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Chapter 5

Duality, Marginal and
Sensitivity Analysis in LP

This is Chapter 5 of “Junior Level Web-Book for Optimization
Models for decision Making” by Katta G. Murty.

Associated with every linear programming problem, there is another
linear program called its dual, involving a different set of variables,
but sharing the same data. When referring to the dual problem of an
LP, the original LP is called the primal or the primal problem.
Together, the two problems are referred to as a primal, dual pair of
linear programs.

In Chapter 3 we defined the marginal value of an RHS constant
in an LP as the rate of change of the optimum objective value, per
unit change in that RHS constant from its present value; when that
rate is well defined. Associated with each constraint in an LP there
will be a dual variable in its dual problem, it can be shown that the
marginal values in the primal are well defined only if the dual problem
has a unique optimum solution, and in this case the value of a dual
variable in that solution will be the marginal value of the associated
RHS constant in the primal problem.

The topic of duality in LP lies in the intersection of two subjects,
economics and OR, in fact the pioneering work in duality has been
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210 Ch. 5 Duality

carried out by mathematical economists. The dual of an LP arises
from economic considerations that come up in marginal analysis. In
LP’s, each constraint usually comes from the requirement that the to-
tal amount of some item utilized should be ≤ (or =) the total amount
of this item available, or that the total number of units of some item
produced should be ≥ (or =) the known requirement for this item.
Using the marginal value of that item as the dual variable, the dual
problem is constructed through rational economic arguments. These
economic arguments become simplified if in the primal problem all the
variables are nonnegative variables, and all the remaining constraints
are ≤ inequalities (≥ inequalities) if the primal is a maximization (min-
imization) problem. The fertilizer problem discussed in Example 3.4.1
is of this type, so we will discuss the derivation of its dual.

5.1 Derivation of the Dual of the Fertil-

izer Problem Through Rational Eco-

nomic Arguments

In this problem formulated in Section 3.4 of Chapter 3, the fertilizer

Item
Tons required to
make one ton of

Maximum
amount of item
available daily
(tons)

Hi-ph Lo-ph
RM 1 2 1 1500
RM 2 1 1 1200
RM 3 1 0 500
Net
profit
($) per
ton
made

15 10
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manufacturer has a daily supply of 1500 tons of RM 1, 1200 tons of
RM 2, and 500 tons of RM 3 from the company’s quarries at a cost
of $50, 40, 60/ton respectively for RM1, RM2, RM3. Presently these
supplies can be used to manufacture Hi-ph or Lo-ph fertilizers to make
profit. Relevant data from Section is tabulated above.
The LP model for this problem is:

Max. z(x) = 15x1 + 10x2 Item
S. to 2x1 + x2 ≤ 1500 RM 1

x1 + x2 ≤ 1200 RM 2 (5.1.1)
x1 ≤ 500 RM 3
x1 ≥ 0, x2 ≥ 0

where the decision variables are:

x1 = the tons of Hi-ph made per day

x2 = the tons of Lo-ph made per day

There is a detergent company in the area that needs supplies of RM
1, 2, 3. The detergent manufacturer wants to persuade the fertilizer
manufacturer to give up fertilizer making, and instead sell the supplies
of RM 1, 2, 3 to the detergent company. Being very profit conscious,
the fertilizer manufacturer will not agree to this deal unless the prices
offered by the detergent manufacturer for each of these raw materials
fetch at least as much income as each of the options in the fertilizer
making business.
In this problem, money is measured in net profit dollar units (i.e.,

after subtracting the cost of raw materials from the real life revenue
dollars). Let the offer made by the detergent manufacturer be:

πi = price/ton for RMi, i = 1, 2, 3

in these same money units (i.e., in real life dollars, the detergent man-
ufacturer offers to pay $50 + π1, $40 + π2, $60 + π3 per/ton of RM1,
RM2, RM3 respectively). With this understanding, we will continue
our discussion in net profit dollar units for money, and dollar will refer
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to these units. Clearly, these prices π1,π2, π3 have to be ≥ 0 for the
deal to be acceptable to the fertilizer manufacturer.
Now consider the Hi-ph fertilizer making process. Manufacturing

one ton of this fertilizer yields a net profit of $15, and uses up 2 tons
RM 1, 1 ton RM 2, and 1 ton RM 3. The same basket of raw materials
fetches a price of 2π1 + π2 + π3 from the detergent manufacturer. So,
the fertilizer manufacturer will not find the price vector π = (π1, π2, π3)
acceptable unless 2π1 + π2 + π3 ≥ 15. Similar economic analysis with
the Lo-ph fertilizer process leads to the constraint π1 + π2 ≥ 10. With
the price vector π, the cost to the detergent company of acquiring the
daily raw material supply is 1500π1+1200π2+500π3, and the detergent
manufacturer would clearly like to see this minimized. Thus the price
vector π = (π1, π2,π3) that the detergent manufacturer offers for the
supplies of RM 1, 2, 3, should minimize v(π) = 1500π1 + 1200π2 +
500π3, subject to the constraints 2π1 + π2 + π3 ≥ 15, π1 + π2 ≥ 10,
π1,π2, π3 ≥ 0, to make it acceptable to the fertilizer manufacturer.
Thus the detergent manufacturer’s problem, that of determining the
best price vector acceptable to the fertilizer manufacturer, is

Min. v(π) = 1500π1 + 1200π2 + 500π3
S. to 2π1 + π2 + π3 ≥ 15 (5.1.2)

π1 + π2 ≥ 10
π1, π2, π3 ≥ 0

(5.1.2) is the dual of (5.1.1) and vice versa. This pair of problems
is a primal-dual pair of LPs. When considering the primal (5.1.1), the
variables in its dual (5.1.2) are called the dual variables, and the
slacks in (5.1.2) corresponding to the inequality constraints in it are
called the dual slack variables.
Since the first constraint in (5.1.2) comes from the economic analy-

sis of the Hi-ph manufacturing process, this dual constraint is said
to correspond to the Hi-ph primal variable x1. Likewise, the second
dual constraint in (5.1.2) corresponds to the primal variable x2. In the
same way, the dual variable π1, the detergent manufacturer’s price for
the item RM 1, is associated with the RM 1 (first) primal constraint
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in (5.1.1). Similarly the dual variables π2, π3 are associated with the
second (RM 2), and third (RM 3) primal constraints in (5.1.1), re-
spectively. Thus there is a dual variable associated with each primal
constraint, and a dual constraint corresponding to each primal variable.
Also, verify the following facts.

1. The coefficient matrix in the detergent manufacturer’s problem
(5.1.2) is just the transpose of the coefficient matrix in the fertil-
izer manufacturer’s problem (5.1.1) and vice versa.

2. The RHS constants in (5.1.2) are the objective coefficients in
(5.1.1) and vice versa.

3. Each variable in (5.1.1) leads to a constraint in (5.1.2) and vice
versa.

4. (5.1.1) is a maximization problem in which the constraints are
≤ type; and (5.1.2) is a minimization problem in which the con-
straints are ≥ type.

Dual Variables Are Marginal Values

The marginal value of RM i in the fertilizer manufacturer’s problem
is the rate of change in the maximum profit per unit change in the
availability of RM i from its present value; thus it is the net worth of
one additional unit of RM i over the present supply, for i = 1, 2, 3,
to the fertilizer manufacturer. Hence, if the detergent manufacturer
offered to buy RM i at a price ≥ its marginal value, for i = 1, 2, 3,
the fertilizer manufacturer would find the deal acceptable. Being cost
conscious, the detergent manufacturer wants to make the price offered
for any raw material to be the smallest value that will be acceptable to
the fertilizer manufacturer. Hence, in an optimum solution of (5.1.2),
the πi will be the marginal value of RM i, for i = 1, 2, 3, in (5.1.1).
Thus the dual variables are the marginal values of the items associated
with the constraints in the primal problem. These marginal values
depend on the data, and may change if the data does.
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The Dual of the General Problem in this Form

Now consider the general LP in the same form, it is

Maximize z(x) = cx

subject to Ax ≤ b (5.1.3)

x ≥ 0

where A is an m × n matrix. From similar arguments it can be seen
that the marginal values of this LP are the dual variables in the dual
of this problem given below. Let πi denote the dual variable associated
with the ith constraint in this LP, i = 1 to m. If we write the vector of
dual variables as a column vector, the statement of the dual problem
will involve AT as the coefficient matrix. But usually the vector of dual
variables is written as the row vector π = (π1, . . . , πm). Using it, the
dual of the above LP is

Minimize v(π) = πb

subject to πA ≥ c (5.1.4)

π ≥ 0

We will discuss some of the relationships between the primal and
dual problems after we discuss the dual of the LP in standard form in
the next section.

5.2 Dual of the LP In Standard Form

The economic arguments in the previous section can be applied to
derive the dual of the general LP model with general linear constraints
(equations, inequalities of the ≥, ≤ types) and bounds on the variables,
and even unrestricted variables. But that is beyond the scope of this
book (it is suitable for a graduate level book). However, since we are
discussing the LP in standard form so much, we will state its dual
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without elaborating on its derivation from economic principles. The
LP in standard form is

Minimize z(x) = cx

subject to Ax = b (5.2.1)

x ≥ 0

where A is an m× n matrix.
To write its dual, associate a dual variable to each constraint in

the primal. Calling the dual variable associated with the ith primal
constraint (Ai.x = bi) as πi, the vector of dual variables is the row
vector pi = (π1, . . . , πm). Then the dual of (5.5) is

Maximize v(π) = πb

subject to πA ≤ c (5.2.2)

π ≥ 0

πA ≤ c in matrix notation is a system of n inequality constraints,
the jth one here being πA.j ≤ cj ; this is the dual constraint corre-
sponding to the primal variable xj , for j = 1 to n. This constraint
can be transformed into an equation by introducing a slack variable
for it. This slack variable can be shown to be related to the relative
cost coefficient c̄j of xj when (5.2.1) is solved by the simplex method,
so this dual slack variable is usually denoted by the same symbol c̄j .
Using it, the dual constraint corresponding to the primal variable xj is

πA.j + c̄j = cj

c̄j ≥ 0

For j = 1 to n, the nonnegative primal variable xj, and its associ-
ated nonnegative dual slack variable c̄j together form the pair (xj, c̄j =
cj − πA.j) called the jth complementary pair in the primal, dual
solutions (x, π) for the primal, dual pair of LPs (5.2.1), (5.2.2).
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Every complementary pair in a primal, dual pair of LPs always
consists of a variable restricted to be ≥ 0 in one problem, and the
nonnegative slack variable of the corresponding constraint in the other
problem. There are no complementary pairs associated with equality
constraints in one problem, and the corresponding unrestricted vari-
ables in the other problem. In the primal, dual pair (5.2.1), (5.2.2),
the complementary pairs are (xj, c̄j = cj − πA.j) for j = 1 to n.

Example 5.2.1

As an example, consider the following LP in standard form

Tableau 5.2.1: Primal problem
Associated x1 x2 x3 x4 x5 x6 b
dual var.

π1 1 2 3 −2 1 16 17
π2 0 1 −4 1 1 1 2
π3 0 0 1 −2 1 0 1

Primal
obj. row 3 11 −15 10 4 57 = z, minimize

xj ≥ 0 for all j.

Tableau 5.2.2: Dual problem
Primal var. corresponding

π1 π2 π3 to dual constraint
1 0 0 ≤ 3 x1
2 1 0 ≤ 11 x2
3 −4 1 ≤ −15 x3
−2 1 −2 ≤ 10 x4
1 1 1 ≤ 4 x5
16 1 0 ≤ 57 x6
17 2 1 = v(π), maximize

expressed in detached coefficient tableau form in Tableau 5.2.1, in-
volving 3 constraints in 6 nonnegative variables. The last row in the
tableau gives the objective function. In a column on the left hand side,
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we listed the dual variables associated with the primal constraints. We
tabulate the dual problem in Tableau 5.2.2 just after the primal.
Introducing the dual slack variables c̄1 to c̄6, the dual can be written

with its constraints as equality constraints as in Tableau 5.2.3.

Tableau 5.2.3: Dual problem
π1 π2 π3 c̄1 c̄2 c̄3 c̄4 c̄5 c̄6
1 0 0 1 0 0 0 0 0 3
2 1 0 0 1 0 0 0 0 11
3 −4 1 0 0 1 0 0 0 −15
−2 1 −2 0 0 0 1 0 0 10
1 1 1 0 0 0 0 1 0 4
16 1 0 0 0 0 0 0 1 57
17 2 1 0 0 0 0 0 0 = v(π), maximize

c̄j ≥ 0, j = 1 to 6

c̄j here is the relative cost coefficient of xj, for j = 1 to 6. The
complementary pairs in these primal, dual problems are (x1, c̄1 = 3−
π1), (x2, c̄2 = 11 − (2π1 + π2)), (x3, c̄3 = −15 − (3π1 − 4π2 + π3)),
(x4, c̄4 = 10− (−2π1+π2−2π3)), (x5, c̄5 = 4− (π1+π2+π3)), (x6, c̄6 =
57− (16π1 + π2)).

Optimality Conditions for an LP

We now state without proof, a fundamental result in LP theory
that serves as the basis for designing algorithms to solve LPs, and for
checking when an algorithm has reached an optimum solution.

Theorem 5.2.1 In a primal, dual pair of LPs, let x be the vector
of primal variables, and π the vector of dual variables. A primal vector
x̄ is an optimum solution for the primal problem iff it satisfies the
following condition (i), and there exists a dual vector π̄ satisfying (ii),
which together with x̄ also satisfies (iii).

(i) Primal feasibility: The vector x̄ must satisfy all the constraints
and bound restrictions in the primal problem.
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(ii) Dual feasibility: The vector π̄ must satisfy all the constraints
in the dual problem.

(iii) Complementary slackness optimality conditions: In every
complementary pair for these primal, dual problems, at least one
of the two quantities in the pair is zero at the solutions (x̄, π̄).
Or, equivalently, the product of the two quantities in every com-
plementary pair is zero.

If all three conditions are satisfied, x̄ is an optimum solution for
the primal problem, and π̄ is an optimum solution of the dual problem,
and the optimum objective values in the two problems are equal.

For a proof of this theorem, see any of the graduate level books on
LP. We will use this theorem in the algorithm for the transportation
problem discussed in the next chapter.

We now explain what the complementary slackness conditions are
for the primal, dual problems (5.2.1), (5.2.2). If x, π are primal and
dual solutions for (5.2.1), (5.2.2), and (c̄j) = (cj − πA.j), since the
complementary pairs in these problems are (xj , c̄j) for j = 1 to n; the
complementary slackness conditions for these problems can be stated
in one of two ways: At least one quantity in each pair (xj, c̄j) is zero;
or equivalently, xj c̄j = 0 for all j.

As an example, consider the LP in standard form Tableau 5.2.1.
Consider the primal vector x̄ = (2, 6, 1, 0, 0, 0)T . It satisfies all the
constraints and sign restrictions in the primal problem, so it is primal
feasible. Consider the dual vector π̄ = (3, 5, −4), which can be verified
to be dual feasible. The dual slack vector corresponding to π̄ is c̄ =
(c̄1, c̄2, c̄3, c̄4, c̄5, c̄6) = (0, 0, 0, 3, 0, 4). So the values of the various
complementary pairs at x̄, π̄, (x̄j , c̄j); j = 1 to 6 are: (2, 0), (6, 0), (1,
0), (0, 3), (0, 0), (0, 4). At least one quantity in each pair is zero. So x̄, π̄
satisfy all the complementary slackness optimality conditions. Hence,
by Theorem 5.2.1, x̄ is an optimum solution of the LP in Tableau 5.2.1,
π̄ is an optimum solution of its dual in Tableau 5.2.2. Both optimum
objective values can be verified to be equal to 57.
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In this example we used Theorem 5.2.1 to check whether a given
solution to an LP is optimal. Actually Theorem 5.2.1 also provides
a guiding light for designing algorithms to try to construct solutions
which satisfy the conditions there, and thereby solve both the primal
and dual problems together. We will illustrate this for the special case
of the balanced transportation problem in the next chapter. In the
next section we will discuss the dual of the balanced transportation
problem, and the optimality conditions for it, these will be used in the
next chapter to develop a specialized version of the simplex method to
solve it very efficiently.

5.3 The Dual of the Balanced Transporta-

tion Problem

Consider the balanced transportation problem for shipping iron ore
from mines 1, 2 to plants 1, 2, 3 at minimum cost, formulated in
Example 3.7.1. In this problem, the primal variable xij = ore (in tons)
shipped from mine i to plant j; i = 1, 2; j = 1, 2, 3. Here is the problem
in detached coefficient form. In a column on the left hand side we list
the dual variables that we associate with the primal constraints for
writing the dual problem.

Iron Ore shipping problem
Associated Item
dual var. x11 x12 x13 x21 x22 x23
u1 1 1 1 0 0 0 800 Ore/mine 1
u2 0 0 0 1 1 1 300 Ore/mine 2
v1 1 0 0 1 0 0 400 Ore/plant 1
v2 0 1 0 0 1 0 500 Ore/plant 2
v3 0 0 1 0 0 1 200 Ore/plant 3

11 8 2 7 5 4 = z, minimize
xij ≥ 0 for all i, j.

So, the dual of this problem is the following.
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Maximize 800u1 + 300u2 + 400v1 + 500v2 + 200v3

Associated
primal var.

subject to u1 + v1 ≤ 11 x11
u1 + v2 ≤ 8 x12
u1 + v3 ≤ 2 x13
u2 + v1 ≤ 7 x21
u2 + v2 ≤ 5 x22
u2 + v3 ≤ 4 x23

Here ui is the dual variable associated with source i (mines 1, 2
in this problem), and vj is the dual variable associated with demand
center j (plants 1, 2, 3 in this problem). If cij is the original cost
coefficient of the primal variable xij in this problem, the corresponding
dual constraint is ui+vj ≤ cij; its dual slack or reduced cost coefficient
is c̄ij = cij−ui−vj . The pairs (xij , c̄ij = cij−ui−vj) for various values
of i, j are the complementary pairs in these primal, dual problems.

Array Representation of the Iron Ore Shipping Problem

Steel Plant ai Dual
1 2 3 var.

c̄11 c̄12 c̄13
Mine 1 x11 x12 x13 800

c11 = 11 8 2 u1
c̄21 c̄22 c̄23

Mine 2 x21 x22 x23 300
7 5 4 u2

bj 400 500 200

Dual var. v1 v2 v3
xij ≥ 0 for all i, j. Minimize cost. c̄ij = cij − ui − vj
ai, bj are availability at mine i, requirement at plant j in tons.
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In Chapter 3 we mentioned that all the constraints and the decision
variables or their values in a particular solution in a balanced trans-
portation problem can be displayed very conveniently in the form of
a two dimensional transportation array. In this array representation
we can also include the dual variables ui associated with the rows of
the array (representing sources in the problem) in a right hand column,
and the dual variables vj associated with the columns of the array (rep-
resenting demand centers in the problem) in a bottom row. With these
things, the array representation of this iron ore shipping problem is
given above.

In this array representation it is very convenient to check whether
the given dual vector (u = (ui), v = (vj)) is dual feasible. It is dual
feasible if, c̄ij = cij − ui − vj is ≥ 0 for all i, j. For this it is convenient
to compute c̄ij and enter it in the top left corner of the cell (i, j) for all
i, j. When both xij , c̄ij are entered this way in each cell of the array,
it is easy to check whether the complementary slackness optimality
conditions hold (at least one of xij, c̄ij have to be zero for each (i, j),
or equivalently xij c̄ij = 0 for every (i, j)).

The array form of the balanced transportation problem is very con-
venient for displaying the current primal and dual solutions and the
relative cost coefficients.

In a general balanced transportation problem, there may be m
sources, and n demand centers with the following data

ai = material (in units) available at source i, i = 1 to
m

bj = material required at demand center j, j = 1 to n
cij = cost ($/unit) to ship from source i, to demand

center j, i = 1 to m, j = 1 to n

The problem is a balanced transportation problem if the data sat-
isfies

m3
i=1

ai =
n3
j=1

bj . (5.3.1)



222 Ch. Duality

i.e., the total amount of material required at all the demand centers is
equal to the total amount of material available at all the sources. We
assume that this condition holds.
The primal variables are: xij = units shipped from source i to

demand center j, i = 1 to m, j = 1 to n. Associate the dual variable
ui with the primal constraint of source i, and the dual variable vj
with the primal constraint of demand center j. Then the balanced
transportation problem with this data is (5.3.2), and its dual is (5.3.3).

Minimize z(x) =
m3
i=1

n3
j=1

cijxij

subject to
n3
j=1

xij = ai, i = 1 to m (5.3.2)

m3
i=1

xij = bj , j = 1 to n

xij ≥ 0, for all i, j

Maximize w(u, v) =
m3
i=1

aiui +
n3
j=1

bjvj

subject to ui + vj ≤ cij , for all i, j (5.3.3)

c̄ij = cij − ui− vj is the relative cost coefficient of xij , i.e., the dual
slack associated with it. The various (xij , c̄ij) are the complementary
pairs in these primal, dual problems.

5.4 Relatioship of Dual Slack Variables to

the Relative Cost Coefficients in the

Simplex Method

Consider the LP in standard form
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x −z
A 0 b (5.4.1)
c 1 0
x ≥ 0, min z

where A is a matrix of order m× n and rank m.
A basis B for this problem is a nonsingular square submatrix of A of

order m, and let xB be the corresponding basic vector. Let xD denote
the vector of nonbasic variables in some order, and D the submatrix of
A consisting of the columns of A associated with these nonbasic vari-
ables. Let cB be the row vector of original basic cost coefficients, and
cD the row vector of original nonbasic cost coefficients. Rearranging
the variables in (5.4.1) into basic and nonbasic parts, (5.4.1) can be
written as

xB xD −z

B D 0 b

cB cD 1 minimize z
xB, xD ≥ 0.

To get the canonical tableauWRT xB, we need to convertB into the
unit matrix I (this can be done by multiplying the system of constraint
rows by B−1 on the left), and then pricing out the basic columns.
Therefore, it is

Canonical Tableau WRT xB
xB xD −z

I B−1D 0 B−1b

0 cD − cBB−1D 1 −cBB−1b

So, the vector of relative cost coefficients of nonbasic variables xD
WRT the basic vector xB is c̄D = cD − cBB−1D.
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The basic vector xB defines a basic solution for the system of
equality constraints “Ax = b”. This basic solution is obtained by
setting all the nonbasic variables equal to zero (xD = 0) and then
solving the remaining system for the values of the basic variables in
the solution. This remaining system is BxB = b, and its solution is
x̄B = B

−1b. So, the primal basic solution of (5.4.1) associated with the
basic vector xB, or the corresponding basis B is x̄ = (x̄B, x̄D), where
x̄D = 0 and x̄B = B

−1b. This solution may not be feasible in the sense
it may not satisfy the sign restrictions “x ≥ 0”.
If B−1b ≥ 0, the basic solution x̄ is feasible to (5.4.1) and is called

a basic feasible solution (BFS) of (5.4.1); and the basic vector xB
and the basis B are said to the primal feasible basic vector and
primal feasible basis, respectively.
If B−1b W≥ 0, this solution x̄ satisfies the constraints “Ax = b”

but not the sign restrictions “x ≥ 0”, it is infeasible to (5.4.1), and
the basic vector xB and basis B are called primal infeasible basic
vector, primal infeasible basis respectively.
Rearranging the constraints in the dual problem in order of the pri-

mal variables corresponding to them as arranged in the above tableau,
they are

πB ≤ cB (5.4.2)

πD ≤ cD.

Remember that here π = (π1, . . . ,πm) is a row vector. The first line
in the constraints above contains the dual constraints corresponding
to the m basic variables in xB, and the second line contains those
corresponding to the nonbasic variables in xD. Denote the row vectors
of dual slacks variables in these sets by sB, s̄D. Introducing these slack
variables, the dual becomes

πB + sB = cB (5.4.3)

πD + sD = cD

sB, sD ≥ 0.



5.4. Relative Costs Are Dual Slacks 225

xB is a basic vector for the primal problem (5.4.1), because it con-
sists of primal variables only, and B is the basis for the primal problem
associated with it. x̄ = (x̄B = B

−1b, x̄D = 0) is the primal basic solu-
tion associated with it. In LP theory, a dual basic solution associated
with xB, B is also defined, even though the basic vector xB contains
no dual variables. The definition of the dual basic solution associated
with xB, B is tailored to make sure that it satisfies the complementary
slackness conditions together with the primal basic solution x̄ associ-
ated with xB, B. In x̄, only basic variables in xB can have nonzero
values, and the complements of these variables are the dual slacks in
the vector sB. So, for the dual basic solution to satisfy the complemen-
tary slackness conditions with the primal basic solution x̄, it is enough
if we make sure that sB = 0, from (5.4.3); this defines the dual basic
solution associated with xB, B to be the unique solution of

πB = cB (5.4.4)

or π̃ = cBB
−1.

At the dual solution π̃, the slack vector sB = s̃B = cB − π̃B = 0
(this follows from the definition of π̃), and sD = s̃D = cD − π̃D =
cD − cBB−1D = c̄D, the vector of relative cost coefficients of nonbasic
variables xD in the canonical tableau of the primal (5.4.1) WRT the
basic vector xB. Also, s̃B = 0= the vector of relative cost coefficients of
the basic variables xB in this canonical tableau. Thus, at the dual basic
solution π̃, for each variable xj , the dual slack in the dual constraint
corresponding to xj is equal to c̄j , the relative cost coefficient of xj
WRT the basic vector xB. That’s why the dual slacks sj are denoted
by c̄j .
We summarize these facts in the following result.

Result 5.4.1: Let xB be a basic vector and B the associated basis
for the LP in standard form (5.4.1). The dual basic solution corre-
sponding to xb, B is the unique solution of the system of dual constraints
corresponding to the basic variables in xB, each treated as an equation.
Also, the relative cost coefficients c̄j in the canonincal tableau of

(5.4.1) WRT xB are exactly the values of the dual slack variables at
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this dual basic solution. That’s why, the dual slacks are denoted by c̄j.

In the next chapter, we will discuss a special implementation of
the simplex algorithm for the balanced transportation problem, that
in every step computes the dual basic solution efficiently using the
special structure of the basis for this problem, and then computes using
it, the relative cost coefficients as dual slacks. Using this strategy, this
implementation applies the simplex algorithm on this problem without
ever having to compute a canonical tableau.

Efficient variants of the simplex algorithm for general LPs (like the
revised simplex algorithm, not discussed in this book) also use the dual
basic solution in everey step to compute the relative cost coefficients
through the dual slacks.

Relationship Between Dual Feasibility and the
Optimality Criterion in the Simplex Algorithm

This dual basic solution π̃ associated with the basic vector xB, and
basis B for the LP in standard form (5.4.1), is feasible to the dual
problem if it satisfies all the dual constraints (those in (5.4.2)). It
satisfies the dual constraints corresponding to the basic variables in xB
as equations. So to be dual feasible it has to satisfy the dual constraints
associated with nonbasic variables; i.e., the relative cost coefficients of
all the nonbasic variables, c̄j = cj−π̃A.j have to be≥ 0. If this happens,
the basis B, and the basic vector xB are said to be a dual feasible
basis and dual feasible basic vector for (5.4.1), respectively. This
condition is exactly the optimality criterion for a basic vector used in
the simplex algorithm as a termination condition for the algorithm.

Therefore the optimality criterion in the (primal) simplex algorithm
is actually the dual feasibility condition.

If at least one of the nonbasic relative cost coefficients c̄j = cj− π̃A.j
is < 0, then π̃ is dual infeasible; in this case the basis B, and the basic
vector xB are said to be dual infeasible for (5.4.1).

To summarize, let xB be a basic vector for (5.4.1) associated with
the basis B, nonbasic vector xD, basic cost (row) vector cB, nonbasic
cost (row) vector cD. The primal basic solution corresponding to xB
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is obtained by the system on the left of (5.4.5); and the dual basic
solution corresponding to xB is obtained by the system on the right
in (5.4.5). xB is primal feasible if B−1b ≥ 0; it is dual feasible if
cj − (cBB−1)A.j ≥ 0 for all nonbasic xj .

BxB = b πB = cB (5.4.5)

xD = 0.

Example 5.4.1

Consider the vector xB = (x1, x2, x3) for the LP in standard form in
Tableau 5.2.1. The corresponding coefficient submatrix B is the 3× 3
coefficient matrix for the system on the left given below; it is nonsin-
gular, and hence a basis and so xB is a basic vector. The primal basic
solution corresponding to it is obtained from the system of equations
on the left given below. It is x̃ = (2, 6, 1, 0, 0, 0)T . So, this basic vector
xB is primal feasible, and it is primal nondegenerate since all the basic
variables x1, x2, x3 are nonzero in the basic solution. The dual basic
solution corresponding to xB is the solution of the system of equations
on the right given below. It is π̃ = (3, 5,−4). By substituting this
solution in the dual constraints given in Tableau 5.2.3, we find that
the vector of dual slacks at π̃ are c̄ = (0, 0, 0, 3, 0, 4), since c̄ ≥ 0, it
is dual feasible. So for this problem, xB is both a primal and dual
feasible basic vector. Also, verify that x̃, π̃ satisfy the complementary
slackness conditions “xj c̄j = 0” for all j (this automatically follows
from the manner in which the dual basic solution corresponding to a
basic vector is defined).

x1 x2 x3 π1 π2 π3
1 2 3 17 1 0 0 3
0 1 −4 2 2 1 0 11
0 0 1 1 3 −4 1 −15
x4 = x5 = x6 = 0 .
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As another example, consider the vector xB2 = (x4, x5, x6) for the
LP in standard form in Tableau 5.2.1. The corresponding coefficient
submatrix B2 is the 3× 3 coefficient matrix for the system on the left
given below, it is also nonsingular and hence a basis. The primal basic
solution, obtained from the system on the left given below, is x̂ =
(0, 0, 0, 0, 1, 1)T ; it is primal feasible, but since the basic variable x4 is
zero in it, it is primal degenerate. So xB2 is a degenerate primal feasible
basic vector for this problem. The dual basic solution corresponding
to xB2 , obtained from the system on the right given below is π̂ =
(51/16, 6, −83/16). By substituting π̂ in the dual constraints given
in Tableau 4.3, we find that the vector of dual slacks at π̂ is c̄ =
(−3/16, −11/8, 37/8, 0, 0, 0). Since the first two components in this
vector are < 0, π̂ is dual infeasible; so xB2 is a dual infeasible basic
vector for the LP in Tableau 5.2.1.

x4 x5 x6 π1 π2 π3
−2 1 16 17 −2 1 −2 10
1 1 1 2 1 1 1 4
−2 1 0 1 16 1 0 57
x1 = x2 = x3 = 0 .

Suppose the basic vector xB associated with the basis B for (5.4.1)
is both primal and dual feasible. Let x̃, π̃ be the corresponding primal
and dual basic solutions. Then by their definition x̃, π̃ satisfy all three
conditions for optimality (primal and dual feasibility, and complemen-
tary slackness conditions) stated in Theorem 5.2.1. So, x̃ is optimal to
(5.4.1), and π̃ is optimal to its dual. Hence the BFS associated with a
basic vector for (5.4.1) which is both primal and dual feasible is always
optimal. For this reason a basic vector for (5.4.1) which is both primal
and dual feasible, is called an optimal basic vector.

5.5 Some Primal, Dual Properties

Here we will discuss without proofs, some results on the relationship
between the primal and dual problems.
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Result 5.5.1: Duality Theorem: When an LP has an optimum
solution, the dual also has an optimum solution, and the optimum ob-
jective values in the two problems are equal.

Result 5.5.2: Condition for the Uniqueness of the Dual
Optimum Solution: If the primal has a nondegenerate optimum BFS
(i.e., if the primal is an LP in standard form, all basic variables are
> 0 in that BFS), then the dual has a unique optimum solution.

Optimum Dual Solution and the Vector of Mar-
ginal Values

Consider the LP in standard form (5.5.1)

Minimize z(x) = cx

subject to Ax = b (5.5.1)

x ≥ 0

where A is an m× n matrix. The marginal value of bi in this problem
has been defined to be the rate of change in the optimum objective
value per unit change in bi from its current value, when this rate exists.
Select a bi, say b1. Suppose we keep all the other data in the problem
fixed at their current value, except b1. Then as b1 varies, the optimum
objective value in the problem is a function of b1 which we denote by
f(b1). Then the marginal value of b1 in this problem is exactly

df(b1)

db1
= lim→0

f(b1 + 6)− f(b1)
6

when this derivative, or limit exists. If the derivative does not exist
(i.e., if the function f(b1) is not differentiable at the current value of
b1) then the marginal value of b1 in this problem does not exist. Here
is the result on the existence of marginal values.

Result 5.5.3: Existence of Marginal Values: If (5.5.1) has
a nondegenerate optimum BFS, then the dual problem has a unique
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optimum solution. In this case, (5.5.1) has marginal values WRT all
the RHS constants bi, and the optimum dual solution is the vector of
marginal values.

This result says that if the primal optimum BFS obtained for (5.5.1)
is nondegenerate, then it is perfectly valid to interpret the optimum
dual solution, π = (πi) as the marginal value vector.

Suppose x̄, π̄ are the optimal primal and dual basic solutions of
(5.5.1) obtained by an algorithm. If x̄ is a degenerate BFS (i.e., some
basic variables have zero values in it), then π̄ may not be the unique
dual optimum solution. In this case the marginal values may not be
well defined for (5.5.1).

But in practice, when an optimum solution of an LP model like
(5.5.1) is computed using floating point arithmetic on a digital com-
puter, the zero value of a basic variable in the optimum solution x̄
obtained may in reality be a small positive value that has become 0
due to roundoff errors. Because of this, the theoretical possibility of
a degenerate BFS is very hard to check in practice. That’s why even
when some basic variables are 0 in the optimum BFS x̄ obtained, practi-
tioners usually ignore the degeneracy warning and continue to interpret
π̄ as an approximation to a marginal value vector.

5.6 Marginal Analysis

When an optimum BFS obtained for an LP is nondegenerate, the dual
problem has a unique optimum solution, and that optimum dual so-
lution is the vector of marginal values (i.e., rates of change in the
optimum objective value per unit change in the value of an RHS con-
stant from present level, while all the other RHS constants remain at
present levels). Marginal analysis is economic cost/benefit analysis of
the various options available to the system based on these marginal
values. In Section 3.13 we presented examples of these analyses for
planning applications in the fretilizer manufacturer’s problem. We will
now illustrate marginal analysis using another example.
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Example 5.6.1: Marginal Analysis in a Company
Using 4 Processes

A company needs products P1, P2, P3 for its internal use. There
are four different processes that the company can use to make these
products. When a process is run, it may produce one or more of these
products as indicated in the following table.

Product Output (units)/ Minimum daily
unit time of process
1 2 3 4 requirement for

product (in units)
P1 1 2 0 1 17
P2 2 5 1 2 36
P3 1 1 0 3 8

Cost ($) of running 28 67 12 35
process/unit time

For j = 1 to 4, let xj denote the units of time that process j is
run daily. Let x5, x6, x7 denote the slack variables corresponding to
P1, P2, P3 (these are the amounts of the product produced in excess
of the minimum daily requirement). Then the model for meeting the
requirements of the products at minimum cost is the following LP in
standard form.

Tableau 5.6.1: Original tableau
Item x1 x2 x3 x4 x5 x6 x7 −z b
P1 1 2 0 1 −1 0 0 0 17
P2 2 5 1 2 0 −1 0 0 36
P3 1 1 0 3 0 0 −1 0 8

28 67 12 35 0 0 0 1 0
xj ≥ 0 for all j; x5, x6, x7 are P1, P2, P3 slacks; minimize z

This problem has been solved by the simplex method, yielding the
following optimum canonical tableau. BV stands for “basic variable in
the row”.
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Tableau 5.6.2: Canonical tableau
BV x1 x2 x3 x4 x5 x6 x7 −z b̄
x1 1 0 −2 1 −5 2 0 0 13
x2 0 1 1 0 2 −1 0 0 2
x7 0 0 −1 −2 −3 1 1 0 7
−z 0 0 1 7 6 11 0 1 −498

The basis B associated with the basic vector xB = (x1, x2, x7) is

B =

⎛⎜⎝ 1 2 0
2 5 0
1 1 −1

⎞⎟⎠ .
So, denoting the dual variables associated with the three equality

constriants in that order by π1,π2, π3, the system to compute the op-
timum dual basic solution associated with this basic vector is

π1 π2 π3
1 2 1 28
2 5 1 67
0 0 −1 0

whose solution is π̄ = (6, 11, 0).
So, the optimum primal BFS is x̄ = (13, 2, 0, 0, 0, 0, 7)T . Hence the

optimal policy is to run processes 1, 2 for 13, 2 units of time daily, and
not use processes 3, 4. This solution attains the minimum cost of $498,
and produces 17, 36, 15 units of P1, P2, P3 respectively; meeting the
minimum daily requirements of P1, P2 exactly, but leaving an excess of
7 units of P3 after meeting its requirement. Since the optimal primal
BFS is nondegenerate, the vector of marginal values of P1, P2, P3 is the
optimum dual solution = (6, 11, 0).
So, the marginal value of P3 is 0. This means that small changes

in its daily requirement in the neighborhood of its present value of 7
units, does not change the cost. At the moment the requirement of P3
is automatically covered while meeting the requirements of P1, P2, this
actually produces an excess of 7 units of P3 beyond its requirement.
P2 has the highest marginal value of $11 among the three prod-

ucts. This means that small changes in its requirement from its present
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level of 36 units result in a change in the optimum cost at the rate of
$11/unit. And if a reliable outside supplier were to offer to supply P2,
it is worth considering that supplier for outsourcing this product if the
rate is ≤ $11/unit. Since it has the highest marginal value, P2 is a
critical input for the company.
A similar interpretation can be made for P1 and its marginal value

of $6/unit.
Suppose the company’s research lab has come up with a new process,

process 8, which produces P1, P2 at the rate of 4, 9 units per unit time
it is run, and does not produce any P3. Let $c8 be the cost of running
process 8 per unit time. For what values of c8 is it desirable to run
process 8? To answer this question, we evaluate the monetary benefit,
in terms of the marginal values, of the output by running this process
per unit time. Since it is 4, 9 units of P1, P2 respectively, and the mar-
ginal values of P1, P2 are 6, 11; this monetary benefit is 4× 6 + 9× 11
= $123/unit time. Comparing this with the cost c8 of running this
process we conclude that process 8 is not worth running if, c8 > 123,
it breaks even with the present optimum solution if c8 = 123, and can
save cost if c8 < 123.
Marginal analysis is this kind of cost-benefit analysis using the mar-

ginal values. It provides very valuable planning information.
Practitioners often use this kind of analysis using an optimum dual

solution provided by the simplex method, even when the optimal primal
solution is degenerate. As pointed earlier, this may lead to wrong
conclusions in this case, so one should watch out.

5.7 Sensitivity Analysis

Data such as I/O coefficients, cost coefficients, and RHS constants in
LP models for real world applications are normally estimated from
practical considerations, and may have unspecified errors in them.
Given an optimum basic vector, the optimality range of a data el-
ement, is the interval within which that element can vary, when all
the other data remain fixed at their current values, while keeping the
present solution or basic vector feasible and optimal. Ranging tech-
niques in sensitivity analysis determine the optimality range of some
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of the data elements very efficiently. The robustness of the present
optimum solution or optimum basic vector to errors in a data element
can be checked using the width of its optimality range and the position
of its present value in this range.

Sensitivity analysis also has efficient techniques for finding a new
optimum solution beginning with the current one, if the values of a few
data elements (typically one) change. Ranging and these other tech-
niques in sensitivity analysis are all based on simple arguments using
the optimality criteria. Here we discuss the simplest among sensitivity
analysis techniques to provide a flavor of these techniques.

Ranging a Nonbasic Cost Coefficient, and Find-
ing a New Optimum SolutionWhen Its Value Moves
Outside This Range

Consider the LP model (5.7.1), where A is a matrix of order m× n
and rank m.

x −z
A 0 b (5.7.1)
c 1 0
x ≥ 0, min z

Suppose an optimum basic vector xB for this LP has been found,
and let B, cB be the basis, and row vector of original basic cost coef-
ficients. Rearranging the variables in (5.7.1) into basic, nonbasic parts
WRT xB, (5.7.1) can be written as below (in the nonbasic part, we
show the column vector of a general nonbasic variable denoted by xs).

Basic Nonbasic
xB ...xs... −z

B ...A.s... 0 b

cB ...cs... 1 0, minimize
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Suppose the optimum canonical tableau is the one given below.

BV xB ...xs... −z

xB I ...Ā.s... 0 b̄

−z 0 ...c̄s... 1 −z̄

Let x̄, π̄ be the optimum primal and dual basic solutions WRT the
basic vector xB (from Section 5.4 we know that π̄ = cBB

−1). Also, from
Section 5.4 we know that for each nonbasic variable xs, its relative cost
coefficent is c̄s = cs − π̄A.s.

Ranging question: Suppose xs is a nonbasic variable whose cost
coefficient cs is likely to change, while all the other data remain fixed
at present levels. For what range of values of cs does x̄ remain an
optimum solution to the problem?

Conputation of the range: To answer this question, notice that a
change in cs does not affect the primal or dual basic solutions associated
with xB, nor does it affect the primal feasibility of x̄. However, for π̄ to
remain dual feasible, we need c̄s = cs − π̄A.s ≥ 0, i.e., cs ≥ π̄A.s. So, x̄
remains an optimum solution to the problem as long as cs ≥ π̄A., that
is the optimality range for cs is [π̄A.s,∞].

Restoring optimality when data changes: If the new value of
cs is < π̄A.s, then the new c̄s < 0, and the basic vector xB is no longer
dual feasible. In this case, xs is eligible to enter xB. To get the new
optimum solution, correct the value of cs in the original tableau, bring
xs into the basic vector xB, and continue the application of the simplex
algorithm until it terminates again.

Example 5.7.1

As an example, consider the LP model in Tableau 5.6.1 of the com-
pany trying to produce the required quantities of P1, P2, P3 using four



236 Ch. Duality

available processes at minimum cost, discussed in Example 5.6.1. We
reproduce the original tableau for the problem.

Original tableau
Item x1 x2 x3 x4 x5 x6 x7 −z b
P1 1 2 0 1 −1 0 0 0 17
P2 2 5 1 2 0 −1 0 0 36
P3 1 1 0 3 0 0 −1 0 8

28 67 12 35 0 0 0 1 0
xj ≥ 0 for all j; x5, x6, x7 are P1, P2, P3 slacks; minimize z

The optimum basic vector for this problem is xB = (x1, x2, x7).
Here is the optimum canonical tableau.

Optimum canonical tableau
BV x1 x2 x3 x4 x5 x6 x7 −z b̄
x1 1 0 −2 1 −5 2 0 0 13
x2 0 1 1 0 2 −1 0 0 2
x7 0 0 −1 −2 −3 1 1 0 7
−z 0 0 1 7 6 11 0 1 −498

Suppose the cost coefficient of x4, the cost of running process 4 per
unit time, is likely to change from its present value of $35, while all the
other data remains fixed. Denote the new value of this cost coefficient
by c4. For what range of values of c4 does the primal BFS in the above
canonical tableau remain optimal to the problem? The answer: as long
as the relative cost coefficient of x4, c̄4 = c4 - (−6,−11, 0)(1, 2, 3)T =
c4 − 28 is ≥ 0, i.e., as long as c4 ≥ 28. This is the optimality range for
c4.

If the new value of c4 is < 28, say c4 = 27, the basic vector
(x1, x2, x7) is no longer dual feasible, because the new relative cost
coefficient of x4 is −1. So, x4 is eligible to enter this basic vector. To
get the new optimum solution, correct the original cost coefficient of x4
to its new value of 27, here is the original tableau for the new problem.
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Original tableau
Item x1 x2 x3 x4 x5 x6 x7 −z b
P1 1 2 0 1 −1 0 0 0 17
P2 2 5 1 2 0 −1 0 0 36
P3 1 1 0 3 0 0 −1 0 8

28 67 12 27 0 0 0 1 0
xj ≥ 0 for all j; x5, x6, x7 are P1, P2, P3 slacks; minimize z

The first tableau in the list below is the canonical tableau for the
new problem WRT the basic vector (x1, x2, x7) (obtained from the
canonical tableau of original problem by changing the relative cost co-
efficient of x4 to −1). In it, we bring x4 into the basic vector (x1, x2, x7)
and continue the application of the simplex algorithm until it termi-
nates again. PR, PC indicates pivot row, column respectively; and the
pivot elements are boxed.

Canonical tableaus
BV x1 x2 x3 x4 x5 x6 x7 −z b̄ Ratio

x1 1 0 −2 1 −5 2 0 0 13 13
x2 0 1 1 0 2 −1 0 0 2
x7 0 0 −1 −2 −3 1 1 0 7
−z 0 0 1 −1 6 11 0 1 −498

PC↑
x4 1 0 −2 1 −5 2 0 0 13

x2 0 1 1 0 2 −1 0 0 2 2
x7 2 0 −5 0 −13 5 1 0 33
−z 1 0 −1 0 1 13 0 1 −485

PC↑
New optimum canonical tableau

x4 1 2 0 1 −1 0 0 0 17
x2 0 1 1 0 2 −1 0 0 2
x7 2 5 0 0 −3 0 1 0 43
−z 1 1 0 0 3 12 0 1 −483

So, (x4, x2, x7) is the new optimum basic vector with the optimum
BFS x̂ = (0, 0, 2, 17, 0, 0, 43)T with an optimum cost of 483. In terms
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of the company, the new optimum solution involves running processes
3, 4 for 2 and 17 units of time daily.

How Much Are Sensitivity Analysis Techniques
Used in Practice?

The techniques of sensitivity analysis are simple techniques for
restoring optimality when one data element changes in an LP model.
They are all based on the optimality criteria used in the simplex algo-
rithm. We discussed only the simplest of the sensitivity analysis tech-
niques to give a taste of them to the readers. There are many others
which can be looked up in graduate level LP books. These sensitivity
analysis techniques offer great learning tools for students, to test how
well they understand duality theory and the optimality conditions in
LP. So, they have great educational value.
Practical applicability of these sensitivity analysis techniques is lim-

ited because in applications it is very rare for only one data element
to change in an LP model. Usually, many changes occur in the model,
and practitioners find it much simpler to solve the revised model from
scratch again.

5.8 Exercises

5.1. Here is a diet problem to meet the minimum daily requirements
(MDR) of two nutrients (thiamin and niacin) using 5 different foods,
at minimum cost in an infants diet. Data given below.

Nutrient nutrient units/oz. of food MDR (units)
1 2 3 4 5 for nutrient

Thiamin 0 1 2 1 1 4
Niacin 1 1 1 1 2 7
cost/oz 4 7 8 9 11

(i) For i = 1 to 5, let xi denote the ozs of food i in the infant’s
daily diet. Using these decision variables, write the formulation of this
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problem as an LP. Put this problem in standard form, and give the
interpretation of any new variables you introduced in this process.

Find an optimum solution of this problem using the simplex method.

Do marginal values exist in this problem? Why? If so, compute
the marginal values of thiamin and niacin, and clearly explain their
economic interpretation.

It is commonly believed that meeting one unit niacin requirement is
more expensive than meeting one unit thiamin requirement using these
foods. Is this true? If so, determine how many times more expensive
one unit niacin is than thiamin.

(ii) By how much should the price of food 5 have to decrease before
it becomes competitive with other foods?

(iii) The nutritionist recommends that the MDR for thiamine be
increased by 1 unit every 6 months as the infant grows (its requirement
is 4 units/day now, it should be 5 units/day after 6 months, 6 units/day
after 12 months, etc.), until the child reaches 2 years of age. Will the
basic vector (x3, x1) remain optimal to the problem after 2 years from
now? Why?

5.2: Flintink makes 2 printing inks with code names G and B using
3 raw materials R1, R2, R3, according to the following data (inks & raw
materials are measured in drums).

Raw material Drums needed/drum of Supply available
G B /month

R1 1 1 10
R2 0 2 6
R3 1 2 8

Net profit ($/drum) 50 200

Formulate the problem of determining how much of G, B to make
per month to maximize total net profit as an LP.

Find an optimum solution of this problem, and the maximum net
profit for the company, by the simplex method.
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Find the marginal values of R1, R2, R3 in this problem showing
clearly how they are obtained.

A new ink, P, has been developed. To make P needs 3 drums of R1,
1 drum of R2, and 1 drum of R3 per drum. Determine how much net
profit P has to fetch/drum to make it worthwhile for the company to
manufacture it, explaining your argumant very clearly.

5.3: Consider the fertilizer manufacturer’s problem again (z(x) =
total daily net profit):

max z(x) = 15x1 + 10x2 Item

S. to 2x1 + x2 ≤ 1500 RM 1
x1 + x2 ≤ 1200 RM 2
x1 + ≤ 500 RM 3

and x1 ≥ 0 x2 ≥ 0

where

x1, x2 = tons of Hi-ph, Lo-ph manufactured daily
15, 10 = net profit coeffs., $/ton of Hi-ph, Lo-ph
RM 1, 2, 3 : Three raw materials used in manufacturing with
daily availabilities of 1500 tons, 1200, 500 respectively.

To obtain these net profit coeffs. of Hi-ph, Lo-ph, the cost of raw
materials needed to make them, and the manufacturing costs, have
been subtracted from their selling price. The raw materials RM-1, 2,
3 come from the companies own quarries, and their costs are $12, 7,
15/ton respectively.

The optimum solution of the problem is x̄ = (300, 900)T .

The optimum dual solution = the vector of marginal values of RM
1, 2, 3 in this problem is ( $ 5 , 5, 0 ).

Since the company is unable to increase the supply of RM 1, 2, 3
from their quarry, they have started looking for outside suppliers for
them. A supplier has offered to sell the company
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RM 1 at the rate of $18/ton
RM 2 at the rate of $11/ton
RM 1 at the rate of $15/ton

Discuss whether the company should consider buying any of RM 1,
2, 3 from this supplier, explaining the reasons for your conclusion very
carefully.

5.4: A company manufactures products A to G using two types of
machines P1, P2; and three raw materials R1, R2, R3. Relevant data is
given below. Machines time is measured in machine hours, and each
raw material input is measured in its own units. Profit coefficients for
each product are given in $/unit product made.

Item Item input (units)/ unit of Max.
A B C D E F G available

per day
R1 0.1 0.3 0.2 0.1 0.2 0.1 0.2 500
R2 0.2 0.1 0.4 0.2 0.2 0.3 0.4 750
R3 0.2 0.1 0.1 0.2 0.1 0.2 0.3 350
P1 time 0.02 0.03 0.01 0.04 0.01 0.02 0.04 60
P2 time 0.04 0.02 0.02 0.06 0.03 0.05 80

Bound on ≤ 800 ≤ 400
output

Profit 10 12 8 15 18 10 19

(a): Let x1 to x7 denote the units of products A to G in that
order/day. Let x8 to x12 denote the slack variables associated with
the supply constraint on R1, R2, R3, P1-time, P2-time respectively. Let
x13, x14 be the slack variables associated with the upper bound con-
straints on the production of B,E respectively. Using these decision
variables, formulate the product mix problem to maximize total daily
profit as an LP.

(b): The optimum basic vector for this problem is (x2, x3, x4, x5, x9,
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x10, x13) with the values of the basic variables in the optimum BFS as
(466.7, 1000.0, 800.0, 400.0, 63.3, 3.3, 333.3)
Let π1 to π7 denote the dual variables associated with the sup-

ply constraints on R1, R2, R3, P1-time, P2-time, and upper bound con-
straint on the daily production of B,E respectively in that order. Using
these dual variables, write the dual problem.
The optimum dual basic solution associated with the basic vector

(x2, x3, x4, x5, x9, x10, x13) is π = (12.5, 0, 0, 275.0, 137.5, 0, 4.5). Also,
answer each of the following questions about this original problem.

(i) Are the marginal values of the various items well defined in this
problem? If so, what are they?

(ii) Is it worth increasing the supply of R1 beyond the present 500
units/day? The current supplier for R1 is unable to supply any
more than the current amount. The procurement manager has
identified a new supplier forR1, but that supplier’s price is $15/unit
higher than the current suppliers’. Should additional supplies of
R1 be ordered from this new supplier?

(iii) The production manager has identified an arrangement by which
some extra hours/day of either P1- or P2-time can be made avail-
able at a cost of $150/day. Is it worth accepting this arrangement,
and if so for which of these machines?

(iv) The sales manager would like to know the relative contributions
of the various products in the company’s total profit. What are
they?

(v) The production manager claims that the manufacturing process
for G can be changed so that its need for P1-time goes down by
50% without affecting quality, demand or selling price. What
will be the effect of this change on the optimum product mix and
total profit?

(vi) The company’s research division has formulated a new product,
H, which they believe can yield a profit of $8-10/unit made. The
input requirements to make one unit of this product will be



5.8. Exercises 243

Item R1 R2 R3 P1-time P2-time
Input 0.1 0.2 0.1 0.02 0.02

Is this product worth further consideration?

(vii) The sales manager feels that the selling price/unit of product
F can be increased by $2 without affecting the demand for it.
Would this lead to any changes in the optimum production plan?
What is the effect of this change on the total profit?

(D. C. S. Shearn, “Postoptimal Analysis in Linear Programming-
The Right Example”, IIE Transactions 16, no. 1(March 1984)99-101.)
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