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Chapter 3

LP Formulations

This is Chapter 3 of “Junior Level Web-Book for Optimization
Models for decision Making” by Katta G. Murty.

3.1 Category 2 Decision Making Problems

As defined in Chapter 1, the main feature of these decision problems is
that they have decision variables whose values the decision maker(s)
can control, subject to constraints and bound restrictions on them im-
posed by the manner in which the relevent system must operate. A
solution to the decision problem specifies numerical values for all the
decision variables. A feasible solution is one which satisfies all the
constraints and bound and other restrictions. Even to identify a fea-
sible solution, or to represent the set of all feasible solutions, we need
to construct a mathematical model of all the constraints and restric-
tions. Usually an objective function to be minimized is also specified,
then the goal is to find an optimum solution which minimizes the
objective function value among all the feasible solutions; this leads to
an optimization model.
Among all optimization models, the linear programming (LP)

model is the most highly developed. LP theory is very rich and beauti-
ful and extensive, it has efficient computational procedures worked out
for any kind of problem related to LP models that practitioners may
need in applications. So we begin our study of this category of prob-
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58 Ch. 3. LP Formulations

lems with the study of those that can be modeled with an LP model.
This strategy offers the following advantages to the readers.

1) Among optimization models, LP models are the simplest to costruct
and understand, so, beginning with their study is a good first step
to learn the skill in modeling.

2) The simplex method for solving LPs is an extension of the classical
GJ method for solving linear equations. It is easy to understand,
and study, and it helps you to appreciate algorithms and how
they work.

3) LP has numerous applications in a wide variety of areas. So, know-
ing when LP may be an appropriate model for a decision problem,
how to construct an LP model for such a problem, the algorithms
to solve that model, and how to implement the output of that
algorithm; are essential skills that anyone aspiring to a decision
making career must have.

Ideally a decision problem involving the decision variables x =
(x1, . . . , xn)

T can be modeled as an LP if the following conditions are
satisfied:

• All the decision variables are continuous variables with possibly
only lower and/or upper bound restrictions.

• There is only one objective function to be optimized in the prob-
lem. The objective function, and the constraint functions for the
constraints are all linear functions; i.e., functions of the math-
ematical form a1x1 + . . . + anxn where a1, . . . , an are constants
known as the coefficients for the function.

The second condition above is known as the linearity assumption
or property and is often stated in words broken into two separate
assumptions as given below: A function f(x) of decision variables x =
(x1, . . . , xn)

T is a linear function of x if it satisfies the following two
assumptions:
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Additivity (or separability) assumption: f(x) is the sum of n dif-
ferent functions each one involving only one of the decision vari-
ables; i.e., there exist functions of one variable fj(xj), j = 1 to n
such that f(x) = f1(x1) + . . .+ fn(xn).

Caution: In defining f(x) = f1(x1) + . . .+ fn(xn) satisfying the
additivity assumption, one should make sure that all the com-
ponent functions f1(x1), . . . , fn(xn) are in the same units so that
their addition makes sense. For example, if f1(x1) is expressed in
$, and f2(x2) is expressed in tons, their direct addition does not
make sense.

Proportionality assumption: The contribution of each variable xj
to f(x) is proportional to the value of xj . So, when f(x) satisfies
the additivity assumption stated above, this proportionality as-
sumption implies that fj(xj) must be of the form ajxj for some
constant aj for j = 1 to n.

Note on applying LP to real world problems: It has been
mentioned earlier that constructing a mathematical model for real
world problems often involves simplification, approximation, human
judgement, and relaxing features that are difficult to represent mathe-
matically. In many applications the above assumptions for the validity
of using an LP model may not hold exactly. Even when a linear approx-
imation to the objective function or a constraint function is acceptable,
the coefficients of the variables in it may only be known for the time be-
ing, their values may change over time in a random and unpredictable
fashion. If the violations in the assumptions are significant or funda-
mental, then LP is not the appropriate technique to model the problem.
An example of this is given in Section 3.8. But when the disparities
are minor, an LP model constructed with estimated coefficients as an
approximation, may lead to conclusions that are reasonable for the real
problem, at least for the time being.
Actually the linearity assumptions provide reasonably good approx-

imations in many applications, this and the relative ease with which
LPs can be solved have made LP useful in a vast number of applica-
tions.
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3.2 The Scope of LPModeling Techniques

Discussed in this Chapter

There are many applications in which the reasonableness of the lin-
earity assumptions can be verified, and an LP model for the problem
constructed by direct arguments. We restrict the scope of this chapter
to such applications. Even in this restricted set, there are many dif-
ferent classes of applications of LP models. We present some of them
in the following sections. In all these applications you can judge intu-
tively that the assumptions needed to handle them using an LP model
are satisfied to a reasonable degree of approximation, so we will not
highlight this issue again.

Of course LP can be applied on a much larger class of problems.
Many important applications involve optimization models with linear
constraints, and a nonlinear objective function to be minimized which
is piecewise linear and convex. These problems can be transformed
into LPs by introducing additional variables. These techniques are
discussed in graduate level books and are beyond the scope of this
book.

Also, in this chapter we focus only on how to construct a mathemat-
ical model for the problem, not on algorithms for solving the models.
In Section 3.12 we discuss a special geometric procedure for solving
simple LP models involving only two variables. This is to provide geo-
metric intuition, and to discuss all the useful planning information that
can be derived from the solution of the LP model.

LPs involving 3 or more variables are solved by numerical proce-
dures which are discussed in Chapter 4.

3.3 Each Inequality Constraint Contains

a Hidden New Variable Called its Slack

Variable
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Linear Equations and Hyperplanes, Linear Inequal-
ities and Half-Spaces, Convex Polyhedra, Convex
Polytopes

In an LP model, the conditions on the decision variables form a
system of linear constraints consisting of linear equations and/or in-
equalities (even a bound on a variable is in fact a linear inequality).
The set of feasible solutions of such a system of linear constraints is
called a convex polyhedron. If a convex polyhedron is a bounded
set, it is called a convex polytope.
In the space Rn of decision variables x = (x1, . . . , xn)

T , the set of
feasible solutions of a single linear equation

a1x1 + . . .+ anxn = a0

where the vector of coefficients (a1, . . . , an) W= 0, is called a hyper-
plane. Each hyperplane in Rn divides it into two half-spaces which
are on either side of this hyperplane. For example, the two half-
spaces into which the hyperplane defined by the above equation divides
Rn are the set of feasible solutions of one of these two inequalities:
a1x1 + . . .+ anxn ≥ a0 or a1x1 + . . .+ anxn ≤ a0.
So, each half-space is the set of feasible solutions of a single linear

ineuality; and a hyperplane is the intersection of the two half-spaces
into which it divides the space.
From this we can see that every convex polyhedron is the inter-

section of a finite number of half-spaces. We will provide illustrative
examples in R2 shortly, also you can look up Chapter 3 in reference
[1.1].

Notation to Denote Points

We use superscripts to enumerate points in a set. For example the
symbol xr = (xr1, . . . , x

r
n)
T denotes the rth point written as a column

vector, and xr1, . . . , x
r
n are its components, i.e., the values of the various

decision variables x1, . . . , xn in it.

Slack Variables in Inequality Constraints
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Each inequality constraint contains in itself a new nonnegative vari-
able called its slack variable. As an example, consider the inequality
constraint in original variables x1, x2, x3:

2x1 − 7x2 − 4x3 ≤ 6

This constraint allows its constraint function 2x1 − 7x2 − 4x3 to
take any value less than or equal to 6. The constraint can be written
in an equivalent manner as 6 − (2x1 − 7x2 − 4x3) ≥ 0. If we define
s1 = 6 − (2x1 − 7x2 − 4x3), then s1, a new variable required to be
nonegative by the original constraint, is known as the slack variable
corresponding to this constraint; it represents the amount by which the
value of the constraint function (2x1 − 7x2 − 4x3) lies below its upper
bound of 6. The original inequality constraint can be written in an
equivalent manner in the form of an equation involving its nonnegative
slack variable as:

2x1 − 7x2 − 4x3 + s1 = 6
s1 ≥ 0

One should not think that the original inequality has become an
equation when its slack variable is introduced, actually the inequality
has been transferred from the constraint into the nonnegativity restric-
tion on its slack variable.

In the same manner, if there is a constraint of the form −8x1 +
16x2− 19x3 ≥ −4, it can be written in an equivalent manner as s2 =
−8x1 + 16x2 − 19x3 − (−4) ≥ 0, and the new variable s2 is the slack
variable corresponding to this inequality constraint. This constraint
can be written in the form of an equation including its nonnegative
slack variable as:

−8x1 + 16x2 − 19x3 − s2 = −4
s2 ≥ 0

Notice that the coefficient of the slack variable in the equation into
which the original inequality is converted is +1 or −1 depending on
whether the original inequality is a “≤” or a “≥” inequality.
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In some books the name slack variable is only used for those new
variables corresponding to “≤” constraints; the new variables corrre-
sponding to “≥” constraints are called surplus variables in those books.
We will not make this distinction, we will include all of them under the
phrase slack variables. Remember that each inequality constraint in the
problem leads to a different slack variable, and that all slack variables
are nonnegative variables.
When all the inequality constraints whose constraint functions in-

volve two or more variables in an LP model are transformed into equa-
tions by introducing the appropriate slack variables; the remaining sys-
tem consists of linear equations and lower and/or upper bound restric-
tions on individual variables.
Slack variables are just as important as the other variables in the

original model. Their values in an optimum solution provide very useful
planning information. This will be illustrated later.

Infeasible, Active, Inactive Inequality Constraints
WRT a Given Point

Let x̄ = (x̄1, . . . , x̄n)
T ∈ Rn be a given point. Consider an inequality

constraint in the “≥” form

a1x1 + . . .+ anxn ≥ a0.
Definitions similar to those given below for this inequality, also hold

for inequalities in the “≤” form with appropriate modifications.
x̄ is said to be infeasible for this constraint if x̄ violates it (i.e.,

if a1x̄1 + . . . + anx̄n < a0), in this case this inequality constraint is
infeasible at x̄. x̄ is feasible for this constraint if it is satisfied at this
point (i.e., if a1x̄1 + . . .+ anx̄n ≥ a0).
Suppose x̄ is feasible to the above inequality constraint. Then this

constraint is said to be an active or tight inequality constraint at
x̄ if it holds as an equation there (i.e., if a1x̄1 + . . . + anx̄n = a0), or
an inactive or slack inequality constraint at x̄ otherwise (i.e., if
a1x̄1 + . . .+ anx̄n > a0).
As we will see later, this classification of inequality constraints into

active, inactive types at a desired point is the key to solving LPs, and
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systems of linear inequalities.

Example 3.3.1: Consider the following system of constraints
in two variables x1, x2:

x1 + x2 ≤ 5
x2 ≤ 2

x1, x2 ≥ 0

The convex polyhedron K, which is the set of feasible solutions of
this system is the shaded region in Figure 3.1. In R2 every hyperplane
is a straight line (not so in spaces of dimension 3 or more). To draw the
half-space corresponding to x1 + x2 ≤ 5, we draw the straight line L
corresponding to x1+x2 = 5, and check which side of L contains points
satisfying x1 + x2 ≤ 5, and mark that side with an arrow on L as the
desired half-space. Other half-spaces corresponding to the remaining
inequalities in the above system are drawn in the same way. K is the
region common to all the four half-spaces. Since K is bounded it is a
convex polytope.
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Introducing the slack variables s1, s2 corresponding to the 1st, and
2nd constraints respectively, the system becomes

x1 +x2 +s1 = 5
x2 +s2 = 2

x1, x2, s1, s2 ≥ 0

which is an equivalent system of 2 equations in 4 nonnegative variables.
Here s1 = 5 − x1 − x2, s2 = 2 − x2. So, the values of the slack
variables at the point x1 = (x11, x

1
2) = (3, 2)

T are s11 = 5− x11 − x12 = 0,
s12 = 2 − x12 = 0. Since x11, x

1
2, s

1
1, s

1
2 are all ≥ 0, we conclude that x1

is a feasible solution of the original system (we verify that it is in K
in Figure 3.1), and that it corresponds to (x11, x

1
2, s

1
1, s

1
2)
T = (3, 2, 0, 0)T

of the transformed system. Also, since the values of both the slack
variables s1, s2 are 0 at x

1, it indicates that this point satisfies the
corresponding constraints in the original system, the 1st and the 2nd,
as equations. So, the first two constraints in the original system are
active at x1, while the last two constraints (nonnegativity restrictions)
are inactive at x1.
In the same way we find the following about other points marked

in Figure 3.1:
x2 = (x21, x

2
2) = (3, 1)

T corresponds to (x21, x
2
2, s

2
1, s

2
2)
T = (3, 1, 1, 1)T

of the transformed system, this point is feasible to the original system
since all 4 variables are ≥ 0 at it. Also, since s1, s2 are both = 1 at x2,
it indicates that this point satisfies both the 1st and 2nd constraints
in the original syatem as strict inequalities; and the actual numerical
values of s21, s

2
2 give measures of how far away x

2 is from satisfying these
constraints as equations. All the constraints in the original system are
inactive at x2.
x3 = (x31, x

3
2) = (3, 3)

T corresponds to (x31, x
3
2, s

3
1, s

3
2)
T = (3, 3,−1,−1)T

of the transformed system, this point is infeasible to the original system
since the slack variables are both negative at it. It violates both the 1st
and 2nd constraints in the original system. The first two constraints
in the original system are infeasible at x3.
x4 = (x41, x

4
2) = (1, 3)

T corresponds to (x41, x
4
2, s

4
1, s

4
2)
T = (1, 3, 1,−1)T

of the transformed system, this point is infeasible to original system
since the slack variable s2 is negative at it. It satisfies the 1st constraint
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in the original system, but violates the 2nd. x4 is feasible to all the
constraints in the original system except the 2nd.
x5 = (x51, x

5
2) = (1, 3)

T corresponds to (x51, x
5
2, s

5
1, s

5
2)
T = (5, 1,−1, 1)T

of the transformed system, this point is infeasible to original system
since the slack variable s1 is negative at it. It satisfies the 2nd con-
straint in the original system, but violates the 1st. x5 is feasible to all
the constraints in the original system except the 1st.

Exercises

3.3.1: Transform the following systems of linear constraints into
systems in which all the conditions on the variables are either linear
equations with nonnegative RHS constants, or bounds on individual
variables. In each exercise give the expression for each new variable
introduced, in terms of the original variables.

(i): 2x2 − 3x1 − 17x3 ≥ −6
−18x2 + 7x4 + 2x3 ≤ −7

2x4 + 8x3 − 4x1 − 5x2 ≥ 2
−3x3 + 2x4 + x1 ≥ 0

x1 − x2 + x3 − 4x4 = −2
−2 ≤ x1 ≤ 6, x2 ≥ 0, x3 ≤ 0.

(ii): x1 + x2 − x3 − x4 ≥ 8
x1 − x2 − x3 + x4 ≤ 16

10 ≤ x1 + x2 + x3 + x4 ≤ 20
−3 ≤ −x1 + x2 − x3 + x4 ≤ 15
x1 ≥ 6, x2 ≤ 7, x3 ≥ 0, x4 ≤ 0.

(iii): − 20 ≤ x1 − x2 − x3 − x4 ≤ −10
−x1 + x2 + x3 − x4 ≥ −6
x1 + x2 + x3 + x4 ≤ 100
2x1 − 3x2 + 9x3 = 30

4 ≤ x2 ≤ 10; x3, x4 ≥ 0.

3.3.2: In the following system transform the variables so that all
lower bound conditions on individual variables become nonnegativity
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restrictions on the new variables. Then in the resulting system, intro-
duce appropriate slack variables thereby transforming it into a system
of linear equations in nonnegative variables.

x1 + x2 + x3 − x4 ≥ 6

x1 + x2 − x3 + x4 ≤ 24

x1 − x2 + x3 + x4 = 33

−4 ≤ x1 ≤ 10, x2 ≥ −7, x3 ≥ 2, x4 ≥ 4.

3.3.3: In the following systems there are some variables which only
have an upper bound restriction but no lower bound restriction. Trans-
form these into lower bound restrictions on new variables. Then on the
resulting systems, follow the instructions in Exercise 3.3.2 to transform
them into systems of linear equations in nonnegative variables.

(i): x1 + 2x2 + 2x3 + 2x4 ≥ 10
2x1 + x2 + 2x3 + 2x4 ≤ 100

20 ≤ 2x1 + 2x2 + x3 + 2x4 ≤ 110
2 ≤ x1 ≤ 40, x2 ≤ 50, x3 ≤ 60, x4 ≥ 5

(ii): x1 + x2 − 2x3 ≥ 5
x1 − 2x2 + x3 ≤ 25
−2x1 + x2 + x3 = 13

x1 ≤ 0, x2 ≥ 2, 4 ≤ x3 ≤ 30.

3.3.4: Set up the Cartesian coordinate system and draw the set
of feasible solutions of each of the following systems of constraints in
variables x1, x2.
If K is the set of feasible solutions, is it a convex polytope? Why?
Number the constraints in the system with 1 to 6, and identify each

boundary edge of K with the constraint to which it corresponds. Are
the points x̄, x̂, x̃ feasible to the system? Which of these points are in
K? At each of these points which are feasible, classify the constraints
into active, inactive types.
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Introduce slack variables corresponding to all the constraints in
the system other than the nonnegativity restrictions on x1, x2, thereby
transforming the system into a system of 4 linear equations in 6 non-
negative variables. Compute the values of all the slack variables at the
points x̄, x̂, x̃ respectively. Explain how you can decide whether the
point is in K or not from the signs of the values of the slack variables
at it.
Explain how the value of a slack variable at the points x̄, x̂, x̃ can be

interpreted as a measure of how far away that point is from satisfying
the corresponding constraint as an equation.

(i): 3x1 + 2x2 ≤ 12
x1 + 2x2 ≤ 6
−x1 + x2 ≤ 1

x2 ≤ 2
x1, x2 ≥ 0

,
x̄ = (3, 1)T

x̂ = (1, 0)T

x̃ = (4, 1)T

(ii): x2 − x1 ≤ 2
x2 − x1 ≥ −2
x1 − 2x2 ≤ 1
x2 − 2x1 ≤ 1
x1, x2 ≥ 0

,
x̄ = (2, 1)T

x̂ = (1, 3)T

x̃ = (1, 4)T .

3.4 Product Mix Problems

Product mix problems are an extremely important class of problems
that manufacturing companies face. Normally the company can make
a variety of products using the raw materials, machinery, labor force,
and other resources available to them. The problem is to decide how
much of each product to manufacture in a period, to maximize the
total profit subject to the availability of needed resources.
To model this, we need data on the units of each resource necessary

to manufacture one unit of each product, any bounds (lower, upper,
or both) on the amount of each product manufactured per period, any
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bounds on the amount of each resource available per period, and the
cost or net profit per unit of each product manufactured.

Assembling this type of reliable data is one of the most difficult
jobs in constructing a product mix model for a company, but it is very
worthwhile. A product mix model can be used to derive extremely
useful planning information for the company. The process of assembling
all the needed data is sometimes called input-output analysis of the
company. The coefficients, which are the resources necessary to make
a unit of each product, are called input-output (I/O) coefficients,
or technology coefficients.

Example 3.4.1

As an example, consider a fertilizer company that makes two kinds
of fertilizers called Hi-phosphate (Hi-ph) and Lo-phosphate (Lo-ph).
The manufacture of these fertilizers requires three raw materials called
RM 1, 2, 3. At present their supply of these raw materials comes
from the company’s own quarry which is only able to supply maximum
amounts of 1500, 1200, 500 tons/day respectively of RM 1, RM 2, RM
3. Even though there are other vendors who can supply these raw
materials if necessary, at the moment they are not using these outside
suppliers.

They sell their output of Hi-ph, Lo-ph fertilizers to a wholesaler
who is willing to buy any amount that they can produce, so there are
no upper bounds on the amounts of Hi-ph, Lo-ph manufactured daily.

At the present rates of operation their Cost Accounting Department
estimates that it is costing the quarry $50, 40, 60/ton respectively to
produce and deliver RM 1, 2, 3 at the fertilizer plant. Also, at the
present rates of operation, all other production costs (for labor, power,
water, maintenance, depreciation of plant and equipment, floorspace,
insurance, shipping to the wholesaler, etc.) come to $7/ton to manu-
facture Hi-ph, or Lo-ph and deliver to wholesaler.

The sale price of the manufactured fertilizers to the wholesaler fluc-
tuates daily, but their averages over the last one month have been
$222, 107/ton respectively for Hi-Ph, Lo-ph fertilizers. We will use
these prices for constructing the mathematical model.
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The Hi-ph manufacturing process needs as inputs 2 tons RM 1, and
1 ton each of RM 2, 3 for each ton of Hi-ph manufactured. Similarly
the Lo-ph manufacturing process needs as inputs 1 tons RM 1, and 1
ton of RM 2 for each ton of Lo-ph manufactured. So, the net profit/ton
of fertilizer manufactured is $(222 − 2 × 50 − 1 × 40 − 1 × 60 − 7) =
15, (107− 1× 50− 1× 40− 7) = 10/respectively of Hi-ph, Lo-ph.
We will model the problem with the aim of determining how much

of Hi-ph, Lo-ph to make daily to maximize the total daily net profit
from these fertilizer operations. All the relevant data is summarized in
Table 3.4.1.

Table 3.4.1

Item
Tons required to
make one ton of

Maximum
amount of item
available daily
(tons)

Hi-ph Lo-ph
RM 1 2 1 1500
RM 2 1 1 1200
RM 3 1 0 500
Net
profit
($) per
ton
made

15 10

So, in this example, the Hi-ph manufacturing process can be imag-
ined as a black box which takes as input a packet consisting of 2 tons
RM 1, 1 ton RM 2, and 1 ton RM 3; and outputs 1 ton of Hi-ph. See
the following figure. A similar interpretation can be given for the Lo-ph
making process.

2 tons RM 1
1 ton RM 2
1 ton RM 3

⎫⎪⎬⎪⎭ −→
Hi-ph
making
process

−→ 1 ton Hi-ph



3.4: Product Mix Problems 71

Constructing a mathematical model for the problem involves the
following steps.

Step 1: Make a list of all the decision variables

The list must be complete in the sense that if an optimum solution
providing the values of each of the variables is obtained, the decision
maker should be able to translate it into an optimum policy that can
be implemented. In product mix models, there is one decision variable
for each possible product the company can produce, it measures the
amount of that product made per period.
In our example, there are clearly two decision variables; these are:

x1 = the tons of Hi-ph made per day

x2 = the tons of Lo-ph made per day

Associated with each variable in the problem is an activity that
the decision maker can perform. The activities in this example are:

Activity 1 : to make 1 ton of Hi-ph

Activity 2 : to make 1 ton of Lo-ph

The variables in the problem just define the levels at which these
activities are carried out. So, one way of carrying out this step is to
make a list of all the possible activities that the company can perform,
and associate a variable that measures the level at which it is carried
out, for each activity.
Even though it is mathematically convenient to denote the decision

variables by symbols x1, x2, etc., practitioners find it very cumbersome
to look up what each of these variables represents in the practical
problem. For this reason they give the decision variables suggestive
names, for example x1, x2 here would be called Hi-ph, Lo-ph instead.

Step 2: Verify that the linearity assumptions and the assump-
tion on the continuity of the decision variables hold
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Since all the data is given on a per ton basis, it provides an in-
dication that the linearity assumptions are quite reasonable in this
problem. Also, the amount of each fertilizer manufactured can vary
continuously within its present range. So, LP is an appropriate model
for this problem.

In some applications, variables may be restricted to take only inte-
ger values (e.g., if the variable represents the number of empty buses
transported from one location to another). Such restrictions make the
problem an integer program. However, sometimes people ignore the
integer restrictions on integer variables and treat them as continuous
variables. If the linearity assumptions hold, this leads to the LP re-
laxation of the integer program.

Step 3: Construct the objective function

By the linearity assumptions the objective function is a linear func-
tion, it is obtained by multiplying each decision variable by its profit
(or cost) coefficient and summing up.

In our example problem, the objective function is the total net daily
profit, z(x) = 15x1 + 10x2, and it has to be maximized.

Step 4: Identify the Constraints on the Decision Variables

Nonnegativity constraints

In product mix models the decision variables are the amounts of
various products made per period; these have to be nonnegative to
make any practical sense. In linear programming models in general,
the nonnegativity restriction on the variables is a natural restriction
that occurs because certain activities (manufacturing a product, etc.)
can only be carried out at nonnegative levels.

The nonnegativity restriction is a lower bound constraint. Some-
times it may be necessary to impose a positive lower bound on a vari-
able. This occurs if we have a commitment to make a minimum quan-
tity, fj units say, where fj > 0, of product j. Then the lower bound
constraint on the decision variable xj = amount of product j manufac-
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tured, is xj ≥ fj .

There may be an upper bound constraint on a variable too. This
occurs if we know that only a limited quantity, say uj units, of product
j can be either sold in a period or stored for use later on, then xj ≤ uj
is the upper bound constraint on xj = the amount of product j made
in that period.

On some decision variables there may be both a lower and an upper
bound constraint.

In our example problem the bound restrictions are: x1, x2 ≥ 0.

Items and the associated constraints

There may be other constraints on the variables, imposed by lower
or upper bounds on certain goods that are either inputs to the produc-
tion process or outputs from it. Such goods that lead to constraints
in the model are called items. Each item leads to a constraint on
the decision variables, and conversely every constraint in the model
is associated with an item. Make a list of all the items that lead to
constraints.

In the fertilizer problem each raw material leads to a constraint.
The amount of RM 1 used is 2x1 + x2 tons, and it cannot exceed
1500, leading to the constraint 2x1 + x2 ≤ 1500. Since this inequality
compares the amount of RM 1 used to the amount available, it is called
a material balance inequality. The material balance equations or
inequalities corresponding to the various items are the constraints in
the problem.

When all the constraints are obtained, the formulation of the prob-
lem as an LP is complete. The LP formulation of the fertilizer product
mix problem is given below.

Maximize z(x) = 15x1 + 10x2 Item
Subject to 2x1 + x2 ≤ 1500 RM 1

x1 + x2 ≤ 1200 RM 2
x1 ≤ 500 RM 3
x1 ≥ 0, x2 ≥ 0
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Slack Variables and Their Interpretation
After introducing x3, x4, x5, the slack variables for RM 1, 2, 3 con-

straints, the fertilizer product mix problem in detached coefficient form
is the following.

Tableau 2.2
x1 x2 x3 x4 x5 =
2 1 1 0 0 1500
1 1 0 1 0 1200
1 0 0 0 1 500
15 10 0 0 0 z(x) maximize

x1 to x5 ≥ 0

Here, the slack variable x3 corresponding to the RM 1 constraint
is = 1500 − 2x1 − x2, it represents the amount of RM 1 remaining
unutilized in the daily supply, after implementing the solution vector
x = (x1, x2)

T . In the same manner, the slack variables x4, x5 corre-
sponding to the RM2, RM3 constraints are respectively = 1200−x1−x2
, and 500 − x1; and they represent the quantities of RM 2, RM 3 left
unused if solution vector x is implemented. So, these slack variable
values at the optimum solution contain valuable planning information.
To model any problem as an LP we need to go through the same

Steps 1 to 4 given above. Examples from other classes of applications
are discussed in the following sections.

Limitations of the Model Constructed Above

In real world applications, typically after each period there may be
changes in the profit or cost coefficients, the RHS constants (availabil-
ities of items), and technology coefficients. Also, new products may
come on stream and some old products may fade out. So, most com-
panies find it necessary to revise their product mix model and solve it
afresh at the beginning of each period.
Other limitations of the LP model constructed above for the fer-

tilizer problem can be noticed. It is based on the assumption that
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only the raw material supplies coming from the company’s own quarry
can be used. Businesses are always looking for ways to improve their
profits. If our fertilizer company decides to explore whether getting
additional supplies from outside vendors will improve their profit, the
model changes completely. In the same way, companies have to revise
their product mix models to reflect changes in company policies, or
market conditions.

3.5 Blending Problems

This is another large class of problems in which LP is applied heav-
ily. Blending is concerned with mixing different materials called the
constituents of the mixture (these may be chemicals, gasolines, fuels,
solids, colors, foods, etc.) so that the mixture conforms to specifica-
tions on several properties or characteristics.
To model a blending problem as an LP, the linear blending as-

sumption must hold for each property or characteristic. This implies
that the value for a characteristic of a mixture is the weighted average
of the values of that characteristic for the constituents in the mixture;
the weights being the proportions of the constituents. As an example,
consider a mixture consisting of 4 barrels of fuel 1 and 6 barrels of
fuel 2, and suppose the characteristic of interest is the octane rating
(Oc.R). If linear blending assumption holds, the Oc.R of the mixture
will be equal to (4 times the Oc.R of fuel 1 + 6 times the Oc.R of fuel
2)/(4 + 6).
The linear blending assumption holds to a reasonable degree of

precision for many important characteristics of blends of gasolines, of
crude oils, of paints, of foods, etc. This makes it possible for LP to be
used extensively in optimizing gasoline blending, in the manufacture of
paints, cattle feed, beverages, etc.
The decision variables in a blending problem are usually either the

quantities or the proportions of the constituents in the blend.
If a specified quantity of the blend needs to be made, then it is con-

venient to take the decision variables to be the quantities of the various
constituents blended; in this case one must include the constraint that
the sum of the quantities of the constituents = the quantity of the
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blend desired.

If there is no restriction on the amount of blend made, but the aim is
to find an optimum composition for the mixture, it is convenient to take
the decision variables to be the proportions of the various constituents
in the blend; in this case one must include the constraint that the sum
of all these proportions is 1.

Example 3.5.1: A gasoline blending problem:

There are more than 300 refineries in the USA processing a total of
more than 20 million barrels of crude oil daily. Crude oil is a complex
mixture of chemical components. The refining process separates crude
oil into its components that are blended into gasoline, fuel oil, asphalt,
jet fuel, lubricating oil, and many other petroleum products. Refineries
and blenders strive to operate at peak economic efficiencies taking into
account the demand for various products.

As an example we consider a gasoline blending problem. To keep it
simple, we consider only one characteristic of the mixture, the Oc.R.
of the blended fuels, in this example. In actual application there are
many other characteristics to be considered also.

A refinery takes four raw gasolines, blends them to produce three
types of fuel. The company sells raw gasoline not used in making fuels
at $38.95/barrel if its Oc.R is > 90, and at $36.85/barrel if its Oc.R is
≤ 90.
The cost of handling raw gasolines purchased, and blending them

into fuels or selling them as is, is estimated to be $2/barrel by the Cost
Accounting Department. Other data is given below.

Raw
gas
type

Octane
rating
(Oc.R)

Available
daily
(barrels)

Price
per
barrel

1 68 4000 $31.02
2 86 5050 33.15
3 91 7100 36.35
4 99 4300 38.75
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Fuel
type

Minimum
Oc.R

Selling
price
(bar-
rel)

Demand

1 95 $47.15 At most 10,000 barrels/day
2 90 44.95 No limit
3 85 42.99 At least 15,000 barrels/day

The problem is to determine how much raw gasoline of each type
to purchase, the blend to use for the three fuels, and the quantities of
these fuels to make to maximize total daily net profit.

To model this problem, we will use the quantities of the various raw
gasolines in the blend for each fuel as the decision variables, and we
assume that the linear blending assumption stated above holds for the
Oc.R. Since three different fuels are under consideration, it is conve-
nient to use a double subscript notation to denote the blending decision
variables as given below.

RGi = barrels of raw gasoline type i to purchase/day, i = 1 to 4

xij =

l
barrels of raw gasoline type i used in making fuel
type j per day, i = 1 to 4, j = 1,2,3

yi = barrels of raw gasoline type i sold as is/day

Fj = barrels of fuel type j made/day, j = 1, 2, 3.

So, the total amount of fuel type 1 made daily is F1 = x11 + x21 +
x31 + x41. If this is > 0, by the linear blending assumption its Oc.R
will be (68x11+86x21+91x31+99x41)/F1. This is required to be ≥ 95.
Thus, if F1 > 0, we must have

68x11 + 86x21 + 91x31 + 99x41
F1

≥ 95

In this form the constraint is not a linear constraint since the con-
straint function on the left is a ratio of two linear functions of the
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decision variables, and not a linear function. So, if we write the con-
straint in this form the model will not be an LP. However we see that
this constraint is equivalent to

68x11 + 86x21 + 91x31 + 99x41 − 95F1 ≥ 0
and this is a linear constraint. Also, if F1 = the amount of fuel type 1
made, is zero, all of x11, x21, x31, x41 are zero, and above linear inequal-
ity holds automatically. Thus, the Oc.R constraint on fuel type 1 can
be represented by the above linear constraint for all F1 ≥ 0. Proceed-
ing in a similar manner, we obtain the following LP formulation for
this problem.

Maximize 47.15F1 + 44.95F2 + 42.99F3 + y1(36.85− 31.02)
+y2(36.85− 33.15) + y3(38.95− 36.35) + y4(38.95
−38.75)− (31.02 + 2)RG1 − (33.15 + 2)RG2
−(36.35 + 2)RG3 − (38.75 + 2)RG4

Subject to RGi = xi1 + xi2 + xi3 + yi, i = 1, . . . , 4

0 ≤ (RG1, RG2, RG3, RG4) ≤ (4000, 5050, 7100, 4300)
Fj = x1j + x2j + x3j + x4j, j = 1, 2, 3

0 ≤ F1 ≤ 10, 000
F3 ≥ 15, 000
68x11 + 86x21 + 91x31 + 99x41 − 95F1 ≥ 0
68x12 + 86x22 + 91x32 + 99x42 − 90F2 ≥ 0
68x13 + 86x23 + 91x33 + 99x43 − 85F3 ≥ 0
F2 ≥ 0, xij, yi ≥ 0, for all i, j

Blending models are economically significant in the petroleum in-
dustry. The blending of gasoline is a very popular application. A single
grade of gasoline is normally blended from about 3 to 10 individual
components, no one of which meets the quality specifications by itself.
A typical refinery might have 20 different components to be blended
into 4 or more grades of gasoline, and other petroleum products such
as aviation gasoline, jet fuel, and middle distillates; differing in Oc.R
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and properties such as pour point, freezing point, cloud point, viscosity,
boiling characteristics, vapor pressure, etc., by marketing region.

Example 3.5.2: A powdered grains mixing problem:

There are four grains G1 to G4 that contain nutrients, starch, fiber,
protein, and gluten. The composition of these grains, and their prices
are given below.

% Nutrient in grain
1 2 3 4

Starch 30 20 40 25
Fiber 40 65 35 40

Protein 20 15 5 30
Gluten 10 0 20 5

Cost (cents/kg.) 70 40 60 80

It is required to develop a minimum cost mixture of these grains
for making a new type of multigrain flour subject to the following
constraints:

1. For taste considerations, the percent of grain 2 in the
mix cannot exceed 20, and the percent of grain 3 in the mix
has to be at least 30, and the percent of grain 1 in the mix
has to be between 10 to 25.

2. The percent protein content in the flour must be at least
18, the percent gluten content has to be between 8 to 13,
and the percent fiber content at most 50.

We will now formulate the problem of finding the composition of the
least costly blend of the grains to make the flour, using the proportions
of the various grains in the blend as decision variables. Let:

pi = proportion of grain i in the blend, i = 1 to 4.
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p = (p1, p2, p3, p4)
T is the vector of decision variables in this prob-

lem. The linear blending assumptions are quite reasonable in this prob-
lem. From them, we derive the percent protein content in the blend
corresponding to p to be 20p1+15p2+5p3+30p4, hence the constraint
on protein content in the flour is 20p1 + 15p2 + 5p3 + 30p4 ≥ 18.
Arguing the same way, we get the following LP model for this prob-

lem.

Minimize 70p1 + 40p2 + 60p3 + 80p4

Subject to 0 ≤ p2 ≤ 0.2
p3 ≥ 0.3
0.10 ≤ p1 ≤ 0.25
20p1 + 15p2 + 5p3 + 30p4 ≥ 18
8 ≤ 10p1 + 20p3 + 5p4 ≤ 13
40p1 + 65p2 + 35p3 + 40p4 ≤ 50
p1 + p2 + p3 + p4 = 1

p4 ≥ 0.
The last equality constraint expresses the condition that the sum of

the proportions of the various constituents in a mixture must be equal
to 1.

3.6 The Diet Problem

A diet is a selection of food for consumption in a day.
It has to satisfy many constraints. Perhaps the most important

constraint is that it should be palatable to the individual for whom it
is intended. This is a very difficult constraint to model mathematically,
particularly so if you are restricted to only linear constraints; and the
diet is for a human individual. So, most of the early publications on
the diet problem have ignored this constraint. Also, these days most
of the applications of the diet problem are in the farming sector.
The other important constraint on the diet is that it should meet

the MDR (minimum daily requirement) of each nutrient identified as
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being important for the individual’s well-being. This is the only con-
straint considered in early publications on the diet problem, we will
also restrict our scope to only this constraint for the sake of simplicity.

The diet problem is a classic problem, one among the earliest prob-
lems formulated as an LP. The first paper on it was published by G.
J. Stigler under the title “The Cost of Subsistence” in the Journal of
Farm Economics, vol. 27, 1945. Those were the war years, food was
expensive, and the problem of finding a minimum cost diet was of more
than academic interest. Nutrition science was in its infancy in those
days, and after extensive discussions with nutrition scientists Stigler
identified nine essential nutrient groups for his model. His search of
the grocery shelves yielded a list of 77 different available foods. With
these, he formulated a diet problem which was an LP involving 77
nonnegative decision variables subject to nine inequality constraints.

Stigler did not know of any method for solving his LP model at
that time, but he obtained an approximate solution using a trial and
error search procedure that led to a diet meeting the MDR of the nine
nutrients considered in the model at an annual cost of $39.93 in 1939
prices! After Dantzig developed the simplex algorithm for solving LPs
in 1947, Stigler’s diet problem was one of the first nontrivial LPs to
be solved by the simplex method on a computer, and it gave the true
optimum diet with an annual cost of $39.67 in 1939 prices. So, the
trial and error solution of Stigler was very close to the optimum.

The Nobel prize committee awarded the 1982 Nobel prize in eco-
nomics to Stigler for his work on the diet problem and later work on the
functioning of markets and the causes and effects of public regulation.

The units for measuring the various nutrients and foods may be
very different, for example carrots may be measured in pounds, chest-
nuts in kilograms, milk in gallons, orange juice in liters, vitamins in
IU, minerals in mg., etc. The data in the diet problem that we are
considering consists of a list of nutrients with the MDR for each, a list
of available foods with the price and composition (i.e., information on
the number of units of each nutrient in each unit of food) of every one
of them; and the data defining any other constraints the user wants to
place on the diet.

As an example we consider a very simple diet problem in which the
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nutrients are starch, protein, and vitamins as a group; and the foods
are two types of grains with data given below.

Nutrient Nutrient units/kg.
of grain type MDR of nutrient
1 2 in units

Starch 5 7 8
Protein 4 2 15
Vitamins 2 1 3
Cost ($/kg.) of food 0.60 0.35

The activities and their levels in this model are: for j = 1, 2

Activity j: to include one kg. of grain type j in the diet, associated
level = xj

So, xj is the amount in kg. of grain j included in the daily diet,
j = 1, 2, and the vector x = (x1, x2)

T is the diet. The items in this
model are the various nutrients, each of which leads to a constraint.
For example, the amount of starch contained in the diet x is 5x1+7x2,
which must be ≥ 8 for feasibility. This leads to the formulation given
below.

Minimize z(x) = 0.60x1 + 0.35x2 Item
Subject to 5x1 + 7x2 ≥ 8 Starch

4x1 + 2x2 ≥ 15 Protein
2x1 + x2 ≥ 3 Vitamins
x1 ≥ 0, x2 ≥ 0

This simple model contains no constraints to guarantee that the diet
is palatable, and does not allow any room for day-to-day variations that
contributes to eating pleasure, and hence the solution obtained from it
may be very hard to implement for human diet. The basic model can
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be modified by including additional constraints to make sure that the
solution obtained leads to a tasteful diet with ample scope for variety.
This sort of modification of the model after looking at the optimum
solution to determine its reasonableness and implementability, solv-
ing the modified model, and even repeating this whole process several
times, is typical in practical applications of optimization.
We human beings insist on living to eat rather than eating to live.

And if we can afford it, we do not bother about the cost of food. It
is also impossible to make a human being eat a diet that has been
determined as being optimal. For all these reasons, it is not practical
to determine human diet using an optimization model.
However, it is much easier to make cattle and fowl consume the

diet that is determined as being optimal for them. Almost all the
companies in the business of making feed for cattle, other farm animals,
birds, etc. use LP extensively to minimize their production costs. The
prices and supplies of various grains, hay, etc. are constantly changing,
and feed makers solve the diet model frequently with new data values,
to make their buy-decisions and to formulate the optimum mix for
manufacturing the feed.

3.7 The Transportation Problem

An essential component of our modern life is the shipping of goods from
where they are produced to markets worldwide. Nationally, within
the USA alone transportation of goods is estimated to cost over $tril-
lion/year.
The aim of this problem is to find a way of carrying out this transfer

of goods at minimum cost. Historically it is among the first LPs to be
modeled and studied. The Russian economist L. V. Kantorovitch stud-
ied this problem in the 1930’s and published a book on it,Mathematical
Methods in the Organization and Planning of Production, in Russian
in 1939. In the USA, F. L. Hitchcock published a paper “The Distri-
bution of a Product From Several Sources to Numerous Localities” in
the Journal of Mathematics and Physics, vol. 20, 1941, where he devel-
oped an algorithm similar to the primal simplex algorithm for finding
an optimum solution to the problem. And T. C. Koopmans published a
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paper “Optimum Utilization of the Transportation System” in Econo-
metrica, vol. 17, 1949, in which he developed an optimality criterion for
a basic solution to the transportation problem in terms of the dual ba-
sic solution (discussed later on). The early work of L. V. Kantorovitch
and T. C. Koopmans in these publications is part of their effort for
which they received the 1975 Nobel prize in economics.
The classical single commodity transportation problem is concerned

with a set of nodes or places called sources which have a commodity
available for shipment, and another set of places called sinks or de-
mand centers or markets which require this commodity. The data
consists of the availability at each source (the amount available there
to be shipped out), the requirement at each market, and the cost of
transporting the commodity per unit from each source to each market.
The problem is to determine the quantity to be transported from each
source to each market so as to meet the requirements at minimum total
shipping cost.

Example 3.7.1: Iron ore shipping problem:

As an example, we consider a small problem where the commodity
is iron ore, the sources are mines 1 and 2 that produce the ore, and
the markets are three steel plants that require the ore. Let cij = cost
(cents per ton) to ship ore from mine i to steel plant j, i = 1, 2, j =
1, 2, 3. The data is given below. To distinguish between different data
elements, we show the cost data in normal size letters, and the supply
and requirement data in larger size letters.

cij (cents/ton) Availability at
j = 1 2 3 mine (tons) daily

Mine i = 1 11 8 2 800
2 7 5 4 300

Requirement at

plant (tons) daily 400 500 200

The activities in this problem are: to ship one ton of the commodity
from source i to market j. It is convenient to represent the level at
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which this activity is carried out by the double subscripted symbol xij .
In this example xij represents the amount of ore (in tons) shipped from
mine i to plant j.
The items in this model are the ore at various locations. Consider

ore at mine 1. There are 800 tons of it available, and the amount of
ore shipped out of this mine, x11+x12+x13, cannot exceed the amount
available, leading to the constraint x11 + x12 + x13 ≤ 800. Likewise,
considering ore at steel plant 1, at least 400 tons of it is required there,
so the total amount of ore shipped to this plant has to be≥ 400, leading
to the constraint x11 + x21 ≥ 400. The total amount of ore available
at both mines 1, 2 together is 800 + 300 = 1100 tons daily; and the
total requirement at plants 1, 2, 3 is also 400 + 500 + 200 = 1100 tons
daily. Clearly, this implies that all the ore at each mine will be shipped
out, and the requirement at each plant will be met exactly; i.e., all the
constraints will hold as equations. Therefore we have the following LP
formulation for this problem.

Min. z(x) = 11x11 + 8x12 + 2x13 + 7x21 + 5x22 + 4x23 Item
Ore at

S. to x11 + x12 + x13 = 800 mine 1

x21 + x22 + x23 =300 mine 2

x11 + x21 =400 plant 1

x12 + x22 =500 plant 2

x13 + x23 =200 plant 3

xij ≥ 0 for all i = 1, 2, j = 1, 2, 3

The Special Structure of the Transportation Prob-
lem

As an LP, the simple transportation problem discussed above has
a very special structure. It can be represented very compactly in a
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two dimensional array in which row i corresponds to source i; column
j corresponds to demand center j; and (i, j), the cell in row i and
column j, corresponds to the shipping route from source i to demand
center j. Inside the cell (i, j), record the decision variable xij which
represents the amount of commodity shipped along the corresponding
route, and enter the unit shipping cost on this route in the lower right-
hand corner of the cell. The objective function in this model is the sum
of the variables in the array multiplied by the cost coefficient in the
corresponding cell. Record the availabilities at the sources in a column
on the right-hand side of the array; and similarly the requirements at
the demand centers in a row at the bottom of the array. Then each
constraint other than any bound constraints on individual variables is
a constraint on the sum of all the variables either in a row or a column
of the array, and it can be read off from the array as shown below for
the iron ore example.

Array Representation of the Transportation Problem
Steel Plant

1 2 3

Mine 1 x11 x12 x13 = 800
11 8 2

Mine 2 x21 x22 x23 = 300
7 5 4

= 400 = 500 = 200
xij ≥ 0 for all i, j. Minimize cost.

Supplies, requirements in large size numbers

Any LP, whether it comes from a transportation or a different con-
text, that can be represented in this special form of a two dimensional
array is called a transportation problem. The constraints in the
example problem are equations, but in general they may be equations
or inequalities.
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Integer Property in the Transportation Model

In a general LP, even when all the data are integer valued, there is
no guarantee that there will be an optimum integer solution. However,
the special structure of the transportation problem makes the following
theorem possible.

Theorem 3.7.1 In a transportation model, if all the availabilities
and requirements are positive integers, and if the problem has a feasible
solution, then it has an optimum solution in which all the decision
variables xij assume only integer values.

This theorem follows from the results discussed in Chapter 6. In
fact in that chapter we discuss the primal simplex algorithm for the
transportation problem, which terminates with an integer optimum
solution for it when the conditions mentioned in the theorem hold.
A word of caution. The statement in Theorem 3.7.1 does not claim

that an optimum solution to the problem must be an integer vector
when the conditions stated there hold. There may be many alternate
optimum solutions to the problem and the theorem only guarantees
that at least one of these optimum solutions will be an integer vector.
The practical importance of the integer property will become clear

from the next section.

The Balanced Transportation Problem

As mentioned above, the constraints in a transportation problem
may be equations or inequalities. However, when the following condi-
tion holds

total material avail-
able = sum of avail-
abilities at all sources

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩
total material required =
sum of the requirements at
all the markets

to meet the requirements at the markets, all the material available
at every source will be shipped out and every market will get exactly
as much as it requires, i.e., all constraints hold as equations. That’s
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why this condition is a balance condition, and when it holds, and
all the constraints are equations, the problem is called a balanced
transportation problem. As formulated above, the iron ore problem
is a balanced transportation problem.

The Limitations of this Transportation Model

We discussed this model mainly to introduce you to the art of opti-
mizing commodity distribution costs using a mathematical model. For
real world goods distribution problems this model is perhaps too sim-
plistic. One limitation comes from its assumption that the shipping
activity from each source to each sink takes place separately from the
shipping between other source-sink pairs. Actually if sinks 1, 2 are
along the route from source 1 to sink 3, then in reality the shippings
from source 1 to sinks 1, 2 will probably be combined into the truck
going from source 1 to sink 3. Also, this model ignores the timing and
scheduling of various shipments, and the importance of packing all the
shipments into the least number of vehicles. Advanced network models
discussed in graduate level OR books remove some of these limitations,
but even they cannot capture all the complicated features in most real
world distribution problems. So, ultimately some heuristic adjustments
and human judgement are essential to handle them.
However, even this simple model finds many important applications

in a variety of problems, some of them not dealing with distribution
of goods at all. For example, in Section 6.2 we discuss an application
of this simple transportation model for deciding from which of several
depots in the city to allocate a bus to each customer trip at a bus rental
company.

3.8 The Assignment Problem

This is a very important optimization model that finds many appli-
cations in a variety of problems. This problem appears when there
are two sets of objects with each set containing the same number of
elements. For the sake of illustration, let us call one set the set of
machines, and the other the set of jobs. Suppose



3.8: Assignment Problem 89

n = the number of machines = the number of jobs.

The problem deals with forming a set of couples, each couple con-
sisting of a job and a machine. Forming the ordered couple (job i,
machine j) can be interpreted as assigning or allocating job i to
machine j for being carried out. For each possible coupling, an effec-
tiveness coefficient is given, for instance this coefficient for assigning job
i to machine j, denoted by cij may be the cost (or reward) of forming
that couple.

Each job can be assigned to any one of the n machines, and each
machine can be assigned only one of the n jobs. The aim is to find an
assignment of each job to a machine, which minimizes the sum of the
cost coefficients (or maximizing the sum of the reward coefficients) of
the n couples formed.

As an example consider a company that has divided their marketing
area into n zones based on the characteristics of the shoppers, their
economic status, etc. They want to appoint a director for each zone to
run the marketing effort there. They have already selected n candidates
to fill the positions. The total annual sales in a zone would depend on
which candidate is appointed as director there. Based on the candidates
skills, demeanor, and background, it is estimated that $cij million in
annual sales will be generated in zone j if candidate i is appointed as
director there, and this (cij) data is given. The problem is to decide
which zone each candidate should be assigned to, to maximize the total
annual sales in all the zones (each zone gets one candidate and each
candidate goes to one zone). We provide the data for a sample problem
with n = 6 in Table 3.8.1 given below.

In this problem candidate 1 can go to any one of the n zones (so,
n possibilities for candidate 1). Then candidate 2 can go to any one of
the other zones (so, n− 1 possibilities for candidate 2 after candidate
1’s zone is fixed). And so on. So, the total number of possible ways of
assigning the candidates to the zones is n×(n−1)×(n−2)×. . .×2×1 =
n!. For the example problem with n = 6 there are 6! = 720 ways of
assigning candidates to jobs. As n grows, n! grows very rapidly. Real
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Table 3.8.1
cij = annual sales volume in $million
if candidate i is assigned to zone j

Zone j = 1 2 3 4 5 6
Candidate i = 1 1 2 6 10 17 29

2 3 4 8 11 20 30
3 5 7 9 12 22 33
4 13 14 15 16 23 34
5 18 19 21 24 25 35
6 26 27 28 31 32 36

world applications of the assignment problem typically lead to problems
with n = 100 to 10,000, and the number of possible assignments in these
models is finite but very very large. So, it is not practical to evaluate
each alternative separately to select the best as we did in Category 1.
We have to construct a mathematical model for it and solve it by an
efficient algorithm.
To model this problem, define the decision variables xij for i, j = 1

to n = 6 taking only two values 0 and 1 with the following interpreta-
tion:

xij =

l
0 if Candidate i not assigned to Zone j
1 if Candidate i assigned to Zone j

Maximize zc(x) =
63
i=1

63
j=1

cijxij

Subject to
63
j=1

xij = 1 for i = 1 to 6 (3.8.1)

63
i=1

xij = 1 for j = 1 to 6

xij ≥ 0 for all i, j

and xij = 0 or 1 for all i, j (3.8.2)
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Since each candidate has to be assigned to exactly one zone, and
each zone gets exactly one candidate, with the above definition of the
variables, the model for this problem is (3.8.1), (3.8.2) given above.

(3.8.1), (3.8.2) is actually an integer programming problem since
the decision variables can only take integer vales (fractional values for
xij have no meaning in the problem). But we see that (3.8.1) is itself a
special transportation problem with all the availabilities and require-
ments equal to 1. So, by the integer property (Theorem 3.7.1 of Section
3.7), it has an optimum solution in which all the variables have integer
values only. Actually when (3.8.1) is solved by the Simplex method
discussed in Chapter 4 or 6, the optimum solution obtained will be an
integer solution. So, the constraint (3.8.2) can be ignored without any
loss of generality for solving this problem.

That’s why the assignment problem is always considered to be an
LP, even though we are looking for a 0-1 optimum solution for it.

Application of the Assignment Model to a Marriage
Problem, An Example Where Linearity Assump-
tions Are Inappropriate

This problem was proposed as an application of LP to sociology in a
paper “The Marriage Problem” in American Journal of Mathematics,
vol. 72, 1950, by P. R. Halmos and H. E. Vaughan. It is concerned with
a club consisting of an equal number of men and women (say n each),
who know each other well. The data consists of a rating (or happiness
coefficient) cij which represents the amount of happiness that man i
and woman j acquire when they spend a unit of time together, i, j =
1 to n. The coefficients cij could be positive, 0, or negative. If cij > 0,
man i and woman j are happy when together. If cij < 0, they are
unhappy when together, and so acquire unhappiness only. Hence, in
this setup unhappiness is a negative value for happiness and vice versa.
To keep the model simple, it is assumed that the remaining life of all
club members is equal, and time is measured in units of this lifetime.
The problem is to determine the fraction of this lifetime that man i,
woman j should spend together for i, j = 1 to n, to maximize the
overall club’s happiness.
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As an example, we consider a club with n = 5, consisting of 5
men and 5 women and the happiness ratings (cij) given below. These
happiness ratings are on a scale of −100 to + 100 where − 100
represents “very unhappy” and + 100 represents “very happy”.

cij for woman j =
1 2 3 4 5

man i = 1 78 −16 19 25 83
2 99 98 87 16 92
3 86 19 39 88 17
4 −20 99 88 79 65
5 67 98 90 48 60

There are 25 activities in this problem. These are, for i, j = 1 to 5

Activity: Man i and woman j to spend one unit of time
together. Associated level = xij.

Thus xij is the fraction of their lifetime that man i and woman j
spend together. The items in this model are the lifetimes of the various
members of the club. Halmos and Vaughan made the monogamous
assumption, i.e., that at any instant of time, a man can be with only
one woman and vice versa. Under this assumption, man 1’s lifetime
leads to the constraint that the sum of the fractions of his lifetime that
he spends with each woman should be equal to 1, i.e., x11+x12+x13+
x14 + x15 = 1. Similar constraints result from other members of the
club.

Under the linearity assumptions, the club’s happiness is (
�
cijxij :

over i, j = 1 to 5). These things lead to the conclusion that the marriage
problem in this example is the assignment problem given below. It is
a special transportation problem in which the number of sources is
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Woman
1 2 3 4 5

Man 1 x11 x12 x13 x14 x15 = 1
78 −16 19 25 83

2 x21 x22 x23 x24 x25 = 1
99 98 87 16 92

3 x31 x32 x33 x34 x35 = 1
86 19 39 88 17

4 x41 x42 x43 x44 x45 = 1
−20 99 88 79 65

5 x51 x52 x53 x54 x55 = 1
67 98 90 48 60

= 1 = 1 = 1 = 1 = 1
xij ≥ 0 for all i, j. Maximize objective.

equal to the number of demand centers, all the availabilities and re-
quirements are 1, and the constraints are equality constraints. Since
all variables are ≥ 0, and the sum of all the variables in each row and
column of the array is required to be 1, all variables in the problem
have to lie between 0 and 1. By Theorem 3.7.1 this problem has an
optimum solution in which all xij take integer values, and in such a
solution all xij should be 0 or 1. One such solution, for example, is
given below.

x = (xij) =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 1
1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
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In this solution man 1 (corresponding to row 1) spends all his life-
time with woman 5 (corresponding to column 5). So in this solution
we can think of man 1 being assigned to woman 5, etc. Hence an
integer solution to this problem is known as an assignment, and the
problem of finding an optimum solution to this problem that is integral
is called the assignment problem. In the optimum assignment, each
man lives ever after with the woman he is assigned to and vice versa,
and there is never any divorce!

For the marriage problem the conclusion that there exists an opti-
mum marriage policy that maximizes the overall club’s happiness with-
out any divorce is extremely interesting. Extending this logic to the
whole society itself, one can argue that there exists a solution pairing
each man with a woman in society that maximizes the society’s overall
happiness without any divorce. Natural systems have a tendency to
move towards an optimum solution, and if such a divorceless optimum
solution exists, one would expect it to manifest itself in nature. Why,
then, is there so much divorce going on, and why is the frequency of
divorce increasing rather than declining? This seems to imply that
the conclusion obtained from the model - that there exists an optimum
marriage policy that maximizes society’s happiness without any divorce
- is false. If it is false, some of the assumptions on which the model is
based must be invalid. The major assumptions made in constructing
the model are the linearity assumptions needed to express the club’s
overall happiness as the linear function

�
(cijxij : over i, j = 1 to n).

Let us examine the proportionality and additivity assumptions that
lead to the choice of this objective function carefully.

The proportionality assumption states that the happiness acquired
by a couple is proportional to the time they spend together. In practice
though, a couple may begin their life together in utter bliss, but develop
a mutual dislike for each other as they get to know each other over time.
After all, the proverb says: “Familiarity breeds contempt”. For most
married couples, the rate of happiness they acquire per unit time spent
together increases for some time after their wedding, then peaks and
either remains flat, or begins to decline. So, the actual total happiness
acquired by the couple as a function of the time spent together behaves
as a highly nonlinear function. Thus the proportionality assumption is
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not reasonable for the marriage problem.

The additivity assumption states that the society’s happiness is the
sum of the happiness acquired by the various members in it. In par-
ticular, this states that a person’s unhappiness cancels with another
person’s happiness. In reality these things are quite invalid. History
has many instances of major social upheavals just because there was
one single unhappy person. The additivity assumption is quite inap-
propriate for determining the society’s happiness as a function of the
happiness of its members.

Finally the choice of the objective of maximizing society’s happiness
is itself quite inappropriate. In determining their marriage partners,
most people are guided by the happiness they expect to acquire, and
do not care what impact it will have on society. It is extremely hard
to force people to do something just because it is good for the society
as a whole.

In summary, for studying the marriage problem, and that of ram-
pant divorce, the linearity assumptions and the choice of the objective
of maximizing society’s happiness seem very inappropriate. Divorce is
not a problem that can be solved by mathematics however elegant and
sophisticated its level may be. To tackle it needs a fundamental change
in the behavior and attitudes of people.

If divorce has become a serious social problem, it is perhaps an in-
dication that our education system with its emphasis on science, tech-
nology, and individual success in business, and the role of TV in our
daily routines, is training our kids to be self-centered. Unfortunately,
many of our religious instituitions with their emphasis on conversions
and growth are operating more and more like businesses these days. It
is also an indication that our kids are not noticing that we share this
earth with other human beings and many other creatures, and that they
are not learning the importance of compromising and accommodating
other’s points of view.

We discussed this problem here mainly to provide an example where
the linearity assumptions are totally inappropriate.

This points out the importance of checking the validity of the math-
ematical model very carefully after it is constructed. Things to review
are: Is the objective function appropriate? Are all the constraints rele-
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vant or essential, or can some of them be eliminated or modified? Are
any decision variables missing? Is the data fairly reliable? Etc.

3.9 A Multi-Period Production

Planning Problem

So far we have discussed a variety of static one period problems. Now
we will discuss a multi-period problem. As an example we will
consider the problem of planning the production, storage, and market-
ing of a product whose demand and selling price vary seasonally. An
important feature in this situation is the profit that can be realized
by manufacturing the product in seasons during which the production
costs are low, storing it, and putting it in the market when the selling
price is high. Many products exhibit such seasonal behavior, and com-
panies and businesses take advantage of this feature to augment their
profits. An LP formulation of this problem has the aim of finding the
best production-storage-marketing plan over the planning horizon, to
maximize the overall profit. For constructing a model for this problem
we need reasonably good estimates of the demand and the expected
selling price of the product in each period of the planning horizon. We
also need data on the availability and cost of raw materials, labor, ma-
chine times etc. necessary to manufacture the product in each period;
and the availability and cost of storage space.

Period Production Prod. ca- Demand* Sell pri-
cost($/ton) pacity(tons) (tons) ce ($/ton)

1 20 1500 1100 180
2 25 2000 1500 180
3 30 2200 1800 250
4 40 3000 1600 270
5 50 2700 2300 300
6 60 2500 2500 320

* Demand is the maximum amount that can be sold in period
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As an example, we consider the simple problem of a company mak-
ing a product subject to such seasonal behavior. The company needs
to make a production plan for the coming year divided into 6 periods of
2 months each, to maximize net profit (= sales revenue − production
and storage costs). Relevant data is in the table given above. The
production cost there includes the cost of raw material, labor, machine
time etc., all of which fluctuate from period to period. And the pro-
duction capacity arises due to limits on the availability of raw material
and hourly labor.

Product manufactured during a period can be sold in the same
period, or stored and sold later on. Storage costs are $2/ton of product
from one period to the next. Operations begin in period 1 with an
initial stock of 500 tons of the product in storage, and the company
would like to end up with the same amount of the product in storage
at the end of period 6.

The decision variables in this period are, for period j = 1 to 6

xj = product made (tons) during period j

yj = product left in storage (tons) at the end of period j

zj = product sold (tons) during period j

In modeling this problem the important thing to remember is that
inventory equations (or material balance equations) must hold for the
product for each period. For period j this equation expresses the fol-
lowing fact.

Amount of product in storage
at the beginning of period j +
the amount manufactured dur-
ing period j

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =
⎧⎪⎨⎪⎩
Amount of product sold during
period j + the amount left in
storage at the end of period j

The LP model for this problem is given below.
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Maximize 180(z1 + z2) + 250z3 + 270z4 + 300z5 + 320z6

−20x1 − 25x2 − 30x3 − 40x4 − 50x5 − 60x6
−2(y1 + y2 + y3 + y4 + y5 + y6)

Subject to xj, yj , zj ≥ 0 for all j = 1 to 6,

x1 ≤ 1500, x2 ≤ 2000, x3 ≤ 2200,
x4 ≤ 3000, x5 ≤ 2700, x6 ≤ 2500
z1 ≤ 1100, z2 ≤ 1500, z3 ≤ 1800,
z4 ≤ 1600, z5 ≤ 2300, z6 ≤ 2500

y1 = 500 + x1 − z1
y2 = y1 + x2 − z2
y3 = y2 + x3 − z3
y4 = y3 + x4 − z4
y5 = y4 + x5 − z5
y6 = y5 + x6 − z6
y6 = 500

3.10 Examples Illustrating Some of the

Approximations Used in Formulat-

ing Real World Problems

The following examples, based on, or similar to the case “R. Wilson,
“Red Brand Canners”, Stanford Business Cases, Graduate School of
Business, Stanford University” illustrate some of the approximations
used in formulating real world problems using LP models, and in esti-
mating the coefficients in the model.

Example 3.10.1: Orange Juice Concentrate Pro-
duction
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A company makes frozen concentrate for orange juice in grades
G1, G2, G3, and sells them wholesale to juice makers, using oranges
that they buy from local farmers. They usually buy oranges sorted in
two sizes S1 at $28/box, and S2 at $20/box. This year because of frost
in the growing area the farmers harvested the crop early and delivered
400,000 boxes of oranges without sorting to the company at $19/box.

From a sample of delivered boxes, it has been estimated that 30%
of the delivered crop is of size S1, 60% of size S2, and 10% is below
standard which should be discarded. The sorting has been estimated
to cost the company $2/box. Data on the processing of oranges into
concentrates is given below.

Grade +Inputs/Case ∗Demand (cases)
G1 2 boxes S1 55,000
G2 1.5 boxes S1 or S2 150,000
G3 1 box S2 220,000
+The process for each grade is different

∗Maximum that can be sold

The cost accounting department has estimated the net profit ($/case)
of G1, G2, G3 using the following procedure.

Effective average cost/box of
S1 or S2 (since 0.1 fraction to
be discarded)

19+2
0.9

= $23.33

Avg. cost/box based on old
prices (since S1, S2 in ratio
30% to 60%, or 1 to 2)

28+20×2
1+2

= $22.67

Excess avg. cost/box this
year

$ 23.33 − 22.67 = $0.66

Allocating the excess average cost of $0.66/box this year in the
ratio of 1:2 to S1, S2, the cost/box of S1 comes to $(28 + 0.66(1/3)) =
$28.22; and that of S2 comes to $20 + 0.66(2/3) = $20.44. Using these
figures, the net profit/case of G1, G2, G3 is computed in the following
table.
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Quantity ($/case) G1 G2 G3
Input cost 2(28.22)= ∗(1×28.22+ 20.44

2×20.44)/3=
56.44 34.55

‡Other variable 8.33 7.50 6.25
costs(labor, etc.)
‡Overhead 2.25 1.75 1.50
Total cost 67.02 43.80 28.19
Sale price 86.25 60.35 40.25
Net profit 19.23 16.55 12.06
∗Assuming S1, S2 are used in ratio 1:2 to make G2

‡This is other data given in the problem

It is required to construct a mathematical model to determine an
optimum production plan for the company that maximizes the total
net profit next year.

Formulation: The decision variables in the model are the follow-
ing:

gi = cases of Gi made, i = 1, 2, 3
s11, s12 = boxes of S1 used for making G1, G2 respectively
s22, s23 = boxes of S2 used for making G2, G3 respectively.

Here is the model:

Maximize z = 19.23g1 + 16.55g2 + 12.06g3

s. to g1 = s11/2

g2 = (s12 + s22)/1.5

g3 = s23

s11 + s12 ≤ 0.3× 400, 000
s22 + s23 ≤ 0.6× 400, 000
0 ≤ g1 ≤ 55, 000

0 ≤ g2 ≤ 150, 000
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0 ≤ g3 ≤ 220, 000

s11, s12, s22s23 ≥ 0.

In writing the constraints on oranges used, we assumed that it is
alright to leave some of the available oranges unused, that’s why these
constraints are listed as “≤” inequalities. If the optimum solution of
this model leaves some oranges unused, may be the company can sell
them to fruit retailers to be sold in the open markets.

Example 3.10.2: Red Brand Canners

RBC cans and distributes a variety of fruit and vegetable prod-
ucts. For the coming season they have the opportunity of buying upto
3,000,000 lbs of current crop tomatoes at an average delivered price
of 18 cents/lb. It has been estimated that 20% of the crop is grade
“A”, and the remaining grade “B”. They make three canned tomato
products:

P1 = whole tomatoes
P2 = tomato juice
P3 = tomato paste.

Selling price for these products has been set in light of the long-
term marketing strategy of the company, and potential sales has been
forecast at those prices. These and other production requirements are
given below.

Product Selling Demand forecast Input/case
price ($/case) cases lbs tomatoes

P1 12.00 800,000 18
P2 13.75 50,000 20
P3 11.36 80,000 25

RBC uses a numerical scale that ranges from 0 to 10 to record the
quality of raw produce and products, the higher number representing
better quality. “A” tomatoes averaged 9 pts./lb, and “B” tomatoes
averaged 5 pts./lb. The minimum average input quality for
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P1 is 8 pts./lb

P2 is 6

P3 can be made entirely from “B” grade tomatoes. Cost accounting
at RBC used the following procedure to compute the net profit/case of
each product.

Cost($/case) Product
P1 P2 P3

Total input 3.24 3.60 4.50
Other Costs
Direct labor 3.54 3.96 1.62
Variable OHD 0.72 1.08 0.78
Variable selling 1.20 2.55 1.14
Packaging 2.10 1.95 2.31
Total of
other costs 7.56 9.54 5.85
Total cost 10.80 13.14 10.35
Selling Price 12.00 13.50 11.36
Net Profit 1.20 0.36 1.01

It is required to formulate the problem of determining the optimal
canning policy for this season’s crop as an LP.

Scenario 1: The decision variables for this model are:

θ = total lbs. of tomatoes from current crop purchased

xj = lbs. of “A” tomatoes used to produce Pj, j = 1, 2, 3

yj = lbs. of “B” tomatoes used to produce Pj, j = 1, 2, 3

pj = cases of Pj produced, j = 1, 2, 3.

The constraint on input quality for P1, P2 produced are:

9x1+5y1
x1+y1

≥ 8 or equivalently x1 ≥ 3y1 for P1
9x2+5y2
x2+y2

≥ 6 or equivalently 3x2 ≥ y2 for P2
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Using these the model for this problem under this scenario is

maximize 1.20p1 + 0.36p2 + 1.01p3

s. to p1 = (x1 + y1)/18

p2 = (x2 + y2)/20

p3 = (x3 + y3)/25

0 ≤ θ ≤ 3, 000, 000

x1 + x2 + x3 = 0.2θ

y1 + y2 + y3 = 0.8θ

x1 ≥ 3y1

3x2 ≥ y2

0 ≤ p1 ≤ 800, 000

0 ≤ p2 ≤ 50, 000

0 ≤ p3 ≤ 80, 000

xj, yj ≥ 0, j = 1, 2, 3.

Scenario 2: In Scenario 1 we allocated tomato input cost purely
proportional to the total quantity used, at 18 cents/lb in computing
the net profit coefficients for the three produdts P1, P2, P3. In this
scenario instead of using the average cost of 18 cents/lb for all tomatoes
equally, we will use imputed costs of “A”, “B” tomatoes calculated in
proportion to their average quality. So, if c1, c2 are the imputed costs
cents/lb of “A”, “B” tomatoes, then (c1/9) = (c2/5).
Another equation that c1, c2 satisfy is obtained by equating the price

of 18×3,000,000 cents of the whole lot to 600, 000c1+2, 400, 000c2 since
the lot consists of 600,000 lbs. of “A” and 2,400,000 lbs. of “B”; leading
to 600, 000c1 + 2, 400, 000c2 = 18× 3, 000, 000.
From these two equations we see that c1 = 27.93, c2 = 15.52 in

cents/lb.
So, the cost per point-lb is (c1/9) = (c2/5) = 3.104 cents.
Since P1 needs 18 lbs. of average quality of 8 or more, the tomato

input cost for P1 should be 18×8×3.104 cents/case = $4.47/case. Sim-
ilarly the tomato input cost for P2 should be 20× 6× 3.104 cents/case
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= $3.74/case. And since P3 can be made purely from “B” tomatoes,
its tomato input cost is 25× 5× 3.104 cents/case = $2.79/case. Using
these tomato input costs, and the rest of the data from the table in
scenario 1, we compute the net profit coefficients for the three products
as below.

Cost($/case) Product
P1 P2 P3

Tomato input 4.47 3.72 3.88
All others 7.56 9.54 5.85
Total cost 12.03 13.26 9.73
Selling price 12.00 13.50 11.36
Net Profit −0.03 0.24 1.63

The constraints in the model under this scenario are the same as
in the model under Scenario 1, but the objective function changes to
that of maximizing z = −0.03p1 + 0.24p2 + 1.63p3.

3.11 Material for Further Study

In this chapter we discussed examples of decision problems that can
be modeled as linear programs using a direct approach, i.e., without
requiring any transformations of variables. these may be termed as
simple applications of linear programming.

There are many other decision problems that can be modeled as
linear programs using transformations of variables, for example those
involving minimization of piecewise linear convex objective functions
subject to linear constraints. These advanced formulation techniques
will be discussed in a Master’s level sequel to this book: Optimization
Models for Decision Making, Volume 2. To understand the full poten-
tial of linear programming as a vehicle for modeling decision making
problems, one has to study these advanced modeling techniques.
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3.12 Geometric Method for Solving LPs

in Two Variables

LPs involving only two variables can be solved geometrically by drawing
a diagram of the feasible region (i.e., the set of feasible solutions) in
R2 = the two dimensional Cartesian plane. The optimum solution
is identified by tracing the line corresponding to the set of feasible
solutions that give a specific value to the objective function and then
moving this line parallel to itself in the optimal direction as far as
possible.

In R2 a linear equation in the variables represents a straight line,
hence the set of all points giving a specific value to the objective func-
tion is a straight line. Each straight line divides R2 into two half-spaces,
and every linear inequality represents a half-space.
As an example, consider the fertilizer product mix problem in Ex-

ample 3.4.1. The constraint 2x1+ x2 ≤ 1500 requires that any feasible
solution (x1, x2) to the problem should be on one side of the line rep-
resented by 2x1+x2 = 1500, the side that contains the origin (because
the origin makes 2x1 + x2 = 0 < 1500). This side is indicated by an
arrow on the line in Figure 3.2. Likewise, all the constraints can be rep-
resented by the corresponding half-spaces in the diagram. The feasible
region is the set of points in the plane satisfying all the constraints;
i.e., the shaded region in Figure 3.2.

Let z(x) be the linear objective function that we are trying to op-
timize. Select any point, x̄ = (x̄1, x̄2) say, in the feasible region, and
compute the objective value at it, z(x̄) = z̄, and draw the straight line
represented by z(x) = z̄. This straight line has a nonempty intersec-
tion with the feasible region since the feasible point x̄ is contained on
it. For any value z0 W= z̄, z(x) = z0 represents a straight line which is
parallel to the line represented by z(x) = z̄.
If z(x) is to be maximized, move the line z(x) = z0 in a parallel

fashion by increasing the value of z0 beginning with z̄, as far as pos-
sible while still maintaining a nonempty intersection with the feasible
region. If ẑ is the maximum value of z0 obtained in this process, it is
the maximum value of z(x) in the problem, and the set of optimum
solutions is the set of feasible solutions lying on the line z(x) = ẑ.
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Figure 3.2: Fertilizer product mix problem.

On the other hand, if the line z(x) = z0 has a nonempty intersection
with the feasible region for every z0 ≥ z̄, then z(x) is unbounded
above on this set. In this case z(x) can be made to diverge to +∞ on
the feasible region, and the problem has no finite optimum solution.

If the aim is to minimize z(x), then decrease the value of z0 begin-
ning with z̄ and apply the same kind of arguments.

In the fertilizer product mix problem we start with the feasible point
x̄ = (0, 0) with an objective value of 0. As z0 is increased from 0, the
line 15x1 + 10x2 = z0 moves up keeping a nonempty intersection with
the feasible region, until the line coincides with the dashed line 15x1+
10x2 = 13, 500 in Figure 3.2 passing through the point of intersection
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of the two lines

2x1 + x2 = 1500

x1 + x2 = 1200

which is x̂ = (300, 900). For any value of z0 > 13, 500 the line
15x1+10x2 = z0 does not intersect with the feasible region. Hence, the
optimum objective value in this problem is $13,500, and the optimum
solution of the problem is x̂ = (300, 900). Hence the fertilizer maker
achieves his maximum daily profit of $13,500 by manufacturing 300
tons of Hi-ph, and 900 tons of Lo-ph daily.

Optimum Solution of an LP Is Characterized by
a System of Linear Equations

So, the optimum solution of the fertilizer product mix problem is
characterized by the system of linear equations obtained by treating
the inequality constraints corresponding to the items RM 1 and RM 2
as equations.
In general it is a fundamental fact that the optimum solution of

every LP is characterized by a system of linear equations containing
all the equality constraints in the original problem, and a subset of the
inequality constraints treated as equations. All computational algo-
rithms for solving LPs have the goal of determining which inequality
constraints in the problem are active at an optimum solution.

Can the Geometric Method be Extended to Higher
Dimensions?

The feasible region of LPs involving n variables is a subset of Rn.
So, if n ≥ 3, it is hard to visualize geometrically. Hence this simple
geometric method cannot be used to solve LPs involving 3 or more
variables directly. Fortunately there are now efficient computational
algorithms to solve LPs involving any number of variables. We discuss
these in later chapters, and LPs in higher dimensional spaces can be
solved efficiently using them.
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When the objective function is z(x), the main idea in the geometric
method described above is to identify the straight line z(x) = z0 for
some z0, and to move this line parallel to itself in the desired direction,
keeping a nonempty intersection with the feasible region. In LPs with
n ≥ 3 variables, z(x) = z0 defines a hyperplane in Rn and not a straight
line (a hyperplane in R2 is a straight line). An approach for solving
LPs in these higher dimensional spaces, based on the above idea of
parallel sliding of the objective plane, would be very efficient. However,
checking whether the hyperplane still intersects the feasible region after
a small parallel slide requires full-dimensional visual information which
is not available currently for n ≥ 3. So it has not been possible to adopt
this parallel sliding of the objective hyperplane to solve LPs in spaces
of dimension ≥ 3. The simplex algorithm for solving LPs discussed in
the sequel uses an entirely different approach. It takes a path along line
segments called edges on the boundary of the feasible region, moving
from one corner point to an adjacent one along an edge in each move,
using local one-dimensional information collected in each step. As an
example, to solve the fertilizer product mix problem starting with the
feasible corner point 0, the simplex algorithm takes the edge path from
0 to the corner point (500, 0), then from (500, 0) to (500, 500), and
finally from (500, 500) to the optimum solution (300, 900)) in Figure
3.2.

3.13 What Planning Information Can

Be Derived from an LP Model?

Finding the Optimum Solutions

We can find an optimum solution for the problem, if one exists,
by solving the model using the algorithms discussed later on. These
algorithms can actually identify the set of all the optimum solutions if
there are alternate optimum solutions. This may be helpful in select-
ing a suitable optimum solution to implement (one that satisfies some
conditions that may not have been included in the model, but which
may be important).
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For the fertilizer product mix problem, we found out that the unique
optimum solution is to manufacture 300 tons Hi-ph, and 900 tons Lo-
ph, leading to a maximum daily profit of $13,500.

Infeasibility Analysis

We may discover that the model is infeasible (i.e., it has no fea-
sible solution). If this happens, there must be a subset of constraints
that are mutually contradictory in the model (maybe we promised to
deliver goods without realizing that our resources are inadequate to
manufacture them on time). In this case the algorithms will indicate
how to modify the constraints in order to make the model feasible. Af-
ter making the necessary modifications, the new model can be solved.

Values of Slack Variables at an Optimum Solution

The values of the slack variables at an optimum solution provide
useful information on which supplies and resources will be left unused
and in what quantities, if that solution is implemented.

For example, in the fertilizer product mix problem, the optimum
solution is x̂ = (300, 900). At this solution, RM 1 slack is x̂3 = 1500−
2x̂1− x̂2 = 0, RM 2 slack is x̂4 = 1200− x̂1− x̂2 = 0, and RM 3 slack is
x̂5 = 500− x̂1 = 200 tons. The fact that RM 1, RM 2 slacks are zero at
the optimum solution is clear because the optimum solution is obtained
by treating the RM 1, RM 2 inequality constraints as equations.

Thus, if this optimum solution is implemented, the daily supply of
RM 1 and RM 2 will be completely used up, but 200 tons of RM 3 will
be left unused. This shows that the supplies of RM 1, RM 2 are very
critical to the company, and that there is currently an oversupply of
200 tons of RM 3 daily that cannot be used in the optimum operation
of the Hi-ph and Lo-ph fertilizer processes.

This also suggests that it may be worthwhile to investigate if the
maximum daily profit can be increased by lining up additional supplies
of RM 1, RM 2 from outside vendors, if additional capacity exists in
the Hi-ph, Lo-ph manufacturing processes. A useful planning tool for
this investigation is discussed next.
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Marginal Values and Their Uses

Each constraint in an LP model is the material balance constraint
of some item, the RHS constant in that constraint being the availability
or the requirement of that item.

Definition: The marginal value of that item (also called the
marginal value corresponding to that constraint) is defined to be the
rate of change in the optimum objective value of the LP, per unit change
in the RHS constant in the associated constraint.

For example, in the fertilizer product mix problem, the marginal
value of RM 1 (and of the corresponding first constraint in the model)
is the rate of change in the maximum daily profit per unit change in
the supply of RM 1 from its present value of 1500. These rates are also
called dual variables, or the shadow prices of the items. These are
the variables in another linear programming problem that is in duality
relationship with the original problem. In this context the original
problem is called the primal problem, and the other problem is called
the dual problem. The derivation of the dual problem is discussed in
Chapter 5.

If b = (b1, . . . , bm)
T is the vector of RHS constants in an LP model,

and f(b) denotes the optimum objective value in the LP as a function
of the RHS constants vector, then the marginal value corresponding to
constraint 1 is therefore the limit of [f((b1+6, b2, . . . , bm)

T )−f(b)]/6 as
6 → 0. So, one crude way of getting this marginal value is to select a
small nonzero quantity 6, and then take [f((b1+6, b2, . . . , bm)

T )−f(b)]/6
as an approximation to this marginal value.

As an example, let us consider the fertilizer product mix problem
again. The present RHS constants vector is (1500, 1200, 500)T , and we
computed the optimum objective value to be f((1500, 1200, 500)T ) =
$13, 500. To get the marginal value of RM 1 (item corresponding to
the first constraint) we can change the first RHS constant to 1500 +
6 and solve the new problem by the same geometric method discussed
above. For small values of 6 the straight line representing the constraint
2x1 + x2 = 1500 + 6 is obtained by a slight tilt of the straight line
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corresponding to 2x1 + x2 = 1500. From this it can be seen that
when 6 is small, the optimum solution of the perturbed problem is the
solution of the system of equations

2x1 + x2 = 1500 + 6

x1 + x2 = 1200

which is x1(6) = (300+ 6, 900− 6), with an optimum objective value of
f((1500+ 6, 1200, 500T ) = $13,500 + 56. So, the marginal value of RM
1 in the fertilizer problem is

lim→0
13500 + 56− 13500

6

= $5/ton in terms of net profit dollars. Remember that the current
price of RM 1 delivered to the company is $50/ton. This indicates that
as long as the price charged by an outside vendor per ton of RM 1
delivered is ≤ $50 + 5 = 55/ton, it is worth getting additional supplies
of RM 1 from that vendor. $55/ton delivered is the breakeven price for
acquiring additional supplies of RM 1 for profitability.
In the same way if we change the 2nd RHS constant in the fertilizer

problem from 1200 to 1200 +6, it can be verified that the optimum
solution of the perturbed problem for small values of 6 is the solution
of

2x1 + x2 = 1500

x1 + x2 = 1200 + 6

which is x2(6) = (300− 6, 900 + 26), with an optimum objective value
of f((1500, 1200 + 6, 500T )) = $13,500 + 56. So, the marginal value of
RM 2 in the fertilizer problem is

lim→0
13500 + 56− 13500

6

= $5/ton in terms of net profit dollars. The current price of RM 2
delivered to the company is $40/ton. This indicates that the breakeven
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price for acquiring additional supplies of RM 2 for profitability is $40
+ 5 = $45/ton delivered.

There is currently 200 tons excess supply of RM 3 daily that is not
being used. Clearly, changing the availability of RM 3 from the present
500 tons daily to 500 + 6 tons daily for small values of 6 will have no
effect on the optimum solution of the problem. So f((1500, 1200, 500+
6)T ) = f((1500, 1200, 500)T ) = $13,500. Therefore the marginal value
of RM 3 is zero, and there is no reason to get additional supplies of
RM 3, as no benefit will accrue from it.

This type of analysis is called marginal analysis. It helps com-
panies to determine what their most critical resources are, and how
the requirements or resource availabilities can be modified to arrive
at much better objective values than those possible under the existing
requirements and resource availabilities.

Summary: Marginal values in an LP are associated with the RHS
constants in it. Each of them is defined as a limit when the limit exists.

In some LPs the limits defining marginal values may not exist. In
these LPs, marginal values do not exist.

The criterion for deciding whether marginal values exist or not in
a given LP is discussed in Chapter 5. When they exist, marginal val-
ues can be computed very easily from the final output of the simplex
method when the LP is solved by the simplex method. So, there is no
need to resort to their fundamental definition to compute the marginal
values as done above.

Evaluating the Profitability of New Products

One major use of marginal values is in evaluating the profitability
of new products. It helps to determine whether they are worth man-
ufacturing, and if so at what level they should be priced so that they
are profitable in comparison with existing product lines.

We will illustrate this again using the fertilizer product mix prob-
lem. Suppose the company’s research chemist has come up with a new
fertilizer that he calls lushlawn. Its manufacture requires per ton, as
inputs
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3 tons of RM 1, 2 tons of RM 2, and 2 tons of RM 3

At what rate/ton should lushlawn be priced in the market, so that
it is competitive in profitability with the existing Hi-ph, Lo-ph that the
company currently makes?
To answer this question, let π1, π2,π3 be the marginal values of RM

1, RM 2, RM 3 in terms of net profit dollars. We computed their vales
to be π1 = 5,π2 = 5, π3 = 0.
So, the input packet of (3, 2, 2)T tons of (RM 1, RM 2, RM 3)T

needed to manufacture one ton of lushlawn has value to the company
of 3π1 + 2π2 + 2π3 = 3× 5 + 2× 5 + 2× 0 = $25 in terms of net profit
dollars. On the supply side, the delivery cost of this packet of raw
materials is 3× 50 + 2× 40 + 2× 60 = $350.
So, clearly, for lushlawn to be competitive with Hi-ph, Lo-ph, its

selling price in the market/ton should be≥ $ 25 + 350 + (its production
cost/ton). The company can conduct a market survey and determine
whether the market will accept lushlawn at a price ≥ this breakeven
level. Once this is known, the decision whether to produce lushlawn is
obvious.
By providing this kind of valuable planning information, the linear

programming model becomes a highly useful decision making tool.

3.14 The Role of LP in theWorld of Math-

ematics

Linear Algebra (LA) is the branch of mathematics dealing with
modeling, solving, and analyzing systems of linear equations. It is a
classical subject that originated more than 2500 years ago. LA does not
have techniques for solving systems of linear constraints that include
linear inequalities. Until the development of LP in mid-20th century,
there were no techniques that can reliably handle systems of linear
constraints including inequalities.
In its original form, LP is actually concerned with optimizing a lin-

ear objective function subject to linear constraints including inequal-
ities. As we have seen in Section 3.12, the critical issue in solving an
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LP is determining which inequality constraints are active at an opti-
mum solution, so that the optimum solution can itself be computed by
ignoring the inactive inequality constraints and solving the resulting
system of linear equations by LA techniques.
It has been shown that even if there is no optimization to be per-

formed, just finding a feasible solution to a system of linear inequalities
itself leads to exactly the same critical issue of determining which in-
equalities are active at a feasible solution. Also, it will be shown in
Chapter 4 that the problem of finding a feasible solution to a system
of linear inequalities can itself be posed as an LP (called the Phase I
problem in Chapter 4) involving optimizing a Phase I linear objective
function, subject to a modified system of linear constraints. Solving
the original system of linear inequalities is equivalent to solving this
Phase I LP.
Another fundamental result in LP theory establishes that an LP

involving optimizing a linear function can itself be posed as an equiv-
alent problem of finding any feasible solution to a system of linear
inequalities involving no optimization.
These facts clearly show that LP is the subject dealing with either

solving systems of linear inequalities, or optimizing a linear function
subject to linear constraints that may include inequalities. It also shows
that LP is the extension of LA to handle linear inequality constraints.
Its development started when George Dantzig developed his simplex
method for LP in 1947. This method is the subject of the next Chapter
4.
After calculus, LA and its extension LP are perhaps the most useful

branches of mathematics for applications. Appreciation of beauty is a
highly individual reaction, but most people who have developed some
knowledge of LA, LP would agree that they are the most beautiful
areas of mathematics.

3.15 Exercises

3.1: A farmer has a 100 acre farm on which he has decided to grow
zucchini squash or corn in the coming season for selling the produce to
the local grocery stores at wholesale prices.
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Zucchini needs 4 units of water and corn 2 units/acre/week. He has
three wells which together can pump upto 220 units of water/week.

Zucchini needs 10 units of fertilizer/acre/season, whereas corn needs
3 units of the same /acre/season. The farmer wants to use at most 450
units of fertilizer per season.

There is a local competition among vegetable growers in the area.
They weigh the produce from each competing farm and among 100
acre farms, they give an award for any farm producing more than 600
units of produce/season. The farmer expects zucchini crop to aver-
age 20 units of squash/acre/season, and the corn crop to average 12
units of corn/acre/season. The farmer wants to win an award in this
competition.

Labor for watering, harvesting, weeding etc. is expected to cost
$150/acre for the zucchini crop, and $100/acre/season for corn. The
sale of zucchini squash is expected to yield $400/acre/season, and corn
$300/acre/season. Define the net income from the farm to be = the
proceeds from sales to grocery stores − money spent on labor for the
farm. Formulate the problem of finding how much land to allocate to
zucchini and corn to maximize the net income from the farm. Solve it
using the geometric method and find an optimum solution.

3.2: A textile firm has spare capacity in its spinning and weaving
sections. They would like to accept outside contracts to use up this
spare capacity. Each contract would require some length (in units) of
a specified fabric to be woven and delivered to the customer.

They have two offers. Contract 1 needs 2 units of spinning mill
time and 1 unit of weaving machine time per unit of fabric delivered.
Contract 2 requires 1 unit of spinning mill time and 1 unit of weaving
machine time per unit fabric delivered. The company estimates that it
has a total of 100 units of spinning mill time, and 75 units of weaving
machine time that can be devoted to contract work. The net return
from Contract 1, 2 will be $1000, $1700/unit fabric respectively. It is
required to determine how much work to accept from each contract to
maximize the total return from them.

Formulate this as an LP. Find the optimum solution of this model
using the geometric method, and determine the marginal values asso-
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ciated with spinning mill and weaving machine times.

3.3: A company makes 2 products P1, P2 using 3 resourcesR1, R2, R3.
The data is given below.

Resource Inputs (units/unit) for Units available
P1 P2

R1 2 1 20
R2 1 2 20
R3 1 1 12

Net profit 30 20
(units/unit)

Assuming that there are no bounds on the units of each product
made, formulate the problem of determining the optimum number of
units of each product to make to maximize total net profit. Solve the
model by the geometric method and determine the marginal values of
the three resources. Give an interpretation of these marginal values.

3.4: Her doctor has informed a girl that she needs to include spe-
cial antioxidants (SA), and betacarotene related previtamins (BC) in
her diet in order to improve her health. A nice way to obtain these
nutrients is to eat two tropical fruit, durian and litchies. There are
minimum weekly requirements (WR) that she has to meet. These fruit
also contain sugary carbohydrates (SC), she wants to limit the units of
these that she consumes. Here is all the data.

Nutrient Units/unit in WR (units)
Durian Litchies

SA 5 15 ≥ 45
BC 20 5 ≥ 40
SC 12 2 ≤ 60

Cost($/unit) 5 10

It is required to determine how many units of each of these fruit she
should consume weekly in order to meet the requirements at the least
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cost. Model and solve the problem by the geometric method, and deter-
mine the marginal values of each nutrient, and give the interpretation
of these marginal values.

3.5: A woman is trying to get as much vitamin K as possible in
her diet to improve her health. She started eating a special breed of
avacado (BA), and a tropical fruit from Brazil (BF), which are excellent
sources of vitamin K. Both BA, BF also contain potassium and leutein.
There is a maximum daily limit (MDL) for potassium, and a minimum
daily requirement (MDR) from BA, BF, in her diet. Also, BA contains
a type of fat, and BF contains sugars, for this reason, she has to limit
the quantities of these foods in her diet. Data on the composition of
these foods and all the limits is given below.

Nutrient Composition (units/unit) Limit
BA BF

Vit K 65 35 Maximize
Potassium 6 8 ≤ 48 (MDL)
Leutein 1 1 ≥2 (MDR)

Maximum in diet 6 4

Formulate the problem of determining how much BA, BF to include
in her daily diet as an LP. Solve this LP by the geometric method and
determine the marginal values of the MDL on potassium, and the MDR
on leutein, and explain their interpretation.

3.6: A company makes two products P1, P2 using three resources

Resource Inputs (units/unit) of Max (units)
P1 P2 available

R1 7 10 350
R2 15 5 300
R3 10 6 240

Net profit 500 300
($/unit)
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R1, R2, R3, whose supply per period is limited. Production data on
these products is given above. Formulate the problem of determining
the optimum production plan for this company that maximizes the
total net profit as an LP.

Solve the LP by the geometric method and show that it has many
optimal solutions. Express the general optimum solution of this prob-
lem algebraically.

3.7: A small truck manufacturing company makes two specialized
truck models, M1,M2 in one plant. Plany operations are grouped into
four sections: a metal stamping section (MS), and an engine assembly
section (EA), in both of which work is carried out for both M1,M2;
a M1 final assembly section (MA1), and a M2 final assembly section
(MA2).

The capacity of EA is measured as 4000 units/week. To make one
M1,M2 needs 2, 1 units respectively of EA capacity.

Similarly the capacity of MS is measured as 5000 units/week. To
make one M1,M2 needs 1, 2 units respectively of MS capacity.

MA1 can assemble at most 1500 M1/week; MA2 can assemble at
most 2125 M2/week.

At present the plant is producing 1500 M1, and 1000 M2/week.
This present solution is used in deriving cost estimates as explained
below.

In the present solutionM1 uses (1500/5000) which is 30% of MS ca-
pacity, M2 uses (1000/2500) which is 40% of MS capacity; the remain-
ing 30% of MS capacity is not being used at present. Hence M1,M2

are using MS capacity in the ratio 3:4, hence the fixed overhead cost
of MS/week is allocated to M1,M2 in this ratio.

M1 uses (1500/2000) which is 75% of EA capacity,M2 uses (1000/4000)
which is 25% of EA capacity. So, EA is operating at full capacity in the
present solution. M1,M2 are using EA capacity in the ration 0.75:0.25
or 3:1. Hence the fixed overhead cost of EA/week will be allocated to
M1,M2 in this ratio.

Here are the details of overhead (OH) costs. The total fixed OH
costs/week in the MS, EA, MA1, MA2 are $1,750,000; 700,000; 1,275,000;
850,000 respectively. These in the MS, EA are allocated to M1,M2 as
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explained above. The fixed OH costs in MA1, MA2 are allocated 100%
to M1,M2 respectively. This results in the following:

Sec. Fixed OH costs/week Variable OH Total OH
Alloc. to $/unit∗ $/unit/week $/unit/week

(unit = $103)
M1 M2 M1 M2 M1 M2 M1 M2

MS 750 1, 000 500 1000 250 100 750 1100
EA 525 175 350 175 150 100 500 325
MA1 1, 275 0 850 0 400 1250 0
MA2 0 850 0 850 0 400 0 1250
Tot 2500 2675
∗According to the present solution

Here is the data on all other costs and prices.

Cost ($/unit) M1 M2

Direct Materials 12,000 9,000
Direct labor

MS 1500 1000
EA 2000 1500

Final assembly 2500 2000
OH 2500 2675

Total cost 20,500 16,175
Selling price 21,002 17,135
Net profit 502 960

(i): Formulate the problem of finding the best product mix for this
company using these cost estimates.

Solve the model geometrically. If the optimum solution is different
from the present one, how much does it improve the net profit earned
over the present level?

(ii): Find the marginal values of MS, EA capacities.

The company is considering introducing a new economy truck model
M3. The total MS capacity would be sufficient to handle 3000 M3s,
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while the total EA capacity would be enough to handle 2500M3s/week.

M3s can be assembled in MA1, eachM3 would require half as much
time in MA1 as an M1.

Suppose M3 can be sold at a price to yield a net profit of $225. Is
it profitable to introduce M3? If not what is the breakeven net profit
for M3?

(iii): If the capacity of MS can be increased by introducing overtime
there at a cost of $250/unit capacity/week, is it worth going overtime
in MS?

(Adopted from the Harvard case: C. J. Christenson, “Sherman Mo-
tor Company”, 1962.)

3.8: A company makes two products P1, P2 using two resources
R1, R2. Here is the data.

Resource Input (units/unit) for Max. available
P1 P2 (units/period)

R1 6 8 48
R2 7 6 42

Max Demand ≤4 Unlimited
(units/period)
Net profit 4 5
($/unit)

(i):Formulate the problem of determining an optimum product mix
for the company. Solve the model geometrically.

(ii):Determine the marginal values of the resources, and of the up-
per bound on the demand for P1.

Is it worthwhile launching an advertizing campaign to increase the
demand for P1? Explain clearly.

How much extra money beyond the cost of the present resource
units of R1, R2 be spent to acquire additional units of these resources
and still breakeven?



3.16: Exercises 121

(iii): Suppose the company wants to adopt the policy that the
demand for P1 should be met exactly. How much will the net profit of
the decrease because of this policy?

3.9: A company makes products P1, P2 using raw materialsR1, R2, R3.
Relevant data is given below.

Item Units/unit input for Available
P1 P2 (units/day)

R1 4 5 3000
R2 2 0 1200
R3 1 2 900

Demand Unlimited 375
(units/day)
Net profit 3 5
($/unit)

Formulate the problem of finding an optimum production plan as
an LP.

Solve the LP using the geometric method and find the optimum
solution. Find the marginal values of the three raw materials and the
demand for P2.

If the demand for P2 can be increased from 375 units/day by ad-
vertizing locally, is it worth spending money on this advertizement?

The current prices of the resources R1, R2, R3 are $2, 4, 10/unit
respectively. If additional supplies of each of these resources can be
acquired, which of them has the potential for helping to increase the
total daily net profit of the company? For each resource determine the
breakeven price/unit at which additional supplies of it can be acquired.

Suppose the company has the opportunity to make a new product
P3. To make one unit of P3 needs as inputs 2, 1, 2 units of resources
R1, R2, R3 respectively. What is the breakeven selling price of P3 at
which it becomes competitive to manufacture?

3.10: A chemicals company makes various chemicals grouped into
two groups, the keytone derived products (KET), and the aldehyde
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derived products (ALD), using three different hydrides: sodium boro-
hydride (SB), hydralls (HY), and lithium aluminium hydride (LAH)
as reducing agents. All three hydrides are obtained from an outside
supplier. Here is the process data.

Hydride Requirement (lbs/lb) of Cost
KET ALD ($/lb)

SB 0.236 0.367 10
HY 0.786 0.396 7
LAH 0.079 0.337 27

Data KET ALD
Demand 10,000 5,000

(lbs/month)
Sale price 31.4 43.6
($/lb)

Net profit∗ 21.4 28.1
($/lb)

∗After subtracting hydride costs

Formulate the problem of determining the optimum quantities of
KET and ALD to produce, and solve it.

3.11: A company has four departments D1 to D4, and makes two
final products A,B by combining four intermediate products P1 to
P4. The intermediate products are made using three raw materials
R1, R2, R3.

Each unit of P1 is produced by processing one unit of R1 through
D1 for 15 minutes first, and then through D3 for 10 minutes.

Each unit of P2 is produced by processing one unit of R2 for 15
minutes through D2 first, and then for 5 minutes through D3.

Each unit of P3 is produced by processing one unit of R3 for 10
minutes through D1 first, and then for 15 minutes through D2.

P4 is purchased from an outside vendor at $5/unit.

Each unit of A is made by combining together one unit each of P1,
P2, P4 in D4 which takes 10 minutes of that department’s time.

Each unit of B is made by combining together one unit each of
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P2, P3 in D4 which takes 5 minutes of that department’s time.

R1, R2, R3 are all available in unlimited quantities at $20/unit.

Each of the departmentsD1 toD4 have capacities of 2400 minutes/week
and have fixed operating expenses of $5000/week to provide these ca-
pacities.

The selling prices of A,B are $900, 1,000/unit respectively. At
these prices, the demand for A,B is estimated to be 100, 50 units/week
respectively.

Formulate the problem of finding an optimum production plan that
maximizes total net profit. (Hint: Read wording very carefully.) (From
G. Plenert, “Optimizing Theory of Constraints When Multiple Con-
strained Resources Exist”, European Journal of Operational Research,
70(1993)126-133.)

3.12: Men begin to develop BPH (Benign Prostratic Hyperplasia)
and prostrate cancer as they approach middle age. Cranberries con-
tain a special nutrient which has been shown to delay the onset of these
prostrate problems in men. Unfortunately, cranberries are somewhat
bitter to eat directly. Also, many of the cranberry juice products in
the market contain corn syrup and other sweeteners that many people
would like to avoid. For an alternative, a nutrition scientist has devel-
oped three types of cranberry sauces, CS1, CS2, CS3, using cranberries,
dates and almonds; and has set up a company to manufacture and sell
them. Several retail chains have expressed an interest in putting these
sauces on their shelves.

The company has been able to find suppliers for the main ingra-
dients, cranberries, dates, and almonds, who can supply at favorable
discount prices, but only in limited quantities. To increase supplies be-
yond these quantities they need to seek higher priced suppliers which
will make their products unprofitable. So, for the moment, they have
to operate with the quantities provided by the discount suppliers.

Making the sauces involves three operations, each one performed in
its own shop. The first is preparatory shop in which batches are made
by preparing the ingradients and mixing them in correct proportions.
The next operation is sauce making; followed by packing the sauces into
containers and preparing cases for dispatching to the retail chains. The
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man hour requirements for each sauce in each shop, and the availability
of labor in each shop are given below.

On the amount of each sauce made in the coming season, we also
provide a lower bound (based on the orders for it received already),
and an upper bound (based on forecasted maximum sales volumes).

Input For sauce (units/unit) Availability Price
CS1 CS2 CS3 (units) ($/unit)

Cranberries 6 5 4 2600 150
Dates 2 4 5 2250 300
Almonds 1 2 2 1100 200
Man-hrs in

Preparatory shop 1 1.5 2 900 15
Sauce making 2 2 2 1200 20
Pack/dispatch 1 2 2 1100 25
Limits (cases)

Lower 50 150 250
Upper 100 250 400

Pack cost ($/case) 20 40 50
Saleprice ($/case) 2000 2686 2840

The cost/hour given in the various shops includes the cost of labor
and all other production costs except that in the packing shop it does
not include the cost of packing materials; these are given separately in
the bottommost row in the above tableau. CS1 is packed in standard
containers so its packing cost is low, CS2, CS3 are packed in more
expensive fancy containers.

Choose an appropriate objective function to optimize, and formu-
late the problem to determine an optimum production plan as an LP.

3.13: A department store employs part time people with flexible
hours to work as sales people in the store. For the coming week they
have 7 people (P1 to P7) who can work. Each has informed the store
the maximum number of hours they can work each day. P1, P2, P3 are
senior people so their hourly payrate is higher than for the others. P4
to P7 are new recruits, so their hourly rate is lower. Also, each person
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is guaranteed a certain minimum number of hours depending on their
seniority. Folowing table gives all this data, and also the estimated
person-hour requirements at the store each day.

It is required to determine how many hours to assign to each person
each day so as to meet the requirements of the store at minimum cost,
subject to all the constraints. Formulate this problem as an LP.

Person Max. hous availability on Rate Min hrs
Mon Tue Wed Thur Fri Sat ($/hour) /week

P1 6 0 6 0 6 3 12 7
P2 0 7 0 7 5 0 12 7
P3 3 4 5 0 0 0 12 7
P4 3 0 0 0 6 6 10 10
P5 0 3 7 7 8 0 10 10
P6 0 0 5 5 5 8 10 10
P7 4 6 6 0 0 6 10 10

Person. 10 15 20 13 22 17
-hrs
needed

It is required to determine how many hours to assign to each person
each day so as to meet the requirements at the store at minimum cost,
subject to all the constraints. Formulate as an LP.

3.14: Consider the Red Brand Canners problem discussed under
Scenarion 1, in Example 3.10.2. Suppose the lot of 3,000,000 lbs
of tomatoes offered to the company for buying consists of 3 differ-
ent grades of tomatoes; “A” grade at an average of 9 points/lb, “B”
grade at an average of 6 points/lb, and “C” grade with an average
of 3 points/lb. Suppose the lot contains 600,000 lbs of “A”, 1600,000
lbs of “B”, and 800,000 lbs of “C” tomatoes. Here assume that P3
has no minimum average quality requirement, but P1, P2 have mini-
mum average quality requirements as mentioned under this scenario.
Formulate the problem of determining the optimum canning policy for
this season’s crop, as an LP.
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3.15: A farmer is planning to grow a special breed of beet root
which deelops a sugar content of 19% in its roots (much higher than
the normal beet root), and also gives higher than average yields. This
beet root needs a special type of fertilizer with fractional content of
nutrients n,P,K, Fe equal to 0.317, 0.130, 0.050, 0.018 respectively,
and the rest inert materials. The farmer found a company selling this
fertilizer, but their price is far too high. So the farmer has decided
to develop his/her own fertilizer mix with this composition by mixing
some other reasonably priced fertilizers available in the market. There
are 5 fertilizers F1 to F5 available with compositions and prices as
given in the following table (besides the nutrients mentioned above,
each fertilizer consists of inert materials). Formulate the problem of
determining how the farmer should mix F1 to F5 in order to develop
a mixture with the composition needed for the beet crop at minimum
cost.

Nutrient Fractional content in Requirement
F1 F2 F3 F4 F5

N 0.10 0.45 0 0.20 0.05 0.317
P 0.10 0 0.25 0.05 0.30 0.130
K 0.10 0 0.05 0.15 0 0.050
Fe 0.01 0 0.03 0.02 0.03 0.018

Price($/ton) 220 180 160 150 175

3.16: A container terminal in Hong Kong port hires trucks with
drivers and uses them as IT (Internal Trucks) for moving inbound con-
tainers unloaded from vessels from the dock to the storage yard for
temporary storage until the customer picks them up, and outbound
containers temporarily stored in the storage yard to the dock for load-
ing into the vessel when it arrives, and a variety of other tasks in the
terminal. Terminals operate round the clock, every day. They divide
the working day into 24 hourly periods numbered 1 to 24, the 1st be-
ginning at 12 midnight (0th hour) and the 24th ending at 12 midnight
the next day; and estimate the number of ITs needed in each period
based on workload that depends on vessel arrivals and departures, and
the contents of those vessels. Following table gives estimates of their
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IT requirements each day during a particular season.

Period ITs needed Period ITs needed Period ITs needed
1 40 9 70 17 120
2 38 10 70 18 120
3 50 11 68 19 106
4 50 12 68 20 100
5 48 13 100 21 90
6 48 14 100 22 80
7 46 15 96 23 60
8 46 16 84 24 50

They have a certain number of hired trucks arriving for work each
hour of the day on the hour. Each truck works continuously for 4 hours
after reporting to the terminal, then takes a one hour meal break, and
then works another period of 4 hours before departing for the day.

In any period if the number of trucks on duty is greater than the
number of trucks needed during that period, some which are not needed
will be idle, but the driver has to be paid even when the truck is idle
as long as he/she is on duty.

It is required to determine how many hired trucks should be asked to
report for duty at each hour of the day, so as to meet the requirements
of the terminal, while minimizing the total number of trucks hired daily
during this season. Formulate this problem as an LP by ignoring the
integer restrictions on the decision variables. (Adopted from Murty,
Liu, Wan, and Linn, “DSS for Operations in a Container Terminal”,
Decision Support Systems, 39(2005)309-332.

3.17: Work force scheduling in a bank: The workload (work
of tellers, data entry people, etc.) in busy branches of a bank usually
varies with the time of the day, typically in the shape of an inverted-U
curve with the peak reaching around 1 PM. For efficient use of the
resources, the manpower available should also vary correspondingly.
Banks usually achieve this variable capacity by employing part-time
personnel in their branches where workload variation WRT time of the
day is highly pronounced. Here is all the relevant information for the
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busy downtown branch of a bank for weekdays (Monday to Friday) in
a particular period.

Work begins at 9 AM daily, and the regular bank hours go on until
5 PM. But workers do work behind closed doors from 5 PM to 7 PM.

Regular employees (i.e., full-time employees) work in two shifts:
both from 9 AM to 5 PM but with lunch break either from 11 AM to
12 noon, or from 12 noon to 1 PM respectively. The payrate for regualr
employees comes to $20/hour at work. Regular employees can work
between 5 PM to 7 PM if necessary, this will be counted as overtime
for them, and they get extra pay for this work at their normal rate
of $20/hour. There are a toal of 25 regular employees on the Bank’s
payroll for this work; the company has the option of specifying how
many of them should use 11 AM to 12 noon, or 12 noon to 1 PM as
lunch hour.

When part-timers are hired for a day, they work an integer number
of hours between 1 hour to 5 hours without any lunchbreak, between
9 AM to 7 PM, and are paid at the hourly rate of $15/hour. They can
be hired to begin their work period anytime between 9 AM to 6 PM
always on the hour.

Number the hours between 9 AM to 7 PM from 1 to 10, with the
1st hour being 9 AM to 10 AM, and so on. In the current period, the
bank estimates that the man-hours required in the ith hour is 14, 25,
26, 38, 55, 60, 51, 29, 14, 9 respectively for i = 1 to 10.

The bank wants to determine their workforce scheduling plan during
this period, to meet their workload requirements at minimum cost.
Define all the relevant decision variables clearly, and model the problem
as an LP by ignoring the integer restrictions on the decision variables.
(Adopted from Shyam L. Moondra, “An LP Model for Work Force
Scheduling for Banks”, Journal of Bank Research, Winter 1976.)

3.18: The following table gives the estimated need for part time
workers in a department store in the current period in hourly intervals
between 9 hours to 21 hours Monday to Friday.
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Interval min. need Interval min. need
9 to 10 14 15 to 16 18
10 to 11 18 16 to 17 17
11 to 12 18 17 to 18 13
12 to 13 16 18 to 19 13
13 to 14 14 19 to 20 13
14 to 15 19 20 to 21 12

All part time workers who fill these position work in shifts of 5 hours
on the day they report for duty, with a one hour break in the middle;
and they can begin their shift anytime between 9 hours and 16 hours
always on the hour. Most of these workers like to have their break
between 12 to 14 hours; so anybody who had to work continuously
between 12 to 14 hours is paid 5% extra pay on that day. It is required
to determine the number of workers to be hired to fill this need at
minimum cost, and how many of them begin their shift on each hour.
Ignoring the integer requirements on the decision variables, formulate
this problem as an LP.

3.19: A paper company has a machine that cuts master reels of
paper of width 82 in. into reels of smaller widths. All the reels have
the same length of paper on them. They have standing orders for reels
in the following widths from their regular customers.

Width No. reels on order/week∗

58 in. 2000
26 in. 10,000

24 in. 12,000
23 in. 12,000

Min. on order. Can supply some more.

A cutting pattern specifies how many reels of widths 58, 26, 24, 23
ins. are cut from a master roll. For example if 2 rolls of width 26 in.
and 1 roll of width 24 in. are cut from a master roll in a pattern; the
remaining 6 in. width is too small to be useful for any of the orders,
it will be wasted in this pattern. This is called trim waste, and in this
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pattern it amounts to (6/82)100 = 7.32%. Companies try to minimize
this trim waste as much as possible by minimizing the number of master
rolls cut to fulfill the customer orders.

This company uses the following 12 cutting patterns for cutting the
rolls for these orders.

Pattern no. No. rolls of width cut Waste
58 in 26 in 24 in 23 in (in. width)

1 1 0 1 0 0
2 1 0 0 1 1
3 0 3 0 0 4
4 0 2 1 0 6
5 0 2 0 1 7
6 0 1 2 0 8
7 0 1 1 1 9
8 0 1 0 2 10
9 0 0 3 0 10
10 0 0 2 1 10
11 0 0 1 2 12
12 0 0 0 3 13

The problem is to determine how many master rolls to cut according
to each of the above patterns so as to meet the weekly requirements
using the smallest possible number of master rolls. Formulate as an
LP, ignoring the integer restrictions on the decision variables.

3.20: The fineness of spun yarn is measured by its count, the higher
the count the finer the yarn. A textile spinning mill produces cotton
yarn in counts 20s and 40s on their spinning frames. Considering the
avilable machinery, quantity of cotton on hand and other resources,
it estimates that it can produce at most 40,000 yarn in the 20s, and
32,000 units in 40s in a particular period.

The spun yarn in each count can be reeled on a reeling frame and
sold as is (i.e., as reels of 20s or 40s); or processed further on machines
called doubling frames, and then reeled on reeling frames and sold as
doubled yarn (i.e., as reels of 2/20s or 2/40s). The average production
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of the four varieties, and also the maximum number of available frame
shifts in the doubling and reeling shops are given in the following table
together with the margin (net profit)/unit yarn in each variety.

Variety Production/frame shift (in units) Margin
Doubling Reeling ($/unit)

20s − 27 2.80
2/20s 160 42 3.15
40s − 17 4.25
2/40s 52 27 4.75

Max frame- 150 3100
shifts available

The problem is to determine how many units in each variety should
be produced for maximizing the total margin. Formulate this problem
as an LP. (Adopted from N. Srinivasan, “Product Mix Planning for
Spinning Mills”, Indian Statistical Institute, 1975.)

3.21: There are 5 different areas of specialization in a department

Weekday No. who want to, but can’t attend
seminar on this day in area
S1 S2 S3 S4 S5

Monday 6 5 7 3 6
Tuesday 5 4 5 4 3
Wednesday 7 3 4 3 5
Thursday 4 4 3 4 3
Friday 5 4 5 5 4

at the University of Michigan. Let us denote them S1 to S5. Now-
a-days because of the tight job market, many graduate students are
taking courses in several areas, even though they may specialize in one
area. Each area holds a seminar with a guest speaker once per week.
The department wants to hold these 5 seminars at the rate of one
per day, Monday to Friday afternoons each week. For each of the 25
area-weekday combinations, a survey of the graduate student body was
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conducted to find how many of them who want to attend the seminar
in that area will find it difficult to attend on that day because of other
conflicts, and the data is given above.

The decision to be made is the assignment of weekdays to areas
for holding the seminars. Select an appropriate objective function to
optimize for making this decision, and formulate the problem of finding
an optimal decision.

3.22: A company makes 6 types of herbal mixtures H1 to H6 that
people use for a variety of health benefits, in three plants.

Plant 1 can make H1, H2, H3
Mixture Man hrs./unit in Cost ($/unit)

Preparatory Packing
H1 2.5 2.2 98.0
H2 2.7 5.0 115.5
H3 2.2 4.1 88.4

Available 630 620
(man hrs/period)

Plant 2 can make H4, H5, H6
H4 2.1 2.2 105.0
H5 2.7 2.6 119.8
H6 2.4 2.0 97.7

Available 675 620
(man hrs/period)

Each plant consists of two shops. The first is the preparatory shop
where the ingradients are assembled, cleaned, processed, and the mix-
ture prepared in batches; and the other is the packing shop where the
prepared mixtures are packed in special packages and dispatched to
customers. Plant 3 actually has two preparatory shops specializing in
different products, but only one large packing shop serving both of
them.

At present they have adequate supplies of ingradients for meeting
customer demands at present levels, so the critical resource in each
shop is man hours of trained and skilled manpower. The equipment
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available in the various plants is different, so the resource use/unit of
the same mixture in different plants may not be the same. Data on
what each plant can make, and the input-output data is provided here.

Plant 3 can make H2, H3, H4, H5
Mixture Man hrs./unit in Cost

Prep 1 Prep 2 Packing ($/unit)
H2 2.4 2.3 107.2
H3 2.1 1.6 89.75
H4 2.1 1.7 103.0
H5 2.4 1.9 116.8

Available 700 700 1240
(man hrs/period)

For the next period the company has the following orders to fulfill.
Formulate the problem of finding an optimum production schedule at
the three plants for meeting the orders.

Mixture Orders (units) Mixture Orders (units)
H1 150 H4 230
H2 250 H5 260
H3 200 H6 160

3.23: The gas blending division of a petroleum refinery blends
butane (B), Straight run gasoline (SR), catalytically cracked gasoline
(CC), and reformate (RE), into two grades of motor fuel, regular and
premium. The availability and properties of the components to be
blended are given below (Oc.R is octane rating, and VP is the Reid
vapor pressure measured in psi (pounds/square inch)).

Component Oc. R VP Availability (m bar./week) Price
Summer Winter ($/barrel)

B 105 65 3 4 42
SR 80 8 7 8 32
CC 95 5 5 6 35
RE 102 4 4 5 36
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Data on the demand for gasoline in the two seasons is given below
(demand given in m barrels/week is the maximum amount that can be
sold in their marketing region; price is given in $/barrel).

Season Type Demand Specs. on Price
Oc.R VP

Summer Premium 8 ≥ 93 ≤ 13 46
Summer Regular 12 ≥ 87 ≤ 8 40
Winter Premium 6 ≥ 93 ≤ 13 44
Winter Regular 11 ≥ 87 ≤ 11 39

Additional quantities of SR beyond the availability mentioned in the
first table can be obtained, if necessary, at the rate of $34.50/barrel.
Each barrel of supply purchased by the division is estimated to cost an
average of $0.75 for handling and processing in the division.

Select the appropriate objective function to optimize, and formulate
the problem of determining an optimum production schedule in each
season.

3.24: A fertilizer blending company buys the basic fertilizer ingra-
dients, nitrates, phosphates, and potash from suppliers; blends them
together with some other inert ingradients available in unlimited sup-
ply; to produce three different fertilizer mixes 5-10-5, 10-5-10, 10-10-10
(these are the percentages by weight of nitrates, phosphates, and potash
respectively in the mix) during the growing season. Here is the data.

Ingradient Availability (tons/week) Price ($/ton)
Nitrates 1000 200
Phosphates 1800 90
Potash 1200 150
Inert Unlimited 5

Every thing produced can be sold, but there is a sales committment
of 6000 tons of 5-10-5 per week. The costs of handling, mixing, pack-
aging, and dispatching, are the same for all the three mixes, and are
estimated at $25/ton of mixture made. Competitive selling prices for



3.16: Exercises 135

the fertilizer mixes (in $/ton) are 220 for 5-10-5, 250 for 10-5-10, and
300 for 10-10-10.

Select the appropriate objective function to optimize, and formulate
the problem of determining how much fertilizer of each type to produce.

3.25: Cosider a diet problem with minimum daily requirements
(MDR) on protein, calories, vitamins A, B, C; and a siet consisting of
foods milk, lettuce, peanuts, and fortified soy cake (FSC). Here is the
data on the composition and prices of foods.

Food Units/unit of Price
Protein Calories Vit. A Vit. B Vit. C ($/unit)
(gms) (units) (mg) (mg)

Milk 35 666 1550 0.35 13 0.80
(quarts)
FSC 17 77 550 0.05 0 0.25
(each)
Lettuce 3 60 1400 0.20 25 0.90
(head)
Peanuts 100 1650 0 0.40 0 0.45
(servings)
MDR 70 2000 5000 2 80

Formulate the problem of finding a diet that meets the requirements
at minimum cost. Transform the problem into one in which all the
constraints are equations.

3.26: This problem involves determining the amounts of food groups
F1 to F6 (respectively, milk (pints), meat (lbs), eggs (doz.), bread
(ozs.), greens (ozs.), orange juice (pints)) to include in a diet to meet
nutritional requirements and quantity restrictions at minimum cost.
The nutrients are A (vit. A), Fe (iron), C (calories), P (protein), CH
(cholosterol), CAR (carbohydrates). UB is upper bound for inclusion
in the diet in the same units in which food is measured. Cost is given
in $/unit. Formulate as an LP.
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Nutr. Units/unit in Food Requirement
F1 F2 F3 F4 F5 F6

A 720 107 7,080 0 134 1,000 ≥ 5,000
Fe 0.2 10.1 13.2 0.75 0.15 1.2 ≥ 12.5
C 344 1,460 1,040 75 17.4 240 ≥ 1,400

≤ 1800
P 18 151 78 2.5 0.2 4 ≥63
CH 10 20 120 0 0 0 ≤ 55
CAR 24 27 10 15 1.1 52 ≤ 165
Cost 0.65 3.4 1.4 0.2 0.15 0.75
UB 6 1 0.25 10 10 4

3.27: A farmer is making feed for livestock using hay (H), corn (C),
oil seed cake (OSC), and oats (O). The farmer wants to make sure that
each animal gets at least one lb of protein, four lbs of carbohydrates,
and eight lbs of roughage to eat. Data on the composition and prices
of the constituents is given below.

It is required to determine the optimum proportion of the con-
stituents in the feed mix, and the amount of feedmix to give to each
animal in order to meet all the requirements stated above at minimum
cost. Formulate as an LP.

Item Item fraction in
H C OSC O

Protein 0.05 0.1 0.4 0.02
Carbohydrates 0.20 0.3 0.1 0.15
Roughage 0.4 0.2 0.1 0.3
Price ($/lb) 0.2 0.4 0.6 0.3

3.28: A machine tool manufacturer is planning to exhibit one of
their finest lathes, and a top of the line milling machine at an interna-
tional machine tool exhibition. They want to keep both the machines
in operation during the full 100 hours of the exhibition making simple
products that can be given away to potential customers visiting their
booth. For these products, three are under consideration; an ash tray
(A), a paperweight (P), and a metal ruler (M).
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Each unit of A, P, M need 0.1, 0.3, 0.2 hours operation on the
lathe, and then 0.4, 0.2, 0.4 hours operation on the milling machine
respectively, to make. But each of these products use an expensive
form of brass stock. Each unit of A, P. M need 0.2, 0.3, 0.1 lbs of brass
stock to make.

It is required to find out how many units of A, P, M, to make during
the exhibition in order to keep both the lathe and the milling machine
fully occupied during the entire 100 hours of exhibition time while
minimizing the amount of brass stock used. Formulate this problem
as an LP. (From P. W. Marshall, “LP: A Technique for Analyzing
Resource Allocation Problems”, Harvard Business School Cases, 1971.)

3.29: A Couple saved a lot of money in one year, and are looking
to invest upto $40,000 in 5 different investment opportunities. Data on
them is given below.

They want to make sure that the fraction invested in industrial op-
portunities is no more than 0.6, and that the weighted average (with
the amounts invested as the weights) maturity period of their invest-
ments is no more than 14 years.

Formulate the problem of determining how much to invest in each
opportunity in order to maximize the annual return from all the in-
vestments subject to the constraints stated above.

Opportunity Annual return Maturity
A. Govt. bonds 6% 10 years
B. Govt. bonds 5% 5 years

C. Preferred shares 7% 20 years
(industry)

D. Bonds (industry) 4% 6 years
E. CDs 5.5% 7 years

3.30: A shoe company has to allocate production of 5 styles of shoes
to three overseas manufacturers denoted by PRC, BYC, SKC. Here is
the data on the quote ($/pair of shoes) of each style from each manu-
faturer, and their production capacity (units of 1000 pairs/month) for
each style and overall, and the demand for each style in the same units.
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Style PRC BYC SKC Demand
Quote Capa. Quote Capa. Quote Capa.

S1 12.5 120 11.75 40 11.5 120 140
S2 10.75 80 12.25 100 11.25 160 100
S3 14.25 80 13.25 50 13.75 80 70
S4 13.75 50 13.00 70 14.25 120 40
S5 14.5 60 13.25 90 14.00 30 50

Overall 220 200 230

Also, BYC and SKC are in the same country, and there is an import
quota of 370 (in same units) from both of them put together. Formulate
the problem of determining an optimum allocation as an LP.

3.31: An oil refinery processes crude oil in its distillation tower
(DT) to produce a product called distillate and a variety of other prod-
ucts. Distillate is used to make gasoline.

Each barrel of crude processed in the DT yields 0.2 barrels of distil-
late, 0.75 barrels of by-products, and the remaining 0.05 barrels is lost
in the distillation process. The DT has a capacity to process 250,000
barrels of crude/day at an operating cost of $1/barrel of crude.

The refinery gets crude oil at a price $30/barrel. The refinery sells
the by-products produced at the DT at $32/barrel.

The Oc. R. (octane rating) of the distillate is 84, it is too low to
be used directly as gasoline. So, the refinery keeps only some of the
distillate produced at the DT to be blended into gasoline products, and
will process the remaining distillate in a catalytic cracker (CC) further.

The CC cracks the heavy hydrocarbon compounds in the distillate
into lighter compounds. This process produces a high quality product
called gasoline stock (GS), and several other petroleum by-products.
Each barrel of distillate cracked in the CC yields 0.5 barrels of GS,
0.45 barrels of by-products, and the remaining 0.05 barrels of distillate
is lost in the cracking process. Cracking costs $2/barrel of distillate
cracked. The company sells the by-products of cracking at $40/barrel.
The CC can process upto 20,000 barrels of distillate daily. The GS
produced by cracking has an Oc. R. of 95.

The company blends the distillate that is not processed through
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the CC, and the GS produced by the CC into regular and premium
gasolines, which have required Oc. R.s of 87, 90 respectively. The
cost of blending, and the losses in blending are negligible and can be
ignored. The company sells its regular and premium gasolines at $40,
45/barrel respectively. They can sell upto 25,000 barrels/day of regular
and premium respectively.

Formulate the problem of determining an operating policy that
maximizes the company’s net daily profit.

3.32: Sugar refinery planning: The first step in the production
of cane sugar (sugar made from the juice of sugar cane) is the crushing
and rolling of sugar cane at sugarcane mills to separate sugar juice and
cane stalk. The product called raw sugar (RS) is made by clarifying the
sugar juice, concentrating and crystallizing it into large brown crystals
containing many impurities.

Plants called refineries process and purify the RS into finished
sugar. This process yields molasses as a by-product, and also a left
over fibrous material called bagasse which can be used in the produc-
tion of feed, paper, and also as fuel. Rum is made by distilling molasses.
Also several important chemicals are made by fermenting molasses.

The company operates two refineries R1, R2. They buy RS from
8 sugar cane mills S1 to S8. The refineries ship molasses to seven
customer molasses processing plants C1 to C7; and sell finished sugar
and bagasse in the open market. Here is the relevant data.

RS sup- Available Price Shipping cost ($/ton) to
plier (tons/month) ($/ton) R1 R2
S1 1100 65 9 22
S2 1475 63 8 27
S3 2222 68 13 23
S4 1280 69 11 25
S5 1950 64 7.5 24
S6 2050 63 19 28
S7 1375 645 24 19
S8 1800 635 22 21

∗Does not include shipping cost
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Quantity Production data for
R1 R2

% loss in RS in transit 2.7 2.7
from supplier

Production %s as %
of RS processed
Finished sugar 33.6 45.6
Molasses 30.4 30.7
Bagasse 36.0 23.7

Production costs
$/ton RS processed 75 72
Prod. capacity

tons RS refining/month 8030 8800
Operating range 50 to 100 50 to 100
(as % of capacity)

Product Selling price ($/ton at refinery)
Finished sugar at R1 400
Finished sugar at R2 325
Molasses (at R1 or R2) 75
Bagasse at R1 or R2 55

Molasses requirement (tons/month)
Customer Required Shipping cost ($/ton) from

R1 R2
C1 480 50 60
C2 950 92 65
C3 610 35 25
C4 595 32 43
C5 950 48 29
C6 117 52 53
C7 90 45 80

The company would like to determine the production plan that
minimizes the total net cost of meeting the demand at the customers
exactly. Define all the relevant decision variables and formulate the
problem. (Adopted from Harvard Business School case “J. P. Molasses,
Inc., 1988.)
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3.33: A company processes tomatoes into various final products.
For the coming season, they have arranged supplies of four different
kinds of tomatoes in the following quantities.

Tomato supply available
Kind Available Price

(units/week) ($/unit)
I 200,000 40
II 200,000 34
III 250,000 34
iv 150,000 36

The final products which we denote by P1 to P5 are cases of:
Choice canned tomatoes (CCT), Standard canned tomatoes (SCT),
Juice, Paste, and Puree. If processed into canned tomatoes, here are
yields from the various kinds of tomatoes.

Kind Fraction yield of
CCT SCT Peeling loss

I 0.40 0.45 0.15
II 0.60 0.25 0.15
III 0.20 0.68 0.12
iv 0.30 0.50 0.20

If processed into juice, all kinds of tomatoes are crushed and yield
100% unfiltered juice measured in the same unit as tomatoes.

For processing into paste or puree, the juice has to be condensed
to certain specified contents of solids. For making these products,
the important characteristic is the solids content (measured in some
units/unit of tomatoes) which for kinds I to iv is: 5, 6, 6, 5.5 respec-
tively.

Here is the input-output, and price/cost data.
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Product Ingradients needed (units/case) ∗Processing Selling
CCT SCT Juice Solids costs price

($/case) ($/case)
P1 4 0 1 0 100 450
P2 0 3 2 0 90 410
P3 0 0 3 0 80 190
P4 0 0 0 8 130 240
P5 0 0 0 4 120 210

All costs other than tomatoes

There are constraints on the quantities the company can sell at
the above prices. Their mail lines are canned tomatoes, and their
marketing department estimates that they can sell up to 60,000 cases
of each of P1, P2/week. The company has to produce P3, P4, P5 to
make up a full line of commodities in order to protect the company’s
competitive marketing position. Based on the marketing department’s
estimates the company wants to make sure that the production of P3
is between 1000 to 4000 cases/week, and the production of P4, P5 is ≥
1000 cases each/week.

Select the appropriate objective function to optimize, and formu-
late the problem of determining an optimum production plan for this
company.

3.34: A company makes cans in three plants P1, P2, P3. All their
output is sold to four wholesalersW1 toW4. For the coming yearW1 to
W4 agreed to buy 3, 4, 5, 6 million cans from the company respectively.
So, the total demand for the company’s products is 18 million cans in
the coming year. The production capacity at P1, P2, P3 is 6, 7, 8 million
cans/year; for a total production capacity of 21 million cans/year. So
the company has an excess production capacity for 3 million cans in
the coming year.

The total yearly production cost at each plant consists of a fixed
cost + a variable cost which is a linear function of the number of cans
produced at the plant that year. The fixed costs at P1, P2, P3 are $6, 7,
8 million/year respectively. The variable costs at P1, P2, P3 are $2, 1.8,
1.6/can produced. For example, this means that if x cans are produced
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at P − 1 in a year, the total production cost at the company will be
$(6, 000, 000 + 2x).

There are two scenarios being considered for handling the excess
capacity for the coming year.

Scenario 1: Operate P2, P3 at full capacity, and let P1 produce
only 3 million cans for the coming year. Under this scenario, the per
can production cost at the three plants will be:

Plant Production cost ($/can)
P1 $(6,000,000 + 2× 3,000,000)/3,000,000 = 4
P2 $(7,000,000 + 1.8× 7,000,000)/7,000,000 = 2.8
P3 $(8,000,000 + 1.6× 8,000,000)/8,000,000 = 2.6

Scenario 2: This scenario disatributes the excess capacity equally
among all the plants. So, under this scenario, P1, P2, P3 will produce 5,
6, 7 milliopn cans respectively in the coming year. Under this scenario,
the per can production cost at the three plants will be:

Plant Production cost ($/can)
P1 $(6,000,000 + 2× 5, 000, 000)/5,000,000 = 3.2
P2 $(7,000,000 + 1.8× 6, 000, 000)/6,000,000 = 2.96
P3 $(8,000,000 + 1.6× 7, 000, 000)/7,000,000 = 2.74

Plant Shipping cost ($/can) to
W1 W2 W3 W4

P1 0.18 0.13 0.13 0.16
P2 0.21 0.16 0.11 0.16
P3 0.16 0.11 0.21 0.16

So, under Scenario 2, the per can production cost at P1 decreased by
$0.80; but increased by $0.16, 0.14 at P2, P3; resulting in a net change
of $(-0.80 + 0.16 + 0.14) = $(-0.50), or a saving of $0.50/can produced.
So, under this logic, Scenario 2 seems to be better than Scenario 1.

The selling price to all the wholesalers is a uniform $5/can delivered.
The transportation costs for shipping the cans to the wholesalers from
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the plants are given above.

(i): Under each of the above scenarios 1, 2, formulate a mathemat-
ical model to determine what the maximum total net profit is.

After you learn the algorithm to solve transportation problems from
Chapter 6, determine which scenario results in a higher total net profit
to the company. Check whether the logic given above that Scenario 2
saves the company $0.50/can produced is correct.

(ii): Model the problem of determining an optimum production
schedule that distributes the excess capacity optimally among the three
plants, in the form of a balanced transportation problem.

Again after you learn the algorithm to solve transportation prob-
lems from Chapter 6, determine the optimum production schedule for
the company.

3.35: A country can be divided into 8 regions WRT the supply
(production in the region itself) and demand (within that region) for
milk/week. Here is the data (milk is measured in units of million
gallons).

Region Supply Demand Excess (+) or
deficit (−)

R1 350 300 +50
R2 400 100 +300
R3 550 200 +350
R4 150 350 −200
R5 0 100 −100
R6 50 200 −150
R7 100 250 −150
R8 50 250 −200
Total 1650 1750 −100

So, there is a toal deficit of 100 units of milk/week over the whole
country which is made up by importing milk regularly from a neighbor-
ing country C that has surplus milk. Following table gives data on the
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average cost of transporting milk in some money units/unit between
the excess and deficit regions within the country. Also, in the row of
C we provide data on the average cost (same units as above) for milk
delivered to each deficit region within the country from C. Formulate
the problem of meeting the demand for milk within the whole country
that minimizes the distribution costs of milk within the country, and
the import costs from C.

From Transportation Cost to (money units/unit)
R4 R5 R6 R7 R8

R1 10 12 8 6 4
R2 8 4 7 5 4
R3 9 8 7 6 5
C 95 85 75 115 120

3.36: A company has three plants P1, P2, P3 spread over the country
for making a product. There are two wholesalers who buy this product
from them. The demand (maximum amount desired by them, company
can supply any amount less than this) by these wholesalers for the
product in the next two months, months 1, 2, is given below.

Wholesaler Demand (in units) Shipping cost ($/unit) from
Month 1 Month 2 P1 P2 P3

W1 4000 6000 6 12 4
W2 8000 9000 10 5 7

Inventories are depleted at the beginning of month 1 in each plant,
but the units produced in month 1 can be shipped during that month it-
self towards the demand in that month, or held in inventory at the plant
and shipped in the next month. The inventory capacity at P1, P2, P3 is
500, 500, 300 units respectively and it costs $3/unit to hold in inventory
from month 1 to month 2.

Data on the production capacities and costs at each plant is given
below.
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Plant Prod. capacity (units) Prod. cost
Month 1 Month 2 ($/unit)

P1 4000 5000 65
P2 5000 4000 63
P3 5000 4000 64

THe selling price/unit delivered at the wholesalers is $80. For-
mulate the problem of determining an optimum production, storage,
shipping plan for the company.

3.37: A company has been hired to conduct a survey on the eco-
nomic conditions of people in a region. According to the plan, they
need to select a sample of 2500 people to collect data from, satisfying
the following constraints:

a): At least 20% of the sample must be in each of the age groups
18 to 30, 30 to 50, 50 to 65 years.

b): At least 20% of the sample must belong to each of the groups,
blacks, latin americans, majority whites.

They know that only a fraction of the people contacted will respond
and provide the data. Information on the fraction expected to respond
in the various subgroups estimated from their past experience is given
in the following table.

Group Fraction expected to
respond in age group

18 to 30 30 to 50 50 to 65
Blacks 0.25 0.30 0.40

Latin Americans 0.20 0.25 0.45
Whites 0.30 0.20 0.50

It is required to determine how many people to include in the sam-
ple in the various subgroups in order to maximize the expected total
number responding, subject to all the constraints mentioned above.
Formulate this as an LP ignoring the integer requirements on the de-
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cision variables.

3.38: A multi-period blending problem: The following ta-
ble gives data on the fraction (by weight) of three different nutrients
N1,N2, N3 in five different foods F1 to F5; and the expected cost (in
$/kg) of each food in three periods. There is a demand for a mixture
of these foods meeting the required fractions for the three nutrients
exactly in each of the periods. The individual foods can be purchased
in any period and stored for use in later periods. Storage costs in $/kg
from one period to the next are given in the table. Mixture which
is made in one period can be stored and used to meet the demand
in later periods, at a storage cost in $0.02/kg from one period to the
next. Formulate the problem of meeting the requirements at minimum
total cost. (From C. A. C. Kuip, “Algebraic Languages for Math-
ematical Programming”, European Journal of Operational Research,
67(1993)25-51.)

Item Fraction in Food Required
F1 F2 F3 F4 F5 fraction

N1 0.13 0.24 0.12 0.25 0.15 0.2
N2 0.24 0.12 0.44 0.44 0.48 0.42
N3 0.03 0.05 0.01 0.01 0.01 0.15

Cost in Demand∗

Period 1 1.7 2.1 1.4 1.7 1.8 50 kg
Period 2 2.0 3.0 2.3 2.0 1.7 60 kg
Period 3 3.0 3.5 2.3 2.3 1.6 70 kg
Storage 0.011 0.008 0.014 0.011 0.012
cost

∗for mixture in period.
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