
Contents

10 Dynamic Programming (DP) 511
10.1 Sequential Decision Processes 511
10.2 Backwards Recursion, a Generalization of Back Substi-

tution . 521
10.3 State Space, Stages, Recursive Equations 524
10.4 To Find Shortest Routes in a

Staged Acyclic Network 530
10.5 Shortest Routes - 2 . 534
10.6 Solving the Nonnegative Integer

Knapsack Problem By DP 539
10.7 Solving the 0−1 Knapsack Problem by DP 542
10.8 A Discrete Resource Allocation Problem 547
10.9 Exercises . 553
10.10References . 563

i

ii

Chapter 10

Dynamic Programming (DP)

This is Chapter 10 of “Junior Level Web-Book Optimization
Models for decision Making” by Katta G. Murty.

10.1 Sequential Decision Processes

So far, we have discussed methods for solving single stage or static
models; i.e., we find a solution at one time for the model and we
are done. But in many applications we need to make a sequence of
decisions one after the other. These applications deal with a process
or system that is observed at the beginning of a period to be in a
particular state. That point of time may be a decision point where,
one out of a possible finite set of decisions or actions is to be taken to
move the system towards some goal. Two things happen, both depend
on the present state of the system, and the decision taken:

(i): an immediate cost is incurred (or reward earned)
(ii): the action moves the system to another state in the next

period.

And the same process is repeated over a finite number of periods, n
say. Thus, a sequence of decisions are taken at discrete points of time.
The aim is to optimize an objective function that is additive over time,
to get the system to a desired final state. The objective may be to

511

512 Ch.10. Dynamic Programming

minimize the sum of the costs incurred at the various decision points,
or to maximize the sum of the rewards earned if the problem is posed
that way. The important feature in such a sequential decision process
is that the various decisions cannot be treated in isolation, since one
must balance a desirable low cost at the time of a decision with the
possibility of higher costs in later decisions.

Here we have a multistage problem involving a finite number of
stages, n. The system may be in several possible states. As time passes,
the state of the system changes depending on the sequence of decisions
taken and the initial state at the beginning. Because of these changing
states of the system, the approach for optimizing the performance of
such a system is called dynamic programming (DP).

A selection that specifies the action to take at each decision point
is called a policy. The aim of DP is to determine an optimal policy
that minimizes the total costs in all the stages (or maximizes the total
reward if the problem is posed that way). DP solves such problems
recursively in the number of stages n. At each decision point it selects
an action that minimizes the sum of the current cost and the best future
cost. We will now illustrate these basic concepts with some examples.

Example 10.1.1

Consider a driver in his car, starting at his office in the evening,
to get home as quickly as possible. The problem of finding an optimal
route for this driver through the street network of the city, is known
as a shortest route problem or shortest chain problem or in
some books as a shortest path problem. The street network is
represented by a directed network in which nodes correspond to major
traffic centers or street intersections, and directed arcs joining pairs of
nodes correspond to street segments joining the corresponding traffic
centers; the orientation of the arc being specified by the segment’s
orientation if it is a one way street segment, or otherwise the direction
in which our driver would normally travel that segment on his way
home from work. For a picture of such a network, see Figure 10.8 in
Section 10.4 later on.

10.1: Sequential Decision Making 513

North

East

P
L

(P
latt)

C
A

(C
arp

en
ter)

PA (Packard)

EL (Ellsworth)

PA
(Packard)

EI (E
ise

nh
ow

er
)

Figure 10.1: The car (system) at state “PL-PA on PL-S”.

In this problem, the system is the car with the driver sitting behind
the steering wheel. The states of the system are the various street
intersections or nodes. We show some of the streets in Figure 10.1, and
suppose at some stage the driver has just arrived at the Platt-Packard
intersection on Platt South (called PL-PA on PL-S in Figure 10.2). So,
the present state of the system is PL-PA on PL-S.
There are 3 possible actions the driver can take now, they are: (a)

to continue driving straight on Platt, (b) turn left onto Packard East, or
(c) turn right onto Packard West. The result of each of these actions
is to cause a transition of the system to the state which is the next
intersection on the street along which the car continues to travel by
that action; and the immediate cost incurred as a result of this action
is the driving time in minutes it takes the car to reach that intersection.
See Figure 10.2. The objective is to minimize the total driving time
before reaching the “home” state.
The information needed to apply DP to solve a sequential decision

problem such as the shortest route problem discussed in Example 10.1.1
is:

• the set of all possible states of the system (assumed to be finite);

514 Ch.10. Dynamic Programming

PL-PA on PL-S

PL-EL intersection

PA-CA intersection

PA-EI fork

Decisio
n-D

riv
e stra

ight

Im
mediate cost = 3 min.

Immediate cost = 5 min.
Turn left

Immediate cost = 2 min.

Turn right

Present state Next state that the
decision leads to

Figure 10.2: Choice between 3 possible decisions at present state. The
outcome of each is a transition to the next state shown on the right.
Immediate cost of taking the decision is the driving time incurred before
reaching the next state. �Y

• the set of all decisions that can be taken in each state (one of these
decisions has to be taken when the system reaches this state);

• and the immediate cost incurred and the next state that the
system will reach under each of these decisions.

With this information we have total knowledge of the dynamics of
the system. Since state transitions occur at discrete points of time,
such a system is called a discrete-time dynamic system, and we
assume that the cost function is additive over time. With this infor-
mation, the problem of finding an optimum policy (one that specifies
the optimum decision to be taken in each possible state of the system)
can be solved by the DP approach. We will discuss this approach in
the next section, but first we present some more examples to illustrate
the basic concepts.

10.1: Sequential Decision Making 515

Important applications of DP arise in continuous time problems,
but these problems are beyond the scope of this book. We restrict our
discussion to discrete DP.

Example 10.1.2: Solving a nonnegative integer knapsack
problem by DP

Consider the nonnegative integer knapsack problem discussed in
Chapter 7. In this problem there are a set of n objects available to be
loaded into a knapsack with a weight capacity of w0, a positive integer.
The aim is to determine how many copies of each object to load into
the knapsack, to maximize the total value of all the objects loaded
subject to the knapsack’s weight capacity constraint. We assume that
the weights of all the objects are positive integers.

Data for the nonnegative integer knapsack problem
Object Weight kg. Value $
1 14 700
2 8 900
3 5 500
4 4 600
5 22 2700
6 25 3500
Knapsack’s remaining weight capacity 20 kg.

This problem can be posed in a sequential decision format by con-
sidering the loading process as a sequential process loading one object
at a time. In this format, the state of the system at any point of time
in the loading process can be represented by the knapsack’s remaining
weight capacity. So, there are w0 + 1 possible states of the system.
At any stage, an object is considered available for loading into the
knapsack iff its weight is ≤ the knapsack’s remaining weight capacity
(i.e., the state of the system) at that stage. And the decisions that
can be taken at that stage are to load one of the available objects into
the knapsack. There is an immediate reward from that decision in the
form of the value of the object loaded. This decision will reduce the

516 Ch.10. Dynamic Programming

State = 20 kg.
capacity

Decisio
n - Load one of object 1

Immediate reward $700

State = 6 kg.
capacity

Load one of object 2

Immediate reward $900

State = 12 kg.
capacity

Load one of object 3
Immediate reward $500

State = 15 kg.
capacity

Load one of object 4

Immediate reward $600
State = 16 kg.
capacity

Present state Next state that the
decision leads to

Figure 10.3: State transitions in a nonnegative integer knapsack prob-
lem.

knapsack’s remaining weight capacity by the weight of the object loaded,
and the next state of the system is determined from this.
As a numerical example, consider a point of time at which the

knapsack’s remaining weight capacity is 20 kg., and there are n = 6
objects according to the data given above.
Objects 5, 6 have weight > the knapsack’s remaining weight capac-

ity at this time, so they are not available for loading at this time; the
other objects 1 to 4 are available now. Thus there are 4 possible deci-
sions that can be taken in the present state, corresponding to loading
one of objects 1 to 4. The results of these decisions are depicted in
Figure 10.3
In this problem the aim is to maximize the total value loaded, which

is the sum of the rewards obtained over the entire process before it ter-
minates. The DP approach for solving the nonnegative integer knap-

10.1: Sequential Decision Making 517

sack problem using this format is discussed later on.

Example 10.1.3: Solving a 0−1 knapsack problem by DP

Here we consider the 0−1 knapsack problem discussed in Chapters
7, 8, 9. As in Example 10.1.2, there are n objects available to be
loaded into a knapsack of weight capacity w0, a positive integer; but
in this problem, only one copy of each object is available. The aim of
the problem here is to determine the subset of objects to be loaded
so as to maximize the total value of the objects loaded subject to the
knapsack’s weight capacity.

In Example 10.1.2, any nonnegative integer number of copies of
any of the objects could be loaded into the knapsack subject to its
weight capacity and we were able to represent the state of the system
by the knapsack’s remaining weight capacity. Here we can include
only one copy of any object in the knapsack (that is why this is the
0−1 knapsack problem), and in this problem, the knapsack’s remaining
weight capacity does not include enough information to fully represent
the state of the system and to decide what possible decisions can be
taken in a state.

For example, let the weight of object 1 be 14 kg. and at some stage,
let the knapsack’s remaining weight capacity be 20 kg. Because this is
a 0−1 problem, at this stage object 1 is available for loading into the
knapsack only if it is not already loaded into the knapsack. Thus in
this problem, at any stage, an object is considered available for loading
into the knapsack iff:

(i) its weight is ≤ knapsack’s remaining weight capacity at this
stage, and

(ii) the copy of the object is not already loaded into the knapsack.

In this format, the state of the system can be represented by the
knapsack’s remaining weight capacity and the subset of objects still
available for loading into the knapsack at this stage by the above def-
inition. And the decisions that can be taken in this state are to load
one of the available objects into the knapsack. And the system moves

518 Ch.10. Dynamic Programming

forward.

As a numerical example, consider a point of time at which the
knapsack’s remaining weight capacity is 20 kg., and there are 6 objects
not yet loaded into the knapsack, according to the following data.

Data on objects not yet loaded
Object Weight kg. Value $
1 14 700
2 8 900
3 5 500
4 4 600
5 22 2700
6 25 3500

Knapsack’s remaining weight capacity 20 kg.

Objects 5, 6 have weight greater than the knapsack’s remaining
weight capacity at this time, so they are not available for loading at
this time; the other unincluded objects 1 to 4 are available now. Thus,
there are 4 possible decisions that can be taken in the present state.
They correspond to loading one of objects 1 to 4. The results of these
decisions are depicted in Figure 10.4

In this problem also, the objective is to maximize the total value
loaded into the knapsack. Using the definition of states given here
(characterized by the knapsack’s remaining weight capacity and the
subset of objects available for loading), the 0 − 1 knapsack problem
can be solved by the DP approach. This is discussed later in Section
12.6.

The reader should pay careful attention to the difference in the de-
finition of states in Example 10.1.2 and this example. To represent a
nonnegative integer knapsack problem (any number of copies of any
object could go into the knapsack subject only to its weight capacity)
with n objects and knapsack’s weight capacity w0, in a sequential de-
cision format, we needed w0 + 1 states. The 0 − 1 knapsack problem
(only one copy of any object is available) with the same data may

10.1: Sequential Decision Making 519

State = 20 kg.
capacity, and
objects 1, 2, 3,
4 available

Decisio
n - Load object 1

Immediate reward $700

State = 6 kg.
capacity, and
objects 3, 4
available

Load object 2

Immediate reward $900

State = 12 kg.
Capacity, and
objects 3, 4
availableLoad object 3Immediate reward $500 State = 15 kg.
capacity, and
objects 1, 2, 4
available

Load object 4

Immediate reward $600

State = 16 kg.
capacity, and
objects 1, 2, 3
available

Present state Next state that the
decision leads to

Figure 10.4: State transitions in a 0−1 knapsack problem.

need n(w0+1) states to be represented in a sequential decision format,
because here we need to carry the subset of objects not yet loaded into
the knapsack in the definition of the state.

Ingenuity Needed to Model a Problem for Solution
by DP

Thus, in posing a problem for solution by DP, one should formulate
the definition of states very carefully taking the structure of the prob-
lem into account. The definition of states should always carry enough
information so that the set of all possible decisions in any state can be

520 Ch.10. Dynamic Programming

determined unambiguously to continue the process till the end.

That’s why even when a decision problem can be posed as a se-
quential decision problem, formulating it for solution by DP algorithms
requires a lot of ingenuity (much more so than for solving problems by
techniques like LP, integer programming, discussed earlier, when those
techniques are appropriate for modeling the problem) and very careful
thought. Facility in applying DP comes with experience and practice,
our goal in this chapter is to expose you to the basic idea of recursion
that is the fundamental technique behind DP algorithms, and to illus-
trate it with a few very simple examples. To gain mastery of DP you
have to follow this up with additional reading.

Deterministic and Stochastic DP

So far, we assumed that the result of an action taken in a state
is an immediate reward which is known with certainty and transition
to a known state. The branch of DP dealing with models in which
there is no uncertainty, and we have perfect information about the
effect of every possible action in every state of the system, is called
deterministic dynamic programming.

In some applications the effects of actions may not be known with
certainty. As an example, suppose the unemployment in the country is
running around 7.5%, and the President is considering investing some
federal money in public works programs to stimulate employment. As-
sume that the President has two possible options, to invest either $100
billion or $200 billion, over the next two years. The effect of either
of these actions on the unemployment percentage cannot be predicted
with certainty, but government economists have come up with the fol-
lowing estimates of the results from these investments.

Option Estimated probability of
unemployment % decreasing to
7.0 6.7 6.4

Invest $100 bil. 0.70 0.20 0.10
Invest $200 bil. 0.60 0.25 0.15

10.2: Backwards Recursion 521

Here the state of the system is measured by the unemployment
percentage. For each possible action we do not know with certainty to
which state the system will move as a result of that action, but we have
its probability distribution. Each of these actions may contribute some
amount to the already high national debt; these contributions may not
also be known with certainty, but we can estimate their probability
distributions. The President’s goal may be to bring the unemployment
percentage to a desirable level over the next 5 years, while minimizing
the total expected contribution of the actions taken in this regard to
the national debt.

In this situation, the total contribution incurred to the national debt
to bring the unemployment percent to a desirable level is a random
variable not completely under our control, and we can only hope to
minimize its expected value.

The branch of DP which deals with models based on such prob-
abilistic data to minimize total expected cost, is called stochastic
dynamic programming.

In this chapter we treat only deterministic DP, but the interested
reader should consult the references at the end of this chapter for dis-
cussion of stochastic DP.

10.2 Backwards Recursion, a Generaliza-

tion of Back Substitution

In a process that involves many steps to solve a problem, or to reach
a desired goal; each step either makes the problem simpler, or brings
the system closer to the desired goal. So, the remaining problem in
the final step is going to be a simple one for which the solution can be
obtained very easily.

Backwards recursion is the mathematical technique that starts with
the simple solution for the final step, and by working backwards one
step at a time, finally obtains the solution for the original problem in
the initial step. It is a very important technique with many applica-
tions.

522 Ch.10. Dynamic Programming

Example 10.2.1

We will illustrate backwards recursion by showing its application
on a puzzle problem taken from [R. Smullyan, 1997] cited in Chapter
7. This puzzle was posed by Scheherazade to her husband, the King,
on the 1003rd of their married life. Here is how she related it:

“Your Majesty, one night a thief stole into Abdul’s jewelery shop.
He joyfully came across a pile of diamonds. His first thought was to
take them all, but then his conscience bothered him, so he took only
half the number of diamonds in the pile and started to leave. But then
temptation made him take just one more, and he left the shop.

Strangely enough, a few minutes later a 2nd thief entered the shop
and took half the number of remaining diamonds and one more. Then
later a 3rd thief entered the shop and took half the number of remaining
diamonds and one more. Then a 4th thief entered the shop and took
half the number of remaining diamonds and one more.

Then Abdul entered the shop and found that all the diamonds in
the pile were gone.

The problem is to determine how many diamonds were in the pile
to start with.”

We will now show how this problem can be solved by backwards
recursion. Remember that five persons entered the shop one after the
other, Thiefs 1 to 4 and finally Abdul himself, in this order. For i =
1 to 5, let xi denote the number of diamonds in the pile when the ith
person in this sequence just entered the shop. Our problem is to find
x1.

We are told that Abdul, the 5th person in the sequence, found no
diamonds left in the pile. So, x5 = 0. We will work backwards one
step at a time, from this known information, to determine the desired
quantity, value of x1.

Going back to the 4th person in the sequence, Thief 4, he finds x4
diamonds in the pile when he enters the shop, and takes half of them
plus one (i.e., (x4/2)+1 diamonds) and hence leaves (x4/2)−1 = x5 = 0
diamonds, which yields x4 = 2. This is exactly what recursion is,

10.2: Backwards Recursion 523

knowing the value of x5 we have found the value of x4 in this step.

Going back to the 3rd person in the sequence, Thief 3, he finds x3
diamonds in the pile when he enters the shop, takes (x3/2)+1 of them
and leaves (x3/2)− 1 = x4 = 2 diamonds, which yields x3 = 6.
Now going to the 2nd person in the sequence, Thief 2, he finds x2

diamonds in the pile when he enters the shop, takes (x2/2)+1 of them
and leaves (x2/2)− 1 = x3 = 6 diamonds, which yields x2 = 14.
Now coming to the 1st person in the sequence, Thief 1, he finds x1

diamonds in the pile when he enters the shop, takes (x1/2)+1 of them
and leaves (x1/2)− 1 = x2 = 14 diamonds, which yields x1 = 30. Now
our original problem is solved. �Y

The reader can easily see that what we solved here is a triangular
system of linear equations in variables xi, i = 1 to 5, to find the value
of the variable xi in the solution in the order i = 5 to 1; and that
the method that we used is exactly the back substitution method
of linear algebra. Back substitution is a method for solving a system
of linear equations with triangular structure, backwards recursion is a
generalization of it to solve more general functional equations defined
in the next section.

Exercises

10.2.1: (From [R. Smullyan, 1997] cited in Chapter 7) Consider the
problem solved by backwards recursion in Example 10.2.1. Suppose
each of the first four persons to enter the shop (Thiefs 1 to 4) take half
the number of diamonds he found plus two (instead of half plus one as
in the example problem), and the 5th person (Abdul) finds none as in
the example problem. Determine how many diamonds did Thief 1 find
in the pile when he entered the shop.

10.2.2: (From [R. Smullyan, 1997] cited in Chapter 7) Consider
the problem which is the same as that in Exercise 10.2.1, except that
the 5th person (Abdul) finds one diamond when he enters. How many
diamonds did Thief 1 find in the pile when he entered the shop?

524 Ch.10. Dynamic Programming

10.3 State Space, Stages, Recursive Equa-

tions

States of the System, State Space

The set of all possible states of the system during the entire se-
quential decision process is called the state space. The definition of
each state should contain all necessary information so that the set of
decisions that can be taken when the system is in that state can be
easily identified. Associated with each state s is the decision set D(s)
of decisions that can be taken at s.
States play a key role in DP. Transitions always occur from one

state to another. In our deterministic DP models we assume that the
definition of states is so formulated that the immediate cost or reward,
and the next state that the system moves to after a decision, depend
only on the current state and the decision, and not on the path of past
states through which the system arrived at the current state. This
property is known as the Markovian property.
Since states are the points where decisions are made; the sequential

decision process evolves from one state to the next. The sequence
of states visited by the system before the process ends, forms a path
known as a realization; it depends on the initial state and the policy
adopted (i.e., the decisions made at the various states along the path).
This path can be represented as in Figure 10.5. Nodes in it represent
states, and arcs correspond to decisions. There is an immediate cost
incurred for each arc; the objective value of this realization is the sum
of the costs incurred over all the arcs on the path.
To formulate an optimization problem for solution by DP requires

the identification of all the states in the state space. This usually takes
a lot of ingenuity. We will illustrate it with many examples to give the
reader some experience.

Stages in Some DP Models

Every DP model has states, and it can be solved using them. But

10.3: States, Stages, Recursive Eqs. 525

State i1 Immediate cost c1

i2 c2

... iN-1 cN-1

iN

Initial state Terminal state

Figure 10.5: A realization of a sequential decision process. The total
cost of this realization is c1 + c2 + . . .+ cN−1.

in some DP models there are also the so-called stages. These are se-
quential decision models in which the states form groups called stages
that appear in some order. In these models transitions always occur
from a state in some stage, to a state in the next stage. The process
always begins in some state in stage 1, then it moves to stage 2, and
then to stage 3, etc. Such models usually arise in situations where
decisions are taken on a periodic basis, say once every time period at
the beginning of the period.

Thus, if a sequential decision process has a natural organization
into stages, the state space S can be partitioned as S1 ∪ S2 ∪ . . .∪ SN ,
and the system always moves from S1 to S2, from S2 to S3, etc. and
finally from SN−1 to SN . All the states in SN (stage N) are terminal
states, i.e., the process terminates when a state in SN is reached. In
this case it is convenient to represent states so that the number of the
stage to which they belong is apparent, since these stage numbers can
be used to simplify the DP algorithm.

We will consider sequential decision processes that have definite
ends, those at which decision making begins and ends; i.e., models
with finite planning horizons. If the model is a staged model with N
stages, it begins in stage 1 and terminates after N − 1 transitions by
reaching stage N . If the model is not a staged model, it terminates
whenever a desired terminal state is reached, or after some specified
number of transitions take place.

Decision Sets and Policies

Consider a general model in which the state space is the set S. To

526 Ch.10. Dynamic Programming

apply DP we need to know, for each state s ∈ S, the decision set
D(s), the set of decisions (or actions) that can be taken at s, and the
immediate cost (or reward) and the next state of the system that comes
up as a consequence of selecting each of these decisions. Since a solution
must specify the decision to be selected from D(s) for each s ∈ S, it is
called a policy. A policy completely specifies the sequence of decisions
to be taken after each transition in every possible realization.

Optimum Value Function

For each state s ∈ S define
f(s) = minimum total cost that is incurred (or maximum

reward that is obtained) by pursuing an optimum
policy beginning with s as the initial state.

This function f(s) defined over the state space S is called the op-
timum value function or OVF.
Suppose the problem specifies desired terminal states, i.e., the

process terminates whenever the system reaches one of the states in
this terminal set. No more decisions will be taken when a terminal
state is reached, and the future cost (or reward) is 0. Hence, if the
system is initiated in one of these terminal states, the optimum cost
(or reward) is 0, i.e.,

f(s) = 0 if s is a terminal state (10.3.1)

(10.3.1) is called the boundary condition that the OVF satisfies.

Principle of Optimality

The DP technique rests on a very simple principle called the prin-
ciple of optimality, that is a simple consequence of the additivity
property of the objective function to be optimized, and the Markovian
property. We give several equivalent versions of it.

Principle of Optimality - Version 1 An optimum policy has

10.3: States, Stages, Recursive Eqs. 527

the property that if s is a state encountered in an optimum realization
obtained by pursuing an optimum policy beginning with an initial state
s0; then the portion of this realization from s till the end constitutes
an optimum realization if the process is initiated with the system in s.

Principle of Optimality - Version 2 Given the current state
at some point of time, the optimal decisions at each of the states en-
countered in the future do not depend on past states or past decisions
made at them.

Principle of Optimality - Version 3 An optimum policy has
the property that whatever the initial state and the initial decision
are, the remaining decisions must constitute an optimum policy with
regards to the state resulting from the first transition.

In other words, given the current state on an optimum realization at
some time, an optimum strategy for the remaining time is independent
of the policy adopted in the past. So, knowledge of the current state of
the system conveys all the information about its previous behavior nec-
essary for determining the optimum sequence of decisions henceforth.
This is the consequence of the Markovian property mentioned above,
and the additivity of the objective function over the various transitions
of the system.

Explanation of Principle of Optimality in Terms
of Shortest Route Problem

To explain the principle of optimality in terms of the shortest route
problem, suppose we found the shortest route, call it P , from (DE)Detroit
to (SE)Seattle, and it passes through (CH)Chicago. Then the principle
of optimality states that the Chicago to Seattle portion of this route,
call it P1, is a shortest route from Chicago to Seattle. For, if P1 is
not a shortest route from Chicago to Seattle, let P2 be a shorter route
than P1 from Chicago to Seattle. Then by following the route P from
Detroit until we reach Chicago, and then following the route P2 from

528 Ch.10. Dynamic Programming

SE CH DE

SE

... P
1
... ...

...
P

2

...

Figure 10.6: Top path P from DE to SE passes thro’ CH. If CH to SE
portion, P1 of P has length 100 units, & another path P2 from CH to
SE has length < 100 (80 say), there is contradiction; since replacing P1
on P by P2 gives a shorter path than P from DE to SE.

Chicago to Seattle, we will get a route from Detroit to Seattle which is
shorter than P , contradicting that P is a shortest route from Detroit
to Seattle. See Figure 10.6.

The principle of optimality is a direct and simple consequence of the
Markovian property and assumption that the objective function is the
sum of the immediate costs incurred at each state along the optimal
path (the additivity of the objective function over the transitions of
the system).

The Functional Equation for the OVF

Consider the formulation in which the total cost is to be minimized.
Let s0 be the current state of the system at some time. Suppose there
are k possible decisions available at this state, of which one must be
chosen at this time. Suppose the immediate cost incurred is ct and the
system transits to state st if decision t is chosen at this time, for t = 1
to k. As defined earlier, for t = 0, 1, . . . , k

f(st) = minimum total cost incurred by pursuing an opti-
mum policy beginning with st as the initial state.

For t = 1 to k, if we select decision t now, but follow an optimum
policy from the next state onwards, the total cost from this point of

10.3: States, Stages, Recursive Eqs. 529

time will be ct + f(st). The reason for this is the following: ct is
the immediate cost incurred as a result of the decision now, and this
decision moves the system to state st. And f(st) is the cost incurred by
beginning with state st and following an optimum policy into the future.
By the additivity hypothesis, the total cost from now till termination
is the sum of these two costs, which is ct + f(st).
Hence, an optimum decision in the current state s0 is the t between

1 to k which minimizes ct + f(st). Thus we have the equation

f(s0) = min{ct + f(st) : t = 1 to k} (10.3.2)

and an optimum decision at the current state s0 is the decision t which
attains the minimum in (10.3.2). Clearly (10.3.2) is a direct conse-
quence of the additivity hypothesis through the principle of optimality.
(10.3.2) is intimately related to version 3 of the principle of optimality
because the sum ct + f(st) in it is the cost of the path that selects
decision t now, and thereafter uses decisions dictated by an optimal
policy.
(10.3.2) is known as a functional equation because it gives an

expression for the value of the OVF at state s0 in terms of the values of
the same function at other states s1, . . . , sk that can be reached from
s0 by a single decision. It is also known as the optimality equation
in the literature.

Backwards Recursion

If the values of f(s1), . . . , f(sk) are all known, (10.3.2) can be used
to determine the value of f(s0) and the optimum decision at s0. This
is called recursive fixing since it fixes the value of f(s0) from the
known values of f(s1), . . . , f(sk).
By (10.3.1), f(s) = 0 for every terminal state s. Starting from the

known values of f(s) at terminal states s (obtained from the boundary
conditions), we can compute the values of the OVF at all the states,
using (10.3.2), by moving backward one state at a time. This method
of evaluating the values of OVF at all the states is called the recur-
sive technique or backwards recursion (because it starts at the
terminal states and moves backward one state at a time), or recursive

530 Ch.10. Dynamic Programming

fixing (because it consists of evaluating the functional equations for
the various states in a predetermined sequence). Some writers refer to
the recursive technique itself as dynamic programming. DP finds an
optimum policy by recursion.
If the problem is stated as one of maximizing the total reward, the

OVF is defined as the total reward, and we get a functional equation
similar to (10.3.2) with “maximum” replacing the “minimum.”
If the states are grouped into stages in the problem, the boundary

conditions state that f(s) = 0 for all states s in the terminal stage,
stage N , say. In such staged problems, the recursive approach begins
in stage N and moves backward stage by stage, each time finding the
OVF value and the optimum decision for each state in that stage.
To solve a problem by DP, the functional equations have to be

developed for it individually. It takes ingenuity and insight to recognize
whether a problem can be solved by DP and how to solve it actually.
The final output from DP would be a list of values of the OVF

and an optimum decision for each possible state of the system, an
optimum policy. One should remember that all the states may not
materialize in a particular realization, but an optimum policy provides
complete information on what to do if any state in the state space were
to materialize.

10.4 To Find Shortest Routes in a

Staged Acyclic Network

A directed network G = (N ,A) consists of a finite set of nodes N ,
and set of directed arcs A, each arc joining a pair of nodes, with its
orientation indicated by an arrow on it. The arc joining node i to
node j is denoted by the ordered pair (i, j), node i is its tail, and j is
its head. In routing problems (like the one we are discussing) nodes
usually represent cities, traffic centers, road crossings, etc., and arcs
represent transportation channels that can be travelled only from the
tail node to the head node.
A simple circuit in the directed networkG consists of a sequence of

arcs of the form (i1, i2), (i2, i3), (i3, i4), . . . , (ik−1, ik), (ik, i1) along which

10.4: Shortest Routes-1 531

one can go around all the nodes i1, i2, . . . , ik in it and return to the
starting node, with all these nodes i1, . . . , ik being distinct. On the left
side of Figure 10.7, there is a simple circuit with three nodes 1, 2, 3.

Top path P from DE to SE passes thro’ CH. If CH to SE portion,
P1 of P has length 100 units, & another path P2 from CH to SE has
length < 100 (80 say), there is contradiction; since replacing P1 on P
by P2 gives shorter path than P from DE to SE.

1 1

2 3 2 3

Figure 10.7: On the left we have a simple circuit. On the right we have
a simple cycle that is not a simple circuit, because arc orientations are
not compatible.

A simple cycle in a directed network is exactly like a simple circuit,
but at least one arc in it has a reverse orientation that makes it impos-
sible to travel around it. On the right of Figure 10.7 is a simple cycle
(that is not a simple circuit), the arcs in it are (1, 2), (2, 3), (1, 3);
here arc (1, 3) has the reverse orientation.

A directed network is said to be acyclic if it does not have any
simple circuits. In the next section we will describe a simple procedure
to check whether a given directed network is acyclic.

In this section, we consider special type of acyclic networks called
staged acyclic networks. These are directed networks in which nodes
are formed into groups (also called stages) numbered serially as Stage
1, 2, . . .; and every arc in the network goes from a node in one stage
to a node in the next stage. Because of this property, it is impossible
to have a simple circuit in such a network, and so it is acyclic.

In drawing a staged acyclic network, one follows the usual conven-
tion that all the nodes in any stage are aligned vertically.

532 Ch.10. Dynamic Programming

We now consider the problem of finding a shortest route from an
origin node to a destination node in a directed staged acyclic network.
The length (or the driving time) of each arc is given (in the example
network in Figure 10.8 it is entered on the arc itself). We will illustrate
the application of DP to solve this problem by backwards recursion on
the network in Figure 10.8. As we move from the origin node, node 1
in stage 1, towards the destination node, node 14 in stage 6, we always
move from a node in a stage, to a node in the next stage.

Nodes in the network correspond to the states of the system. So
in this problem there are 14 states in all, which are grouped into 6
stages. At each node, the decisions correspond to which of the arcs
incident out of it to travel next. The immediate cost of a decision is
the length of the arc traveled, and this decision moves the system to
the head node of that arc. For example, when at node 3 there are three
decisions to choose from, they are: travel along arc (3, 6) (immediate
cost 10, transit to node 6 next), or travel along arc (3, 7) (immediate
cost 4, transit to node 7 next), or travel along arc (3, 8) (immediate
cost 5, transit to node 8 next).

Now we define the OVF. For each i = 1 to 14, it is

f(i) = length of the shortest route from node i to the
destination node 14.

Since the destination node 14 represents the terminal state, the
boundary condition in this problem is f(14) = 0. Moving backward
one stage at a time, we determine the OVF and optimum decisions at
the various nodes as shown below.

Stage 5
f(12) = min{14 + f(14)} = min{14 + 0} = 14. Opt.

decision, travel along arc (12, 14).
f(13) = min{13 + f(14)} = min{13 + 0} = 13. Opt.

decision, travel along arc (13, 14).

10.4: Shortest Routes-1 533

Stage 4
f(9) = min{19 + f(12), 8 + f(13)} =min{19+14, 8+13}

= 21. Opt. decision, travel along arc (9, 13).
f(10) = min{16+f(12), 14+f(13)}=min{16+14, 14+13}

= 27. Opt. decision, travel along arc (10, 13).
f(11) = min{12+f(13)} = min{12+13} = 25. Opt. deci-

sion, travel along arc (11, 13).

Stage 3
f(5) = min{12+f(9)} = min{12+21} = 33. Opt. deci-

sion, travel along arc (5, 9).
f(6) = min{6+f(9), 4+f(10)}=min{6+21, 4+27}= 27.

Opt. decision, travel along arc (6, 9).
f(7) = min{3+f(10), 9+f(11)} = min{3+27, 9+25} =

30. Opt. decision, travel along arc (7, 10).
f(8) = min{7+f(11)} = min{7+25} = 32. Opt. deci-

sion, travel along arc (8, 11).

Stage 2
f(2) = min{6+f(5), 4+f(6)} = min{6+33, 4+27} =

31.Opt. decision, travel along arc (2, 6).
f(3) = min{10+f(6), 4+f(7), 5+f(8)} = min{10+27,

4+30, 5+32} = 34. Opt. decision, travel along
arc (3, 7).

f(4) = min{7+f(7), 11+f(8)} = min{7+30, 11+32} =
37. Opt. decision, travel along arc (4, 7).

Stage 1
f(1) = min{8+f(2), 3+f(3), 9+f(4)} = min{8+31,

3+34, 9+37} = 37. Opt. decision, travel along
arc (1, 3).

The optimum decisions, and the OVF values are shown on Figure
10.8. The shortest route from the origin node 1 to the destination
node 14 of length 37 is marked with thick lines there. By following
the optimum decisions determined at the nodes, we can also obtain the
shortest route from any node in the network, to node 14.

534 Ch.10. Dynamic Programming

1 3

2

4

5

6

7

8

9

10 14

11

12

13

Stage 1 65432

3

Origin

16
Destination

0

3, 37

6, 31

7, 34

7, 37

9, 33

9, 27

10, 30

11, 32

13, 21

13, 27

13, 25

14, 14

14, 13

8

10

6 12

4

4 3

4

6 19

14

13

8

14

129

711

5
9

7

Figure 10.8: The staged acyclic network. Node numbers are entered
inside them. Arc lengths are marked on them. By the side of each
node we marked the next node to go to (to reach the destination by a
shortest route from that node), and in bold the length of the shortest
route from that node to the destination. The shortest route from the
origin to the destination is marked in thick lines.

10.5 Shortest Routes in an Acyclic

Network That is Not Staged

Let G = (N ,A) be a directed network with N as the set of nodes, and
A as the set of arcs. Let |N | = n.
Here we first discuss how to check whether G is acyclic. Assuming

that it is, we then show how to find a shortest route from an origin node
to a destination node in it, using DP treating the nodes as states. Even
though there are no stages, backwards recursion solves the functional
equations beginning with the destination node, and moving backward
one node at a time.

10.5: Shortest Routes-2 535

How to Check Whether G is Acyclic, and Develop
an Acyclic Numbering for its Nodes

A special property of acyclic networks is that its node can be num-
bered in such a way that with this numbering, on every arc (i, j) of the
network, i < j (i.e., on every arc the number of the tail node is < the
number of the head node). See [K. G. Murty, 1992, of Chapter 5] for a
proof. A numbering of nodes of the network satisfying this property is
called acyclic numbering of the nodes. Such a numbering can be
found by using the following procedure.

Initially this procedure begins with the original network G. During
the procedure, which may take several steps, in each step some nodes
are numbered, they and all the arcs containing them are considered
deleted from the network for the remaining part of the procedure, and
the process continues with the remaining network; until all the nodes
in the network are numbered.

1 If there are nodes that have not been numbered in the proce-
dure, look for nodes which have no arcs incident into them in the
remaining part of the network. If there are no nodes satisfying
this property, the network is not acyclic, terminate. Otherwise,
number all these nodes serially in some order beginning with 1 if
this is the first step, or beginning with the next unused integer if
some nodes are numbered already. Go to 2.

2 If all the nodes are now numbered, we have the desired node num-
bering, terminate. Otherwise, consider all the newly numbered
nodes and arcs incident at them as deleted, and go back to 1 with
the remaining part of the network.

As an example, consider the network on the left in Figure 10.9.
In this network, the leftmost pair of nodes have no arcs incident into
them. So, they are numbered 1, 2 first. Continuing this way, nodes
get numbered by the above procedure from left to right, leading to the
acyclic numbering of the nodes on the right in Figure 10.9.

536 Ch.10. Dynamic Programming

1 2

3

4

5 6

Figure 10.9: Acyclic numbering of nodes in an acyclic network.

As another example, consider the network in Figure 10.10. The one
node in this network with no arc incident into it is numbered as node
1. In the remaining network after node 1 and the thick arcs incident at
it are deleted, every node has an arc incident into it. So, we terminate
with the conclusion that the network in Figure 10.10 is not acyclic.

1

Figure 10.10: A network that is not acyclic.

In the original network, G itself, nodes may have some numbers
or labels. However, the DP algorithm for finding the shortest route
operates with the acyclic numbering of the nodes just obtained.

10.5: Shortest Routes-2 537

The DP Algorithm for Finding Shortest Routes

This algorithm works with the acyclic numbering of the nodes, and
hence only applies to acyclic networks. If the network is not acyclic,
a diiferent algorithm (not discussed in this book) has to be used for
finding shortest routes in it. So, the node numbers in the discussion
here refer to those in the acyclic numbering.

We assume that nodes in our network G are numbered serially us-
ing an acyclic numbering. Let nodes 1, n be the origin, destination,
respectively. For each arc (i, j) in the network G let cij be its length.
As before, define the OVF

f(i) = length of the shortest route from node i to the
destination node n.

The boundary condition is f(n) = 0. Beginning with this, back-
wards recursion computes the values of the OVF in the order f(n −
1), f(n− 2), . . . , f(1), using the functional equation

f(i) = min{cij + f(j) : i+ 1 ≤ j ≤ n s. th. (i, j) arc in G} (10.5.1)

in the order i = n − 1 to 1. The j that attains the minimum on the
right in (10.5.1) defines the next node to go to from node i.

As an example, consider the network in Figure 10.11, with arc
lengths entered on the arcs, and nodes with an acyclic numbering.
Clearly, this is an acyclic network, but not a staged one as defined in
Section 10.4.

Here is how backwards recursion proceeds on this network. The
boundary condition is f(9) = 0 since 9 is the destination node.

538 Ch.10. Dynamic Programming

3
4

2

6
3

12
10

8

5

5
1

2

3

4

5

6

7

8

9

3

9
711

7

2

Origin Destination

6, 10 6, 8 9, 3

0

7, 5

2, 13

5, 14 6, 12 9, 12

Figure 10.11: The length of each arc is entered on it. By the side of
each node we marked the next node to go to on the shortest route from
that node to the destination, and the length of that shortest route in
bold face.

f(8) = min{12 + f(9)} = min{12 + 0} = 12. Opt. deci-
sion, travel along arc (8, 9).

f(7) = min{3 + f(9)} = min{3 + 0} = 3. Opt. decision,
travel along arc (7, 9).

f(6) = min{2 + f(7), 8 + f(9), 9 + f(8)} = min{2+3,
8+0, 9+12} = 5. Opt. decision, travel along arc
(6, 7).

f(5) = min{7+f(6), 10+f(8)}=min{7+5, 10+12}= 12.
Opt. decision, travel along arc (5, 6).

f(4) = min{6+f(7), 3+f(6)} = min{6+3, 3+5} = 8.
Opt. decision, travel along arc (4, 6).

f(3) = min{11+f(4), 2+f(5)}=min{11+8, 2+12}= 14.
Opt. decision, travel along arc (3, 5).

f(2) = min{4+f(4), 5+f(6), 7+f(5)} = min{4+8, 5+5,
7+12} = 10. Opt. decision, travel along arc (2,
6).

f(1) = min{3+f(2), 5+f(3)} = min{3+10, 5+14} = 13.
Opt. decision, travel along arc (1, 2).

The optimum decisions and the OVF values at the various nodes are

10.6: Knapsack Problem - 1 539

shown on Figure 10.11. The OVF of node 1 is 13; it is the length of the
shortest route from node 1 to node 9 in this network. By following the
optimum decisions determined at the various nodes, we can also obtain
the shortest route from any node in the network to the destination node
9.
DP can also be applied to find shortest routes in directed networks

that are not acyclic. We refer the reader to [K. G. Murty, 1992] for a
discussion of DP based shortest route algorithms in non-acyclic directed
networks.

10.6 Solving the Nonnegative Integer

Knapsack Problem By DP

Consider the nonnegative integer knapsack problem in which there are
n objects available to load into the knapsack, with wi, vi being the
weight and value of the ith object, for i = 1 to n. Let w0 be the knap-
sack’s weight capacity. All w0, w1, . . . , wn are assumed to be positive
integers. The problem is to determine the number of copies of each ob-
ject to load into the knapsack to maximize the total value of all objects
loaded, subject to the knapsack’s weight capacity.
As discussed in Example 10.1.2, to solve this problem by DP we

consider the loading process as a sequential process loading one object
at a time, and represent the state of the system at any point of time
in this process by the knapsack’s remaining weight capacity. We define
the OVF in state w to be

f(w) = maximum possible value that can be loaded into
the knapsack if its weight capacity is w

When the knapsack’s weight capacity is w, only objects i satisfying
wi ≤ w, are available for loading into it. So, the functional equation
satisfied by the OVF in this problem is

f(w) = max{vi + f(w − wi) : i s. th. wi ≤ w} (10.6.1)

The operation in (10.6.1) is “max” instead of the usual “min” be-

540 Ch.10. Dynamic Programming

cause our aim here is to maximize the total reward.

Clearly f(0) = 0 is the boundary condition satisfied by the OVF
in this problem. Beginning with this, we evaluate f(w) for w = 1,
2, . . . , w0 in this order recursively using (10.6.1). The i attaining the
maximum in (10.6.1) is the number of the object to be loaded into the
knapsack when in state w, in an optimal policy.

As an example consider the problem with n = 6, and the following
data.

Data for a nonnegative integer knapsack problem
Object i Weight wi Value vi

1 3 12
2 4 12
3 3 9
4 3 15
5 7 42
6 9 18
Knapsack’s weight capacity, w0 = 12

Since all objects have weights ≥ 3, we have f(0) = f(1) = f(2) = 0
in this problem, these are the boundary conditions here.

So when the state of the system is 0, 1, or 2 (i.e., the remaining
weight capacity of the knapsack is 0, 1, or 2) we just terminate, since
no more objects can be loaded into the knapsack. When the state of
the system is 3, objects 1, 3, 4 become available to be loaded into the
knapsack, leading to the following equation for f(3). Continuing in this
way we evaluate f(w) for higher values of w until w0 = 12. As you can
see, to evaluate an f(W) say, the functional equation for f(W) uses the
values of f(w) for w < W . That’s why the procedure computes values
of f(w) in order of increasing w beginning with the known values of
f(0), f(1), f(2) given by the boundary conditions. This is the recursive
feature of the DP algorithm.

10.6: Knapsack Problem - 1 541

f(0) = f(1) = f(2) = 0. Opt. decision - terminate.
f(3) = Max{12+f(0), 9+f(0), 15+f(0)} = max{12+0,

9+0, 15+0} = 15. Opt. decision - load one of
object 4 and continue as in state 0.

f(4) = Max{12+f(1), 12+f(0), 9+f(1), 15+f(1)} =
max{12+0, 12+0, 9+0, 15+0} = 15. Opt. de-
cision - load one of object 4 and continue as in
state 1.

f(5) = Max{12+f(2), 12+f(1), 9+f(2), 15+f(2)} =
max{12+0, 12+0, 9+0, 15+0} = 15. Opt. de-
cision - load one of object 4 and continue as in
state 2.

f(6) = Max{12+f(3), 12+f(2), 9+f(3), 15+f(3)} =
max{12+15, 12+0, 9+15, 15+15} = 30. Opt. de-
cision - load one of object 4 and continue as in
state 3.

f(7) = Max{12+f(4), 12+f(3), 9+f(4), 15+f(4),
42+f(0)} = max{12+15, 12+15, 9+15, 15+15,
42+0} = 42. Opt. decision - load one of object 5
and continue as in state 0.

f(8) = Max{12+f(5), 12+f(4), 9+f(5), 15+f(5),
42+f(1)} = max{12+15, 12+15, 9+15, 15+15,
42+0} = 42. Opt. decision - load one of object 5
and continue as in state 1.

f(9) = Max{12+f(6), 12+f(5), 9+f(6), 15+f(6),
42+f(2), 18+f(0)} = max{12+30, 12+15, 9+30,
15+30, 42+0, 18+0} = 45. Opt. decision - load
one of object 4 and continue as in state 6.

f(10) = Max{12+f(7), 12+f(6), 9+f(7), 15+f(7),
42+f(3), 18+f(1)} = max{12+42, 12+30, 9+42,
15+42, 42+15, 18+0} = 57. Opt. decision - load
one of object 4 and continue as in state 7.

f(11) = Max{12+f(8), 12+f(7), 9+f(8), 15+f(8),
42+f(4), 18+f(2)} = max{12+42, 12+42, 9+42,
15+42, 42+15, 18+0} = 57. Opt. decision - load
one of object 4 and continue as in state 8.

542 Ch.10. Dynamic Programming

f(12) = Max{12+f(9), 12+f(8), 9+f(9), 15+f(9),
42+f(5), 18+f(3)} = max{12+45, 12+42, 9+45,
15+45, 42+15, 18+15} = 60. Opt. decision -
load one of object 4 and continue as in state 9.

By following the optimum decisions beginning with state 12, we
see that an optimum strategy to maximize the value loaded when the
weight capacity of the knapsack is 12, is to load four copies of object 4
into it, giving a total value of 60 for the objects loaded.
Since the value of f(w) has to be computed for all 0 ≤ w ≤ w0 in

this algorithm, it is not efficient for solving this problem, in comparison
to B&B methods discussed in Chapter 8. We discussed this method
mainly to illustrate an application of DP.

10.7 Solving the 0−1 Knapsack Problem
by DP

Consider the 0−1 knapsack problem involving n objects. Let w0 be
the capacity of the knapsack by weight, and let wi, vi be the weight
and value of the ith object, i = 1 to n. Here, only one copy of each
object is available. The problem is to determine the subset of objects
to be loaded into the knapsack to maximize the value loaded subject
to its weight capacity. We assume that w0, w1, . . . , wn are all positive
integers.
To solve this problem by DP we consider the loading process as a

sequential process loading one object at a time. However, as pointed
out in Example 10.1.3, since there is only one copy of each object
available, the definition of the state of the system at any point of time in
this process must contain information on the remaining weight capacity
of the knapsack at that time, and the set of objects not yet loaded.
For this it is convenient to represent the process as a staged process

with n stages. For each k = 1 to n, states in stage k will be denoted
by the ordered pair (k, w) where 0 ≤ w ≤ w0 represents the knapsack’s
remaining weight capacity at that stage. In any state (k, w) in stage
k, there are at most two possible decisions that can be taken, and they
are:

10.7: Knapsack Problem - 2 543

(, w)k (, w)k+1

Decision - Do not
include object k

Immediate
reward 0

Stage k Stage k+1

Next state

(, w)k

(, w)k+1

(, w - w)k+1
k

D
ec

isi
on

- D
o

no
t

in
cl

ud
e ob

je
ct

k

Load object k

Im
m

ediate

reward v
k

Next states

Stage k+1Stage k

Im
m

ed
ia

te

re
w

ar
d

0

Figure 10.12: On the left is displayed the unique choice in state (k, w)
if w < wk. On the right are displayed the two available choices at state
(k, w) if w ≥ wk.

(i): to decide not to include object k in the knapsack (in fact this
is the only decision available if wk > w) with an immediate reward of
0 and transition to state (k+ 1, w) in stage k + 1; or

(ii): to load object k into the knapsack (this decision is only avail-
able if w ≥ wk) with an immediate reward of vk and transition to state
(k+ 1, w − wk) in stage k + 1.

This creates an artificial stage structure with n stages, with the
decision in stage k relating only to the inclusion or exclusion of object
k, for each k = 1 to n. Thus each object’s fate is considered in a unique
stage, and there can be no confusion in any state what the available
decisions in that state are. The available decisions at state (k, w) and
the resulting state transitions are displayed in Figure 10.12.

544 Ch.10. Dynamic Programming

We now define the OVF in state (k, w) to be

f(k, w) = maximum possible value that can be
loaded into the knapsack if its weight ca-
pacity is w, and choice of objects restricted
to only those in the set {k, k + 1, . . . , n}.

(10.7.1)

Since only one copy of each object is available, for k = n we clearly
have

f(n, w) =
0 if w < wn
vn if w > wn

(10.7.2)

(10.7.2) is the boundary condition that the OVF f(k, w) satisfies
in this problem. From the decisions available at state (k, w) displayed
in Figure 10.12, we get the functional equations satisfied by the OVF
to be

f(k, w) =
f(k+ 1, w) if w < wk
max{f(k+ 1, w), vk + f(k+ 1, w − wk)} if w ≥ wk (10.7.3)

Using the boundary conditions in (10.7.2) and the functional equa-
tions in (10.7.3), the OVF at all states can be evaluated by moving
forward one stage at a time beginning with stage n − 1. We com-
pute the OVF at all states in a stage when we deal with that stage
and then move forward to the adjacent stage. At state (k, w), the
decision is to exclude object k from the knapsack if it happens that
f(k, w) = f(k+ 1, w) in (10.7.3); or to load object k into the knap-
sack if f(k, w) = vk + f(k+ 1, w − wk).
As an example consider the 0−1 knapsack problem with n = 5 and

the following data.
Data for a 0−1 knapsack problem
Object i Weight wi Value vi

1 3 12
2 4 12
3 3 15
4 7 42
5 9 18

Knapsack’s weight capacity, w0 = 12

10.7: Knapsack Problem - 2 545

Stage 5: Boundary conditions
f(5,0) to f(5,8) = 0. Opt. decision - terminate.
f(5,9) to f(5,12) = 18. Opt. decision - load object 5 and terminate.
Stage 4

f(4,w) = f(5,w) for w = 0 to 6. Opt. decision - exclude
object 4 and continue as in state (5,w).

f(4,7) = Max{0+f(5,7), 42+f(5,0)} = max{0+0, 42+0}
= 42. Opt. decision - load object 4 and continue
as in (5,0).

f(4,8) = Max{0+f(5,8), 42+f(5,1)} = max{0+0, 42+0}
= 42. Opt. decision - load object 4 and continue
as in state (5,1).

f(4,9) = Max{0+f(5,9), 42+f(5,2)} = max{0+18, 42+0}
= 42. Opt. decision - load object 4 and continue
as in state (5,2).

f(4,10) = Max{0+f(5,10), 42+f(5,3)} = max{0+18,
42+0} = 42. Opt. decision - load object 4 and
continue as in state (5,3).

f(4,11) = Max{0+f(5,11), 42+f(5,4)} = max{0+18,
42+0} = 42. Opt. decision - load object 4 and
continue as in state (5,4).

f(4,12) = Max{0+f(5,12), 42+f(5,5)} = max{0+18,
42+0} = 42. Opt. decision - load object 4 and
continue as in state (5,5).

Continuing the same way, we get the following OVF values and
optimum decisions at states in stages 3, 2.

Stage 3 Stage 2
OVF Opt. OVF Opt.

w f(3, w) decision f(2, w) decision
0, 1, 2 f(4, w) Exclude obj. 3 f(3, w) Exclude obj. 2

Cont. as in (4, w) Cont. as in (3, w)
3 15 Load obj. 3 15 Exclude obj. 2

Cont. as in (4,0) Cont. as in (3,3)

546 Ch.10. Dynamic Programming

Stage 3 Stage 2
OVF Opt. OVF Opt.

w f(3, w) decision f(2, w) decision
4 15 Load obj. 3 15 Exclude obj. 2

Cont. as in (4,1) Cont. as in (3,4)
5 15 Load obj. 3 15 Exclude obj. 2

Cont. as in (4,2) Cont. as in (3,5)
6 15 Load obj. 3 15 Exclude obj. 2

Cont. as in (4,3) Cont. as in (3,6)
7 42 Exclude obj. 3 42 Exclude obj. 2

Cont. as in (4,7) Cont. as in (3,7)
8 42 Exclude obj. 3 42 Exclude obj. 2

Cont. as in (4,8) Cont. as in (3,8)
9 42 Exclude obj. 3 42 Exclude obj. 2

Cont. as in (4,9) Cont. as in (3,9)
10 57 Load obj. 3 57 Exclude obj. 2

Cont. as in (4,7) Cont. as in (3,10)
11 57 Load obj. 3 57 Exclude obj. 2

Cont. as in (4,8) Cont. as in (3,11)
12 57 Load obj. 3 57 Exclude obj. 2

Cont. as in (4,9) Cont. as in (3,12)

And finally, we have f(1, 12) = max{0+f(2, 12), 12+f(2, 9)} =
max{0+57, 12+42} = 57, with the optimum decision in state (1,12) to
be to exclude object 1, and continue as in state (2,12). Following the
decisions in the various stages, we see that an optimum strategy in the
original problem to maximize the value loaded in the knapsack is to
load objects 3 and 4 into it. This leads to the maximum value loaded
of 57.

Since the value of f(k, w) has to be evaluated for all 1 ≤ k ≤ n and
0 ≤ w ≤ w0 in this algorithm, it is not efficient to solve the 0−1 knap-
sack problem, in comparison to B&B methods discussed in Chapter 8
when w0 is large. Our main interest in discussing this algorithm here
is to illustrate another application of DP.

10.8: Resource Allocation 547

10.8 A Discrete Resource Allocation Prob-

lem

There are K units of a single resource available, which can be distrib-
uted among n different activities. K is a positive integer. The problem
is to allocate the resource units most profitably among the activities.
Assume that resource units can only be allocated to activities in non-
negative integer quantities. Define for i = 1 to n

xi = number of units of resource allotted to activity i (10.8.1)

Let ri(xi) denote the profit or reward realized from an allocation
of xi units of resource to activity i. A table giving the values of ri(xi)
for xi = 0 to K, i = 1 to n, is the data for this problem. We assume
that ri(xi) ≥ 0 for all xi ≥ 0, i = 1 to n. The problem is to choose
a nonnegative integer vector x = (x1, . . . , xn)

T so as to maximize the
total reward subject to the constraint x1 + . . . + xn ≤ K = the units
of resource available.

This problem is not really dynamic, but can be posed as a staged
sequential decision problem involving n stages, based on the technique
used for the 0−1 knapsack problem. It views this problem as a sequen-
tial decision process in which at the ith stage only the value of the
variable xi (the number of units of resource to be allotted to activity
i) is determined, i = 1 to n. The states of the system in stage i are
(i, k), 0 ≤ k ≤ K, where k denotes the number of unallotted units
of resource available at this stage. The possible decisions available in
state (i, k) are to select an integral value for the variable xi between
0 and k, leading to an immediate reward of ri(xi) and a transition to
state (i+ 1, k−xi) in stage i+1. These state transitions are illustrated
in Figure 10.13.

We now define the OVF in this process to be

f(i, k) = maximum total reward that can be ob-
tained from activities i to n, with k units of
resource that can be allotted among them

(10.8.2)

548 Ch.10. Dynamic Programming

(, k)i

(, k)i+1

(, k-1)i+1

.

.

.

(,1)i+1

(, 0)i+1

Dec
isi

on: x = 0

Im
med

iat
e rew

ard
r (0

)i

i

x = 1

Immediate reward r (1)
i

i

x = k-1Immediate reward r (k-1)

i

i

x = k

Immediate reward r (k)

i

i

Figure 10.13: State transitions from a state (i, k) in stage i to stage
i+ 1.

This OVF clearly satisfies the following boundary condition

f(n, k) = max{rn(t) : 0 ≤ t ≤ k} (10.8.3)

and if p attains the maximum in (10.8.3), the optimum decision in state
(n, k) is to allot p units of resource to activity n and leave the other
k − p units of resource unallotted.
Normally the reward function ri(k) will be monotonic increasing in

k for all i (in most real world applications this will be the case since the
return is usually an increasing function of the resources committed).
In this case, (10.8.3) becomes f(n, k) = rn(k) for all 0 ≤ k ≤ K and
the optimum decision in state (n, k) is to allot all k units of resource
to activity n.

10.8: Resource Allocation 549

From the state transitions illustrated in Figure 10.13, and the prin-
ciple of optimality, it is clear that

f(i, k) = max{ri(xi) + f(i+ 1, k − xi) : 0 ≤ xi ≤ k} (10.8.4)

for 1 ≤ i ≤ n and 0 ≤ k ≤ K. (10.8.4) is the functional equation
satisfied by the OVF in this problem. The optimum decision in state
(i, k) is to make the variable xi equal to the argument attaining the
maximum in (10.8.4).

Beginning with the known values of f(n, k), 0 ≤ k ≤ K given by the
boundary conditions (10.8.3), the values of the OVF can be evaluated
and the optimum decisions at all states in other stages determined, in
the order: stage n− 1, n− 2, . . . , 1.
As an example, consider the problem faced by a politician running

for reelection for his position in city administration. He has K =
5 volunteers who have agreed to help his campaign by distributing
posters door to door and talking to residents in his district. We give
below estimates of additional votes that would result from assigning
these volunteers to 4 different precincts.

ri(k) = expected additional votes (in 100s)
gained by assigning k volunteers to precinct

No. of volunteers
assigned k i = 1 2 3 4

0 0 0 0 0
1 35 79 130 86
2 42 110 160 120
3 56 130 170 130
4 50 140 180 130
5 50 125 175 125

If too many volunteers knock on the doors people may get irritated
and react negatively; that’s why in this problem ri(k) increases as k
increases up to a value, and then begins to decrease.

Here the volunteers are the resource and we have 5 of them. The
problem is to determine the optimum number of volunteers to allot to

550 Ch.10. Dynamic Programming

the various precincts in order to maximize the total expected additional
votes gained by their effort.

So, we define 4 stages, with stage i dealing with the decision variable
xi = number of volunteers allotted to precinct i, i = 1 to 4. For i = 1
to 4, the symbol (i, k) defines the state in stage i of having k volunteers
to assign in precincts i to 4. The OVF here is

f(i, k) = maximum expected additional votes gained by al-
lotting k volunteers in precincts i to 4 optimally.

The boundary conditions for stage 4 are given below.

f(4, 0) = Max{0} = 0. Opt. decision - allot 0 volunteers to
precinct 4 and terminate.

f(4, 1) = Max{0, 86}= 86. Opt. decision - allot 1 volunteer
to precinct 4 and terminate.

f(4, 2) = Max{0, 86, 120} = 120. Opt. decision - allot 2
volunteers to precinct 4 and terminate.

f(4, 3) = Max{0, 86, 120, 130} = 130. Opt. decision - allot
3 volunteers to precinct 4 and terminate.

f(4, 4) = Max{0, 86, 120, 130, 130} = 130. Opt. decision -
allot 3 volunteers to precinct 4 and terminate.

f(4, 5) = Max{0, 86, 120, 130, 130, 125} = 130. Opt. deci-
sion - allot 3 volunteers to precinct 4 and termi-
nate.

We now compute the OVF and the optimum decision in each state
in other stages, in the order stage 3, 2, 1, recursively.

10.8: Resource Allocation 551

Stage 3

f(3, 0) = Max{0 + f(4, 0)} = max{0+0} = 0. Opt. deci-
sion - allot 0 volunteers to precinct 3 and continue
as in state (4, 0).

f(3, 1) = Max{0 + f(4, 1), 130+f(4, 0)} = max{0+86,
130+0} = 130. Opt. decision - allot 1 volunteer
to precinct 3 and continue as in state (4, 0).

f(3, 2) = Max{0 + f(4, 2), 130+f(4, 1), 160+f(4, 0)} =
max{0+120, 130+86, 160+0} = 216. Opt. deci-
sion - allot 1 volunteer to precinct 3 and continue
as in state (4, 1).

f(3, 3) = Max{0 + f(4, 3), 130+f(4, 2), 160+f(4, 1),
170+f(4, 0)} = max{0+130, 130+120, 160+86,
170+0} = 250. Opt. decision - allot 1 volunteer
to precinct 3 and continue as in state (4, 2).

f(3, 4) = Max{0 + f(4, 4), 130+f(4, 3), 160+f(4, 2),
170+f(4, 1), 180+f(4, 0)} = max{0+130,
130+130, 160+120, 170+86, 180+0} = 280. Opt.
decision - allot 2 volunteers to precinct 3 and
continue as in state (4, 2).

f(3, 5) = Max{0 + f(4, 5), 130+f(4, 4), 160+f(4, 3),
170+f(4, 2), 180+f(4, 1), 175+f(4, 0)} =
max{0+130, 130+130, 160+130, 170+120,
180+86, 175+0} = 290. Opt. decision - allot 3
volunteers to precinct 3 and continue as in state
(4, 2).

Stage 2

f(2, 0) = Max{0 + f(3, 0)} = max{0+0} = 0. Opt. deci-
sion - allot 0 volunteers to precinct 2 and continue
as in state (3, 0).

f(2, 1) = Max{0 + f(3, 1), 79+f(3, 0)} = max{0+130,
79+0} = 130. Opt. decision - allot 0 volunteers
to precinct 2 and continue as in state (3, 1).

f(2, 2) = Max{0 + f(3, 2), 79+f(3, 1), 110+f(3, 0)} =
max{0+216, 79+130, 110+0} = 216. Opt. deci-
sion - allot 0 volunteers to precinct 2 and continue
as in state (3, 2).

552 Ch.10. Dynamic Programming

Stage 2 contd.
f(2, 3) = Max{0 + f(3, 3), 79+f(3, 2), 110+f(3, 1),

130+f(4, 0)} = max{0+250, 79+216, 110+130,
130+0} = 295. Opt. decision - allot 1 volunteer
to precinct 2 and continue as in state (3, 2).

f(2, 4) = Max{0 + f(3, 4), 79+f(3, 3), 110+f(3, 2),
130+f(4, 1), 140+f(3, 0)} = max{0+280,
79+250, 110+216, 130+130, 140+0} = 329. Opt.
decision - allot 1 volunteer to precinct 2 and
continue as in state (3, 3).

f(2, 5) = Max{0 + f(3, 5), 79+f(3, 4), 110+f(3, 3),
130+f(3, 2), 140+f(3, 1), 125+f(3, 0)} =
max{0+290, 79+280, 110+250, 130+216,
140+130, 125+0} = 360. Opt. decision - allot 2
volunteers to precinct 2 and continue as in state
(3, 3).

Stage 1

f(1, 5) = Max{0 + f(2, 5), 35+f(2, 4), 42+f(2, 3),
56+f(3, 2), 50+f(2, 1), 50+f(2, 0)} =
max{0+360, 35+329, 42+295, 56+216, 50+130,
50+0} = 364. Opt. decision - allot 1 volunteer to
precinct 1 and continue as in state (2, 4).

By following the optimum decisions beginning with state (1, 5), we
see that an optimum strategy is to allot 1 volunteer each to precincts
1, 2, 3, and the remaining 2 volunteers to precinct 4. This yields the
maximum expected additional votes of 364 (in units of hundreds).

In this section we discussed a family of simple allocation models
involving the distribution of a single discrete resource among various
activities. These models can be generalized to encompass situations
in which activities require two or more resources, but the number of
states needed to represent multiple resource allocation problems for
solution by DP grows very rapidly with the number of resources. This
unfortunate aspect of DP is called the curse of dimensionality.

10.9: Exercises 553

Summary

In this chapter we introduced the recursive technique of dynamic
programming, and illustrated its application to several discrete deter-
ministic optimization problems that can be posed in a sequential de-
cision format. The basic principles behind DP have been in use for
many years, but it was R. Bellman who in the 1950s developed it into
a systematic tool and pointed out its broad scope. Now, dynamic pro-
gramming is a powerful technique with many applications in production
planning and control, optimization and control of chemical and phar-
maceutical batch and continuous processes, cargo loading, inventory
control, equipment replacement and maintenance, and in finding opti-
mal trajectories for rockets and satellites. Our treatment of the subject
has been very elementary since our aim is mainly to introduce the con-
cepts of systems and their states, optimum value functions, functional
equations and the recursive technique for solving them, which are fun-
damental to DP. The books referenced at the end of this chapter should
be consulted for advanced treatments of the subject.

10.9 Exercises

10.1: The US government is worried about increasing unemployment
in states on the west coast due to rapid decline of timber-lands in those
states

New jobs created if $r mil. are spent in year
Year r = 0 1 2 3 4 5 6 7 8
1 0 5 15 40 80 90 95 98 100
2 0 5 15 40 60 70 73 74 75
3 0 4 26 40 45 50 51 52 53

by excessive lumbering activity. So, they recently authorized spending
an additional $8 mil. over the next 3 calendar years to create new jobs
in alternate industries in those states. Because of programs going on
already, the effectiveness of additional funds depends on when they are
spent. Funds can only be released in integral multiples of $1 mil. for

554 Ch.10. Dynamic Programming

any year. The following table provides important data estimated by a
panel of economists, with new jobs measured in units of 100.

Find an optimum policy for spending the funds over the planning
horizon, which maximizes the total number of additional jobs created,
using DP.

10.2: There are 4 types of investments. Each accepts investments
only in integer multiples of certificates. We have 30 units of money
to invest (1 unit = $1000). Following table provides data on rewards
obtained from investments in the different types.

Investment Cost Reward for buying r certificates
type (units/certificate) r = 1 2 3 4 5

1 3 2 3 8 16 23
2 2 1 2 4 7 12
3 4 4 8 15 24 30
4 6 4 9 23 36 42

At least one certificate of each type must be purchased. Use DP to
determine the optimum number of certificates of each type to buy to
maximize total reward.

10.3: A production process is available for 3 periods. In each period
it can produce an integer number of units of a commodity between 0
to 4. A total of 6 units of the commodity must be produced by the end
of period 3.

Production cost (in $100s)
if r units produced

Period r = 0 1 2 3 4
1 0 4 8 9 12
2 0 7 10 11 15
3 0 8 11 15 16

Units produced in period 1 (period 2) have to be stored at a cost
of $2/unit ($1/unit) till the end of period 3. Those produced in period
3 incur no storage cost. Other data is given above. Determine an

10.9: Exercises 555

optimum production plan to minimize the total cost of production and
storage for meeting the requirement.

10.4: A batch of a chemical consisting of 6 tons, contains the chem-
ical in particle sizes 1, 2, and 3 in equal proportion (size 1 is smaller
than size 2 which in turn is smaller than size 3).

The company has 2 sieves. Sieve 1 transfers particles of size 1 to
the bottom and leaves everything else on top. Sieve 2 leaves particles
of size 3 at the top, but transfers everything else to the bottom. To
use either sieve, a minimum of 2 tons of material must be fed. Each
use of either sieve costs $10. Data on the selling price of the chemical
is given below. Determine the maximum amount of money that can be
made with the existing batch of the chemical.

No. Chemical containing particle sizes Price/ton
I 1, 2, 3 $40
II 1,2 only $55
III 1 only $60
IV 2, 3 only $50
V 3 only $70
VI 2 only $45

10.5: The major highways in Michigan are US-23, I-94, I-96 and
I-75. The state highway department is concerned about the ever in-
creasing number of speed limit violators on these highways. To control
the problem they have decided to put 7 new patrol cars on these high-
ways. The following data represents the best estimates of the number
of violators ticketed per day.

Expected no. ticketed/day
if r new patrol cars assigned

Highway r = 0 1 2 3
I-94 30 70 100 140
US-23 20 45 80 115
I-75 10 20 40 65
I-96 20 40 90 110

556 Ch.10. Dynamic Programming

Determine an optimum allocation of new patrol cars to the various
highways (no more than 3 for any highway) using DP.

10.6: A hi-tech company has perfected a process of growing crys-
talline silicon rods in 10 inch lengths. Profit obtained by selling a silicon
rod depends on its length as given below.

Length (in.) 1 2 3 4 5 6 7 8 9 10
Profit ($) 60 125 185 235 260 340 360 400 440 475

The cutting tool only accepts rods whose length in inches is an
integer ≥ 2, and it cuts the rod into two pieces whose lengths in inches
are integers. Each use of the cutting tool costs $10. The pieces obtained
from a cut can be cut again if they satisfy the conditions mentioned
above. Determine an optimum cutting policy for each 10 inch rod, to
maximize the net profit from it.

10.7: A company has 5 identical machines that it uses to make four
products A, B, C, and D. Each machine can make any product, and
when it is set up to make a product, a production run of one week is
scheduled. The following table gives a forecast for the coming week’s
profit depending on how many machines are scheduled to produce each
product.

No. of Week’s forecasted profit
machines ($10,000 units) from product

A B C D
0 0 0 0 0
1 12 17 5 8
2 17 30 12 14
3 25 49 22 25
4 35 64 34 35
5 45 76 48 43

10.9: Exercises 557

Determine the optimum number of machines to allot to each prod-
uct for the coming week to maximize the total profit.

10.8: The EPA got into a lot of bad publicity recently about lax
monitoring of dioxin contamination of Michigan rivers. EPA divides
the state into 3 regions. The following table gives data on the number of
tests that can be conducted in each region by allotting some inspectors.
EPA is willing to appoint 5 inspectors. Determine how many of these
to allot to each region (this should be a nonnegative integer for each
region) so as to maximize the total number of tests conducted over the
whole state per month.

No. of tests/month if
r inspectors allotted

Region r = 1 2 3 4 5
1 25 50 80 117 125
2 20 70 130 150 160
3 10 20 35 40 45

10.9: There are 4 objects which can be packed in a vessel. Objects
1, 2, 3 are available in unlimited number of copies; but only four copies
of object 4 are available. The weight of each object and the capacity
of the vessel are expressed in weight units, and values in money units,
in the following table.

object Wt. per copy Value/copy if no. included is
1 2 3 4 5

1 3 2 3 8 16 23
2 2 1 2 4 7 12
3 4 4 8 15 24 30
4 6 4 9 23 36

The vessel’s weight capacity is 30 weight units. The objective func-
tion is total value, and it is additive over objective types. Find the
maximum objective value, subject to the constraint that at least one
copy of each object must be included.

558 Ch.10. Dynamic Programming

10.10: A company has four salesmen to allocate to three mar-
keting regions. Their objective is to maximize the total sales volume
generated. The sales growth in each region is expected to go up as
more salesmen are allocated there, but not linearly. The company’s
estimates of the sales volume as a function of the number of salesmen
allocated to each region are given below.

Region Sales volume if r salesmen allotted
r = 1 2 3 4 5

1 25 50 60 80 100
2 20 70 90 100 100
3 10 20 30 50 60

Each salesman has to be allotted to one region exclusively, or his
employment can be terminated. Formulate the problem of determining
how many salesmen to allot to each region so as to maximize the total
sales volume as a DP and solve it.

10.11: A resource may be used on either or both of two processes.
Each unit of resource generates $4, $3 when used for a day on the first
process, second process, respectively. The resource can be recycled,
but in recycling, a fraction is lost owing to usage and wastage. Thus,
of the units used on the first process (second process) only half (two-
thirds) remain for use the following day. 100 units of the resource are
available at the start of a 10-day period, at the end of which, any units
remaining will have no value. Determine how many units should be
used on each process (fractions of units are allowed) on each of the ten
days in order to maximize the total return. ([P. Dixon and J.M.
Norman, 1984])

10.12: A student has final examinations in 3 courses, X, Y , and Z,
each worth the same number of credits. There are only 3 days available
for study. Assume that the student has to devote a nonnegative integer
number of the available days for studying for each course, i.e., a day
cannot be split between two courses. Estimates of expected grades
based upon various numbers of days devoted for studying for each

10.9: Exercises 559

course are given below.

Course Expected grade if days of study is
0 1 2 3 4

X 0 1 1 3 4
Y 1 1 3 4 4
Z 0 1 3 3 4

(a) Determine the number of available days that the student should
devote to each course in order to maximize the sum of all the grades
using DP.

(b) How does the strategy in (a) change if the student has 4 days
available to study before the examinations? What is the increase in
the optimum objective value?

(c) How do the strategies in (a), (b) change if a new course W is
added, with expected grade of 0, 0, 2, 3, and 4 when the number of
days devoted to studying it is 0, 1, 2, 3, and 4 respectively? (S. M.
Pollock).

10.13: A spaceship is on its way to landing on the moon. At
some point during its descent near the moon, it has φ units of fuel,
a downwards velocity of v towards the surface of the moon, and an
altitude z above the surface of the moon. Time is measured in discrete
units, and actions are only taken at integer values of time until the
spaceship touches down.

At each integer value of time t, you can select an amount y of fuel
to use, which will result in new variable values at time t+ 1 of

φI = φ− y (depleted by y units of fuel)
vI = v + 5− y (the force of gravity is “5”)
zI = z − vI (altitude decreases by vI)

If z ever becomes negative, or if v > 0 when z becomes 0, the
spaceship is fully destroyed.

Given initial (i.e., at time point 0 in this portion of the spaceship’s
trajectory) fuel, velocity, and altitude values of Φ, V, and Z, solve using

560 Ch.10. Dynamic Programming

Figure 10.14:

DP the problem of reaching the point (v = 0, z = 0) safely, using
(a) the OVF f(φ, v, z) ; (b) the OVF g(v, z) defined below.

f(φ, v, z) = maximum amount of fuel remaining when the space-
ship safely lands at (v = 0, z = 0), given it is at
(φ, v, z) at time point 0.

g(v, z) = minimum amount of fuel required to safely reach
(v = 0, z = 0), given it is at (v, z) at time point
0.

(c) Assuming that all variables are integer valued, what is the com-
putational effort involved in solving (a)? Solve the problem numerically
when Φ = 100, V = 20, Z = 300. (S. M. Pollock)

10.14: Check whether the network in Figure 10.14 is acyclic. Find
the acyclic numbering of its nodes if it is.

10.9: Exercises 561

8

4

10

40

12

13

11

19

10

13

13

13

30

9

3

19

18

8

20

10

7
10

12

6

5

15

Origin Destination

3

6

15

14

25

29

14

23

14
19 20

Figure 10.15:

10.15: Find the shortest route from the origin to the destination
in the network in Figure 10.15.

10.16: There are 4 objects available for loading into a knapsack of
unlimited weight capacity. Data on the objects is given below.

Object i 1 2 3 4
Value vi 7 16 19 15
Weight wi 3 6 7 5

An unlimited number of copies of each object are available for load-
ing into the knapsack. Define

g(t) = the minimum total weight of items needed in order
to achieve a total value of at least t in the knapsack.

Find g(t) and the associated (complete) optimal policy for nonneg-
ative integers t = 0 to 100. (S. M. Pollock)

10.17: Find the shortest route from the origin to the destination

562 Ch.10. Dynamic Programming

in the network in Figure 10.16.

40

2010
18

20

21

17

30

6

20

5

24

13

12

10
3

5

33

8
30

15

Origin

Destination

Figure 10.16:

10.18: A person wants to cross an uninhabited desert that is 100
miles wide in a jeep. The jeep is heavy and the sand is soft, so he gets
only 3 miles/gallon. Gasoline can be purchased in unlimited quantities
at the beginning of the desert, but once the jeep enters the desert no
gasoline can be purchased until the desert is completely crossed. The
jeep has a carrying capacity of 20 gallons of gasoline which includes
gasoline consumed while travelling.

The driver plans to cross the desert by using the following proce-
dure. Fill up the jeep at a depot at the beginning of the desert, and
drive into the desert to a spot (call it the first “temporary gas dump”)
where some gasoline is unloaded and stored, and then drive back to
the depot to load up again. Continue this process until there is enough
gasoline stored up at the first temporary gas dump so that the driver
can use this as a new “depot” to continue past it into the desert.

Formulate the problem of minimizing the total quantity of gasoline
needed to cross the desert by this procedure, as a DP. Solve your for-
mulation and find the minimum amount of gasoline needed, and the
policy that attains it. ([D. Gale, 1970]).

10.10: References 563

10.10 References

E. V. DENARDO, 1982, “Dynamic Programming Models and Applications”, Pren-

tice Hall, Englewood Cliffs, NJ 07632.

S. E. DREYFUS and A. M. LAW, 1977, “The Art and Theory of Dynamic Pro-

gramming”, Academic Press, NY.

P. DIXON and J. M. NORMAN, 1984, “An Instructive Exercise in Dynamic Pro-

gramming”, IIE Transactions, 16, no. 3, 292-294.

D. GALE, 1970, “The Jeep Once More or Jeeper By the Dozen”, American Math

Monthly, 77, 493-501. Correction published in American Math Monthly, 78 (1971)

644-645.

K. G. MURTY, 1992, Network Programming, Prentice Hall, Englewood Cliffs, NJ.

Index

For each index entry we provide
the section number where it is
defined or discussed first.

Acyclic network 10.4
Not staged 10.4, 10.5
Staged 10.4

Additivity over time 10.1

Back substitution 10.2
Backwards recursion 10.2, 10.3

Decision sets 10.3
Dynamic programming (DP) 10.1

Deterministic 10.1
Stochastic 10.1

Functional equations 10.3

Jeep problem 10.9

Knapsack problem 10.1
Nonnegative integer 10.1, 10.6
0-1; 10.1, 10.7

Markovian property 10.3
Models 10.1

Dynamic 10.1
Multistage 10.1

Single stage 10.1
Multistage 10.1

Optimum value function (OVF)
10.3

Policies 10.3
Principle of optimality 10.3

Recursive equations 10.3
Resource allocation problems 10.8

Sequential decision processes
10.1

Shortest routes 10.4
State space 10.3

564

