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Chapter 1

Models for Decision Making

This is Chapter 1 of Junior Level Web-Book for “Optimization
Models for Decision Making” by Katta G. Murty.

1.1 Decision Making

Anyone who holds a technical, managerial, or administrative job these
days is faced with making decisions daily at work. It may involve:

e determining which ingredients and in what quantities to add to
a mixture being made so that it will meet specifications on its
composition,

e selecting one among a small number of suppliers to order raw
materials from,

e determining the quantities of various products to manufacture in
the next period,

e allocating available funds among various competing agencies,

e determining how to invest savings among available investment
options,

e deciding which route to take to go to a new location in the city,
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e allocating available farm land to various crops that can be grown,

e determining how many checkout lanes to staff during a period of
stable demand in a grocery store,

etc., etc.

A situation such as one of these requiring some decisions to be
made is known as a decision making problem or just decision
problem. These problems arise in the operation of some system known
as the relevant system for the problem. The person(s) responsible
for making these decisions are called the decision maker(s) for the
problem.

At one extreme, these decision making problems may be quite sim-
ple requiring the determination of the values of a small number of
controllable variables with only simple conditions to be met; and at
the other extreme they may be large scale and quite complex with
thousands of variables and many conditions to be met.

Decision making always involves making a choice between various
possible alternatives. Decision problems can be classified into two
categories with very distinct features. It is important to understand
the difference between these categories.

Two Categories of Decision Making Problems

Category 1: This category includes all decision problems for which
the set of possible alternatives for the decision is a finite discrete set
typically consisting of a small number of elements, in which each alter-
native is fully known in complete detail, and any one of them can be
selected as the decision.

Even though many textbooks do not discuss these problems, these
are the most common decision problems encountered in daily living,
in school, at work, and almost everywhere. Some examples of this
category are:

e A teenage girl knows four boys all of whom she likes, and has to
decide who among them to go steady with.
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e An automobile manufacturer has to decide whether to use a cast
iron engine block, or an aluminum engine block in their new car
line.

e A company has received merger offers from three other compa-
nies. It has to decide whether to accept any one of these offers,
or to continue operating by itself.

Many more examples of this category can be seen in Chapter 2.
Since all the alternatives for the decision are fully known in full detail,
it is not necessary to construct a mathematical model to identify the
set of all alternatives for the decision in this category. Instead, one
can begin applying an algorithm for solving these problems directly. A
specialized method known as the scoring method commonly used to
handle these problems is discussed in Chapter 2.

Category 2: This category includes all decision problems for which
each possible alternative for the decision is required to satisfy some re-
strictions and constraints under which the relevant system must oper-
ate. Even to identify the set of all possible alternatives for the decision,
we need to construct a mathematical model of these restrictions and
constraints in this category. An example of a decision problem in this
category is discussed in Section 1.2.

Even when there are no constraints to be satisfied in a decision
problem, if the number of possible alternatives is either infinite, or finite
but very large; it becomes necessary to define the decision variables
in the problem, and construct the objective function (the one to be
optimized) as a mathematical function of the decision variables in order
to find the best alternative to implement. Such decision problems also
belong to Category 2.

So, the essential characteristic of a Category 2 decision problem is
that in order to handle it we need to identify the decision variables in
the problem and build a mathematical model of the objective function
and/or the constraints in terms of the decision variables. The rest of
this chapter deals only with this category of problems.
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Quantitative Analysis for Solving Category 2 De-
cision Problems

In the past decisions were made exclusively on intuitive judgement
based on hunches acquired from past experience. But to survive and
thrive in this highly competitive technological world of today it is es-
sential to make decisions on a rational basis. The most rational way
for decision making is through quantitative analysis which consists
of the following steps.

1. Get a precise definition of the problem, all relevant data
and information on it: The initial statement of the problem
may be vague or imprecise. Study the relevent system and de-
velop an accurate and complete statement of the problem. Quite
often the problem undergoes many changes in successive discus-
sions until its final version is agreed upon by all the decision
makers involved.

Two types of factors or variables may be affecting the system.
These are:

Uncontrollable factors: Factors such as environ-
mental factors which are random variables not under
the control of the decision makers.

Controllable inputs: Factors whose levels can be
controlled by the decision makers and set at desired
values. These factors whose values the decision makers
can manipulate are called decision variables in the
problem. They may include other ancillary variables
that are functions of the decision variables.

If there are no uncontrollable factors, or if the values of all the
random variables among the uncontrollable factors are known
exactly, the relevant system depends only on the values of the
controllable decision variables and there is no uncertainty, i.e., all
the relevent data in the decision problem is known with certainty.
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In this case the decision problem is known as a deterministic
decision making problem.

When the random variables among the uncontrollable inputs are
subject to variation, the decision problem is known as a stochas-
tic or probabilistic decision making problem. Here the out-
come of the relevent system is uncertain even when the values
of all the decision variables are fixed, because some importent
variables will not have their values known before the decisions
are finalized. This uncertainty must be incorporated into the
decision making.

To solve a stochastic decision making problem, we need knowl-
edge of the probability distributions of all the random variables
among the uncontrollable inputs. Unless the decision problem
is a very simple one, exact analysis of it using these probability
distributions may become very complex. That’s why very often
stochastic decision problems are analyzed by studying appropri-
ate deterministic approximations of them.

One commonly used hedging strategy to construct a determinis-
tic approximation of a stochastic decision making problem is to
replace each random variable by some location parameter of its
probability distribution (mean, median, or some desirable per-
centile) plus some safety factor to account for the uncertainty in
its value. This converts the problem into a deterministic decision
making problem.

That is why studying techniques for solving deterministic decision
making problems is of great importance. In this book we will
discuss only deterministic decision making problems.

2. Construct a mathematical model of the problem: Construct
a mathematical model that abstracts the essence of the decision
problem. The model should express the various quantities in the
problem including performance measures if any, in the form of
mathematical functions of decision variables, and express the re-
lationships among them using appropriate equations or inequali-
ties, or objective functions to be optimized (maximized, or mini-
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mized, as appropriate).

Real world problems are usually too complex to capture all the
fine details of them in the form of simple mathematical models
that we can analyze. Usually a model is a simplification that
provides a sufficiently precise representation of the main features
such that the conclusions obtained from it also remain valid to
the original problem to a reasonable degree of approximation.
Therefore, constructing a mathematical model usually involves
making approximations, heuristic adjustments, and quite often
ignoring (or putting aside or relaxing) features that are difficult
to represent mathematically and handle by known mathematical
techniques. When such relaxations are used, it may be neces-
sary to make some manual adjustments to the final conclusions
obtained from the model to incorporate the relaxed features.

It usually takes great skill to decide which features of the real
problem to relax in constructing a model for it, this skill comes
from experience. This is reflected in the word “mahaanubhaava”
in Indian languages like Sanskrit, Telugu etc. for “great person
or expert”, which literally means “a person of vast experience”.
That’s why many people consider modeling to be an art.

3. Solve the model: Solve the model to derive the solution, or con-
clusion for the decision problem.

For some of the models we have efficient algorithms and high
quality software systems implementing them. For some others
we do not yet have efficient algorithms, and when the model is
large, existing algorithms might take unduly long to solve it. In
this case, one usually obtains approximate solutions using some
heuristic approaches.

4. Implement the solution: In this final phase, the solution ob-
tained is checked for practical feasibility. If it is found to be
impractical for some reason, necessary modifications are carried
out in the model and it is solved again; the same process is re-
peated as needed.
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Often the output from the model is not implemented as is. It
provides insight to the decision maker(s) who combine it with
their practical knowledge and transform it into an implementable
solution.

As an illustration, in the next section we develop a mathematical
model for a very simple decision making problem of Category 2.

1.2 A Model for a Simple Decision Mak-
ing Problem

Modern jogging shoes usually contain heel pads for cushioning to soften
the impact when the foot hits the ground, and also to give some bounce.
In some shoe brands, the heel pad is a sealed packet of plastic containing
air under pressure. The following type of decision problem arises at
companies making these heel pads.

Decision problem: There is 100 cc of a gas at 1500 mb of pressure
in a closed container. Determine how much gas should be added to or
expelled from the container to make sure that when the gas in the
container is compressed to 3000 mb of pressure its volume will be 40
cc.

The only decision variable in this problem is:

x = ccof gas to be added to or taken out of the present
container

We adopt the convention that positive values of x indicate addition
of gas to the container (i.e., for example, x = 12 means adding 12 cc
of additional gas at 1500 mb of pressure to container), and negative
values of z indicate expelling of present gas from container (i.e., for
example, z = —8 means expelling 8 cc of gas from present container).
A solution to this decision problem consists of obtaining a numerical
value to the decision variable z. After implementing the solution x,
the container will have 100 + = cc of gas at pressure 1500 mb.
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Requirement to be met: When the contents 100 + = cc in the
container are compressed to 3000 mb, the volume of gas in the container
should be 40 cc.

This requirement leads to a constraint that the decision variable x
should satisfy. There are two important characteristics of gas in this
problem, its pressure p in mb, and volume v in cc, which are ancillary
variables. Determining the constraint on the decision variable needs an
understanding of the relationship between p and v, i.e., as compression
increases the value of p, how does the volume v vary?

We denote the volume of gas in the container at pressure p by v(p).
This relationship is provided in the form of an equation by Boyle’s
Law of physics which states that the pressure p and volume v(p) of a
fixed quantity (by weight say) of gas satisfy

pv(p) = a constant a say.

where the constant a in the RHS depends on the quantity of gas.

In reality Boyle’s law does not hold exactly. But it offers a very
good approximation to how p,v(p) behave in the range of values of
these variables encountered in this application, so we will use it.

So, v(p) = a/p. In our decision problem we know that v(1500) =
100 + z. Substituting, we find that a = 1500(100 + x). So we have

150,000 + 1500
p

v(p)

This provides the volume of gas in the container as a mathematical
function of its pressure. The requirement is that v(3000) = 40. This
can be expressed as the constraint 150,000 + 15002 = 3000 x 40, or

1500z = —30, 000

This is a single linear equation in the decision variable x, it consti-
tutes the mathemtical model for our decision problem. The left hand
side of this constraint, 1500z, is known as the constraint function
and the right hand side constant —30, 000 is abbreviated and called the
RHS constant for the constraint.
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This model has the unique solution x = —30,000/1500 = —20
which is the only value of the decision variable z satisfying the require-
ment. It is the solution for our decision problem, it corresponds to the
action of releasing 20cc of gas from the container at original pressure

of 1500 mb.

1.3 Optimization Models

The model of restrictions and constraints for the decision problem dis-
cussed in Section 1.2 is a single linear equation in one decision variable
which has a unique solution. This is quite rare. Such models for most
real world decision problems have many solutions. The question that
arises then is how to select one of the many solutions of the model
to implement?. This is usually done so as to optimize an objective
function which is a measure of effectiveness of the relevent system.

Since prehistoric times, humans have had an abiding interest in op-
timizing the performance of systems that they use. Now-a-days all the
decisions that we make at work, and those affecting our personal lives,
usually have the goal of optimizing some desirable characteristic. If
there are some objective functions to optimize in addition to satisfy-
ing the requirements on the decision variables, the resulting model is
known as an optimization model.

Each of the objectives to optimize is typically a measure of effec-
tiveness of performance of the relevant system, and should be expressed
as a mathematical function of the decision variables.

If higher values of a measure of performance are more desirable
(such a measure could be considered as a profit measure) we seek to
attain the maximum or highest possible value for it. If lower values of
a measure of performance are more desirable (such a measure could be
interpreted as a cost measure) we seek to attain the minimum or the
lowest possible value for it. The various measures of performance are
usually called the objective function(s) in the mathematical model
for the system. To optimize an objective function means to either
maximize or minimize it as desired.

If there is only one measure of performance (such as yearly total
profit, or production cost per unit, etc.) the model will be a single ob-
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jective model. When there are several measures of performance, we
get a multiobjective model in which two or more objective functions
are required to be optimized simultaneously.

In optimization models the requirements come from the relation-
ships that must hold among the decision variables and the various sta-
tic or dynamic structural elements by the nature of system operation.
Each requirement leads to a constraint on the decision variables that
will be expressed as a mathematical equation or inequality in the model
for the problem. The model also includes any bounds (lower and/or
upper) that the decision variables or some functions of them must sat-
isfy in order to account for the physical limitations under which the
system must operate.

In some problems, in addition to all these requirements, there may
be others that specify that the values of some decision variables must
come from specified sets (for example, if the decision variable z; is
the diameter of pipe used in designing a component, and this pipe is
available in diameters 17, or 1.5”, or 2” only; then the value of x; must
come from the set {1”,1.5",2"}).

We know that if an objective function is a cost function (profit func-
tion) we would like to minimize (maximize) it. Fortunately, it is not
necessary to consider minimization and maximization problems sepa-
rately, since any minimization problem can be transformed directly into
a maximization problem and vice versa. For example, to maximize a
function f(z) of decision variables z, is equivalent to minimizing — f(z)
subject to the same system of constraints, and both these problems
have the same set of optimum solutions. Also, we can use

. Minimum value of — f(x
Maximum value of f(x) . f(z)
. . = subject to the same con-
subject to some constraints .
straints

For this reason, we will discuss algorithms for minimization only in this
book.

Let * = (z1,...,%,)T denote the vector of decision variables. A
typical single objective optimization model has the following form:
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Minimize 6(x) (1.3.1)

. :bi, izl,...,m
subject to  g;(z) { <b. i—m+l.. . .m+p (1.3.2)
Ej S.Ij S Uy, j: 1,...,7’L (133)
z; € Aj, jeJc{l,...,n} (1.3.4)

where all the functions are assumed to be continuous and differentiable,
and for each j € J, A; is a specified set within which the value selected
for the variable z; is required to lie. The function g;(x), constant b; are
respectively the constraint function, RHS constant respectively
for the ith constraint in (1.3.2).

Any “>” inequality constraint can be transformed into a “<” con-
straint by multiplying both sides of it by —1. That’s why we listed all
the inequality constraints in the “<” form.

¢;,u; are the upper and lower bounds on the decision variable
x;. In many problems ¢; = 0,u; = oo is common (i.e., z; is required
to be nonnegative) because economic activities can only be carried out
at nonnegative levels. But in general /;,u; can have any real values
satisfying ¢; < u;, in fact we can have ¢; = —oo and u; = +oo (in this
case x; is called an unrestricted variable.

Constraints like those in (1.3.4) mainly arise in discrete problems
where some variables are required to assume only values from specified
discrete sets.

For (1.3.1)—(1.3.4), a numerical vector z is said to be a feasible
solution if it satisfies all the constraints (1.3.2)—(1.3.4). A feasible
solution Z satisfying 0(z) < 6(x) for all feasible solutions z is said to
be an optimum solution or optimum feasible solution for (1.3.1)
to (1.3.4), because it has the smallest value for the objective function
among all feasible solutions.

The typical multiobjective problem is of the form

Minimize 6;(z); ¢ = 1 to k simultaneously
subject to constraints of form (1.3.2)—(1.3.4).
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If constraint (1.3.4) is absent, the above models are said to be con-
tinuous variable optimization models since each variable can as-
sume any value within its bounds subject to the other constraints. If
constraints (1.3.4) are there, and A; are discrete sets (like the set of
integers, or the set {0,1} etc.) the models are said to be discrete
optimization models.

Single Versus Multiobjective Models

Mathematical theory of single objective models is well developed.
In contrast, for multiobjective optimization models, we do not even
have the concept of an optimum solution. Often, the various objective
functions conflict with each other (i.e., optimizing one of them usually
tends to move another towards undesirable values), for solving such
models one needs to know how many units of one function can be sac-
rificed to gain one unit of another, but this trade-off information is not
available. In other words, one is forced to determine the best com-
promise that can be achieved. Since trade-off information among the
various objective functions is not given, multi-objective optimization
problems are not precisely stated mathematical problems. Techniques
for handling them usually involve trial and error using several degrees
of compromises among the various objective functions until a consensus
is reached that the present solution looks reasonable from the point of
view of all the objective functions.

We restrict the scope of this book to single objective optimization
models.

Static Versus Dynamic Models

Models that deal with a one-shot situation are known as static
models. These include models which involve determining an optimum
solution for a one period problem. For example, consider the produc-
tion planning problem in a company making a variety of products. To
determine the optimum quantities of each product that this company
should produce in a single year, leads to a static model.

However, planning does involve the time element, and if an applica-
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tion is concerned with a situation that lasts over several years, the same
types of decisions may have to be made in each year. In the production
planning problem discussed above, if a planning horizon of 5 years is
being considered, it is necessary to determine the optimum quantities
of each product to produce, in each year of the planning horizon. Mod-
els that involve a sequence of such decisions over multiple periods are
called multi-period or dynamic models.

When planning for a multi-period horizon, if there is no change in
the data at all from one period to the next, then the optimum solution
for the first period determined from a static model for that period,
will continue to be optimal for every period of the planning horizon.
Thus multi-period problems in which the changes in the data over the
various periods are small, can be handled through a static one period
model, by repeating the same optimum solution in every period. Even
when changes in the data from one period to the next are significant,
many companies find it convenient to construct a static single period
model for their production planning decisions, which they solve at the
beginning of every period with the most current estimates of data for
the optimum plan for that period. This points out the importance of
static models, even though most real world problems are dynamic.

In most multi-period problems, data changes from one period to
the next are not insignificant. In this case the optimum decisions for
the various periods may be different, and the sequence of decisions will
be interrelated, i.e., a decision taken during a period may influence the
state of the system for several periods in the future. Optimizing such
a system through a sequence of single period static models solved one
at a time, may not produce a policy that is optimal over the planning
horizon as a whole. However, constructing a dynamic model with the
aim of finding a sequence of decisions (one for each period) that is opti-
mum for the planning horizon as a whole, requires reasonably accurate
estimates of data for each period of the planning horizon. When such
data is available, a dynamic model tries to find the entire sequence of
interrelated decisions that is optimal for the system over the planning
horizon.

In this book we will discuss both static and dynamic models. We
begin with techniques for finding optimum solutions to static models,
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and then discuss how to extend these to handle dynamic models. We
discuss the basic approach known as dynamic programming at an el-
ementary level for solving problems that are posed as multi-period or
multistage decision problems.

Even though the theory for handling dynamic models in a multi-
period setting is well developed, practitioners find it difficult to use
this theory in applications, due to lack of reliable information on how
conditions might change in future periods.

Stochastic Versus Deterministic Models

An optimization model in which there is no uncertainty (i.e., all the
data elements are known with certainty) is known as a deterministic
optimization model.

In a single objective static optimization model, the objective func-
tion can be interpreted as the yield or profit that is required to be
maximized. The objective function expresses the yield as a function
of the various decision variables. In real world applications, the yield
is almost never known with certainty, typically it is a random variable
subject to many random fluctuations that are not under our control.
For example the yield may depend on the unit profit coefficients of
the various goods manufactured by the company (these are the data
elements in the model) and these things fluctuate randomly. To an-
alyze the problem treating the yield as a random variable requires the
use of complicated stochastic optimization (programming) mod-
els. Instead, one normally analyses the problem using a deterministic
model in which the random variables in the yield function are replaced
by either their most likely values, or expected values etc. The solution
of the deterministic approximation often gives the decision maker an
excellent insight for making the best choice. We can also perform sen-
sitivity analysis on the deterministic model. This involves a study of
how the optimum solution varies as the data elements in the model vary
within a small neighborhood of their current values. Decision makers
combine all this information with their human judgment to come up
with the best decision to implement.

Some people may feel that even though it is more complicated, a
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stochastic programming model treating the data elements as random
variables (which they are), leads to more accurate solutions than a
deterministic approximation obtained by substituting expected values
and the like for the data elements. In most cases this is not true. To
analyze the stochastic model one needs the probability distributions
of the random data elements. Usually, this information is not avail-
able. One constructs stochastic models by making assumptions about
the nature of probability distributions of random data elements, or
estimating these distributions from past data. The closeness of the
optimum solution obtained from the model may depend on how close
the selected probability distributions are to the true ones. In the world
of today, economic conditions and technology are changing constantly,
and probability distributions estimated in a month may no longer be
valid in the next. Because of this constant change, many companies
find it necessary almost in every period to find a new optimum solution
by solving the model with new estimates for the data elements. In this
mode, an optimum solution is in use only for a short time (one period),
and the solution obtained by solving a reasonable deterministic approx-
imation of the real problem is quite suitable for this purpose. For all
these reasons most real world optimization applications are based on
deterministic models. In this book we discuss only methods for solving
deterministic optimization models.

1.4 Optimization in Practice

Optimization is concerned with decision making. Optimization tech-
niques provide tools for making optimal or best decisions. To maintain
their market position, or even to continue to exist in business these
days, businesses everywhere have to organize their operations to de-
liver products on time and at the least possible cost, offer services that
consistently satisfy customers at the smallest possible price, and intro-
duce new and efficient products and services that are cheaper and faster
than competitors. These developments indicate the profound impor-
tance of optimization techniques. The organizations that master these
techniques are emerging as the new leaders. All the countries in the
world today that have a thriving export trade in manufactured goods
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have achieved it by applying optimization techniques in their manufac-
turing industries much more vigorously than the other countries.

1.5 Various Types of Optimization Mod-
els

Chapter 2 discusses a commonly used approach for handling Category
1 decision problems.

When constraints (1.3.4) are not there, the optimization model
(1.3.1) — (1.3.3) is said to be a linear programming model (LP) if
all the functions 6(z), g;(z) are linear functions (i.e., each of them is of
the form ayzy + ... + a,x,, where a4, ...,a, are given constants). LP
is a very important model because it has many applications in a wide
variety of areas. Also, many other models are solved by algorithms
that have subroutines which require the solution of LP subproblems.
The rich mathematical theory of LP is in a very highly developed and
beautiful state, and many efficient algorithms have been developed for
solving LLPs. High quality software implementations of these algorithms
are also widely available. Chapters 3 to 6 discuss examples of LP appli-
cations, and algorithms for solving and analyzing LP models including
specialized LP models with special properties.

The optimization model (1.3.1)—(1.3.4) is said to be a linear inte-
ger programming model (ILP) or commonly IP if all the functions
6(x), gi(x) are linear functions, and all the sets A; are the set of inte-
gers. Often the word “linear” is omitted and the model is referred to
as an integer program or IP. IP is even more widely applicable than LP
since combinatorial choices found in many applications and combina-
torial optimization problems can be modeled using binary and integer
variables. IP theory is well developed, but more so in a negative way.
For many IP models existing algorithms can only handle problems of
moderate size within a reasonable time. So, the development of clever
and ingenious heuristic approaches to obtain reasonable solutions to
large TP models fast is a highly thriving area of research. Chapters 7,
8, 9 discuss IP models, and approaches for handling them.

Mathematical models for some multiperiod decision problems can
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be expressed in a form similar to (1.3.1)—(1.3.4), but Chapter 10 dis-
cusses the recursive approach that can be applied on simple problems
posed in the multiperiod format directly without using such models.
The application of this recursive approach to solve simple project plan-
ning problems without any complicating constraints is the subject of
Chapter 11.

Finally, when constraints (1.3.4) are not there, and at least one
of the functions 6(z), g;(x) is nonlinear, (1.3.1)—(1.3.3) is known as
a continuous variable nonlinear program (NLP). Development
of the theory of nonlinear programming has been going on ever since
Newton and Lebnitz discovered calculus in the 17th century. We do
not discuss NLP models in this book.

The subject that includes linear, integer, and nonlinear program-
ming problems under its umbrella is called mathematical program-
ming.

1.6 Background Needed

The most important background necessary for studying this book is
knowledge of the Gauss-Jordan (GJ) method for solving systems
of linear equations, the concepts of linear independence and bases from
linear algebra, and the fundamental concepts of n-dimensional geome-
try. An excellent way to acquire this is to study Chapters 1, 4 for the
GJ method and background in linear algebra, and Chapter 3 for back-
ground in n-dimensional geometry, in the self-study webbook Sopho-
more Level Self-Teaching Webbook for Computational and Al-
gorithmic Linear Algebra and n-Dimensional Geometry [1.1].

1.7 Exercises

1.1: We have discussed classifications of decision problems into several
types:

Categories 1, 2;

Deterministic, stochastic;
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Single period, multiperiod;
Static, dynamic;

Single objective, multiobjective.

Explain these classifications clearly. Think of some examples of
your own for each type and explain them in complete detail.

1.2: Discuss some strategies used in practice for handling stochastic
decision problems, explaining why they may be preferred to others.

1.3: Explain the practical difficulties in applying the many nice ap-
proaches developed in theory to handle multiperiod decision problems,
on problems involving many periods.

1.4: Think of some decision problems involving optimization, and
state them clearly in your own words. Explain what data you will
need to solve them. Discuss how you will handle these problems using
your present state of knowledge wothout looking at the rest of this
book. Keep these with you. Later after you have studied the book
completely, review these notes and see if studying this book has helped
you reach better decisions for these problems.

1.8 References

[1.1] K. G. MURTY, Sophomore Level Self-Teaching Webbook for Com-

putational and Algorithmic Linear Algebra and n-Dimensional Geom-

etry, available at the website:
http://ioe.engin.umich.edu/people/fac/books/murty/
algorithmic_linear_algebra/



Index

For each index entry we provide
the section number where it is
defined or discussed first, and
number of some sections where
it appears prominently.

Constraint function 1.2, 1.3
Controllable inputs 1.1
Cost measure 1.3

Data elements 1.3
Decision maker 1.1
Decision making 1.1
Categories of 1.1
Category 1; 1.1
Category 2; 1.1
Decision variables 1.1
Discrete problem 1.3

Feasible solution 1.3
Optimal 1.3

Gauss-Jordan (GJ) method
1.6

ILP, IP 1.5
Integer Program 1.5

Linear Program 1.5

19

LP 1.5

Mathematical model 1.1, 1.2
Dynamic 1.3
Static 1.3

Mathematical programming 1.5

Nonlinear Programs (NLP)
1.5
Continuous variable 1.5

Objective function 1.3

Optimization model 1.3
Continuous variable 1.3
Discrete 1.3
Deterministic 1.3
Dynamic 1.3
Multiobjective 1.3
Multiperiod 1.3
Single objective 1.3
Static 1.3
Stochastic 1.3

Profit measure 1.3
Quantitative analysis 1.1

Relaxations 1.1
RHS constant 1.2, 1.3
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System 1.1
Uncontrollable factors 1.1

Variable 1.1
Bounds for 1.3
Decision 1.1
Unrestricted 1.3



