats
can be similarly interpreted.

µj − µi − tij = Safety float of job (i, j)
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tj − ti − tij = free float or free slack of job (i, j)

Job (i, j) is a critical job iff TS(i, j) = 0. Hence, after the forward
and backward passes, all the critical jobs are easily identified. Any
chain from node 1 to n on which all the arcs are critical arcs is a
critical path. In particular, the chain from node 1 to n traced by
the forward pass labels is a critical path. Critical jobs have to start
exactly at their early start times if the project has to be completed in
minimum time. However, slack jobs can be started any time within the
interval between their early and late start times, allowing the scheduler
some freedom in choosing their starting times. One should remember
that if the start time of a slack

The ES, EF, LF, LS, and TS
for Jobs in the Hydroelectric
Dam Building Project

Job ES EF LF LS TS
1 0.0 6.2 6.2 0.0 0.0
2 6.2 15.3 17.7 8.6 2.4
3 6.2 13.5 13.5 6.2 0.0
4 13.5 17.7 17.7 13.5 0.0
5 17.7 27.9 27.9 17.7 0.0
6 27.9 32.2 44.3 40.0 12.1
7 32.2 35.3 47.4 44.3 12.1
8 27.9 34.4 34.4 27.9 0.0
9 27.9 30.6 34.4 31.7 3.8
10 34.4 39.6 39.6 34.4 0.0
11 39.6 64.4 64.4 39.6 0.0
12 39.6 58.0 59.7 41.3 1.6
13 35.3 55.6 67.7 47.4 12.1
14 58.0 64.8 66.5 59.7 1.7
15 64.4 66.5 66.5 64.4 0.0
16 66.5 67.7 67.7 66.5 0.0
17 67.7 68.8 68.8 67.7 0.0

job is delayed beyond its early start time, the start times of all its
successor jobs are delayed too, and this may affect their remaining
total slacks.
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Free slack can be used effectively in project scheduling. For exam-
ple, if a job has positive free slack, and its start is delayed by any

6

7

8

3

4

6

103

109t = 1006

Figure 7.5: An illustration of a job (6, 8) with free slack. Thick arcs
are on critical path.

amount
<
= its free slack, this delay will not affect the start times or

slack of succeeding jobs.
A node i is on a critical path iff ti = µi. Two nodes i, j may both

be on a critical path, and yet the arc joining them (i, j) may not be a
critical arc. An example is given in Figure 7.5. Here, the numbers on
the arcs are the job durations, the numbers by the side of the nodes
are the tis, and critical arcs are thick. Even though both nodes 6, 8 are
on the critical path, job (6, 8) is not a critical job, and its free slack
is 109 − 100 − 4 = 5. Job (6, 8) has positive float even though both
the nodes on it have zero slack. The start time of job (6, 8) can be
anywhere between 100 to 105 time units after project start, this delay
in job (6, 8) has absolutely no effect on the start times or slack of any
of its successors.
Consider the arrow diagram for the hydroelectric dam building

project in Figure 7.4. The critical path identified by the forward la-
bels is marked with thick lines. For each i, if ti = µi we entered their
common value by the side of node i or entered the pair ti, µi in that
order if they are not equal. Minimum project duration is 68.8 months.
The critical path in this example is unique, as all the nodes not on it
satisfy ti > µi. The ES, EF, LF, LS, TS of all the jobs listed under the
project (i.e., not the dummy jobs) are given above. It can be verified
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that job 2 has positive free slack of 2.4 in this example.

7.2 The Project Shortening Cost Curve

Shortening

cost incurred

�

ij

- t ij

�
ij

-

Slope

Crash

duration
Normal

duration

..
�
ij-

Figure 7.6: Cost of shortening job (i, j)

Let G = (N ,A) be the arrow diagram for a project with 1, n as the
start and finish nodes. Suppose it is required to complete a project be-
fore the minimum completion time, tn, computed as discussed above,
to meet a desired project due date. Then, ways have to be found
to shorten the project duration by expediting one or more jobs. In
practice, most job durations can be reduced by devoting additional
resources (such as more workers, machines, overtime, etc.). This oper-
ation of expediting is known as job shortening or crashing, and the
expense incurred on it is known as the job shortening cost. We con-
sider here the problem of determining which subset of jobs to shorten,
and each by how much, in order to complete the project by the given
due date at minimum shortening cost. When a job is shortened, the job
shortening cost is incurred in addition to the normal cost of carrying
out the job. The normal cost is incurred anyway whether the job is
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shortened or not, hence we ignore it here, and try to minimize the total
job shortening cost. We assume that the following data is available for
each job (i, j) in the project.

τ ij = normal time duration for completing job (i, j)
τ ij = the minimum, or crash time duration for completing
job (i, j)
αij = shortening cost in $/unit time

αij
>
= 0 is the cost for reducing the time required for completing

job (i, j) below the normal time τ ij, per unit. See Figure 7.6. For all
dummy jobs (i, j) we always have τ ij = τ ij = 0 and αij = 0.
The time allowed for completing job (i, j), tij, is itself a variable in

this problem, subject to the bounds τ ij
<
= tij

<
= τ ij , and the shortening

cost associated with tij is (τ ij − tij)αij . τ ij = τ ij implies that job (i, j)
cannot be shortened, in this case tij = τ ij = τ ij, and we take αij = 0.
If τ ij > τ ij and αij = 0 we will obviously select tij = τ ij as this is likely
to reduce project duration at no additional cost. So, we assume that if
τ ij > τ ij then αij > 0.
Let ti be the clock time at which the event corresponding to node i

occurs. The ti, tij variables have to satisfy tj−ti >= tij for each (i, j) ∈ A
in this problem. Given the job durations, tijs, the total shortening cost
is
�
((τ ij− tij)αij: over (i, j) ∈ A), and since �(τ ijαij: over (i, j) ∈ A)

is a known constant, minimizing the total shortening cost is equivalent
to maximizing

�
(αijtij: over (i, j) ∈ A). Hence, if λ is the specified

project duration, the problem of meeting this deadline with minimum
shortening cost is equivalent to : find (tij : (i, j) ∈ A), (ti : i ∈ N ) that
solve (7.3) to (7.6).

Q(λ) = Maximum
3
(αijtij : over (i, j) ∈ A)

Subject to tij − (tj − ti) <
= 0, for all (i, j) ∈ A (7.3)

tij
<
= τ ij, for all (i, j) ∈ A (7.4)

−tij <
= −τ ij , for all (i, j) ∈ A (7.5)

tn − t1 <
= λ (7.6)
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The optimum project shortening cost is P (λ) =
�
(τ ijαij : over

(i, j) ∈ A) −Q(λ). Associating the dual variables fij , gij , hij to the
constraints in (7.3), (7.4), (7.5), respectively, and the dual variable v
to the constraint in (7.6), we see that the dual of the above problem is
(7.7). The dual problem (7.7) has the structure of a minimum cost flow
problem. From the complementary slackness optimality conditions for
this primal, dual pair of LPs, it can be seen that if (7.7) has an optimum
solution, then it has an optimum solution in which at least one of the
two variables gij or hij is 0 for each arc (i, j) ∈ A. The constraints in
(7.7) imply that in such an optimum dual solution gij = (αij − fij)+ =
max. {0, αij − fij},

Min. W (λ, v, f, g, h) = λv +
3

(i,j)∈A
(τ ijgij)−

3
(i,j)∈A

(τ ijhij)

Subject to fij + gij − hij = αij , for all (i, j) ∈ A

f(i,N )− f(N , i) =

l
0, for all i W= 1 or n
−v, for i = n (7.7)

f, g, h, v
>
= 0

and hij = (αij − fij)− = | min. {0, αij − fij}|. So, in such a solution
we have W (λ, v, f, g, h) = λv +

�
(ωij(fij) : over (i, j) ∈ A), where

ωij(fij) is a piecewise linear convex function defined below (it is convex

because τ ij
>
= τ ij ). See Figure 7.7.

ωij(fij) =

l
−τ ij(fij − αij) if fij

<
= αij

−τ ij(fij − αij) if fij > αij

By these arguments, the dual (7.7) is equivalent to the minimum
cost flow problem (7. 8) in the network G, with a piecewise linear
convex objective function. We can of course solve the original project
shortening cost problem (7.3) to (7.6) as an LP, but as its dual is a
minimum cost flow problem for which there are very efficient special
algorithms, it turns out to be much more convenient to solve the dual
problem using these algorithms, and then obtain an optimum solution
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of the primal problem by the complementary slackness conditions for
optimality.
If (i, j) ∈ A is such that τ ij = τ ij , then tij = τ ij = τ ij is known

and fixed, in this case ωij(fij) defined above is in fact linear. ωij(fij)
is piecewise linear convex, and not linear, only if τ ij > τ ij. (7.8) can
be transformed into a linear minimum

Minimize λv +
3
(ωij(fij) : over (i, j) ∈ A)

Subject to f(i,N )− f(N , i) =

l
0, for all i W= 1 or n
−v, for i = n (7.8)

f, v
>
= 0

cost flow problem as in Section 5.9. For this we replace each arc (i, j)
on which ωij is not linear, by the pair of arcs (i, j)1, (i, j)2 called Type
1 and Type 2 arcs, with the following data (see Figure 7.8 ):

lower bounds on all the arcs = 0
capacity of (i, j)1 is k(i, j, 1) =∞
capacity of (i, j)2 is k(i, j, 2) = αij
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unit cost coefficient on (i, j)1 = c(i, j, 1) = −τ ij
unit cost coefficient on (i, j)2 = c(i, j, 2) = −τ ij .

If arc (i, j) is such that τ ij = τ ij, it is treated as a Type 1 arc itself,
and no Type 2 arc corresponding to it is introduced (since ωij(fij) is
linear for such arcs). See Figure 7.8.

0, , -�- ij

i j

0, ,-� �

ij ij
-

Type 2

Type 18

Figure 7.8: If τ̄ij > τ ij , arc (i, j) corresponds to the pair of Type 1, 2
arcs with this data (lower bound, capacity, unit cost) in AI. If τ̄ij = τ ij ,
there will be no Type 2 arc.

Let GI = (N ,AI) be the augmented network with the data on arcs
as defined above. Let f(i, j, r) denote the flow amount on the Type
r arc (i, j)r ∈ AI for r = 1, 2, and let f I = (f(i, j, r) : (i, j, r) ∈ AI).
Given a feasible flow vector f I = (f(i, j, r)) in GI, the corresponding
flow vector f = (fij) feasible to (7.8) in the original network G is
obtained from

fij =

⎧⎪⎨⎪⎩
f(i, j, 1) + f(i, j, 2) if both Type 1,2 arcs corresponding to

(i, j) exist in GI

f(i, j, 1) otherwise

(7.8) is equivalent to the problem of minimizing λv+
�
(c(i, j, r)f(i, j, r) :

over (i, j)r ∈ AI, r = 1, 2) in GI. The flow vector f in G corresponding
to an optimum flow vector f I in GI, is an optimum flow vector for (7.8).
Let λ̄,λ be the lengths of the critical paths in G with (τ̄ij), (τ ij) as

the arc length vectors respectively. When λ = λ̄, the optimum tij = τ̄ij
for each (i, j) ∈ A, and the optimum shortening cost is 0. λ is at the
other end, it is the minimum project duration. Since the dual problem
is (7.8) is always feasible, the objective function must be unbounded
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below in it (and the same thing happens in GI) whenever λ < λ, and
vice versa.
We would like to solve the project shortening cost minimization

problem parametrically in λ as it decreases from λ̄ to λ. For this,
we need to solve the minimum cost flow problem of minimizing λv +�
(c(i, j, r)f(i, j, r) : over (i, j)r ∈ AI, r = 1, 2) in GI, treating λ as a

parameter. This problem is in the same form as the parametric max-
imum profit flow problem discussed in Section 5.3, with the exception
that the objective function here is to be minimized instead of being
maximized, so it can be solved by an appropriate modification of that
algorithm. The node price vector π = (πi) in G

I in this algorithm turns
out to be the vector of early occurrence times, (ti), for nodes i in G,
associated with the present λ. If π is the node price vector in GI, the
relative cost coefficients wrt it for Type 1, 2 arcs (i, j)1, (i, j)2 ∈ AI are:

c̄(i, j, 1) = c(i, j, 1) + (πj − πi) = −τ ij + (πj − πi)

c̄(i, j, 2) = c(i, j, 2) + (πj − πi) = −τ ij + (πj − πi)

The signs of these relative cost coefficients are opposite to those in
Section 5.3 since we discussed the maximum profit flow problem there,
but we have a minimum cost flow problem in GI. The feasible flow
vector, node price vector pair (f I = (f(i, j, r)),π = (πi)) is optimal in
GI for a given value of λ if the following optimality conditions hold.

c̄(i, j, 1)
>
= 0 for all (i, j)1 ∈ AI

c̄(i, j, 1) > 0⇒ f(i, j, 1) = 0

if (i, j)2 ∈ AI , then

l
c̄(i, j, 2) > 0⇒ f(i, j, 2) = 0
c̄(i, j, 2) < 0⇒ f(i, j, 2) = k(i, j, 2)

(7.9)

and πn − π1 = λ

Let (f Ip, πp = (πp)) be a feasible flow vector, node price vector pair
with the value of f Ip being vp, satisfying (7.9) in GI for λ = λp. To
find optimum flow vectors in GI for λ < λp, the parametric algorithm
applies the labeling algorithm to increase the flow value while contin-
uing to satisfy the optimality conditions (7.9) keeping λ = λp. Only
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arcs (i, j)r ∈ AI for which c̄(i, j, r) = 0 are admissible for flow change
in this step. Labeling is carried out in two stages in this step. In
Stage 1 we check whether the flow value can be increased to ∞. If
this is possible, it would imply that if λ is decreased from its present
value λp, the objective value in G

I becomes unbounded below, which
in turn implies that the original problem (7.3) to (7.6) becomes in-
feasible, i.e., λp = λ, the minimum possible project duration under
crashing. Another explanation for this is the following. The flow value
can be increased to∞ making flow changes on admissible arcs only, iff
there exists a chain from node 1 to node n, say C, consisting of admis-
sible Type 1 arcs only, since only they have infinite capacity. Hence
c̄(i, j, 1) = −τ ij + πpj − πpi = 0, or π

p
j − πpi = τ ij, for each (i, j) on C.

Hence C is a critical path, and each job on it on it is at its crash time,
which implies that πpn = λp = λ, and hence λ cannot be reduced below
its current value.
In Stage 1, if it has been verified that the flow value cannot be

increased to ∞, in Stage 2 we obtain the maximum flow value making
flow changes on admissible arcs of both Types 1 and 2.
During the labeling process, if an FAP from node 1 to node n con-

sisting of admissible Type 1 arcs only has been identified (which only
happens if n is labeled in Stage 1) we say that an infinite break-
through has occurred, this is a signal that the current value of λ is
λ. Any FAP identified during Stage 2 will consist of some Type 2 arcs
which have finite capacities, and we refer to its occurrence as a finite
breakthrough.
The label on a node j in this algorithm will be of the form (i,±, r =

1 or 2). If it is (i,+, r), it means that (i, j)r is a forward arc on the
FAP from 1 to j. If it is (i,−, r) it means that (j, i)r is a reverse arc
on the same FAP.

THE PARAMETRIC SHORTENING COSTMINIMIZATION ALGO-
RITHM

Initial Step Find the longest chains from node 1 to all the other
nodes in G, using τ ijs, normal durations, as the lengths of arcs
(i, j) ∈ A, by the forward pass routine discussed earlier. For
i ∈ N let (Li, t

1
i ) be the forward pass label on i. Define π

1 =
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(π1i ), where π
1
i = t1i for each i ∈ N . These node prices satisfy

π1j − π1i
>
= τ̄ij, which is opposite to those in Chapter 4, since we

are finding the longest chains here. Define f I1 = 0. It can be
verified that (f I1, π1) satisfies (7.9) when λ = λ̄ = λ1, and hence
is an optimum pair in GI for λ1. When λ = λ1, tij = τ̄ij for each
(i, j) ∈ A, and ti = π1i is the earliest occurrence time for the
event associated with node i, i ∈ N . Enter the labeling routine.

Stage 1 of the Labeling Routine

Labeling Step 1 Label the start node 1 with (∅,+). List =
{ 1 }.

Labeling Step 2 Select a node for Stage 1 scanning Let
λp be the current value of λ, and (f

Ip, πp) the present opti-
mum pair with vp as the value of f Ip. If list = ∅, go to Stage
2 of the labeling routine. Otherwise select the node from
the top of the list to scan, delete it from the list, and go to
Labeling Step 3.

Labeling Step 3 Stage 1 scanning Let i be the node to be
scanned. Label all unlabeled nodes j such that (i, j, 1) is
admissible for flow change, with (i,+, 1), and include them
at the bottom of the list as they are labeled.

If node n is now labeled, there is an infinite breakthrough.
This implies that λp = λ, terminate the algorithm. If n is
not yet labeled, go back to Labeling Step 2.

Stage 2 of the Labeling Routine Make the list = set of all la-
beled nodes at this time

Labeling Step 4 Select a node for Stage 2 scanning If
list = ∅, go to the node price change step. Otherwise select
the node from the top of the list to scan, delete it from the
list, and go to Labeling Step 5.

Labeling Step 5 Stage 2 scanning Let i be the node to
scan.



7.2. Project Shortening 567

Forward labeling Identify all unlabeled nodes j such
that (i, j, r) is admissible for flow change, and f p(i, j, r) <
k(i, j, r) for r = 1 or 2 or both, then label j with (i,+, r)
with any of the r satisfying the above condition and in-
clude j at the bottom of the list as it is labeled.

Reverse labeling Identify all unlabeled nodes j such
that (j, i, r) is admissible for flow change, and f p(j, i, r) >
0 for r = 1 or 2 or both, then label j with (i,−, r) with
any of the r satisfying the above condition, and include
j at the bottom of the list as it is labeled.

If node n is now labeled, there is a finite breakthrough, go to
the flow augmentation step. Otherwise go back to Labeling
Step 4.

Flow augmentation Trace the admissible FAP from node 1 to node
n using the node labels, and carry out flow augmentation using
it. Erase the labels on all the nodes and go back to Labeling Step
1.

Node price change Let X, X be the current sets of labeled, unla-
beled nodes respectively. Define

A1 = {(i, j)r : r = 1 or 2, (i, j)r ∈ (X,X),
and current c̄(i, j, r) > 0}

A2 = {(i, j)r : r = 1 or 2, (i, j)r ∈ (X,X),
and current c̄(i, j, r) < 0}

δ1 = min. {c̄(i, j, r) : (i, j)r ∈ A1}
δ2 = min. {−c̄(i, j, r) : (i, j)r ∈ A2}
δ = min. {δ1, δ2}

πpi (ν) =

l
πpi , if i ∈ X

πpi − ν, if i ∈ X̄

for 0
<
= ν

<
= δ. Let πp(ν) = (πpi (ν) : i ∈ N ). It can be verified that

the feasible pair (f Ip,πp(ν)) satisfies the optimality conditions
(7.9) when λ = πpn − ν for all 0

<
= ν

<
= δ. So, if we define
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tpij(ν) = Min.{τ̄ij, πpj (ν)− πpi (ν)}, for (i, j) ∈ A
tpi (ν) = πpi (ν), for i ∈ N

then (tpij(ν) : (i, j) ∈ A), (tpi (ν) : i ∈ N ) is an optimum solu-
tion for the original project shortening cost minimization prob-
lem (7.7) when λ = λp − ν = πpn − ν, for 0

<
= ν

<
= δ. Since there

is no change in the flow vector, the optimum objective value in
GI (which is equal to Q(λ) by the duality theorem of LP) de-
creases with slope vp as λ decreases in this interval from λp to
λp+1 = λp − δ. Hence, the minimum job shortening cost P (λ)
increases with slope vp as λ decreases in this interval. In other
words, P (λ) is linear in this interval with slope −vp.
Define πp+1 = πp(δ),λp+1 = λp − δ. Take (f Ip, πp+1) as the new
pair in GI, λp+1 as the new value for λ, include all the labeled
nodes in the list, and resume labeling by going back to Labeling
Step 2 in Stage 1.

Discussion

In the set A2 defined in a node price change step, all arcs are always
saturated Type 2 arcs. Likewise, all arcs in the set A1 have zero flow.
The set A1 is always nonempty in a node price change step. The

reason for this is the following. Let node q be the unlabeled node
with the smallest number in GI. The only node in GI which has no
arcs incident into it is 1 and it is labeled. So, there exists an arc of
the form (i, q) ∈ AI. By the acyclic numbering of the nodes in G,
i < q, and from the definition of q, i must be in X. If (i, q) is currently
admissible, node q would have been labeled when node i is scanned, a
contradiction. So, (i, q) is inadmissible, and hence by (7.9), the current
value of c̄(i, q, 1) > 0. So, (i, q)1 ∈ A1. Thus A1 W= ∅. Hence the
quantity δ in a node price change step in this algorithm is always
positive and finite.
The algorithm obtains the optimum job durations, and the earliest

occurrence times for the events associated with the nodes in the
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Figure 7.9:

network, (tij), (ti), corresponding to each value of λ in its range. For
any λ, the latest occurrence times associated with the nodes, can be
obtained using tn = λ and the job duration values (tij) for that λ, by
applying the backward pass routine. These provide all the necessary
information to the scheduler to identify all the critical jobs, to compute
the total slack of each job, and to schedule the jobs over time for that
value of λ.

As mentioned above, the optimum job shortening cost, P (λ), in-
creases as λ decreases. Whenever flow augmentation occurs, the slope
of P (λ) as λ decreases, increases. We have already seen that P (λ) is
piecewise linear. Hence, P (λ) is a piecewise linear convex function.

As an example consider the project consisting of six jobs denoted
by e1 to e6, with data given in the following table. The arrow diagram
for the project is given in Figure 7.9. Numbers on the arcs there are
the normal durations, and the entries by the side of the nodes are the
forward pass labels corresponding to these normal durations.

In Figure 7.10 we show the augmented network GI. The entries
on arc (i, j, r) in this figure are the capacity k(i, j, r) and the cost
coefficient c(i, j, r). The Type 1 arcs are all the arcs with ∞ capacity.
All lower bounds are 0. The initial node prices in π1, from the earliest
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Figure 7.10: All lower bounds are zero. Data on the arcs is capacity,
unit cost.

Job Immediate Normal Crash Unit
predecessors duration duration shortening

cost
e1 3 1 3
e2 4 2 4
e3 e1 4 2 1
e4 e1, e2 6 1 3
e5 e1 5 5 0
e6 e3, e4 4 4 0

occurrence times associated with the nodes, under normal job dura-
tions, are entered by the side of the nodes. The arcs admissible for
flow change in Figure 7.10 are (4, 5)1, (3, 4)2, (1, 2)2 and (1, 3)2. After
labeling and flow augmentation, we get the flow vector of value v1 = 3
(this flow vector is marked in Figure 7.11 with nonzero flow amounts
entered inside little boxes by the side of the arcs) and reach the node
price change step with the cut (X, X) = ({1, 2, 3}, {4, 5}). So, A1 =
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Figure 7.11: Data on arcs is capacity, unit cost. Nonzero flow amounts
entered in little boxes by side of the nodes. Present node prices are
entered by the side of the nodes.

{(2, 4)2, (2, 4)1, (3, 4)1, (2, 5)1,}, A2 = ∅, and δ = min. {3, 5, 5, 6} =
3. Hence for project duration π15 − ν = 14− ν, the earliest occurrence
times associated with the nodes 1 to 5 in that order are (0, 3, 4, 10−ν,
14 − ν), for 0

<
= ν

<
= 3. So, when the project duration is 14 − ν, the

optimum job durations for e1 to e6 in that order are (3, 4, 4, 6 − ν,

5, 4), for 0
<
= ν

<
= 3, and the optimum shortening cost increases with

slope v1 = 3 as project duration decreases from 14 to 11. Making
ν = δ = 3, we get the optimum flow vector, node price vector pair
marked in Figure 7.11.

The algorithm can be continued in the same manner. It terminates
with an infinite breakthrough when the project duration reaches 7. The
project shortening cost curve for this project is shown in Figure 7.12.
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7.3 Resource Constrained Project Schedul-

ing Problems

In the CPM models discussed so far, we assumed that the only con-
straints in scheduling jobs over time are those imposed by the predeces-
sor relationships among the jobs. To carry out jobs in practical project
scheduling problems, we require resources such as a crane, or other
piece of equipment, or trained personnel, etc. Two or more jobs may
require the same resources, and it may not be possible to carry them
out simultaneously because of limited supply of resources, even though
the precedence constraints do not prevent them from being scheduled
simultaneously. The limited availability of resources imposes a new
set of constraints. Before starting a job, the project scheduler now
has to make sure that all its predecessors have been completed, and
also that the resources required to carry it out are available. Problems
of this type are known as resource constrained project schedul-
ing problems. See Exercise 7.6, for a problem of this type. Usu-
ally, solving resource constrained project scheduling cannot be accom-
plished purely by network techniques alone; typically, they require com-
binatorial optimization methods. Also, practical resource constrained
project scheduling normally leads to very large combinatorial optimiza-
tion problems, for which efficient exact algorithms are not available at
the moment. Hence, a variety of heuristic algorithms have been devel-
oped for resource constrained project scheduling, see Battersby [1967],
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Burman [1972], Elmaghraby [1977], Weist and Levy [1977], and Willis
and Hastings [1976].

7.4 PERT

In the CPM models discussed so far, the job durations are assumed
to be either known constants, or deterministic variables whose values
can be selected from known intervals by spending a deterministic sum
of money. In real world project scheduling, job durations may not be
known with certainty, in fact there may be quite a bit of uncertainty
or random variation in them. Uncertainty in job durations appears
most often in research and development projects, in projects dealing
with designing or launching a new product, etc. The PERT (Program
Evaluation and Review Technique) model deals with project scheduling
under such uncertainty.
The PERTmodel usually assumes that the various job durations are

mutually independent random variables. Replacing each of these ran-
dom variables by their expected values leads to a deterministic problem
which can be analyzed using the CPM models already discussed. This
often leads to an optimistic estimate of the expected project duration.
In engineering problems, the expected value of a job duration can itself
be approximated by a convex combination of the most probable job
duration, an optimistic job duration, and a pessimistic job duration,
all guessed by qualified project engineers; PERT normally uses this
approach to estimate the expected job durations.
If the job durations can be assumed to be random variables with

known probability distributions, then a simulation can be run by se-
lecting values for job durations from these distributions. Once the job
durations are known, the critical path and the scheduling information
can be obtained using the CPM methods. The procedure can be re-
peated many times by selecting different sets of values for the random
variables. From these simulation runs, information like the average
project duration and its standard deviation, probabilities for the var-
ious jobs being critical, etc., can be computed. Statistical analysis of
the data from these simulation runs can give the scheduler very useful
information. Because of the random nature of job durations, it is not
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possible to lay down a rigid time schedule for the jobs at the beginning
of the project, and expect to stick with it. A rough time schedule is
prepared using the information from CPM based on expected job du-
rations, and the simulation runs. As the event corresponding to each
node in the arrow diagram materializes, a review is made, and the
time schedule for the remaining jobs is revised. See Burman [1972],
Elmaghraby [1977], Weist and Levy [1977].

7.5 Exercises

7.4 Let G = (N ,A) be the arrow diagram for a project. λ is the
project completion time, and d1 denotes a target value for λ. For each
job p, τp, τ̄p,αp have the same meaning as in Section 7.2. For each unit
of time the project is completed before the target time d1, there is a
profit of δ$. If λ > d1, a penalty is incurred, this penalty, denoted by
f(λ), is 0 if λ

<
= d1, and a positive piecewise linear function of λ in the

range λ > d1, with slopes given below.

Interval Slope of f(λ)

d1 < λ
<
= d2 g1

d2 < λ
<
= d3 g2
...

...
du < λ gu

where d1 < d2 < . . . < du and g1 < g2 < . . . < gu. Define the net
cost of the project to be the cost of job shortening + f(λ) − any profit
due to project completion before target completion date d1. Formulate
the problem of finding an optimum project duration to minimize the
net cost as an LP, and show how it can be solved using a network flow
approach. As a numerical example consider the following project.

The plant is scheduled for erection and commissioning in d1 = 36
months from land acquisition. There is a profit of $35 million/month if
the plant is completed before 36 months. If the erection division fails
to hand over the plant to the customer at the end of 36 months, there
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Project: Setting Up a Fossil Fuel Power Plant
No. p Job IPs τp τp if < τ p αp
1. Land acquisition 6
2. Identi. trained personnel 1 3
3. Land dev. & infrastructure 1 2
4. Control room eng. 1 12
5. Lag in turbine civil works 1 8
6. Delivery of TG 1 12
7. Delivery of boiler 1 10
8. Joining time for personnel 2 3
9. Boiler prel. civil works 3 2 1 6
10. Control room civil works 4 5 2 3
11. TG civil works 5 9 7 15
12. Training 8 6
13. Boiler final civil works 9 9 8 15
14. Erection of control room 10 8 7 5
15. Erection of TG 6, 11 10 8 20
16. Boiler erection 7, 13 12 11 35
17. Hydraulic test 16 2
18. Boiler light up 14, 17 1.5 0.5 7.5
19. Box up of turbine 15 3 2 15
20. Steam blowing, safety 18, 19 2.5 1.5 10

valve floating
21. Turbine rolling 20 1.5 1 20
22. Trial run 21 1 0.5 25
23. Synchronization 22 1 0.5 20

IP = Immediate predecessors, τ p, τp in months, αp in $mil.

will be a penalty with increasing slopes of $30, 35, 40, and 55 million
beyond 36, 37, 38, and 39 months, respectively. Solve this problem and
obtain an optimum project schedule. (Kanda and Singh[1988])

7.5 How does the formulation in Exercise 7.4 change if the profit for
early completion is a constant, $ ξ, irrespective of what the value of λ
is < d1, but everything else remains unchanged.

7.6 Coke Depot Project A depot is to be built to store coke and
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Job IPs Duration No. of resources needed each
week of job

R1 R2 R3 R4 R5 R6
1. B. piling 5 2 1
2. Clear site for SH. 8 6 1
3. B. excavation for cols. 1 4 4 1
4. SH. excavations for C. 2, 3 4 4 1
5. Concrete tops of piles for B. 3 3 2 2
6. Place cols. for B. 5 4 3 1 1
7. Excavate access road 5 4 3 1
8. Put in B. 6 3 2
9. Stairways inside B. 6 1 2
10. Excavate pit for WB. 4 6 1 1
11. Concrete for SH. 4 12 2 4
12. Main C. foundation 4 4 1
13. Brick walls for B. 8, 9 3 2 2
14. Clad in steel for B. 8, 9 1 2
15. Install internal equip. in B. 8, 9 6 2 1 2
16. Erect gantry for main C. 12, 6 1 2 1 1
17. Install C. under hoppers 11 1 2 2
18. Concrete pit for WB. 11, 10 2 1 2
19. Excavate for hard-standing 7 9 4 1
20. Lay access roadway 7 9 4
21. Install outloading equip. for B. 15 2 2 3
22. Line B. 13, 14 1 1 1
23. Install main C. 16 1 2 2
24. Build weighhouse 18 4 1 2
25. Erect perimeter fence 19 4 2
26. Install C. to SH. 17, 23 1 2 2
27. Install WB. 24 1 2 2 1
28. Lay hard-standing 19, 18 6 4
29. Commission hoppers 26 1
IP = Immediate predecessors

to load and dispatch trucks. There will be three storage hoppers (SH. in
abbreviation), a block of bunkers (B. in abbreviation), interconnecting
conveyors (abbreviated as C.), and weigh bridges (called WB.). Around
the bunkers there will be an area of hard-standing and an access road
will have to be laid to the site. Data on this project, the duration (in
weeks) and resource requirements of each job are given in the table
above.
There are six resources required for construction, their availability

is limited to the quantities given below during the construction. Draw
an arrow diagram for this project, and determine the earliest and latest
start and finish times, and the total float of each job. Schedule the jobs
so that the project is finished as quickly as possible without the resource
availabilities being exceeded using an appropriate heuristic approach.
(Willis and Hastings[1976])
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Resource Symbol Available quantity
Laborers R1 10
Steel men R2 5
Concrete men R3 4
Bricklayers R4 2
Cranes R5 1
Dumpers R6 2

7.7 Draw an arrow diagram for each of the following projects. For the
values of project duration in its feasible range, obtain the optimum job
durations and the earliest occurrence times of events associated with
nodes in the network, and draw the project shortening cost curve as a
function of the project completion time in each case. (R. Visweswara
Rao).

(a) Data Process and Collection System Design for a Power Plant
No. p Activity IPs Duration αp

(days)
1. Prel. Syst. 40

description
2. Develop specs. 1 100
3. Client approval 2 50

& place order
4. Develop I/O 2 40 - 60 15

summary
5. Develop alarm 4 40

list
6. Develop log 3, 5 40

formats
7. Software def. 3 35
8. Hardware 3 35

requirements
9. Finalize I/O 5, 6 50 - 60 18

summary
10. Anal. performance 9 50 - 70 20

calculation
Contd.
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(a) contd.
No. p Activity IPs Duration αp

(days)
11. Auto. turbine 9 60

startup anal.
12. Boiler guides anal. 9 30
13. Fabricate & ship 10, 11, 12 400
14. Software preparation 7, 10, 11 60 - 80 22
15. Install & check 13, 14 100 - 130 30
16. Termination & 9 30

wiring lists
17. Schematic wiring 16 60

lists
18. Pulling & term. 15, 17 60

of cables
19. Operational test 18 80 - 125 30
20. First firing 19 1
IP = Immediate predecessors
αp = shortening cost of job p/day shortened

(b) Electrical Auxiliary System Design for a Nuclear Plant
No. p Activity IPs Duration αp

(days)
1. Aux. load list 100 - 120 15
2. 13.8 switchgear 1 140 - 190 12

load ident.
3. 4.16kv & 480 v. switchgear 1 45

load ident.
4. Vital AC load 1 200 - 300 14

determination
5. DC load determ. 1 110 - 165 18
6. Voltage drop study 2 84
7. Diesel gen. sizing 3 77
8. Inventer sizing 4 20
9. Battery sizing 5, 8 40
10. DC fault study 9 80
11. Prel. AC fault 6, 7 20

current study
Contd.
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(b) Contd.
No. p Activity IPs Duration αp

(days)
12. Power transformer 2, 11 80

sizing
13. Composite oneline 2,3 72

diagram
14. Safety (class 1E) 13 150 - 200 25

system design
15. Non-class 1E 13 160 - 190 20

system design
16. Relaying oneline 13 80

& metering dia.
17. 3-line diagram 14, 15, 16 150
18. Synchronizing & 17 100

phasing diagrams
19. Client review 10, 18 25
20. Equipment purchase 19 800

& installation

(c) Sewer and Waste System Design for a Power Plant
No. p Activity IPs Duration αp

(days)
1. Collection system 25 - 40 10

outline
2.. Final design & 1 30

approval
3. Issue construction 2 23 - 30 8

drawings
4. Get sewer pipe 1 145

& manholes
5. Fabricate & ship 3,4 45
6. Treat. system 50 - 70 15

drawings & approval
7. Issue treat. system 6 30

construction drawings
8. Award contract 7 60
9. Final construction 8, 5 200 - 300 30

IP = Immediate predecessors
αp = shortening cost of job p/day shortened

7.8 In the job crashing model discussed in Section 7. 2, intuitively it
seems correct to assume that if a job is crashed in an optimum schedule
for a project duration, then that job will stay crashed in optimum
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schedules as the project duration decreases further. Show that this
could be wrong, using the following example.

Job no. r IPs Duration αr
τ r τ r

1. 1 3 3
2. 2 4 1
3. 1 0 2 1
4. 1 2 5 1
5. 2, 3 1 6 3

IP = Immediate predecessors
αr = shortening cost of job r/ unit time shortened

(Ford and Fulkerson [1962 of Chapter 1])

7.9 Consider the project with precedence relationships given below.
Draw the arrow diagram for it using the smallest number of nodes.
Let G be this arrow diagram. Show that it is possible to decrease the
number of dummy arcs in G by increasing the number of nodes. Using
this example show that it may not be possible to minimize the number
of arcs and the number of nodes in the arrow diagram for a project
simultaneously even if there are no parallel activities in it.

Jobs Immediate Predecessors
a, b, bI, c, g, p, l None

e a, b, bI, p
f b, bI, c, l
d g, b, bI, c
h a
i b
j c
m bI

(Syslo[1984])

7.10 Develop an efficient algorithm to check whether a given project
can be represented by an arrow diagram using no dummy arcs at all.
(Syslo[1984])
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7.11 Let H = (N, A) be a graph with N = { 1, . . . , n }, A = {
e1, . . . , em }, in which each node has degree 2 or 3. A node cover for
H is a subset of nodes in N which covers all the edges in A.

Define a project with n+m+1 activities numbered 1 to n+m+1,
related to the nodes and edges in H with precedence relations among
them defined by the data in H as follows: for i = 1 to n activity i in
the project corresponds to node i in H; for p = 1 to m activity n + p
in the project corresponds to edge ep in H; activity n + m + 1 is an
additional activity; for p = 1 to m and i = 1 to n, activity n + p is a
predecessor of activity i if ep is incident to i in H; and for all p = 1 to
m, activity n+ p is a predecessor of activity n+m+ 1.

In drawing the arrow diagram for this project, since each of the
activities n+1 to n+m have no predecessors, they can be represented by
arcs with the same tail node (this is the start node). Similarly activities
1, . . . , n, n +m+ 1 have no successors, so they can be represented by
arcs with the same head node (this is the finish node) in the arrow
diagram. When drawn in this way, show that the minimum number
of dummy activities needed to represent this project is precisely the
minimum number of nodes that cover all the edges in H. Since the
problem of finding a minimum cardinality node cover in H is known
to be NP-hard, this establishes that the problem of drawing an arrow
diagram for a project using the smallest number of dummy arcs is also
NP-hard. (Krishnamoorthy and Deo [1979])

7.12 Let G = (N ,A) be the arrow diagram for a project. Consider
the project shortening cost minimization problem on G. In addition
to the features discussed in Section 7.2, suppose a subset of nodes P
⊂ N called penalty nodes is specified, with a due date of di for i ∈ P.
Nodes in P correspond to key events, and for each i in it, a penalty of
pi$ is levied per unit time delay of event associated with it beyond its
due date di. It is required to minimize the total cost of shortening the
activities and the penalties of violating the target dates of key events,
treating the project duration λ as a parameter. Develop a modification
of the algorithm discussed in Section 7.2 to solve this problem. Apply
this algorithm on the project network given in Figure 7.13. (Kanda
and Rao [1984])
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1

2

3

4

5

6

7

4, 2; 4

6, 4; 2

3, 1; 2

2, 1; 10

7, 4; 2

8, 3; 4

3, 1; 12

3, 1; 2

3, 1; 1

2, 1; 1

4, 1; 1

5, 1; 2

Figure 7.13: Data on arc (i, j) is τ̄ij , τ ij .αij, in that order. Penalty
nodes are 4 (d4 = 12, p4 = 10) and 7 (d7 = 18, p7 = 20).

7.13 Let G = (N ,A) be the AON network for a project. Each job
takes exactly one day to process. On each day, any number of jobs
can be processed provided they are all unrelated and each of their
predecessors has all been processed already, i.e., if job i is processed on
day t and (i, j) ∈ A, then job j can be processed on the t+ 1th day or
any later day. cit is the cost of doing job i on day t. All cit are given
and they are all > 0.
Define decision variables xit = 1 if job i is processed on the tth

day or before, 0 otherwise. Formulate the problem of completing the
project at minimum cost using these decision variables. Show how this
problem can be solved using the algorithms discussed in Chapter 2.
(G. Chang and J. Edmonds)

7.14 The Payment Scheduling Problem Let G = (N ,A) be
the arrow diagram for a project with nodes 1, n as the start and finish
nodes, and (tij : (i, j) ∈ A) as the vector of job durations. Define t1
= 0, ti for i = 2 to n to be the time when the event corresponding to
node i is realized. In this problem, the variables are t2 to tn, the vec-
tor t = (t2, . . . , tn) is called the schedule. The realization of the event
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corresponding to any node i is usually the occasion for a transaction
(either the contractor doing the project is given a stage payment for
reaching this milestone in this project, or he may have to pay a subcon-
tractor whom he hired to do part of the work), let ci ( > 0 for receipts,
< 0 for payments) denote the cash reward to the contractor at this
event. The payment scheduling problem is concerned with finding a
feasible schedule that maximizes the present value (at the commence-
ment of the project) of all the cash transactions. Assuming that the
discount rate for money per unit per unit time is β, this is the problem
of finding a schedule t that maximizes P (t) =

�
(ci exp(−βti) : over

i = 2 to n), subject to tj − ti >= tij for each (i, j) ∈ A and tn − t1 <
= λ

= upper bound on project completion time. Show that this problem
can be transformed into an LP by transforming the variables using
ti = −(1/β) log(yi), i = 2 to n.
Show that every extreme point of this LP corresponds to a spanning

tree in GI = (N ,AI) where AI = A ∪ {(n, 1)}, and vice versa. Hence
the search for optimal schedules can be restricted to feasible trees in
GI. Using standard complementary slackness results for checking the
optimality of feasible trees, develop a simplex -like procedure for this
problem that moves from one feasible tree to an adjacent one obtained
by changing the tree by one arc, improving the objective function value
in each move, until an optimum schedule is obtained. (Grinold [1972],
Russel [1970]. See Elmaghraby and Herroelen [1990] for a critique of
this model.)

Comment 7.1 The first paper to discuss the problem of computing
the cost curves for a project composed of many individual jobs is that
by Kelly and Walker [1959]. In this chapter we discussed methods for
computing the project cost curve by network flow methods due to Fulk-
erson [1961] and Kelly [1961]. Since the appearance of these papers,
the network-based CPM has become a part of the language of project
management, and has been used extensively in planning, scheduling
and controlling large projects. The glamorous successes claimed for
their initial applications, and the adoption of these models as stan-
dard requirement in contracts by many governments, have added to
their importance. Computer packages for these network based tech-
niques specialized to the needs of a variety of industries continue to
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be the best sellers of all OR software. In the chapter’s exercises, we
have included some modeling problems taken from simplified real world
applications.
The literature on network techniques for project management is

enormous. Battersby [1967], Burman [1972], Elmaghraby [1977], Weist
and Levy [1977] are some of the books devoted exclusively to this area.
Krishnamoorthy and Deo [1979] are the first to show that the prob-

lem of generating an arrow diagram for a project using the smallest
number of dummy arcs is NP-hard. The papers of Syslo [1981, 1984]
explore some other complexity issues associated with arrow diagrams.
Dimsdale [1963], Fisher, Liebman, and Nemhauser [1968], discuss prac-
tical techniques for generating arrow diagrams.
The papers of Russel [1970], and Grinold [1972] discuss the payment

scheduling problem. Elmaghraby and Herroelen [1990] give a critique
of this model.
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