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Chapter 4

The Simplex Method for
Solving LPs

This is Chapter 4 of “Junior Level Web-Book for Optimization
Models for decision Making” by Katta G. Murty.

In this chapter we will discuss the simplex method for solving
LPs, (also called primal simplex method) which is a computational
method developed by George B. Dantzig in 1947. There are many
different versions of this method, we will discuss the original version
which is a direct extension of the GJ method for solving linear equa-
tions, because of its simplicity for understanding the main principles
on which the method is based. This version which operates with the
canonical tableau that is updated after every pivot step, just as in the
GJ method, is also a great tool for learning the optimality criterion
in the simplex method; and using it to analyze the problem and draw
useful conclusions for planning purposes. It is eminently suitable for
solving small problems by hand computation.

This version is not computationally efficient for solving LPs which
are not small. That’s why all commercial computer programs for LP
are based on versions of better computational efficiency discussed in
graduate level books. High quality and highly reliable software for the
simplex method is widely available from many sources. Software for
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150 Ch. 4 Simplex Method

LP is reported to be the most heavily used software among all applied
mathematics programs.

The Importance of Learning the Details of the
Simplex Method

Students are always asking me why it is important to learn the
details of the simplex method when there are so many easy to use
computer programs readily available for it. Here are some important
reasons.

1) A good knowledge of the details of the simplex method and how
it works, makes it easier for you to appreciate the optimality
criterion for LP, and why it makes sense.

2) The relative cost coefficients obtained in the simplex method have
very nice practical meaning which plays a role in many plan-
ning applications. Learning the simplex method is tantamount
to learning the practical meaning of relative cost coefficients.

3) Many applications involve models with very special structure, in
which one may be able to guess the optimum solution. A good
knowledge of the simplex method and its termination conditions
may enable you to check directly whether the guess is correct,
without having to use a computer program.

4) In many real world applications, the initial model for the problem
may be infeasible, or may produce a solution that does not seem
practical. In this case it may be necessary to make changes in the
model after analyzing it. Good knowledge of the simplex method
is often very useful in this kind of analysis.

5) The simplex method is one of the most fundamental algorithms
in optimization. Understanding it in detail, and learning how it
works is very helpful in understanding other optimization algo-
rithms.

6) Because there are so many easy to use computer programs to solve
LPs, it is true that it may be unnecessary to understand the
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details of the algorithms on which they are based, to solve an LP.
But you need to have a clear idea of the process and how the
algorithm works, if you want to make more than a simple clerical
contribution to the application.

4.1 Transformations to be Carried Out On

an LPModel Before Applying the Sim-

plex Method On It

The main computational tool used in the version of the simplex method
discussed in this chapter is the GJ pivot step. This step transforms
a system of linear equations into another equivalent system of linear
equations with the same set of solutions.

The GJ pivot step involves a sequence of row operations. If row
operations are carried out directly on a system of linear inequality
constraints, then the system changes. As an example, consider the
following two systems:

(I) (II)
x1 ≥ 0 x1 ≥ 0
x2 ≥ 0 x1 + x2 ≥ 0

System (II) is obtained from (I) by adding the first constraint to
the second. By plotting the sets of feasible solutions it can be verified
that the set of feasible solutions of (II) is strictly larger than that of (I).
That’s why it is not valid to perform row operations or GJ pivot steps
directly on a system of linear constraints including some inequalities.

Hence, before applying the simplex method on an LP, all the con-
straints on which pivot operations are to be carried out must be trans-
formed into equality constraints. In fact the version of the simplex
method discussed in this chapter is applied only after transforming the
LP into a form known as standard form, which in matrix notation
is:
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Minimize z(x) = cx + α

subject to Ax = b

x ≥ 0

where α is a constant. This is expressed in detached coefficient tableau
form as below. In it, the objective function z = z(x) is expressed
through the equation cx− z = −α (this is the equation corresponding
to the last row in the tableau).

Tableau representation
x −z
A 0 b
c 1 −α
x ≥ 0, minimize z

Differences in Notation in LP Textbooks

Here we included the equation defining the objective function as
the bottom row of the tableau. Some LP textbooks include it as the
top row of the tableau instead.
For another difference, we expressed the objective function through

the equation cx− z = −α. Some LP textbooks record in as z− cx = α
instead.
Also, we consider the problem as a minimization problem for mini-

mizing z subject to the constraints given. Mathematically, this problem
is equivalent to maximizing −z subject to the same constraints (both
of these problems have the same set of optimum solutions; and the
optimum objective value in one will be the negative of the optimum
objective value in the other). Some books discuss the maximization
problem.
These minor differences account for the difference in the way the

optimality criterion is stated in different text books. So, while reading
another book, if you see that their optimality criterion differes from
that in this book, check their problem statement and the way they
enter the objective equation in the tableau.



4.1. Transformations 153

Transformations

In standard form all the constraints other than the nonnegativity
restrictions on the variables are linear equations; and all the variables
are restricted to be nonnegative. Any LP can be transformed into
standard form by carrying out the following steps (it is convenient to
carry them out in the order listed). After stating each step we include
an example for it.

Step 1. Transforming a variable (x1 say), subject to only
one bound (lower or upper, but not both): If the bound is x1 ≥ 0,
leave it unchanged.
Suppose the bound is x1 ≥ f1 where f1 W= 0. This can be written as

x1− y1 = f1, y1 ≥ 0, where y1 is the slack variable. So, x1 = y1+ f1. In
all the constraints and the objective functions, replace x1 by y1 + f1.
This eliminates x1 from the problem replacing it by the nonnegative
variable y1.
If the bound is x1 ≤ u1 where u1 is any real number, it is x1+ s1 =

u1, s1 ≥ 0. In this case we replace x1 whereever it appears in the model
by u1 − s1.

Example: To illustrate this step consider the LP

Maximize z = 2x1 − 3x2 − 2x3 + 7x4
s. to − x1 + 2x2 + x3 − x4 = −6

x1 − x2 + 3x3 + x4 ≥ −5
x1 ≥ −2, x2 ≤ 7, x3 ≤ 0, x4 ≥ 0

Here x1, x2, x3 are all variables subject to a single bound that need
to be transformed. As described above, we substitute x1 = s1−2, x2 =
7 − s2, x3 = −s3, where s1, s2, s3 are the appropriate slack variables.
The transformed problem is

Maximize z = 2(s1 − 2)− 3(7− s2)− 2(−s3) + 7x4
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s. to − (s1 − 2) + 2(7− s2) + (−s3)− x4 = −6
(s1 − 2)− (7− s2) + 3(−s3) + x4 ≥ −5

s1, s2, s3, x4 ≥ 0

or

Maximize z = 2s1 + 3s2 + 2s3 + 7x4 − 25
s. to − s1 − 2s2 − s3 − x4 = −22

s1 + s2 − 3s3 + x4 ≥ 4

s1, s2, s3, x4 ≥ 0

Once the solution of the transformed problem is obtained in terms
of s1, s2, s2, x4, the corresponding solution of the original problem can
be obtained in terms of x1, x2, x3, x4 by using the formulas for them
given above.

Step 2. Transforming a variable (x2 say), subject to both an
upper and a lower bound : Suppose the bounds are f2 ≤ x2 ≤ u2,
where u2 > f2.
Suppose f2 = 0. In this case x2 ≤ u2 is equivalent to x2 + s2 =

u2, s2 ≥ 0; here s2 is the slack variable corresponding to this restric-
tion. Include x2 + s2 = u2 as an equality constraint with s2 as a new
nonnegative variable in the model, replacing the upper bound on x2.
Leave x2 ≥ 0 as it is.
If f2 W= 0, f2 ≤ x2 is equivalent to x2 − y2 = f2, y2 ≥ 0. Substitute

x2 = y2 + f2 in all the constraints and the objective function, thus
eliminating x2 from the problem. In this process x2 ≤ u2 becomes
y2+f2 ≤ u2, or y2 ≤ u2−f2 which is equivalent to y2+s2 = u2−f2, s2 ≥ 0
(here s2 is the slack variable corresponding to the upper bound on y2).
Include y2 + s2 = u2 − f2 as an equality constraint with s2 as a new
nonnegative variable in the model.

Example: To illustrate this step consider the LP

Minimize z = −x1 + 3x2 + 4x3
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s. to 4x1 − 3x2 + 5x3 = 18

−x1 + x2 − 3x3 ≤ 100

0 ≤ x1 ≤ 10,−2 ≤ x2 ≤ 5, x3 ≥ 0

We enter x1 ≤ 10 as the new constraint x1 + s1 = 10, s1 ≥ 0.
We write −2 ≤ x2 as x2 − y2 = −2, y2 ≥ 0. So we substitute

x2 = y2 − 2 and eliminate x2 from the problem. x2 ≤ 5 becomes
y2 − 2 ≤ 5 or y2 ≤ 7; which we enter as the new equality constriant
y2 + s2 = 7, s2 ≥ 0.
So, the transformed problem is

Minimize z = −x1 + 3(y2 − 2) + 4x3
s. to 4x1 − 3(y2 − 2) + 5x3 = 18

−x1 + (y2 − 2)− 3x3 ≤ 100

x1 + s1 = 10

y2 + s2 = 7

x1, y2, s1, s2, x3 ≥ 0

or

Minimize z = −x1 + 3y2 + 4x3 − 6
s. to 4x1 − 3y2 + 5x3 = 12

−x1 + y2 − 3x3 ≤ 102

x1 + s1 = 10

y2 + s2 = 7

x1, y2, s1, s2, x3 ≥ 0

From a solution of the transformed problem, the corresponding so-
lution of the original problem can be obtained by using x2 = y2 − 2.

Step 3. Transforming All Remaining Inequalities Into Equa-
tions: This is done by introducing a nonnegative slack variable corre-
sponding to each of those constraints.
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Step 4. Put Objective Function in Minimization Form: If
the objective function is required to be minimized, leave it as it is. If
it is required to be maximized, replace it by the equivalent problem of
minimizing its negative, subject to the same constraints.

Step 5. Eliminate Unrestricted Variables: At this stage all
the constraints are either equality constraints, or nonnegativity restric-
tions on individual variables. If all the variables in the problem at this
stage are nonnegative variables, the problem is now in standard form;
put it in detached coefficient tableau form and stop.

Otherwise there must be some unrestricted variables (i.e., those on
whose value there is no explicit lower or upper bound stated at this
stage) in the model.

In the previous steps we have eliminated variables subject to one
or two bounds, but each of them was always replaced in the model by
another nonnegative variable. It turns out that unrestricted variables
can be truely eliminated from the problem altogether without another
variable replacing them.

If x3 is an unrestricted variable, use one of the equations in which it
appears with a nonzero coefficient, to get an expression for it in terms
of other variables. Eliminate this equation from the model, but store
this expression for x3 some where to get the value of x3 in the solution
after the values of the other variables are obtained from the remaining
model. Substitute the expression for x3 where ever it appears in the
remaining model, this eliminates x3 from the remaining model.

A convenient computational tool for eliminating an unrestricted
variable at this stage in the GJ pivot step.

Suppose there areM equality constraints inN variables, x1, . . . , xN ,
at this stage, of which some are unrestricted and the others are nonneg-
ative. If the objective at this stage is to minimize z = N

j=1 cjxj + α,
where α is a constant, augment the system of equality constraints
by the additional equation N

j=1 cjxj − z = α defining the objective
function. Express all the equality constraints in a detached coefficient
tableau form as given below.
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Tableau: System of equality
constraints and objective row
x1 . . . xN −z
a11 . . . a1N 0 b1
...

...
...

...
aM1 . . . aMN 0 bM
c1 . . . cN 1 α

Suppose xN is an unrestricted variable. To eliminate it, select its
column as the pivot column for a GJ pivot step on this tableau. Se-
lect a row with a nonzero coefficient in the pivot column as the pivot
row, and perform the GJ pivot step. In the new tableau, use the equa-
tion corresponding to the pivot row to express xN as a function of the
other variables, store this expression somewhere. Now delete the pivot
row, and the column of the variable xN from this tableau. This dele-
tion eliminates xN from the optimization portion of the problem. The
remaining tableau represents the remaining problem to be solved.

Thus elimination of an unrestricted variable, reduces the problem
into one with one less variable, and one less equation.

If there are some more unrestricted variables in the remaining tableau,
repeat the same procedure on it.

When all the unrestricted variables are eliminated from the opti-
mization portion of the problem this way, the remaining tableau rep-
resents an LP in standard form that is equivalent to the original one.

Example: To illustrate this step consider the LP in detached co-
efficient form. each row of the tableau represents an equality constraint
on the variables.

PC
x1 x2 x3 x4 −z
1 −1 2 0 0 5

−2 4 0 −2 0 6 PR
3 4 1 1 0 17
10 15 −7 2 1 100
x1, x2, x3 ≥ 0, x4 unrestricted, min z
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To eliminate the unrestricted variable x4, we choose the column of
x4 as the pivot column (PC), and select row 2 with a nonzero entry
of −2 in the PC as the pivot row (PR). The pivot element in the PC
and the PR is boxed. Performing the GJ pivot step leads to the next
tableau.

BV x1 x2 x3 x4 −z
1 −1 2 0 0 5

x4 1 −2 0 1 0 -3
2 6 1 0 0 20
8 19 −7 0 1 106

The equation corresponding to 2nd row (row which was the PR for
the pivot operation) in this tableau is x1 − 2x2 + x4 = −3. From this
we get the expression for x4 to be x4 = 2x2 − x1 − 3.
Now eliminate the 2nd row and the column of x4 from this tableau.

The remaining problem in detached coefficient form is given below. It
is in standard form.

x1 x2 x3 −z
1 −1 2 0 5
2 6 1 0 20
8 19 −7 1 106
x1, x2, x3 ≥ 0, min z

Example: In this example we will illustrate all the above steps.
Consider the LP

Maximize zI = 2x1 + 7x2 − x3 + 2x4 − x5
s. to x1 + x2 − x3 − x4 + x5 ≥ 2

x2 + 2x3 + x4 − 2x5 ≤ 11

x1 − x2 + x3 + x4 = 14

x1 ≥ 2; x2 ≤ 0; 0 ≤ x3 ≤ 10; x4, x5 unrestricted

The bound restriction x1 ≥ 2 becomes x1 = 2+ y1, y1 ≥ 0 where y1
is the associated slack variable. x2 ≤ 0 becomes x2 = −y2, y2 ≥ 0. We
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use these expressions to replace x1, x2 in the problem by y1, y2. Also,
the bound x3 ≤ 10 is recorded as the constraint x3 + y3 = 10, y3 ≥ 0.
These lead to

Maximize zI = 2y1 − 7y2 − x3 + 2x4 − x5 + 4
s. to y1 − y2 − x3 − x4 + x5 ≥ 0

−y2 + 2x3 + x4 − 2x5 ≤ 11

y1 + y2 + x3 + x4 = 12

x3 + y3 = 10

x4, x5 unrestricted, y1, y2, y3, x3 ≥ 0.

Now we transform the first two constraints into equations by intro-
ducing the slack variables y4, y5, and also change the objective function
from maximizing zI to minimizing z = −zI. The resulting problem in
detached coefficient form is the one at the top. In this tableau we per-
form GJ pivot steps in the columns of the unrestricted variables x4, x5.
The PC (pivot column), PR (pivot row), BV (basic variable selected)
are indicated and the pivot element for each step is boxed.

BV y1 y2 y3 y4 y5 x3 x4 x5 −z
1 −1 0 −1 0 −1 −1 1 0 0 PR

0 −1 0 0 1 2 1 −2 0 11
1 1 0 0 0 1 1 0 0 12
0 0 1 0 0 1 0 0 0 10

−2 7 0 0 0 1 −2 1 1 4
PC

x4 −1 1 0 1 0 1 1 −1 0 0

1 −2 0 −1 1 1 0 −1 0 11 PR

2 0 0 −1 0 0 0 1 0 12
0 0 1 0 0 1 0 0 0 10

−4 9 0 2 0 3 0 −1 1 4
PC
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BV y1 y2 y3 y4 y5 x3 x4 x5 −z
x4 0 3 0 2 −1 0 1 0 0 −11
x5 −1 2 0 1 −1 −1 0 1 0 −11

3 −2 0 −2 1 1 0 0 0 23
0 0 1 0 0 1 0 0 0 10

−5 11 0 3 −1 2 0 0 1 −7
y1, y2, y3, y4, y5, x3 ≥ 0;x4, x5 unrestricted

From rows 1, 2 of the final tableau we have the expressions x4 =
−11 − 3y2 − 2y4 + y5, and x5 = −11 + y1 − 2y2 − y4 + y5 + x3. Now
we eliminate these two rows, and the columns of x4, x5 leading to the
remaining problem in standard form.

y1 y2 y3 y4 y5 x3 −z
3 −2 0 −2 1 1 0 23
0 0 1 0 0 1 0 10

y1 to y5, x3 ≥ 0, min z

Exercises

4.1.1: Transform the following LPs into standard form.

(i) Maximize 3x1 + 5x− 2− 8x3 + 2x4 + 4x5 − x6
s. to x1 + 2x2 − x3 + x4 + x5 = 13

x1 − x2 + x3 − x4 − x5 + x6 ≥ 2

x2 − 2x3 + x4 + x5 − 2x6 ≤ 11

−x1 + x3 + 2x4 + 2x6 = 5

x1 ≥ 2, x2 ≤ 5, x3, x4 ≥ 0, x5, x6 unrestricted

(ii) Maximize 2x1 − 3x2 + 3x3 − x4 − x5 − 5x6
s. to 4x1 + x3 − x4 + x5 − 3x6 ≥ 100

2x1 + 2x2 + x3 + 2x4 + x6 = 80

−2x1 + 2x2 + 2x3 − 2x4 + x5 − 2x6 ≤ 200



4.2 Basic Vectors 161

x1 ≥ 20, x2 ≤ 50, x3, x4 ≥ 0, x4 ≤ 15,
x5, x6 unrestricted

(iii) Maximize 2x2 + x3 + x4

s. to 2x1 − x2 − x3 + x4 ≤ −8
2x2 + x3 − x4 ≥ 4

x1 − x2 + x4 = 13

−3 ≤ x1 ≤ 4, x2 ≥ 2, x3 unrestricted, x4 ≤ 0

(iv) Minimize 3x1 − x2 + x3 − 2x4
s. to x1 + x2 + 2x3 + x4 = 12

x2 − x3 + x4 ≥ 6

2x1 + x3 − x4 ≤ 10

1 ≤ x1 ≤ 5, x2 ≤ 10, x3 ≥ 0, x4 unrestricted.

4.2 Definitions of Various Types of Basic

Vectors for the Problem

Note: The definition of basic vector, basis given below are linear alge-
bra concepts referring to systems of linear equations (i.e., no inequal-
ities). In the discussion below they refer to the system of equality
constraints in an LP in standard form. Hence these definitions cannot
be used directly for LPs in general form.

The concept of a basic feasible solution given below is specialized
to the LP in standard form. It has been generalized to LPs in general
form, but we will not discuss this general definition here.

Consider the detached coefficient representation of the LP in stan-
dard form:
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Tableau 1: Original Tableau
x1 xj xn −z
a11 . . . a1j . . . a1n 0 b1
...

...
...

...
...

ai1 . . . aij . . . ain 0 bi
...

...
...

...
...

am1 . . . amj . . . amn 0 bm
c1 cj cn 1 α

xj ≥ 0 for all j, min z.

The top m rows in this tableau are the constraint rows. For i
= 1 to m, the ith row represents the equality constraint ai1x1 + . . . +
ainxn = bi. The aij are called the input-output (I/O) coefficients
or technology coefficients; and the bi are called the right hand side
(RHS) constants. b = (bi)

T is called the RHS constants vector.
The last row is the objective row because it represents the equa-

tion c1x1 + . . .+ cnxn − z = −α that defines the objective function to
be minimized in the problem subject to the constraints. The entries
cj in the objective row are called original cost coefficients, cj being
the original cost coefficient of xj .
m is the number of constraints in this LP, and n is the number

of decision variables (all required to be nonnegative). A = (aij) is
the m× n I/O coefficient matrix for the problem. A includes only
the constraint rows and not the objectve row. Letting c = (cj), x =
(x1, . . . , xn)

T , in matrix notation this LP is

Minimize z = cx

s. to Ax = b

and x ≥ 0

In some textbooks, a vector x̄ satisfying Ax̄ = b, but may or may
not satisfy x ≥ 0 is referred to as a solution for this problem. If it
also satisfies x ≥ 0, then it satisfies all the constraints and the bound
restrictions on the problem and is called a feasible solution of the
problem.
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An optimum solution is a feasible solution that makes the objec-
tive function z(x) assume its smallest value among all feasible solutions.

The reason for using the adjective original when referring to the
coefficients in the original tableau is because they will change when GJ
pivot steps are carried out while solving the problem by the simplex
method. After some pivot steps are carried out, the current tableau is
referred to as the updated tableau and the cost coefficient vector in
it is called the updated cost vector.

Redundant equality constraints can be eliminated without changing
the problem. In Section 4.5 we will discuss how redundant constraints
can be detected and eliminated while solving the problem by the sim-
plex method. After all the redundant constraints are eliminated, the
rank of the coefficient matrix will equal the number of rows in it. So,
without any loss of generality, we will assume that A = (aij) in the
original tableau is of full row rank.

The symbol A.j denotes the jth column (a1j, . . . , amj)
T of A, it is

the column vector of xj in the original tableau.

A basic vector for the problem is a vector of m of the variables xj
whose set of column vectors is a linearly independent set. For example
the vector of m variables xB = (x1, x2, . . . , xm) is a basic vector iff the
associated set of column vectors {A.1, . . . , A.m} is linearly independent.
When referrring to a particular basic vector xB, variables in it are

called basic variables, those not in xB are called nonbasic variables.

Given a basic vector xB1 = (xj1 , . . . , xjm), the submatrix B1 of the
original I/O coefficient matrix A consisting of the column vectors of
basic variables (in the order in which these variables are listed in xB1)
is called the basis corresponding to xB1 . Thus every basic vector is
associated with a unique basis and vice versa.

If the original coefficient matrix A of order m×n contains the unit
matrix of order m as a submatrix, by selecting the vector of variables
associated with columns of this unit matrix, we get a basic vector xB
for which the basis B is the unit matrix I, known as the unit basis.
A basic vector associated with the unit basis is known as a unit basic
vector.
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Canonical (or Updated) Tableau WRT a Basic
Vector

Given a basic vector xB associated with the basis B, the updated
tableau obtained by converting the matrix B into the unit matrix of
order m by GJ pivot steps, and also reducing the coefficients of all
the basic variables in the objective row to 0 by row operations on the
objective row is called the canonical (or updated tableau) WRT
xB. In this process, after each GJ pivot step, the variable associated
with the pivot column is recorded as the basic variable in the pivot
row in the tableau. These basic variables associated with the rows are
normally recorded in a column in the tableau. Let xB denote the vector
of basic variables in the order in which they appear in this column in
the canonical tableau. Then for i = 1 to m, the ith variable in xB is
called the i-th basic variable, or the basic variable in the i-th
row in the canonical tableau, its column in the canonical tableau will
be the i-th unit vector.

The cost coefficients of the variables in the canonincal tableau WRT
xB are called the updated or reduced or relative cost coefficients
WRT the basic vector xB.

During the entire computational process of the simplex method, the
column vector of −z remains the (m+ 1)th column vector of the unit
matrix of order (m + 1). So, in the canonical tableau WRT xB, the
column vectors of the variables in (xB,−z) constitute the unit matrix of
order (m+1). That’s why we always consider −z as the basic variable
in the (m+ 1)-th row (i.e., the objective row). This way every row in
the canonical tableau including the objective row has a basic variable
associated with it, and the basic variable in the objective row will
always be −z. For every basic vector xB, the vector (xB,−z) is called
the augmented basic vector corresponding to it, for the canonical
tableau.

Example 4.2.1: Consider the following LP in standard form.
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x1 x2 x3 x4 x5 −z
1 −1 0 1 1 0 10
2 −1 1 1 −2 0 −5
1 2 3 1 −1 0 8
3 4 −5 −2 4 1 100

xj ≥ 0 for all j, min z

To check whether (x1, x2, x3) is a basic vector for this problem, we
try to perform GJ pivot steps to convert the matrix consisting of the
column vectors of these variables into the unit matrix of order 3. In
each tableau given below, PC, PR indicate the pivot column and the
pivot row for the GJ pivot step performed on it, and the pivot element
is boxed. BV indicates the basic variables selected in the various rows
so far.

BV x1 x2 x3 x4 x5 −z
1 −1 0 1 1 0 10 PR
2 −1 1 1 −2 0 −5
1 2 3 1 −1 0 8

−z 3 4 −5 −2 4 1 100
PC

x1 1 −1 0 1 1 0 10

0 1 1 −1 −4 0 −25
0 3 3 −2 −2 0 −2

−z 0 7 −5 −5 1 1 70
PC

x1 1 0 1 0 −3 0 −15
x2 0 1 1 −1 −4 0 −25

0 0 0 1 10 0 23
−z 0 0 −12 2 29 1 105

The entry in the column of x3 in the remaining row 3 in the last
tableau is 0, this implies that the column vectors of (x1, x2, x3) form
a linearly dependent set; so (x1, x2, x3) is not a basic vector for this
problem.

For another example, we will now check whether (x1, x2, x4) is a
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basic vector for this problem. Since we already performed GJ pivot
steps in the columns of x1, x2, we continue from that stage. We copy
that tableau below and continue from it.

BV x1 x2 x3 x4 x5 −z
x1 1 0 1 0 −3 0 −15
x2 0 1 1 −1 −4 0 −25

0 0 0 1 10 0 23 PR
−z 0 0 −12 2 29 1 105

PC
Canonical tableau

x1 1 0 1 0 −3 0 −15
x2 0 1 1 0 6 0 −2
x4 0 0 0 1 10 0 23
−z 0 0 −12 0 21 1 55

So, (x1, x2, x4) is indeed a basic vector for the problem, and the
canonical tableau for it is the last tableau given above.

Basic Solution, Basic Feasible Solution (BFS), Fea-
sible and Infeasible Basic Vectors

Tableau 2: Canonical Tableau WRT (x1, . . . , xm)

BV x1 xi xm xm+1 xn −z

x1 1 . . . 0 . . . 0 ā1,m+1 . . . ā1n 0 b̄1
...

...
...

...
...

...
...

...
xi 0 . . . 1 . . . 0 āi,m+1 . . . āin 0 b̄i
...

...
...

...
...

...
...

...
xm 0 . . . 0 . . . 1 ām,m+1 . . . āmn 0 b̄m
−z 0 . . . 0 . . . 0 c̄m+1 . . . c̄n 1 −z̄

Suppose xB = (x1, . . . , xm) is a basic vector for the general LP in
standard form given in Tableau 1, associated with the basis B. Entries
in the canonical tableau are usually denoted by symbols with a bar on
them to distinguish them from those in the original tableau. So, the
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canonical tableau WRT xB is of the form given in Tableau 2.
The basic solution of the problem corresponding to this basic

vector xB is obtained by setting all the nonbasic variables to 0, and
equating the ith basic variable to the ith updated RHS constant in the
canonical tableau. So, it is x̄ = (b̄1, . . . , b̄m, 0, . . . , 0)

T .
This basic solution is called a basic feasible solution (BFS) if it

also satisfies the nonnegativity restriction, i.e., x̄ ≥ 0. In this case xB,
B are called (primal) feasible basic vector and basis respectively
for the problem. The canonincal tableau WRT a feasible basic vector
is referrred to as a feasible canonical tableau.
If x̄ W≥ 0, it is not a feasible solution of the problem, in this case xB,

B are called (primal) infeasible basic vector, basis respectively
for the problem.
There is also another important classification. Whether they are

feasible or not, the basic vector xB and basis B are said to be

nondegenerate if all basic variables are nonzero in the
basic solution

degenerate if at least one basic variable is 0 in the basic
solution.

So, the basic vector (x1, . . . , xm) in Tableau 2 is nondegenerate if
all of b̄1, to b̄m are different from 0, degenerate if at least one of them
is 0.

Example 4.2.2: For the LP in Example 1 above, the basic solu-
tion corresponding to the basic vector (x1, x2, x4) is (x̄1, x̄2, x̄3, x̄4, x̄5)

T

= (−15,−2, 0, 23, 0)T .
It is primal infeasible because the nonnegative variables x1, x2 have

negative values in it. However, it is a nondegenerate basic vector for
the problem as all the basic variables are nonzero in the basic solution.

Example 4.2.3: Consider the following LP in standard form at
the top of the following series of tableaus (so, all xj are nonnegative
variables, and z is to be minimized). Check whether (x1, x2, x3) is a
basic vector for this problem, and if so whether it is feasible or infea-
sible, degenerate or nondegenerate. We try to compute the canonical
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tableau WRT (x1, x2, x3). PC, PR indicate pivot column, pivot row
respectively, and the pivot elements are boxed. BV indicates the basic
variable selected in the row.

BV x1 x2 x3 x4 x5 x6 −z
1 0 −1 1 0 0 0 6 PR
−1 1 2 0 1 1 0 2
0 −1 −2 0 1 −2 0 −8

−z 3 4 −2 −6 8 −7 1 −100
PC

x1 1 0 −1 1 0 0 0 6

0 1 1 1 1 1 0 8 PR
0 −1 −2 0 1 −2 0 −8

−z 0 4 1 −9 8 −7 1 −118
PC

x1 1 0 −1 1 0 0 0 6
x2 0 1 1 1 1 1 0 8

0 0 −1 1 2 −1 0 0 PR
−z 0 0 −3 −13 4 −11 1 −174

PC
Canonical Tableau

x1 1 0 0 0 −2 1 0 6
x2 0 1 0 2 3 0 0 8
x3 0 0 1 −1 −2 1 0 0
−z 0 0 0 −16 −2 −8 1 −174

Since we performed all the required pivot steps and obtained the
canonical tableau, we conclude that (x1, x2, x3) is a basic vector for the
problem. Its basic solution is x̄ = (x̄1, x̄2, x̄3, x̄4, x̄5, x̄6)

T = (6, 8, 0, 0, 0,0)T ;
and from the last row in the canonical tableau we see that the value
of −z at this solution is −174, or z = 174. Since all the variables are
≥ 0 in x̄, it is a BFS, and (x1, x2, x3) is a feasible basic vector. It is
a degenerate basic vector as the basic variable x3 is zero in the basic
slution.

In a similar way one can verify that (x4, x5, x6) is another feasible
basic vector to this problem that is nondegenerate.
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Classification of Unit Basic Vectors

A unit basic vector is one associated with the unit matrix as its
basis. If the original tableau has a unit basic vector, the basic solution
corresponding to it can be found directly without doing any pivot steps.
Suppose (x1, . . . , xm) is a unit basic vector. Then the original tableau
has the following form (BV = basic variable selected in row).

Original Tableau

BV x1 xi xm xm+1 xn −z
x1 1 . . . 0 . . . 0 a1,m+1 . . . a1n 0 b1
...

...
...

...
...

...
...

...
xi 0 . . . 1 . . . 0 ai,m+1 . . . ain 0 bi
...

...
...

...
...

...
...

...
xm 0 . . . 0 . . . 1 am,m+1 . . . amn 0 bm
−z c1 . . . ci . . . cm cm+1 . . . cn 1 −z̄

So, the basic solution corresponding to this basic vector is x =
(b1, . . . , bm, 0, . . . , 0)

T which is feasible iff all the RHS constants in the
original tableau are ≥ 0. Therefore, for an LP in standard form, a unit
basic vector in the original tableau is a feasible unit basic vector iff all
the RHS constants in constraint rows are ≥ 0 in the original tableau.
Also, in this case since the basis is already a unit matrix, the canon-

ical tableau WRT a unit basic vector can be found by pricing out the
basic columns in the objective row, i.e., multiplying the ith row by
ci and subtracting it from the objectve row to make the entry in the
column of the ith basic variable in the objectve row into zero for i = 1
to m.

Example 4.2.4: Consider the LP in standard form for which
the original tableau is given below. The basic vector (x4, x1, x2) is a
unit basic vector, and these basic variables are entered on the original
tableau under the BV column in their proper order. The corresponding
basic solution obtained by setting all the nonbasic variables at 0 is
x̄ = (1, 2, 0,−15, 0, 0, 0)T , it is infeasible because the nonnegative
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Original Tableau
BV x1 x2 x3 x4 x5 x6 x7 −z
x4 0 0 1 1 1 2 1 0 −15
x1 1 0 1 0 2 1 1 0 1
x2 0 1 −1 0 3 1 2 0 2

2 −3 −7 1 −5 6 7 1 −10
xj ≥ 0 for all j, min z

variable x4 has a negative value in it. So, this unit basic vector is
infeasible to the problem because the first RHS constant is < 0 in the
original tableau.

The original cost coefficients of the basic variables in their order are
1, 2,−3. Multiplying rows 1, 2, 3 by these cost coefficients respectively
and subtracting from the objective row leads to the canonical tableau
WRT this basic vector which is:

Canonical Tableau WRT (x4, x1, x2)
BV x1 x2 x3 x4 x5 x6 x7 −z
x4 0 0 1 1 1 2 1 0 −15
x1 1 0 1 0 2 1 1 0 1
x2 0 1 −1 0 3 1 2 0 2
−z 0 0 −13 0 −1 5 10 1 9

xj ≥ 0 for all j, min z

Optimum Basic Vectors

Consider the following LP in canonincal form

Canonical Tableau
BV x1 x2 x3 x4 x5 x6 −z
x1 1 0 0 1 0 1 0 3
x2 0 1 0 1 1 0 0 5
x3 0 0 1 0 1 1 0 7
−z 0 0 0 4 5 0 1 −100

xj ≥ 0 for all j, min z
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This is a feasible canonical tableau associated with the BFS x̄ =
(3, 5, 7, 0, 0, 0)T , with objective value z̄ = 100.

From the last row of this canonical tableau we have the equation
4x4 + 5x5 − z = −100, or z = 100 + (4x4 + 5x5). Since x4, x5 are
nonnegative variables, 4x4 + 5x5 ≥ 0 on the set of feasible solutions of
this problem, therefore z = 100 + (4x4 + 5x5) ≥ 100.
Thus 100 is the smallest value that z can have, therefore x̄ with an

objective value of 100 minimizes z over the set of feasible solutions of
this problem, i.e., BFS x̄ is an optimum solution of this LP. In this case
the basic vector (x1, x2, x3) is known as an optimum basic vector
and its basis is called an optimum basis for this problem.

The generalization of this statement provides the optimality cri-
terion used in the simplex algorithm.

Optimality Criterion: Given below is the canonical tableau for
an LP, WRT a feasible basic vector xB. In general the basic variables
may be scattered anywhere in the tableau, but for the sake of simplicity
we will assume that the column vectors in the tableau are rearranged
so that all the basic columns are on the left of the tableau in proper
order, so that we can assume xB = (x1, . . . , xm).

The condition for the feasibility of this basic vector is that all the
updated RHS constants b̄i, i = 1 to m are nonnegative. Then, the
associated BFS is x̄ = (b̄1, . . . , b̄m, 0, . . . , 0)

T with an objective value of
z̄.

If all the nonbasic relative cost coefficients c̄j ≥ 0 for all j =m+1 to
n, then x̄ is an optimum solution of the problem, and xB is an optimum
basic vector.

Tableau 2: Canonical Tableau WRT (x1, . . . , xm)

BV x1 xi xm xm+1 xn −z
x1 1 . . . 0 . . . 0 ā1,m+1 . . . ā1n 0 b̄1
...

...
...

...
...

...
...

...
xi 0 . . . 1 . . . 0 āi,m+1 . . . āin 0 b̄i
...

...
...

...
...

...
...

...
xm 0 . . . 0 . . . 1 ām,m+1 . . . āmn 0 b̄m
−z 0 . . . 0 . . . 0 c̄m+1 . . . c̄n 1 −z̄
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The argumant for the proof of the optimality criterion is very similar
to that in the above numerical example. From the objective row in the
canonical tableau we get the equation z = z̄+(c̄m+1xm+1+ . . .+ c̄nxn).
If c̄m+1, . . . , c̄n are all ≥ 0, since xm+1, . . . , xn are all required to be ≥ 0
in the problem; (c̄m+1xm+1+ . . .+ c̄nxn) ≥ 0; i.e., z̄ is the smallest value
that z can have on the set of feasible solutions of the problem. Since
z̄ is the objective value at the BFS x̄, x̄ is an optimum solution of the
problem.

We will now state without proof another result that the simplex
algorithm uses to solve LPs.

Result 4.2.1: Existence of an optimum solution that is a
BFS: If an LP in standard form has an optimum solution, then there
is a BFS which is an optimum solution for it. In this case there exists
an optimum basic vector for this LP, the canonical tableau WRT which
satisfies the optimality criterion stated above.

Using this result, the simplex algorithm searches only among BFSs
of the LP for its optimum solution.

Exercises

4.2.1 For the following LP in standard form, check whether the
following are basic vectors, and if so whether they are feasible or infea-
sible. For feasible basic vectors find the associated BFS. Check whether
the feasible basic vectors are optimal or not.

x1 x2 x3 x4 x5 x6 x7 b
1 0 −1 0 1 1 0 6
1 2 1 1 1 0 0 0 6
0 2 2 1 2 1 0 0 6
4 10 7 4 12 4 3 1 0

xj ≥ 0 for all j, min z

(i) (not basic vectors) (x1, x2, x3), (x1, x2, x4), (x1, x3, x5, x7), (x4, x5)
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(ii) (basic vectors) (x4, x3, x6) (infeasible), (x7, x4, x5) (feasible but
not optimal), (x1, x4, x6) (feasible and optimal).

4.3 How Does the (Primal) Simplex Method

Work?

There are many versions of the simplex method for solving LPs. The
one that we will discuss in this book is called the primal simplex
method using canonical tableaus. In this book when we refer to
tha simplex method, we mean this version.

The simplex method follows a path moving from one feasible basic
vector of the problem to a better one (better in terms of the objective
value) in each move. So, before appying the method we need a fesible
basic vector (and consequently its BFS) first. For some problems it is
possible to find a feasible basic vector by simple inspection, on those
problems the method can be initiated with that basic vector.

On other problems, even finding a feasible basic vector is not easy.
To solve these problems the simplex method needs two stages called
Phase I and Phase II. Phase I ignores the objective function, and
focusses on finding a feasible basic vector for the problem first. If
Phase I is successful in finding a feasible basic vector, beginning with
that Phase II tries to find an optimum basic vector.

The portion of the (primal) simplex method beginning with a fea-
sible basic vector is called the (primal) simplex algorithm.

So, if a feasible basic vector can be located by simple inspection,
then the simplex method begins Phase II directly and solves the prob-
lem by the simplex algorithm. Suppose the LP being solved is

Minimize z = cx + α

s. to Ax = b (4.3.1)

x ≥ 0

where A is an m× n matrix.
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The GJ method of linear algebra can find a basic solution for the
constraints Ax = b ignoring the x ≥ 0 because it cannot handle in-
equality constraints. In his 1947 paper, G. B. Dantzig has shown that
the problem of finding a BFS to this LP (i.e., a basic solution of Ax = b
that also satisfies x ≥ 0) can be posed as another LP for which a feasi-
ble basic vector is readily available, by introducing additional variables
called artificial variables into (4.3.1). This new LP is called the
Phase I problem. This Phase I problem is what is solved to find a
feasible basic vector for (4.3.1) during Phase I of the simplex method.
The way the Phase I problem is set up, there will be a unit feasible
basic vector readily available for it, so it can be solved by applying the
simplex algorithm on it.

Given a general vector of m variables in (4.3.1), to check whether it
is a basic vector, needs checking whether the set of their column vectors
in A is linearly independent which itself may need m GJ pivot steps.
One set of column vectors which is readily recognized to be linearly
independent is the set of column vectors of the unit matrix. That’s
why the simplex method is usually initiated with a unit feasible basic
vector.

Simple Search for a Unit Feasible Basic Vector

In the RHS vector b = (bi) in (4.3.1), if any of the bi is < 0, multiply
both sides of the i-th equation by −1 to make the RHS constant in it
> 0. After this operation, the RHS constants vector in the problem
will be ≥ 0. Put it in detached coefficient tableau and look for the i-th
unit column vector in the constraint coefficient matrix for i = 1 to m.
This search can end in two ways:

1: If all are found, they provide the column vectors associated with
the initial unit feasible basic vector. Obtain the canonical tableauWRT
it, and begin Phase II with it.

2: If at least one of the unit vectors cannot be found in the orig-
inal tableau, we begin settting up the Phase I problem. To keep the
explanation simple, we assume that the 1st to the r-th unit vectors are
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found in the original constraint coefficient matrix, and these are the
column vectors of the variables x1, . . . , xr. So, we do not have a full
unit basis in the original tableau. Therefore the original tableau is of
the following form.

x1 xr xr+1 xn −z
1 . . . 0 a1,r+1 . . . a1n 0 b1
...

. . .
...

...
...

...
...

0 . . . 1 ar,r+1 . . . arn 0 br
...

...
...

...
...

...
0 . . . 0 am,r+1 . . . amn 0 bm
c1 . . . cr cr+1 . . . cn 1 −α

xj ≥ 0 for all j, min z

To get the Phase I problem, introduce a new nonnegative artificial
variable, call it ti, associated with the i-th unit vector into the original
tableau for each i = r+1 to m, to complete a unit basis together with
the columns of x1, . . . , xr.
x1, . . . , xn are now called original problem variables to distin-

guish them from the newly introduced artificial variables. During Phase
I, the original objective function, now called the Phase II objectve
function is kept dormant, i.e., ignored. A new objective row called
the Phase I objective row is opened as the (m + 2)-th row in the
original tableau, corresponding to the Phase I objective function which
we denote by w. The various Phase I cost coefficients are defined as
below.

Phase I cost coefficient of every
original problem variable xj is 0
artificial variable ti is 1

Phase II cost coefficient of every artificial variable ti is 0

So, the Phase I objective function w = sum of all the artificial
variables introduced, and since the artificial variables are all nonnega-
tive, w is always ≥ 0. The original tableau for the Phase I problem is
therefore of the form given below, where tr+1, . . . , tm are the artificial
variables introduced.
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x1 xr tr+1 tm xr+1 xn −z −w
1 . . . 0 0 . . . 0 a1,r+1 . . . a1n 0 0 b1
...

. . .
...

...
...

...
...

...
...

...
0 . . . 1 0 . . . 0 ar,r+1 . . . arn 0 0 br
0 . . . 0 1 . . . 0 ar+1,r+1 . . . ar+1,n 0 0 br+1
...

...
...

. . .
...

...
...

...
...

...
0 . . . 0 0 . . . 1 am,r+1 . . . amn 0 0 bm
c1 . . . cr 0 . . . 0 cr+1 . . . cn 1 0 −α
0 . . . 0 1 . . . 1 0 . . . 0 0 1 0

xj , ti ≥ 0 for all j, i, min w

Since b = (b1, . . . , bm) ≥ 0, the unit basic vector (x1, . . . , xr, tr+1,
. . . , tm) is feasible to the Phase I problem, and corresponds to the BFS

(x1, . . . , xr, tr+1, . . . , tm, xr+1, . . . , xn)
T

= (b1, . . . , br, br+1, . . . , bm, 0, . . . , 0)
T

with a Phase I objective value of w0 = br+1 + . . . + bm. This solution
is not feasible to the original problem, because some of the artificial
variables, which are not part of the original problem, may have positive
values in it.

Any solution to the Phase I problem in which w = 0 must have all
artificial variables = 0, and the x-part in it must therefore be feasible
to the original problem. So, to find a feasible solution of the original
problem, we need to look for a solution of the Phase I problem in which
w = 0; this can be done by minimizing w in the Phase I problem. If the
minimum value of w in the Phase I problem is > 0, then it is impossible
to find a feasible solution for it which makes w = 0; this implies that
the original problem has no feasible solution. And since an initial unit
feasible basic vector (x1, . . . , xr, tr+1, . . . , tm) is available, the Phase I
problem can be solved by applying the simplex algorithm on it.
Since we become feasible to the original problem when the Phase

I objective function w becomes 0, its value at any stage during Phase
I provides a measure of how far away we are at that stage from feasi-
bility to the original problem. That’s why w is called an infeasibility
measure for the current solution.
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4.4 How Does the Simplex AlgorithmMove

From One Feasible Basic Vector to a

Better one?

The general iterative step in the simplex algorithm is known as the
pivot step because it involves one GJ pivot step.

In a pivot step, the basic vector changes by exactly one variable,
i.e., exactly one variable in the basic vector is replaced by a nonbasic
variable leading to the next basic vector. The nonbasic variable being
made basic is called the entering variable in this pivot step, and
the basic variable being dropped from the basic vector is called the
dropping or leaving basic variable; these are selected by special
rules specified by the algorithm.

The entering variable choice rule makes sure that the objec-
tive function value improves (i.e., decreases, since we are discussing a
minimization problem) in this pivot step.

The dropping variable choice rule makes sure that the next
basic vector obtained will remain feasible.

We will give the statements of these rules and explain the rationale
behind them using numerical examples.

Example 4.4.1: Consider the following feasible canonical tableau
for an LP. BV is an abbreviation for “Basic Variable”.

Canonical tableau WRT (x1, x2, x3, x4)
BV x1 x2 x3 x4 x5 x6 x7 x8 −z b̄
x1 1 0 0 0 1 −1 1 0 0 6
x2 0 1 0 0 2 1 2 1 0 12
x3 0 0 1 0 0 −1 3 −2 0 3
x4 0 0 0 1 −2 1 7 −3 0 1
−z 0 0 0 0 −3 2 0 −2 1 −100

xj ≥ 0 for all j, min z

The present BFS is x̄ = (6, 12, 3, 1, 0, 0, 0, 0)T with an objective
value of z̄ = 100. Here x5, x6, x7, x8 are the nonbasic variables whose
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values are 0 in the present BFS x̄. The relative cost coefficients of the
nonbasic variables are: c̄5 = −3, c̄6 = 2, c̄7 = 0, c̄8 = −2.
The equation corresponding to the last row in this canonical tableau

is −3x5 + 2x6 − 2x8 − z = −100, or z = 100− 3x5 + 2x6 − 2x8.
Remembering that 100 is the objective value at the present BFS,

and that all the variables can only take nonnegative values in the prob-
lem, we see that the objective value can be decreased from that of
the present BFS only if one of the nonbasic variables x5 or x8 with a
strictly negative relative cost coefficient, has its value increased from
its present value of 0. That’s why nonbasic variables with negative
relative cost coefficients are called eligible variables in this canonical
tableau (meaning that they are eligible to be entering variables into
the basic vector to improve the objective value). As a result we have
the following rules used in the simplex algorithm.

Optimality Criterion: In a feasible canonical tableau, if all non-
basic relative cost coefficients c̄j ≥ 0 (i.e., no eligible variables), the
present BFS, basic vector, are optimal; and the present objective value
is the minimum that z can have in the problem.

Entering Variable Choice Rule: If the optimality criterion is
violated in the present feasible canonical tableau, select the entering
variable to be a nonbasic variable xj with a negative relative cost co-
efficient (i.e., one with c̄j < 0, or an eligible variable).

The updated column vector of the entering variable in the canonical
tableau is called the entering column or pivot column for this pivot
step.

Even when there are several eligible variables, the fundamental prin-
ciple followed by the simplex algorithm is to select only one of them as
the entering variable for increasing its value from 0. The question is,
which eligible variable to select as the entering variable. In his original
paper Dantzig suggested taking the entering variable to be the nonba-
sic variable with the most negative relative cost coefficient c̄j ; this rule
is therefore called Dantzig’s entering variable choice rule.

Dantzig’s rule works fine in computer programs, but for solving



4.4 Move to a Better BFS 179

a small problem by hand computation, it may result in complicated
fractions making hand computation difficult. That’s why when solving
an LP by hand, I normally look for an entering variable that leads to
a pivot step with a pivot element of 1 (this will become clear when we
discuss the dropping basic variable choice rule) if possible, or the one
that keeps the fractions as simple as possible.
Suppose x5 has been selected as the entering variable. Since x5 is

the only nonbasic variable selected for a value increase, the remaining
nonbasic variables x6, x7, x8 will remain at their present values of 0 in
the next solution. We will denote the new value given to x5 by λ. The
next solution will depend on λ, so we denote it by x(λ), z(λ).
So, the values of x5, x6, x7, x8 will be λ, 0, 0, 0 respectively in the

next solution. From the canonical tableau we find that the values of the
basic variables x1, x2, x3, x4,−z will equal the (updated RHS constants
vector) −λ(updated column vector of x5 in the tableau). Therefore we
have

x(λ) = (6− λ, 12− 2λ, 3, 1 + 2λ,λ, 0, 0, 0)T
−z(λ) = −100 + 3λ, so, z(λ) = 100− 3λ

The following facts should be noticed.

1. The relative cost coefficient of the entering variable, −3, is the
rate of objective value change per unit increase in the value of
the entering variable from 0. Since it is < 0, for obtaining the
best objective value in this step, λ should be given the highest
possible value.

2. As λ increases, the values of basic variables in rows with positive
entries in the entering column decreases. We need to make sure
that their values do not go below 0 for maintaining feasibility.

That’s why every basic variable with a positive entry in the en-
tering column is known as a blocking variable, blocking the
increase of λ to the ratio

(updated RHS Constant in its row)
(entry in the entering column in its row)
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3. So, to keep x(λ) feasible, the maximum value that λ can have is
the minimum of the ratios computed above, called theminimum
ratio or min ratio in this pivot step; normally denoted by θ.

Here is the general statement. Let xs denote the entering variable
selected. Let b̄i, āis denote the updated RHS constant, and entry in
the entering column in the constraint row i in canonical tableau. Let
c̄s be the relative cost coefficient of the entering variable. Then in each
constraint row i with āis > 0, compute

Ratio in row i with āis > 0 is b̄i/āis

Minimum ratio = θ = Min{b̄i/āis : i such that āis > 0}.

Then the maximum value of λ that will keep the next solu-
tion x(λ) feasible is θ. So, we will fix λ = θ, and x(θ) will be
the next solution with improved objective value z(θ); and
the change in the objective value in this step is θc̄s.

In our example we selected x5 as the entering variable, the entering
column, its column in the canonical tableau has positive entries in only
rows 1, 2. We have c̄5 = −3, b̄1 = 6, b̄2 = 12, ā15 = 1, ā25 = 2. So, we
have

Ratios in rows 1, 2 : 6/1 = 6, 12/2 = 6 respectively

Minimum ratio = θ = min{6, 6} = 6
and the next solution will be x(6) = (0, 0, 3, 7, 6, 0, 0, 0)T with an
objective value of z(6) = 100−18 = 82. So, the change in the objective
value in this step will be −18 = (−3)6 = θc̄5.
Here both rows 1, 2 tie for the minimum ratio, and the values of

the basic variables, x1, x2 in both these rows have dropped to 0 in the
next solution. Therefore we can make either of these basic variables
into a nonbasic variable to be replaced by the entering variable in the
basic vector. Here are the general statements.

Dropping Variable (or Pivot Row) Choice Rule: Select any
of the rows in which the minimum ratio is attained, as the pivot row
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for this pivot step. The present basic variable in the pivot row is the
dropping or leaving basic variable in this pivot step. The element
in the pivot row and the pivot column is the pivot element for this
pivot step. Here it will be > 0 by the way the pivot row is selected.

Pivot Step: Perform the GJ pivot step with the selected pivot row,
and pivot column on the present canonical tableau. In the resulting
tableau replace the basic variable in the pivot row by the entering
variable xs. This gives the canonical tableauWRT the new basic vector.
The new solution obtained earlier will be the BFS corresponding to this
new basic vector. The change in the objective value in this step is θc̄s.

This pivot step is called a

nondegenerate pivot step if the minimum ration θ > 0

degenerate pivot step if θ = 0.

In our example the current pivot step will be a nondegenerate pivot
step since the minimum ratio θ = 6 > 0.
We will indicate below the whole process of this pivot step in our

example. The top tableau is the present canonical tableau with the
computed ratios, PC (pivot column), PR (pivot row), boxed pivot ele-
ment shown; and the bottom tableau is the canonical tableau obtained
after the GJ pivot step.

Canonical tableau WRT (x1, x2, x3, x4)

BV x1 x2 x3 x4 x5 x6 x7 x8 −z b̄ Ratio

x1 1 0 0 0 1 −1 1 0 0 6 6/1 = 6, PR
x2 0 1 0 0 2 1 2 1 0 12 12/2 = 6
x3 0 0 1 0 0 −1 3 −2 0 3
x4 0 0 0 1 −2 1 7 −3 0 1

−z 0 0 0 0 −3 2 0 −2 1 −100 Min, θ = 6
PC↑

x5 1 0 0 0 1 −1 1 0 0 6
x2 −2 1 0 0 0 3 0 1 0 0
x3 0 0 1 0 0 −1 3 −2 0 3
x4 2 0 0 1 0 −1 9 −3 0 13

−z 3 0 0 0 0 −1 3 −2 1 −82
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Example 4.4.2: In this example we will illustrate the only other
possibility that can occur in a pivot step of the simplex algorithm.
Consider the following feasible canonical tableau for an LP.

Canonical tableau WRT (x1, x2, x3)
BV x1 x2 x3 x4 x5 x6 x7 −z b̄ Ratio
x1 1 0 0 −1 1 −1 1 0 3
x2 0 1 0 1 −2 0 1 0 5
x3 0 0 1 2 3 −2 0 0 2
−z 0 0 0 3 −5 −1 −2 1 −10

PC↑

The present BFS is x̄ = (3, 5, 2, 0, 0, 0, 0)T with objective value z̄ =
10.
Since the relative cost coefficients c̄5 = −5, c̄6 = −1, c̄7 = −2,

are nrgative, the optimality criterion is violated, and we select x6 with
relative cost coefficient c̄6 = −1, as the entering variable and its column
is the PC (pivot column).
We try to compute the ratios, but there are no positive entries in

the PC and hence no ratios to compute. Giving the entering variable
x6 the value λ, keeping all the other nonbasic variables x4, x5, x7 at
their present values of 0, leads to the new solution

x(λ) = (3 + λ, 5, 2 + 2λ, 0, 0,λ, 0)T , z(λ) = 10− λ

We see that as λ increases from 0, none of the variables decreases
in x(λ). So x(λ) remains ≥ 0 and hence feasible for all λ ≥ 0. Also, as
λ goes from 0 to ∞, z(λ) diverges to −∞.
So, in this example the minimum value of z is −∞, i.e., there is no

finite minimum. We say that z is unbounded below in this LP and
there is no finite optimum solution, and the method terminates with
this unboundedness conclusion. And {x(λ) : λ ≥ 0} is the parametric
representation of a half-line lying completely in the feasible region of
this LP along which the objective value diverges to −∞. This half-
line is an extreme half-line or an unbounded edge of the set of
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feasible solutions of this LP along which the objective value diverges
to −∞.
Here is the general statement:

Checking for Unboundedness: If the entering column, updated
column of the entering variable, contains no positive entries, terminate
the algorithm with the conclusion that the objective function is un-
bounded below on the set of feasible solutions of this LP. In this case
if x(λ) is the new solution obtained by giving the entering variable
the value λ, and keeping all other nonbasic variables fixed at 0, then
{x(λ) : λ ≥ 0} is the parametric representation of a feasible extreme
half-line along which the objectve value diverges to −∞.

4.5 The (Primal) Simplex Method

Here we provide the complete statement of the simplex method for
solving a general LP in standard form, in terms of the tools, rules, and
operations defined in Sections 4.3, 4.4.
This version of the simplex method always begins with a unit

feasible basic vector. The reason for calling it the primal simplex
method is that in the literature there is another method called the
dual simplex method that is discussed in graduate level LP books. We
do not discuss the dual simplex method in this book. So, in the sequel,
whenever we talk about simplex method (or algorithm), it actually
refers to this primal version. The meanings of the words primal, dual
are given in Chapter 5.
From Section 4.2 we know that if a unit basic vector can be found in

the original tableau, it will be feasible iff all the original RHS constants
in constraint rows are ≥ 0. That’s why before looking for a unit basic
vector in the original tableau, in the initialization step (Step 1) all the
RHS constants in the constraint rows are made ≥ 0 first.
m denotes the number of constraint rows. So, with the objective

row (row (m + 1)), the original tableau has (m + 1) rows. n denotes
the number of decision variables.

The Simplex Method
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BEGIN

Step 1: Initialization:

Step 1.1 Making the RHS constants nonnegative in con-
straint rows: Multiply each constraint row in the origi-
nal tableau in which the RHS constant bi is negative, by −1.
When this operation is completed, the RHS constants in all
the constraint rows in the original tableau become ≥ 0.

Step 1.2 Looking for a unit feasible basic vector: For
each i = 1 to m, look for a variable associated with the
ith unit vector among the constraint rows in the original
tableau; if such a variable is found, record it (the one with
the smallest cost coefficient if there are several such vari-
ables) as the basic variable in the ith row.

In this process if basic variables have been selected in all
the constraint rows, let xB be the resulting basic vector.
Since the RHS constants in all the constraint rows are ≥
0, xB is a unit feasible basic vector. Obtain the canonical
tableau WRT xB by pricing out the basic columns in the
objective row, and selecting −z as the basic variable in the
objective row. With this feasible canonical tableau, go to
Step 2 (Phase II).

If basic variables have not been selected in some of the con-
straint rows in the above process, go to Step 3 with the
present tableau for setting up the Phase I problem to find a
feasible basic vector for the original problem.

Step 2: Phase II beginning with a feasible canonical tableau:

Step 2.1: Canonical tableau: In a canonical tableau basic
columns may appear in any order (from left to right), and
be scattered anywhere in the tableau. But for ease of under-
standing, we will explain the computation assuming that the
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present basic vector is xB = (x1, . . . , xm). Let the present
canonical tableau be:

Canonical Tableau WRT (x1, . . . , xm)
BV x1 . . . xm xm+1 . . . xs . . . xn −z b̄i *
x1 1 . . . 0 ā1,m+1 . . . ā1s . . . ā1n 0 b̄1
...

...
. . .

...
...

...
...

...
...

xm 0 . . . 1 ām,m+1 . . . āms . . . āmn 0 b̄m
−z 0 . . . 0 c̄m+1 . . . c̄s . . . c̄n 1 −z̄

*Ratios (b̄i/āis) computed in row i only if āis > 0

The BFS corresponding to xB is x̄ = (b̄1, . . . , b̄m, 0, . . . , 0)
T ,

z = z̄. c̄m+1, . . . , c̄n are the nonbasic relative cost coefficients
in this canonical tableau.

Step 2.2: Checking optimality: If all the nonbasic relative
cost coefficients in the present canonical tableau are≥ 0, the
present BFS is an optimum solution of the problem, and its
objective value z̄ is the minimum objective value; terminate.

Step 2.3: Selecting an entering variable: If the optimal-
ity criterion is violated, select an eligible variable (a non-
basic variable with negative relative cost coefficient) as the
entering variable. Suppose it is xs, its column vector in the
canonical tableau is the PC (pivot column).

Step 2.4: Checking unboundedness: If the PC has no
strictly positive entries, the objective function z is unbounded
below on the set of feasible solutions of the problem, so there
is no finite optimum solution. Let

x(λ) = (x1(λ), . . . , xm(λ), xm+1(λ, . . . , xs−1(λ, xs(λ), xs+1(λ),

. . . , xn(λ))
T = (b̄1 − λā1s, . . . , b̄m − λāms, 0, . . . , 0,λ,

0, . . . , 0)T , z(λ) = z̄ + c̄sλ.

be the solution obtained by: giving the entering variable xs
a value of λ, keeping all other nonbasic variables fixed at 0,
and evaluating the corresponding values of basic variables.
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Then {x(λ) : λ ≥ 0} is an extreme half-line in the feasible
region along which z → −∞ as λ→ +∞.

2.4: Min ratio computation, finding pivot row: If the
PC, (ā1s, . . . , āms, c̄s)

T , has at least one positive entry, then
for each row i such that āis > 0, compute the ratio (b̄i/āis)
and enter it in this row in the ratios column. Let θ = the
minimum of all the computed ratios. Select any row that ties
for the minimum ratio as the PR (pivot row). The present
basic variable in the PR is the dropping basic variable in
this pivot step.

Step 2.5: Pivot step to get the new canonical tableau:
Perform the GJ pivot step on the canonical tableau with the
PR, PC selected. In the resulting tableau, replace the ba-
sic variable in the PR by the entering variable, leading to
the canonical tableau WRT the new basic vector. Go to
Step 2.1 with this new canonical tableau and begin the next
iteration.

Step 3: Setting up the Phase I problem: The search in Step
1.2 may have found a few but not all unit vectors to form a full
unit basis of order m. Introduce nonnegative artificial variables
associated with the missing unit vectors into the tableau, and
make a unit basic vector with them.Make the Phase II cost coef-
ficient 0 in each artificial column. Introduce the equation: (sum
of artificial variables introduced) - w = 0, as the Phase I objective
row. For an example, suppose Step 1.2 found only only i-th unit
vectors for i = 1 to r in the original tableau, and suppose these
are the columns of variables x1, . . . , xr. Denoting the artificial
variables introduced by tr+1, . . . , tm, the Phase I original tableau
is given below.

Select xB = (x1, . . . , xr, tr+1, . . . , tm) as the initial basic vector
and obtain the canonical tableau by pricing out the basic vari-
ables in both the objective rows. Go to Phase I (Step 4) with
it.
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x1 xr tr+1 tm xr+1 xn −z −w
1 . . . 0 0 . . . 0 a1,r+1 . . . a1n 0 0 b1
...

. . .
...

...
...

...
...

...
...

...
0 . . . 1 0 . . . 0 ar,r+1 . . . arn 0 0 br
0 . . . 0 1 . . . 0 ar+1,r+1 . . . ar+1,n 0 0 br+1
...

...
...

. . .
...

...
...

...
...

...
0 . . . 0 0 . . . 1 am,r+1 . . . amn 0 0 bm
c1 . . . cr 0 . . . 0 cr+1 . . . cn 1 0 −α
0 . . . 0 1 . . . 1 0 . . . 0 0 1 0

xj , ti ≥ 0 for all j, i, min w

Step 4: Phase I: The artificial variables are introduced solely for
providing a full basic vector to apply the simplex algorithm, to
move towards a feasible basic vector for the original problem. So,
at some stage during Phase I, if an artificial variable is replaced
from the basic vector by an original problem variable, we delete
it by erasing its column from both the current and the Phase I
original tableau. So, an artificial variable exists in the problem
only as long as it is a basic variable. Thus every nonbasic vari-
able will always be an original problem variable, and the entering
variables in every iteration, in fact every variable eligible to en-
ter the basic vector in every iteration, will always be an original
problem variable.

Suppose the present canonical tableau at some stage of Phase I
is:

BV Basic cols. Nonbasic cols. −z −w RHS
. . . . . . xj . . .

1 . . . 0 . . . ā1j . . . 0 0 b̄1
...

...
...

...
...

...
...

0 . . . 1 . . . āmj . . . 0 0 b̄m
−z 0 . . . 0 . . . c̄j . . . 1 0 −z̄
−w 0 . . . 0 . . . d̄j . . . 0 1 −w̄

The Phase II objective ((m+1)th) row plays no role during Phase
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I. The d̄j are the Phase I relative cost coefficients, these are used
for determining Phase I termination, and entering variable selec-
tion during Phase I. Phase I is just the application of the simplex
algorithm to the problem of minimizing w subject to the con-
straints in the Phase I original tableau. Here are the steps in
Phase I iterations.

Step 4.1: Checking Phase I termination: If all the non-
basic Phase I relative cost coefficients d̄j are ≥ 0 in the
present canonical tableau; w̄, the present value of w, is its
minimum; terminate Phase I.

If this termination condition is satisfied, and w̄ > 0, ter-
minate the method with the conclusion that the original
problem is infeasible, i.e., has no feasible solution.

If this termination condition is satisfied, and w̄ = 0, then
any artificial variables remaining in the tableau must have
values 0 in the present BFS. Hence the x-part of the present
BFS is a feasible solution of the original problem. In this
case go to Step 4.5 to move over to Phase II.

Step 4.2: Selecting an entering variable: If Phase I ter-
mination condition is not satisfied, select an eligible nonbasic
variable (one with negative Phase I relative cost coefficient
d̄j) as the entering variable. Suppose it is xs. Its column
vector in the canonical tableau is the PC (pivot column).

Step 4.3: Determining min ratio, PR, and Dropping

variable: The PC is (ā1s, . . . , āms)
T . For each i such that

āis > 0 compute the ratio (b̄i/āis) and enter it in the ratios
column. Let θ = Minimum{(b̄i/āis) : i such that āis > 0}.
Select any one of the rows which ties for the minimum ratio
as the PR (pivot row). The present basic variable in the PR
will be the dropping basic variable in the coming pivot step.

Step 4.4: Pivot step, new canonical tableau: Perform the
GJ pivot step on the canonical tableau with the PR, PC se-
lected. In the resulting tableau, replace the basic variable
in the PR by the entering variable, leading to the canonical
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tableau WRT the new basic vector. If the dropping variable
is an artificial variable, delete its column vector from both
the current tableau and the Phase I original tableau. Go
back to Step 4.1 with this new canonical tableau and begin
the next Phase I iteration.

Step 4.5: Moving over to Phase II: If there are no arti-
ficial variables in the present basic vector, then it consists
of original problem variables only, and is primal feasible to
the original problem. Delete the last (i.e., (m + 2)th) row
and the column of −w from the present tableau and the
original tableau. The present tableau is now the canonical
tableau for the original problem WRT the present feasible
basic vector. With it move over to Step 2.1 to begin Phase
II.

Suppose there are some artificial variables in the basic vector
at this stage. Since, w̄ = the value of w is 0, the values of
all the artificial variables in the present BFS must be 0, and
as long as this property holds, the x-part of the BFS will be
feasible to the original problem.

The equation corresponding to the (m + 2)th row in the
present canonical tableau is:

−w + (d̄jxj : over j such that xj is nonbasic) = w̄ = 0

or: w = (d̄jxj : over j such that xj is nonbasic).

All the d̄j are ≥ 0 in the present canonical tableau. Let
F = {j : d̄j > 0}. From the above equation we see that
if any nonbasic variable xj for j ∈ F assumes a positive
value, then the infeasibility measure w will become positive,
i.e., the solution becomes infeasible to the original problem
again. This implies that all xj for j ∈ F must be 0 in every
feasible solution of the original problem.

So, fix all xj for j ∈ F at 0, and delete their columns from the
original tableau and present canonical tableau. After this
deletion, for all remaining variables d̄j = 0, so the equation
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corresponding to the (m+2)th row in the tableau is w = 0,
i.e., w remains 0 during Phase II iterations even though some
artificial variables are still in the basic vector. During Phase
II the values of these artificials will remain 0 (if one of them
becomes > 0 during Phase II, it is an indication that you
made computational errors).

So, now delete the (m+2)th row and the column of −w from
both the Phase I original tableau and the present canonical
tableau, and move over to Step 2.1 to begin Phase II.

END

We will now discuss a couple of important points before presenting
numerical examples.

Discussion

1. How are redundant equality constraints discovered in
the simplex method: The original problem is

Minimize z = cx + α

s. to Ax = b

x ≥ 0

where A is an m × n matrix. By definition, the i-th constraint in the
problem , Ai.x = bi, can be deleted as a redundant equality constraint
if it is a linear combination of the remaining equality constraints.
If Step 1.2 locates a unit basic vector for the problem, or if the

feasible basic vector obtained at the end of Phase I (Step 4.4) has no
artificial variables in it, then the rank of A is m, and there are no
redundant equality constraints in the problem.
When Phase I terminates with the value of w = 0, but with some

artificial variables in the final basic vector (Step 4.4); any row in the
final tableau with only a single nonzero entry of 1 in the column of
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an artificial variable, corresponds to a redundant equality constraint
in the original problem that can be deleted. Any such rows, and the
column of the artificial variable with the entry of 1 in it can be deleted
before moving over to Phase II.

2. How to check whether the optimum solution of the prob-
lem is unique: If Phase II terminates by satisfying the optimality
criterion, the BFS in the final tableau is an optimum solution of the
problem. If the relative cost coefficients of all the nonbasic variables are
all strictly positive, then this optimum solution is the unique optimum
solution for the problem.

If some of the nonbasic relative cost coefficients are 0 in the final
tableau, the problem may have alternate optima. Carrying out a pivot
step in an optimum canonical tableau, with the column of a nonbasic
variable with 0 relative cost coefficient as the entering column, will lead
to an alternate optimum BFS if that pivot step is a nondegenerate pivot
step.

3. How to find a feasible solution to a system of linear
constraints that includes some inequalities: The GJ elimina-
tion method of linear algebra can be used to solve a system of linear
equations.

Suppose we have to solve a system of linear constraints that con-
sists of not just linear equations, but maybe some linear inequalities,
sign restrictions or lower and/or upper bound constraints on variables.
How does one solve such a general system? Notice that we are not re-
quired to optimize an objective function here, but just to find a feasible
solution to the system if one exists. Using the techniques discussed in
Section 4.1, this general system can be transformed into a system of
linear equations in nonnegative variables. And the problem of finding
a nonnegative solution to a system of linear equations can be solved by
applying Phase I of the simplex method discussed above, to a Phase I
formulation of the problem. In applying this Phase I method, we will
not have a Phase II objective row, or the Phase II objective function
−z, that is the only difference.
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4. Entering and dropping variable choice rules used in
computer programs for the simplex method: In solving large
linear programs by the simplex method using floating point arithmetic
on a digital computer, round-off error accumulation poses a serious
problem in getting accurate results. Software engineers have found
that finding better sized pivot elements in pivot steps to be crucial to
the numerical stability of the simplex method. When there are several
eligible variables, software engineers have developed efficient rules for
choosing the entering variable among them to make sure that the pivot
element for the ensuing pivot step will be the largest in magnitude
possible. Also, the pivot row is selected among the tied rows in the
ratio test to choose the largest pivot element among the possible.

4.6 Numerical Examples of the Simplex

Method

In the various pivot steps in all these numerical examples, we select the
entering variable among those eligible, to have a pivot element of 1, or
one that will keep the fractions simple as far as possible. The follow-
ing abbreviations are used: BV = basic variable, PC = pivot column
(or entering column), PR = pivot row (or row of the dropping basic
variable). In each tableau, θ denotes the minimum ratio computed.

Example 4.6.1: An LP with a unique optimum
solution, on which Phase II can be initiated

Consider the following LP in standard form

x1 x2 x3 x4 x5 x6 x7 −z
−1 0 −1 −2 0 −1 −1 0 −3
−1 0 0 −3 −1 0 0 0 −3
−1 1 0 1 0 3 0 0 1
−2 4 3 10 6 9 −2 1 10

xj ≥ 0 for all j, min z
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Original Tableau
x1 x2 x3 x4 x5 x6 x7 −z
1 0 1 2 0 1 1 0 3
1 0 0 3 1 0 0 0 3
−1 1 0 1 0 3 0 0 1
−2 4 3 10 6 9 −2 1 10

xj ≥ 0 for all j, min z

In the problem given, we need to make the top 2 RHS constants
nonnegative, so we multiply both rows 1 and 2 in it by −1, leading to
the original tableau for the problem, given above.

1st canionical tableau
BV x1 x2 x3 x4 x5 x6 x7 −z RHS Ratio

x7 1 0 1 2 0 1 1 0 3 3 PR
x5 1 0 0 3 1 0 0 0 3 3
x2 −1 1 0 1 0 3 0 0 1
−z −2 0 5 −8 0 −1 0 1 −6 min

PC↑ θ =3
x1 1 0 1 2 0 1 1 0 3 3/2

x5 0 0 −1 1 1 −1 −1 0 0 0 PR
x2 0 1 1 3 0 4 1 0 4 4/3
−z 0 0 7 −4 0 1 2 1 16 min

PC↑ θ = 0
x1 1 0 3 0 −2 3 3 0 3 1
x4 0 0 −1 1 1 −1 −1 0 0

x2 0 1 4 0 −3 7 4 0 4 1 PR
−z 0 0 3 0 4 −3 −2 1 16 min

PC↑ θ = 1
Final canonical tableau

x1 1 −3/4 0 0 1/4 −9/4 0 0 0
x4 0 1/4 0 1 1/4 3/4 0 0 1
x7 0 1/4 1 0 −3/4 7/4 1 0 1
−z 0 1/2 5 0 5/2 1/2 0 1 18

Searching the original tableau we find that both x3 and x7 are asso-
ciated with the first unit vector; among them we select x7 corresponding
to the smaller cost coefficient of −2 as the basic variable in the 1st row.
Similarly selecting x5, x2 as basic variables in rows 2, 3 respectively,
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we get the initial unit feasible basic vector (x7, x5, x2). So, there is
no need to apply Phase I, we can initiate Phase II on this problem
with the canonical tableau WRT this basic vector. To price out these
basic variables, we subtract from the objective row: (−2)Row 1, then
6(Row 2), and finally 4(Row 3). This yields the 1st canonical tableau
at the top of the list of tableaus given above. The list shows the various
canonical tableaus obtained during Phase II. The pivot elements in the
various steps are boxed.

As all the relative cost coefficients in the final tableau are ≥ 0,
the optimality criterion is satisfied. So, the BFS in the final tableau,
x̄ = (0, 0, 0, 1, 0, 0, 1)T with objective value of z̄ = −18 is an optimum
solution for the problem. Since all the nonbasic relative cost coefficients
in the final tableau are > 0, x̄ is the unique optimum solution to the
problem.

Example 4.6.2: An unbounded LP, on which Phase
II can be initiated

Consider the following LP

Maximize zI = x1 + 2x2 − x3
s. to x1 − 2x2 − x3 ≤ 2

−x1 + 3x2 − 2x3 ≥ −4
−x1 + x2 + 3x3 ≤ 1

xj ≥ 0 for all j

To put in standard form we introduce the slack variables x4, x5, x6
in the three constraints in that order. in the resulting equations, we
multiply both sides of each one with a negative RHS constant by −1.
Then we transform the objective function to minimize z = −zI. This
results in the original tableau, which is the top one in the following list.
The slack vector (x4, x5, x6) is a unit feasible basic vector for which

the original tableau is in fact the canonical tableau. x1, x2 are both
eligible to enter the basic vector, among them we select x1 as the en-
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tering variable. Continuing in a similar way the following tableaus are
obtained.

BV x1 x2 x3 x4 x5 x6 −z RHS Ratio

x4 1 −2 −1 1 0 0 0 2 2
x5 1 −3 2 0 1 0 0 4 4
x6 −1 1 3 0 0 1 0 1

−z −1 −2 1 0 0 0 1 0 min
PC↑ θ =2

Final canonical tableau

x1 1 −2 −1 1 0 0 0 2
x5 0 −1 3 −1 1 0 0 2
x6 0 −1 2 1 0 1 0 3

−z 0 −4 0 1 0 0 1 2
↑

In the final tableau, x2 is eligible, so we select it as the entering
variable. But its updated column vector has no positive entry, so the
unboundedness criterion is satisfied. We terminate with the conclusion
that z diverges to −∞ on the set of feasible solutions of the problem.

Making x2 = λ, and leaving other nonbasic variables at 0 leads to
the solution x(λ) = (x1(λ) to x6(λ))

T = (2 + 2λ,λ, 0, 0, 2 + λ, 3 + λ)T ,
with objective value z(λ) = −2 − 4λ. x(λ) remains feasible for all
λ ≥ 0, and as λ→ +∞, z(λ)→ −∞. So, {x(λ) : λ ≥ 0} is an extreme
half-line in the feasible region along which the objective function z
diverges to ∞.
In fact, given any negative number with very large absolute value,

we can find a feasible solution on this half-line which corresponds
to that objectve value. As an example, to make z = −4, 000, 002
we need to select λ to satisfy −2 − 4λ = −4, 000, 002, which yields
λ = 1, 000, 000. So, x(1, 000, 000) = (2 + 2,000,000, 1,000,000, 0, 0,
2+1,000,000, 3+1,000,000)T is a feasible solution on this half-line with
the objective value for z = −4, 000, 002.
To state the result in terms of the variables and objective function

in the original statement of the problem, all we have to do is to drop the
slack variables x4, x5, x6 from the solution, and use z

I = −z. This shows
that on the half-line {(x1(λ), x2(λ), x3(λ))T = (2 + 2λ,λ, 0)T : λ ≥ 0},
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zI = 2 + 4λ, every point is feasible, and as λ → +∞, zI → +∞; so
the objective function is unbounded above in the original problem, and
hence does not have a finite maximum.

Example 4.6.3: An LP with a unique optimum
that requires both Phase I, II to solve

Consider the following LP

Minimize z = x1 + 2x2 − 2x3
s. to 2x1 + 3x2 + x3 ≥ 9

x1 + 2x2 − x3 ≤ 5

x1 + x2 + 2x3 = 4

xj ≥ 0 for all j

Introducing the slack variables x4, x5 in the top two constraints, we
get the following original tableau.

x1 x2 x3 x4 x5 −z RHS
2 3 1 −1 0 0 9
1 2 −1 0 1 0 5
1 1 2 0 0 0 4
1 2 −2 0 0 1 0

xj ≥ 0 for all j, min z

Searching for unit vectors, we find only the 2nd unit vector in the
column of x5, which is selected as the basic variable in row 2. So,
we introduce two nonnegative artificial variables t1, t3 associated with
the 1st and 3rd unit vectors and go to Phase I. The phase I objective
function to be minimized is w = t1 + t3. Here is the Phase I original
tableau.
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BV t1 t3 x1 x2 x3 x4 x5 −z −w RHS
t1 1 0 2 3 1 −1 0 0 0 9
x5 0 0 1 2 −1 0 1 0 0 5
t3 0 1 1 1 2 0 0 0 0 4

0 0 1 2 −2 0 0 1 0 0
1 1 0 0 0 0 0 0 1 0

xj , ti ≥ 0 for all i, j, min w

Pricing out the basic variables in both the Phase II and Phase I
objective rows leads to the 1st Phase I canonical tableau given at the
top of the following sequence of tableaus. The Phase I BFS corre-
sponding to the 1st (unit) basic vector (t1, x2, t3) is (t1, t3, x1, to x5)

T

= (9, 4, 0, 0, 0, 0, 5)T , w = 13. Since w = 13 (because t1 = 9, t2 = 4, so
w = t1 + t3 = 13) this solution is not feasible to the original problem.
By minimizing w in Phase I we try to reduce its value to 0 if possible.
During Phase I, the Phase II objective row is updated but not used.
Once artificial variables leave the basic vector, we delete them and their
columns in the sequel.

BV t1 t3 x1 x2 x3 x4 x5 −z −w RHS Ratio
t1 1 0 2 3 1 −1 0 0 0 9 9/2
x5 0 0 1 2 −1 0 1 0 0 5 5

t3 0 1 1 1 2 0 0 0 0 4 4 PR
−z 0 0 1 2 −2 0 0 1 0 0
−w 0 0 −3 −4 −3 1 0 0 1 −13 min

PC↑ θ =4
t1 1 0 1 −3 −1 0 0 0 1 1

x5 0 0 1 −3 0 1 0 0 1 1 PR
x1 0 1 1 2 0 0 0 0 4 4
−z 0 0 1 −4 0 0 1 0 −4
−w 0 0 −1 3 1 0 0 1 −1 min

PC↑ θ =1
Final Phase I tableau

t1 1 0 0 0 −1 −1 0 0 0
x2 0 0 1 −3 0 1 0 0 1
x1 0 1 0 5 0 −1 0 0 3
−z 0 0 0 −1 0 −1 1 0 −5
−w 0 0 0 0 1 1 0 1 0
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Since all the Phase I relative cost coefficients d̄j are now ≥ 0 Phase I
terminates. Since the value of w is 0, we have a feasible solution for the
original problem, but the artificial variable t1 is in the final basic vector
with a value of 0 in the BFS. The Phase I relative cost coefficients of
x4, x5 are both strictly > 0. Therefore, as explained in Step 4.5, in
every feasible solution of the original problem, x4, x5 must have values
0. So, to move to Phase II we fix both x4, x5 at 0 and delete them
from the tableau. Then we delete the Phase I objective row and the
−w column, and begin Phase II.

BV t1 x1 x2 x3 −z RHS Ratio
t1 1 0 0 0 0 0
x2 0 0 1 −3 0 1

x1 0 1 0 5 0 3 3/5 PR
−z 0 0 0 −1 1 −5 min

PC↑ θ =3/5
Final Phase II tableau

t1 1 0 0 0 0 0
x2 0 3/5 1 0 0 14/5
x3 0 1/5 0 1 0 3/5
−z 0 1/5 0 0 1 −22/5

Now all the Phase II relative cost coefficients are ≥ 0, so the present
BFS is an optimum solution of the problem. Remembering that x4, x5
have 0 values in every feasible solution of the problem, and dropping
the artificial variable t1 with 0 value from the solution we see that the
current BFS is (x1, to x5)

T = (0, 14/5, 3/5, 0, 0)T with the minimum
objective value of z = 22/5.

Also, since the relative cost coefficient of the only nonbasic vari-
able x1 is positive in the final tableau, we conclude that this optimum
solution is unique.

Example 4.6.4: Another LP with an optimum so-
lution that requires both Phase I, II to solve

Consider the following LP:
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Original tableau
x1 x2 x3 x4 x5 −z b
−2 0 0 0 0 0 0
1 0 1 0 −1 0 3
0 2 1 1 1 0 4

−40 −14 0 0 −14 1 0
xj ≥ 0 for all j, minimize z

Phase I original tableau
x1 x2 x3 x4 x5 t1 t2 −z −w b
−2 0 0 0 0 1 0 0 0 0
1 0 1 0 −1 0 1 0 0 3
0 2 1 1 1 0 0 0 0 4

−40 −14 0 0 −14 0 0 1 0 0
0 0 0 0 0 1 1 0 1 0

xj ≥ 0 for all j; t1, t2, t3 ≥ 0 artificials; minimize w

BV x1 x2 x3 x4 x5 t1 t2 −z −w b Ratio

t1 −2 0 0 0 0 1 0 0 0 0

t2 1 0 1 0 −1 0 1 0 0 3 3
x4 0 2 1 1 1 0 0 0 0 4 4

−z −40 −14 0 0 −14 0 0 1 0 0 min
−w 1 0 −1 0 1 0 0 0 1 −3 θ = 3

PC↑
t1 −2 0 0 0 0 1 0 0 0
x3 1 0 1 0 −1 0 0 0 3
x4 −1 2 0 1 2 0 0 0 1

−z −40 −14 0 0 −14 0 1 0 0
−w 2 0 0 0 0 0 0 1 0

The RHS constants vector in the problem is already nonnegative,
so it is the original tableau for the problem. Here we only have the 3rd
unit vector in the column of x4. So, we select x4 as the basic variable
in row 3, and introduce artificial variables t1, t2 as basic variables in
rows 1, 2 for the initial basic vector. The Phase I original tableau is
the 2nd tableau given above.
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(t1, t2, x4) is the initial feasible basic vector for the Phase I problem.
The various canonical tableaus obtained during Phase I are given next.

Phase I terminates and we have w = 0. The artificial variable t1
is still in the basic vector, but its value in the final solution is 0. This
final solution leads to the feasible solution (x1 to x5)

T = (0, 0, 3, 1, 0)T

for the original problem.

Now we need to go to Phase II. We look for original problem vari-
ables with positive Phase I relative cost coefficients at Phase I termi-
nation. Only x1 satisfies this property. So, x1 = 0 in every feasible
solution of the original problem. We fix x1 = 0, and delete it from the
problem. In Phase II we only consider variables x2 to x6 as candidates
to enter the basic vector. The initial Phase II canonical tableau is the
one given at the top.

BV x2 x3 x4 x5 t1 −z b Ratio

t1 0 0 0 0 1 0 0
x3 0 1 0 −1 0 0 3

x4 2 0 1 2 0 0 1 1/2

−z −14 0 0 −14 0 1 0
PC↑

Final Phase II canonical tableau

t1 0 0 0 0 1 0 0
x3 1 1 1/2 0 0 0 7/2
x6 1 0 1/2 1 0 0 1/2

−z 0 0 7 0 0 1 7

The optimality criterion is satisfied in the final Phase II canonical tableau,
so the BFS for the original problem in it (obtained by dropping the 0-valued
artificial variable t1), (x̄1 to x̄5)

T = (0, 0, 7/2, 0, 0, 1/2)T with objective value
z̄ = −7 is an optimum solution to the problem.

Example 4.6.5: An infeasible problem

Consider the following LP:

Minimize z = 10x1 − 2x2 − 4x3
subject to x1 + x2 + x3 ≤ 1
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x1 + 2x2 + 2x3 ≤ 3

2x1 − x2 − x3 ≤ 4

−2x1 + x2 − x3 ≥ 3

x1, x2, x3 ≥ 0

Phase I original tableau

BV x1 x2 x3 x4 x5 x6 x7 t4 −z −w b

x4 1 1 1 1 0 0 0 0 0 0 1
x5 1 1 2 0 1 0 0 0 0 0 3
x6 2 −1 −1 0 0 1 0 0 0 0 4
t4 2 −1 1 0 0 0 −1 1 0 0 3

−z 10 −2 −4 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 1 0

BV x1 x2 x3 x4 x5 x6 x7 t4 −z −w b Ratio

x4 1 1 1 1 0 0 0 0 0 0 1 1
x5 1 1 2 0 1 0 0 0 0 0 3 3
x6 2 −1 −1 0 0 1 0 0 0 0 4 2
t4 2 −1 1 0 0 0 −1 1 0 0 3

−z 10 −2 −4 0 0 0 0 0 1 0 0 min
−w −2 1 −1 0 0 0 1 0 0 1 −3 θ = 1

PC↑
x1 1 1 1 1 0 0 0 0 0 0 1
x5 0 0 1 −1 1 0 0 0 0 0 2
x6 0 −3 −3 −2 0 1 0 0 0 0 2
t4 0 −3 −1 −2 0 0 −1 1 0 0 1

−z 0 −2 −4 0 0 0 −1 1 0 0 3
−w 0 3 1 2 0 0 1 0 0 1 −1

Introducing slack variables x4 to x7 in that order, we get the original
tableau for this problem. In the original tableau, the RHS constants vector
is already ≥ 0, and variables x4, x5, x6 correspond to 1st, 2nd, and 3rd unit
vectors; but the 4th unit vector needed to make a full unit basic vector is
missing (x7 is associated with the negative 4th unit vector, and hence is not
suitable). So, we set up the Phase I problem by introducing the artificial
variable t4 associated with the 4th unit vector. The Phase I original tableau
is given above.
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Pricing out the basic variable t4 in the Phase I objective row leads to
the 1st Phase I canonical tableau given at the top of the list of tableaus
given next. We continue applying Phase I of the simplex method. The pivot
elements are boxed, and PR, PC indicate the pivot row, pivot column.

In the final tableau the Phase I termination condition is satisfied, and
we see that the minimum value of w in the Phase I problem is 1 > 0. This
implies that the original problem has no feasible solution.

Example 4.6.6: Problem with alternate optimum
solutions:

Consider the canonical tableau for the LP in standard form at the top
of the following tableaus. All xj are restricted to be nonnegative, and z has
to be minimized.

BV x1 x2 x3 x4 x5 x6 −z b Ratio

x1 1 0 0 1 −1 2 0 3 3
x2 0 1 0 −1 1 −1 0 4
x3 0 0 1 1 0 −1 0 5 5

−z 0 0 0 −2 1 −1 1 −100 min
PC↑ = θ = 3

x4 1 0 0 1 −1 2 0 3
x2 1 1 0 0 0 1 0 7

x3 −1 0 1 0 1 −3 0 2 2

−z 2 0 0 0 −1 3 1 −94 min
PC↑ = θ = 2

Final tableau

x4 0 0 1 1 0 −1 0 5

x2 1 1 0 0 0 1 0 7 7
x5 −1 0 1 0 1 −3 0 2

−z 1 0 1 0 0 0 1 −92 min
PC↑ = θ = 7

In the final tableau the optimality criterion holds, so the BFS in it x̄ =
(0, 7, 0, 5, 2, 0)T , is an optimum solution with the optimum objective value
of z̄ = 92.

Notice that the relative cost coefficient of the nonbasic variable x6 in the
final tableau is c̄6 = 0, this indicates that there may be alternate optimum
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solutions to the problem. Choosing x6 with c̄6 = 0 as the entering variable
in that tableau leads to the following alternate optimum canonical tableau
to this LP.

BV x1 x2 x3 x4 x5 x6 −z b

x4 1 1 1 1 0 0 0 12
x6 1 1 0 0 0 1 0 7
x5 2 3 1 0 1 0 0 23

−z 1 0 1 0 0 0 1 −92

The BFS in this tableau x̂ = (0, 0, 0, 12, 23, 7)T also has an optimum
objective value of z̄ = 92, and is an alternate optium BFS to this LP.

Example 4.6.7: To find a feasible solution: Find a
feasible solution for the system of linear constraints given below. We intro-
duce the slack variable x5 corresponding to the last inequality, and get the
detached

x1 + x3 − x4 = 3

x1 + x2 + 2x3 = 10

x1 + x2 + x3 − 2x4 ≥ 14

xj ≥ 0, for all j

Detached coefficient tableau form

x1 x2 x3 x4 x5 b

1 0 1 −1 0 3
1 1 2 0 0 10
1 1 1 −2 −1 14

xj ≥ 0 for all j

Phase I original tableau

BV x1 x2 x3 x4 x5 t1 t2 t3 −w b

t1 1 0 1 −1 0 1 0 0 0 3
t2 1 1 2 0 0 0 1 0 0 10
t3 1 1 1 −2 −1 0 0 1 0 14

0 0 0 0 0 1 1 1 1 0
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coefficient tableau form given next. All the RHS constants are ≥ 0 in it,
but none of the three unit vectors needed to make up a unit basis are in the
tableau. So, to find a feasible solution we introduce the 3 artificial variables
t1, t2, t3 with the unit vectors as coefficient vectors and set up the Phase I
problem given next.

We apply Phase I beginning with the Phase I canonical tableau at the
top of the following list of tableaus.

BV x1 x2 x3 x4 x5 t1 t2 t3 −w b Ratio

t1 1 0 1 −1 0 1 0 0 0 3 3
t2 1 1 2 0 0 0 1 0 0 10 5
t3 1 1 1 −2 −1 0 0 1 0 14 14

−w −3 −2 −4 3 1 0 0 0 1 −27 min
PC↑ θ = 3

x3 1 0 1 −1 0 0 0 0 3 3

t2 −1 1 0 2 0 1 0 0 4 4
t3 0 1 0 −1 −1 0 1 0 11 11

−w 1 −2 0 −1 1 0 0 1 −15 min
PC↑ θ = 4

x3 1 0 1 −1 0 0 0 3 3
x2 −1 1 0 2 0 0 0 4 4
t3 1 0 0 −3 −1 1 0 7 7

−w −1 0 0 3 1 0 1 −7 min
PC↑ θ = 3

Final Phase I canonical tableau

x1 1 0 1 −1 0 0 0 3
x2 0 1 1 1 0 0 0 7
t3 0 0 −1 −2 −1 1 0 4

−w 0 0 1 2 1 0 1 −4

The Phase I optimality criterion is now satisfied because all the Phase
I relative cost coefficients are ≥ 0. The minimum value of w = 4 > 0. This
implies that the original system has no feasible solution.

Notice how the value of w, the Phase I objective function, decreases from
27 to 15, to 7, and finally to its minimum value of 4 in the sequence of Phase
I solutions obtained in the method.
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Exercises

Solving some of these numerical exercises by hand may help in mastering
how the simplex method works, and understanding the work involved in
carrying it out. All the exercises can be solved using pivot steps involving
pivot elements which are = 1 most of the time, or 2 in the final step in some
of them. So, the work does not require dealing with messy fractions.

4.2.1:Solve the following LPs. On all these problems Phase II can be ap-
plied directly, and the method terminates with the unique optimum solution
for the problem.

(a): min z = −x1 − 8x2, s. to −x1 + x2 ≤ 2
x1 + x2 ≤ 1, 2x1 + x2 ≤ 5, x1, x2 ≥ 0.

(b) Min z = −2x1 + x2 − 2x3 + x4, s. to x1 − x2 + x4 ≤ 2
x2 + x3 + 2x4 ≤ 3, x1 + 2x2 − x3 − 2x4 ≤ 12, xj ≥ 0 for all j.

(c) Solve using Dantzig’s rule (most negative c̄j) for selecting the enter-
ing variable in each pivot step.

min z = 3x1−8x2+2x3−7x4−5x5+8x6, s. to −x2+x3+x4+x6 = 3
x1 + x2 − x4 = 6, x2 + x4 + x5 − x6 = 0, xj ≥ 0 for all j.

(d) min z = −8x1 + 8x2 + 14x3 + 4x4 + 6x5 − 3x6 + 3x7
s. to x1−x6+x7 = 3, −2x1−3x3+x4+3x6 = 2, 4x3+x5−x6 = 1
x2 − x6 = 4, xj ≥ 0 for all j.

4.2.2: Solve the following LPs. On all these problems Phase II can
be applied directly, and the method terminates with the unboundedness
conclusion. Costruct an extreme half-line in the feasible region along which
the objective function diverges to −∞.

(a) min z = −3x1 + 4x2 + x3, s. to x1 − 2x2 + 2x3 ≤ 3
x1 − x2 − 3x3 ≤ 5, −x1 + x2 − x3 ≤ 7, xj ≥ 0 for all j.

(b) : min z = −2x1 − x2, s. to −x1 + x2 ≤ 2
x1 − 2x2 ≥ −5, x1 − 3x2 ≤ 2, x1, x2 ≥ 0.
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(c) : min z = −2x1 + 2x2 + x3, s. to x1 − x2 − 2x3 ≤ 3
x1 − x2 − x3 ≤ 4, x1 − 2x2 ≤ 0, x1, x2, x3 ≥ 0.

(d): min z = −3x1 + 2x2 − 2x3, s. to x1 − 2x2 + 2x3 ≤ 0
x1 − x2 − 2x3 ≤ 10, −x1 + 3x2 − 4x3 ≤ 2, −x1 + 2x2 − 2x3 ≤ 3
xj ≥ 0 for all j.

4.2.3:Solve the following LPs. On all these problems with an optimum
solution, Phase I needs to be applied, and you have to move to Phase II
after Phase I.

(a) In solving this problem, if there is a tie for the min ratio, always
select the bottommost among the rows tied as the pivot row.

min z = −2x3 − 10x4, s. to x1 + x3 + 2x4 ≥ 2
x2 + x3 + x4 ≥ 4, x1 + x2 + 2x3 + 3x4 ≤ 6
2x1 + x2 + 3x3 + 6x4 ≤ 8, xj ≥ 0 for all j.

(b): (O, I) min z = −x1 − 2x2 + 3x3 + 2x4 − 3x5, s. to x1 + x3 +
x4 − x− 5 = 4

x2 + x3 + x4 + x5 = 5, x1 + x2 + x4 + 2x5 = 3, xj ≥ 0 for all j.

4.2.4:Solve the following LPs. On all these problems both Phase I,
II need to be applied, and the method terminates with the feasible and
unbounded conclusion. Costruct an extreme half-line in the feasible region
along which the objective function diverges to −∞.

(a): min z = −x1 − 2x2, s. to x1 + x2 ≥ 1, x1 − x2 ≤ 2
−x1 + x2 ≤ 2, x1, x2 ≥ 0.
(b):

Minimize −2x1 +2x2 +x3
subject to x2 +x3 −x4 +x5 +2x6 ≤ 6

x1 +x3 −x4 +x5 = 5
−x1 +x2 −x3 +x4 +x6 = 3

xj ≥ 0 for all j

(c):
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Minimize −2x1 +2x2 +x3
subject to x2 +x3 −x4 +x5 +2x6 ≤ 6

x1 +x3 −x4 +x5 = 5
−x1 +x2 −x3 +x4 +x6 = −3

xj ≥ 0 for all j
If possible, determine a feasible solution where the objective function

has value = −200.

4.2.5:Solve the following problems. All these problems are infeasible.

(a): Minimize z = −2x1−3x2−4x3−x4, s. to x1+x2+2x3+x4 ≥ 5
x2 + 2x4 ≥ 10, 2x1 + 2x2 + 2x3 + 4x4 ≤ 14, xj ≥ 0 for all j.

(b):
Minimize −x1 +x2
subject to x1 +x2 −x3 +x4 ≤ 4

−x2 +x3 +x4 ≤ 6
x1 +2x4 ≥ 12

xj ≥ 0 for all j

(c): Find a feasible solution to the following system of constraints: x1+
x3 − x4 = 3, x1 + x2 + 2x3 = 10, x1 + x2 + x3 − 2x4 ≥ 14, xj ≥ 0
for all j.

4.2.6: Solve the following LP. This problem has alternate optimum
solutions. Find several optimum BFSs for this problem.

x1 x2 x3 x4 x5 x6 −z b

1 0 0 1 −1 1 0 3
0 1 0 1 1 −1 0 5
0 0 1 −1 1 1 0 6

3 4 −2 7 1 −5 1 0

xj ≥ 0 for all j, minimize z
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