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Chapter 6

Primal Algorithm for the
Transportation Problem

This is Chapter 6 of “Junior Level Web-Book for Optimization
Models for decision Making” by Katta G. Murty.

6.1 The Balanced Transportation Prob-

lem

We consider the transportation problem with the following data

m = number of sources where material is available
n = number of sinks or demand centers where material is re-

quired
ai = units of material available at source i, ai > 0, i = 1 to m
bj = units of material required at sink j, bj > 0, j = 1 to n
cij = unit shipping cost ($/unit) from source i to sink j, i = 1

to m, j = 1 to n

The transportation problem with this data is said to satisfy the
balance condition if it satisfies
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246 Ch.6. Transportation Problem

m3
i=1

ai =
n3
j=1

bj

If this condition holds, the problem is known as a balanced trans-
portation problem. Letting xij denote the amount of material trans-
ported from source i to sink j, i = 1 to m, j = 1 to n, the problem is
(6.1.1). It is known as an uncapacitated balanced transportation
problem (uncapacitated because there are no specified upper bounds
on the decision variables xijs). It is a transportation problem of
order m × n (m is the number of sources, and n is the number of
sinks here).

Minimize z(x) =
m3
i=1

n3
j=1

cijxij

subject to
n3
j=1

xij = ai, i = 1 to m

m3
i=1

xij = bj , j = 1 to n (6.1.1)

xij ≥ 0, for all i, j

Let x = (xij) be a feasible solution for it. Summing the set of first
m constraints (those corresponding to the sources), and the set of last
n constraints (those corresponding to the sinks) in it separately, we see
that

�m
i=1 ai =

�m
i=1

�n
j=1 xij =

�n
j=1 bj.

So, we see that the balance condition is a necessary condition for
the feasibility of this problem. So, we assume that the data satisfies
the balance condition.

6.2 An Application at a Bus Rental Com-

pany

The transportation model finds many many applications, and often in
contexts that do not involve shipping of any commodities. We will dis-
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cuss one such application at a bus rental company in Seoul, South Ko-
rea, which involves allocation of buses to trips ( see: K. G. Murty, and
W. J. Kim, “An i-DMSS Based on Bipartite Matching and Heuristics
for Rental Bus Allocation”, Chapter 12 in Intelligent Decision-Making
Support Systems, J. N. D. Gupta, G. A. Forgionne, and M. Mora (ed.),
Decision Engineering Series, Springer-Verlag, UK, 2006). .

This company rents buses with drivers to customers who request
them. Seoul is a big city and a popular destination for many tourists
from all over the world. Requests for the company’s buses come from
visiting student groups, business teams, wedding groups, etc. If there
are tour requests of smaller durations, the same bus may be able to
handle them one after the other. In this way, the company tries to
combine requests of smaller durations into a bus trip for the whole day.

So, each bus trip involves the driver reporting with the bus to the
first group for the day at a specified location (origin of this trip) in the
city, at a specified time in the morning (trip start time), and driving
the group along the route laid out for their tour (the route may involve
some stops of varying durations along the way, the driver waits in the
bus during such stops). After finishing this group’s tour, the driver
may handle the next group’s tour on schedule for the day in the same
way. And so on. The bus trip for the day ends with the last group
on its shedule, at the specified end location and specified time in the
evening.

The company stations buses at two depots in the city, call them
Depot 1, Depot 2 (D1, D2). A driver allotted to a bus trip starts the
bus at the depot and picks up the first group on the trip schedule in
the morning. In the evening after the trip is over, the driver takes the
bus from the ending location of the trip back to its depot.

The customers pay for all the driving in their tours; but the com-
pany has to pay for the drive of the bus from the depot to the starting
location of the trip in the morning, and from the ending location of
the trip back to the depot in the evening. That’s why these drives are
called empty load drives. It has been estimated that the time spent
in empty load driving costs the company at the rate of $40/hour (it
includes driver’s wages, fuel, maintenance, lost opportunity for the bus
to make profit during that time, etc.). This is the only cost we consider
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in allocating buses to trips, this cost is to be minimized.

If the company finds that the number of trips on a day is more
than the number of buses that they have, they can borrow additional
buses on a daily basis from other vendors. For these borrowed buses,
the company has to pay an agreed upon daily rate that is much higher
than the cost of empty load drives if they use their own bus. That’s
why the company uses their own buses as far as possible.

The number of trips handled daily varies between 30 to 50. But in
this illustrative example, we will consider only 8 trips.

The sources for the buses for these trips are D1, D2 (Depots 1, 2),
and OV (Outside vendors). Each trip needs a bus, so each of them is a
sink with a demand for one bus. The total demand on this day is for 8
buses. The company has two buses stationed at D1, and 4 at D2. So,
they need to borrow 8− 2− 4 = 2 buses from OV on this day.

All the data is shown in the following table. In it, j is a trip, and
when i is a depot, cij = cost in $ of empty load drives from i to the
starting location and back to the depot from the ending location of trip
j; based on estimated average driving speed. When i is an OV, cij =
cost in $ of borrowing a bus from i to handle trip j.

Source cij for trip j = Availability
i 1 2 3 4 5 6 7 8 ai

1 = D1 44 20 60 30 25 50 40 30 2
2 = D2 45 60 80 15 35 28 43 15 4
3 = OV 300 400 250 350 450 275 250 350 2
Demand 1 1 1 1 1 1 1 1
bj

Let xij denote the number of buses allocated from souce i to trip
j. This bus allocation problem is clearly the balanced transportation
problem with the data given in the above table, with the restriction
that xij can take only integer values. However, the integer property
of the transportation problem discussed in Chapter 3 guarantees that
this integer restriction can be ignored because the remaining LP has
integer optimum solutions that can be found by LP algorithms.

The optimum solution (xij) for this problem computed using the
algorithm discussed in later sections is given in the following table
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(blank entries are zero, i.e.; only if the value of an xij is nonzero, that
value is entered in cell (i, j)).

Source xij for trip j =
i 1 2 3 4 5 6 7 8
D1 1 1
D2 1 1 1 1
OV 1 1

So, in the optimum solution the two buses at D1 are allocated to
trips 2, 5; the four buses from D2 are allocated to trips 1, 4, 6, and 8;
and buses borrowed from OVs are allocated to trips 3, 7; resulting in
a minimum cost of $648 for these trips.

Every day the company solves the same model with the data for
the trips to be handled on that day to determine the bus allocations
for these trips.

6.3 Special Properties of the Problem

Redundancy in the constraints

Add the firstm constraints in (6.1.1), and from the sum subtract the
sum of the last n constraints. By the balance condition, this leads to
the equation “0 = 0”. Hence there is a redundant constraint among the
equality constraints in (6.1.1), and any one of the equality constraints
in (6.1.1) can be treated as a redundant constraint and deleted from
the system without affecting the set of feasible solutions. We treat the
constraint corresponding to sink n

m3
i=1

xin = bn

as the redundant constraint to eliminate from (6.1.1) (one could have
chosen any of the other equality constraints as being redundant in-
stead of this one). After this constraint is deleted from (6.1.1), we
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obtain the following problem in which all the equality constraints are
nonredundant

Minimize z(x) =
m3
i=1

n3
j=1

cijxij

s. to
n3
j=1

xij = ai, i = 1 . . .m

m3
i=1

xij = bj, j = 1 . . . n− 1 (6.3.2)

xij ≥ 0, for all i, j

The coefficient matrix of the system of equality constraints in (6.3.2)
is of order (m+n−1)×mn and its rank is (m+n−1). So, every basic
vector for the balanced transportation problem of order m× n consists
of (m+ n− 1) basic variables.

The Dual Problem

Associating the dual variable ui to the constraint corresponding
to source i, i = 1 to m; and the dual variable vj to the constraint
corresponding to sink j, j = 1 to n; from Section 5.2, 5.3 we know
that the dual of (6.3.2) is the one given below. Deleting the constraint
corresponding to j = n in (6.1.1) has the effect of setting vn = 0 in the
dual problem. So, the dual problem is

Maximize w(u, v) =
m3
i=1

aiui +
n3
j=1

bjvj

subject to ui + vj ≤ cij , for all i, j (6.3.3)

vn = 0

The Complementary Slackness Optimality Condi-
tions
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Given the dual solution (u, v), the relative cost coefficient of xij
WRT it, i.e., the dual slack variable associated with it, is c̄ij = cij −
ui − vj , for i = 1 to m, j = 1 to n. The various pairs (xij , c̄ij) are
the complementary pairs in (6.3.2) and its dual (6.3.3). And from
Chapter 5, we know that the complementary slackness conditions for
optimality for a primal feasible solution x = (xij) and dual feasible
solution (u = (ui), v = (vj)) to be optimal to the respective problems,
are

xij c̄ij = xij(cij − ui − vj) = 0 for all i, j

The Algorithm that We Will Discuss

Here we will discuss the version of the primal simplex algorithm
for the balanced transportation problem that is executed without the
canonical tableaus, using the special structure of this problem.

This version begins with a primal feasible basic vector obtained by
a special initialization routine. The corresponding dual basic solution
is then computed. If it is dual feasible, i.e., if all the relative cost
coefficients c̄ij WRT it are ≥ 0, the present solutions are optimal to
the respective problems and the algorithm terminates.

If some c̄ij < 0, the present basic vector is not optimal (i.e., is
dual infeasible). In this case the algorithm selects exactly one nonbasic
variable xij corresponding to a negative c̄ij, and brings it into the basic
vector; thus generating a new primal feasible basic vector with which
the whole process is repeated.

Since the algorithm moves only among basic vectors, the comple-
mentary slackness optimality conditions hold automatically through-
out the algorithm because in a BFS only basic primal variables can be
nonzero, and basic relative cost coefficients are always zero. Thus the
primal simplex algorithm maintains primal feasibility and complemen-
tary slackness property throughout, and in each step it tries to move
closer to dual feasibility.

Because of its special structure, we can implement the primal sim-
plex algorithm for solving the balanced transportation problem without
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using the inverse tableaus, but doing all the computations on trans-
portation arrays instead. We discuss this simpler implementation.

Forbidden Cells

In most applications involving a large number of sources and sinks,
a source may not be able to transport material to all the sinks. Some
of the sinks may be too far away from it, or there may be no direct
route from it to all the sinks. In such applications, a set of forbidden
cells in the transportation array is specified with the condition that
there should be no transportation among cells in it. Let F denote the
set of all forbidden cells. For each (i, j) ∈ F we need to make sure that
xij = 0 under this condition.
In the minimization problem (6.3.2) one way to force a variable

xij to be zero in the optimum solution is to make its cost coeffi-
cient cij = +∞, or a very large positive number α (taking α >
(
�m
i=1 ai)(max{|cij| : i = 1 to m, j = 1 to n}) would do). So, we

make cij = α for all forbidden cells (i, j) ∈ F. With this change all
forbidden cells have cost coefficient α and vice versa. If no forbidden
cells are specified, all entries in the cost matrix will be as specified in
the original data.

6.4 Notation Used to Display the Data

Computer implementations of the primal simplex algorithm for the
transportation problem are usually based on the representation of the
problem as a minimum cost flow problem on a bipartite network.
But for hand computation on small problems, it is convenient to

work with transportation arrays discussed in Sections 3.7, 5.3. In this
chapter we will discuss the procedure for applying the primal simplex
method on the balanced transportation problem using transportation
arrays.
Here we describe the various entries entered in these arrays in the

examples given in the following sections.
Each row in the array corresponds to a source, and each column

corresponds to a sink. The variable xij in the problem is associated with



6.5. Initial Basic Vector selection 253

cell (i, j) in the array. Forbidden cells (these correspond to variables
xij which are required to be 0) have very large positive cost coefficients,
and they are essentially crossed out and ignored in the algorithm (i.e.,
the values of the variables in them remain zero) once they become
nonbasic.
The original cost coefficient cij in cell (i, j) will be entered in the

lower right corner of the cell using small size numerals. The relative
cost coefficients, c̄ij , will be entered in the upper left corner of the
cells, also using small size numerals. The relative cost coefficient in
every nonbasic forbidden cell will always be +∞ if cij was defined to
be +∞, or some large positive number if cij was defined to be a large
positive number.
Basic cells will have a small square in their center, with the value of

the corresponding variable in the present BFS entered inside the square
in normal size numerals. So, after an initial basic vector is selected, the
basic vector at any stage consists of the set of cells with little squares
in their center.
The availabilities at the sources and the requirements at the sinks

are typeset using larger size numerals to distinguish them from the cost
data. These are maintained on the array until a BFS to the problem
is obtained.
The dual solution ((ui), (vj)) is entered on the array again using

smaller size numerals.

6.5 Routine for Finding an Initial Feasi-

ble Basic Vector and its BFS

This special routine for finding a feasible basic vector for a balanced
transportation problem selects one basic cell per step, and hence needs
(m+ n− 1) steps on a problem of order m× n.
Initially, all cells in the transportation array are open for selection

as basic cells. In each step, all the remaining cells in either a row or a
column of the basic cell selected in that step will be crossed out from
selection in subsequent steps. Also, the row and column totals will
be modified after each step. The current row and column totals will
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be denoted by ai, bj respectively; these will always be ≥ 0, and they
represent the remaining quantity of material still to be shipped from a
source, or unfulfilled demand at a sink, at that stage. A row or column
will always have an uncrossed cell not yet selected as a basic cell, that
is open for selection as a basic cell, as long as the current total in it is
> 0. Initially, ai = original ai, bj = original bj, for all i, j.

Routine for Finding An Initial BFS

BEGIN

Initialization All cells in the m× n transportation array are open
for selection as basic cells initially, and ai = original ai, bj =
original bj, for all i, j. With these go to first step. We describe
the general step.

General Step If all the remaining cells open for selection as basic
cells, are all in a single row (column), select each of them as
a basic cell; and make the value of the basic variable in each
of them equal to the modified column (row) total at this stage.
Terminate.

If the remaining cells open for being selected as basic cells are
in two or more rows and two or more columns of the array at
this stage, select one of them as a basic cell. Two popular rules
for making this selection are given below. If (r, s) is the selected
cell, make xrs = min{ar, bs} = β say. It is possible for β to be
zero. Subtract β from both ar and bs, this updates them. If new
ar = 0 < bs (bs = 0 < ar) cross out all remaining cells in row r
(column s) from being selected as basic cells in subsequent steps.
If new ar = new bs = 0, cross out all remaining cells in either row
r or column s, but not both, from being selected as basic cells in
subsequent steps. Go to the next step.

END

Rules for Selecting an Open Cell as a Basic Cell
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Here we discuss two rules that are commonly used for making this
selection in the above routine.

The Greedy Choice Rule Under this rule, the cell (r, s) selected
as the basic cell is one which has the smallest cost coefficient among
all cells open for selection at that stage.

Vogel’s Choice Rule Let line refer to a row or column of the
array that contains some cells open for selection at this stage. In each
line compute the cost difference, which is the second minimum cost
coefficient − minimum cost coefficient, among all open cells in this line.
Identify the line that has the maximum cost difference at this stage,
and select a least cost open cell in it as the basic cell in this step. The
rationale for this selection is the following: If that cell is not selected,
any remaining supply or demand in this line has to be shipped using
an open cell with the second minimum cost or higher cost in that line,
and hence results in the highest increase in unit cost at this stage.

If forbidden cells are specified in the problem, it is possible that
some of them may be selected as basic cells in this routine, and the
basic variables corresponding to them may have positive values in the
initial BFS. If the original problem has a feasible solution in which all
the forbidden variables are zero, when the simplex algorithm is applied
to solve the problem beginning with the initial BFS, the forbidden basic
variables will become 0 in the BFS before the algorithm terminates with
an optimum solution.

Example 6.5.1: Finding an initial feasible basic vector
using the greedy choice rule: Consider the iron ore shipping prob-
lem discussed in Example 3.7.1. The array for this problem containing
all the data is given above. The smallest cost coefficient in the entire
array is 2 = c13, so we select (1, 3) as the first basic cell and make x13
= min{200, 800} = 200. With this the demand in Column 3 is fully
satisfied, and we cannot ship any more ore to Plant 3 corresponding to
Column 3. So, we cross out cell (2, 3) in column 3 from being selected
as a basic cell, and enter CR in it to indicate this fact. We also change
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the amount still to be shipped from mine 1 to 800 − 200 = 600. The
array at this stage is given below.

Array 6.5.1
Plant ai

1 2 3

Mine 1 200 600
11 8 2

Mine 2 CR 300
7 5 4

bj 400 500

The least cost cell among the remaining open cells is (2, 2) with cost
coefficient 5, which is selected as the next basic cell, and we make x22 =
min{500, 300} = 300. As before, we change the remaining requirement
at plant 2 to 500 − 300 = 200, cross out the remaining cell (2, 1) in
the saturated row 2 from being selected as a basic cell, and get the
situation in the next array.

Plant ai
1 2 3

Mine 1 200 600
11 8 2

Mine 2 CR 300 CR
7 5 4

bj 400 200
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Now the remaining open cells are (1, 1), (1, 2), both in row 1, so
we select both of them as basic cells and make x11 = 400, and x12 =
200, and obtain the basic vector and associated BFS marked in the
following array. The transportation cost in this BFS is

��
cijxij =

11× 400 + 8× 200 + 5× 300 + 2× 200 = $7900.

Array 6.5.2: The basic vector and BFS
Plant

1 2 3

Mine 1 400 200 200
11 8 2

Mine 2 300
7 5 4

Example 6.5.2: : Finding an initial basic vector using
Vogel’s choice rule: Here we will find an initial feasible basic vector
for the iron ore transportation problem in Example 3.7.1 using Vogel’s
rule for selecting basic cells in each step. In row 1, the smallest and
second smallest cost coefficients are 2, 8, and hence the cost difference
in row 1 is 8 − 2 = 6. In the same way, the cost differences for all the
rows and columns in the array are computed and given below.

Line Cost difference
Row 1 8 − 2 = 6
Row 2 5 − 4 = 1
Col. 1 11 − 7 = 4
Col. 2 8 − 5 = 3
Col. 3 4 − 2 = 2

The highest cost difference occurs in row 1, and hence we select
the least cost cell (1, 3) in it as the first basic cell, and get the same
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situation as in Array 6.5.1 given above. Now column 3 is done, and
we recompute the cost difference for the remaining lines using only the
data from the remaining open cells. These are given below.

Line Cost difference
Row 1 11 − 8 = 3
Row 2 7 − 5 = 2
Col. 1 11 − 7 = 4
Col. 2 8 − 5 = 3

The highest cost difference occurs in column 1, and hence we select
the least cost open cell in it, (2, 1), as the next basic cell and make x21
= min{400, 300} = 300. This leads to the array given below.

Plant ai
1 2 3

Mine 1 200 600
11 8 2

Mine 2 300 CR CR
7 5 4

bj 100 500

Now the only remaining open cells, (1, 1), (1, 2), are in row 1, so we
select both of them as basic cells and make x11 = 100, x12 = 500, leading
to the basic vector given in the following array. The transportation cost
in this BFS is 11× 100 + 8× 500 + 7× 300 + 2× 200 = $7600. Verify
that this BFS is better than the BFS obtained with the greedy choice
rule in Example 6.5.1.
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Array 6.5.3
Plant

1 2 3

Mine 1 100 500 200
11 8 2

Mine 2 300
7 5 4

The computation of cost differences, and finding the maximum
among them, imposes additional work in each step when using Vo-
gel’s selection rule. The effort needed to do this additional work is
very worthwhile, as Vogel’s rule usually produces a much better BFS
than the simple greedy selection rule. Unfortunately, neither rule can
guarantee that the BFS produced will be optimal, hence it is neces-
sary to check the BFS for its optimality. Empirical tests show that
the BFS produced by Vogel’s rule is usually near optimal. So, some
practitioners do not bother to obtain a true optimum solution to the
problem, instead they implement the initial BFS obtained by using Vo-
gel’s selection rule. When used this way, the method is called Vogel’s
approximation method (or VAM in short) for the balanced trans-
portation problem.

Nondegenerate, Degenerate BFSs

As discussed in Chapter 4, a BFS corresponding to a feasible basic
vector for the uncapacitated balanced transportation problem is primal
nondegenerate if all primal basic variables are > 0 in it, primal degen-
erate otherwise. In both the BFSs obtained in Examples 6.5.1 and
6.5.2 for the iron ore transportation problem, all the 4 basic variables
are > 0, hence they are both primal nondegenerate for that problem.
We will now consider an example which leads to a primal degenerate
BFS.
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Example 6.5.3: : Example of a primal degenerate BFS:
Consider the following balanced transportation problem with data given

Sink ai
1 2 3

Source 1 15
1 2 3

2 19
4 4 10

3 11
6 5 15

bj 7 8 30

Sink ai
1 2 3

Source 1 7 8
1 2 3

2 CR 19
4 4 10

3 CR 11
6 5 15

bj 8 30

in the 1st array above. We will use the greedy selection rule for selecting
basic cells in each step to get an initial BFS. The least cost cell (1, 1) is
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selected as the first basic cell, and x11 = min{7, 15} = 7. So, all other
cells in column 1 are crossed out from being selected. The position at
this stage is indicated in the 2nd array above.

Sink ai
1 2 3

Source 1 7 8 CR
1 2 3

2 CR 19
4 4 10

3 CR 11
6 5 15

bj 0 30

Array 6.5.4
Sink

1 2 3

Source 1 7 8
1 2 3

2 0 19
4 4 10

3 11
6 5 15

The least cost cell among open cells now, (1, 2), with a cost coeffi-
cient of 2, is selected as the next basic cell, and we make x12 = min{8,
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8} = 8. At this stage we modify the totals in both row 1 and column
2 to 0, and have to cross out all remaining cells in one of them from
being selected in subsequent stages. Suppose we select row 1 for this.
This leads to the next array at the top of previous page.
Next we select (2, 2) as a basic cell, and make x22 = min{0, 19} =

0, and cross out the remaining cell in column 2. The remaining open
cells are both in column 3, so we select both of them as basic cells.
This leads to the BFS in Array 6.5.4
In this BFS the basic variable x22 = 0, hence it is primal degenerate.

It is necessary to record the zero valued basic variables clearly so as to
distinguish them from nonbasic variables which are always 0 in every
BFS. For them×n balanced transportation problem, every basic vector
must have exactly (m+ n− 1) basic variables or cells.

6.6 How to Compute the Dual Basic So-

lution and Check Optimality

As discussed in Chapter 5, given a feasible basic vector B for (6.3.2),
the dual basic solution associated with it can be computed by solving
the following system of equations. This system is obtained by treat-
ing all the dual constraints in the dual (6.3.3) corresponding to basic
variables in B as equations. The last equation vn = 0 is associated
with the constraint corresponding to sink n which we have treated as
a redundant constraint in (6.3.2) and eliminated.

ui + vj = cij for each basic cell (i, j) ∈ B
vn = 0

For them×n transportation problem, there arem+n dual variables,
andm+n−1 basic variables in every basic vector. So, the above system
of m+n equations in m+n unknowns, is a square nonsingular system
of equations with a unique solution. This is the reason for requiring
that all the zero valued basic variables be recorded carefully, without
them the above system will not be a square system for computing the
dual basic solution uniquely.
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The special structure of the transportation problem makes it possi-
ble to solve the above system very easily by back substitution beginning
with vn = 0. Since we know vn = 0, from these equations correspond-
ing to basic cells in column n of the array, we can get the values of ui
for rows i of these basic cells. Now column n is processed. Knowing the
values of these ui, again from these equations corresponding to basic
cells in the remaining columns in these rows, we can get the values of
vj for columns j of these basic cells. Now the rows of basic cells in
column n are processed, and we continue the method with the columns
of the newly computed vj in the same way, until all the ui and vj are
computed.
Having obtained the dual basic solution (u, v) corresponding to B,

we compute the relative cost coefficients c̄ij = cij−ui−vj in all nonbasic
cells (i, j). The optimality criterion is

Optimality criterion: c̄ij ≥ 0 for all nonbasic (i, j)

If the optimality criterion is satisfied, then (u, v) is dual feasible and
hence B is a dual feasible basic vector. Since B is also primal feasible,
by the results discussed in Chapter 5 it is an optimal basic vector, and
the primal and dual basic solutions associated with it are optimal to
the respective problems.
Example 6.6.1: Consider the basic vector in Array 6.5.2 for

Array 6.6.1
Plant

1 2 3 ui

Mine 1 400 200 200
11 8 2 2

−1 5

Mine 2 300
7 5 4 −1

vj 9 6 0

the iron ore shipping problem. To compute the dual basic solution, we
start with v3 = 0. Since (1, 3) is a basic cell in this basic vector, we have
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u1 + v3 = c13 = 2, so u1 = 2, and the processing of column 3 is done.
As (1, 1), (1, 2) are basic cells, we have u1 + v1 = c11 = 11, u1 + v2 =
c12 = 8, and since u1 = 2 these equations yield v1 = 9, v2 = 6; and
the processing of row 1 is done. As (2, 2) is a basic cell, we have
u2 + v2 = c22 = 5, and from v2 = 6 this yields u2 = −1. Now we have
the complete dual solution; it is entered in the array given above.
The relative cost coefficients of the nonbasic cells (2, 1), (2, 3) are

c̄21 = c21 − u2 − v1 = 7 − (−1) − 9 = −1, c̄23 = c23 − u2 − v3 =
4− (−1)− 0 = 5. These are entered in the upper left corners of these
cells. Since c̄21 < 0, the optimality criterion is not satisfied in this basic
vector.

6.7 A Pivot Step: Moving to an Improved

Adjacent Basic Vector

When we have a feasible basic vector B associated with the BFS x̄ =
(x̄ij), which does not satisfy the optimality criterion, the primal simplex
algorithm obtains a better solution by moving to an adjacent basic
vector by replacing exactly one basic variable with a nonbasic variable
xij whose relative cost coefficient c̄ij < 0, i.e., for which the optimality
criterion is violated. That’s why the set of nonbasic cells E = {(i, j) :
c̄ij < 0}, is called the set of cells eligible to enter the present
basic set.
The method selects exactly one of these eligible nonbasic cells as

the entering cell. This selection can be made arbitrarily, but a couple
of rules that are used most commonly for solving small size problems
by hand computation are the following.

First eligible cell encountered When computing the relative
cost coefficients, the moment the first negative one turns up, select the
corresponding cell as the entering cell. You don’t even have to compute
the relative cost coefficients in the remaining nonbasic cells.

Most negative c̄ij rule Under this rule, you compute the relative
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cost coefficients in all the nonbasic cells, and if the optimality criterion
is not satisfied, select as the entering cell the eligible cell (i, j) with the
most negative c̄ij (break any ties arbitrarily). This rule is also called
the minimum c̄ij rule, or Dantzig’s rule.

Since every basic vector for the m× n transportation problem has
exactly m+ n− 1 basic cells, when an entering cell is brought into the
basic vector, some present basic cell should be dropped from the basic
vector, this cell is called the dropping basic cell, and the variable
corresponding to it is called the dropping basic variable.

To determine the dropping basic variable and the new BFS, the
following procedure is used. All the nonbasic variables other than the
entering variable are fixed at the present value of 0, and the value of
the entering variable is changed from 0 (its present value) to a value
denoted by θ. So, if the entering cell is (p, q), the procedure changes
the value of xpq from its present 0 (since it is a nonbasic variable) to θ.
Now to make sure that exactly ap units are shipped out of source p, and
bq units are shipped to sink q, we have to add a −θ to one of the basic
values in row p, and another −θ to one of the basic values in column
q. These subsequent adjustments have to be made among basic values
only, because every nonbasic variable other than the entering variable
is fixed at its present value of 0. There is a unique way of continuing
these adjustments among basic values, adding alternately a −θ to the
basic value in one basic cell, and then a balancing +θ to the basic
value in another basic cell; until all the adjustments cancel each other
in every row and column, so that the new solution again satisfies all the
equality constraints in the problem. All the cells which have the value
in them modified by the adjustment process belong to a loop called the
θ-loop. It satisfies the following properties.

(i): Every row and column of the array either has no cells in the
θ-loop; or has exactly two cells, one with a +θ adjustment, and the
other with a −θ adjustment.
(ii): All the cells in the θ-loop other than the entering cell are

present basic cells.

(iii): No proper subset of a θ-loop satisfies property (i).
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This set of cells is called the θ-loop in B ∪ {(p, q)}. On small prob-
lems being solved by hand, the θ-loop in B∪{(p, q)} can easily be found
by trial and error, starting with a +θ entry in cell (p, q), and alter-
nately adding one new −θ, +θ entry among basic cells, backtracking
on the selection when necessary. There is a very efficient procedure for
finding θ-loops directly, which can be programmed easily; but to learn
this procedure you need to know spanning trees in networks and their
properties. This procedure is discussed in graduate level textbooks, for
example [K. G. Murty, 1983].
Cells in the θ-loop with a +θ adjustment are called the recipient

cells. The only nonbasic recipient cell is the entering cell. Cells with
a −θ adjustment are called the donor cells. All donor cells are basic
cells.
So, the new solution obtained by fixing all nonbasic variables other

than the entering variable at their present value of 0, changing the
value of the entering variable xpq from its present 0 to θ, and then
reevaluating the values of the basic variables so as to satisfy all the
equality constraints in the problem, is x(θ) = (xij(θ)) where

xij(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̄ij the value of the basic variable in the
present BFS, if (i, j) is not in the θ-loop

x̄ij + θ if (i, j) is a recipient cell in the θ-loop

x̄ij − θ if (i, j) is a donor cell in the θ-loop

Since the shipments in all the recipient cells have to be increased,
and in all the donor cells have to be decreased, the net cost of making
a unit adjustment along the θ-loop in B ∪ {(p, q)} is

3⎛⎜⎝cij : over recipient
cells (i, j) in the
θ-loop

⎞⎟⎠−3
⎛⎜⎝cij : over donor cells

(i, j) in the θ-
loop

⎞⎟⎠
and this will always be equal to the relative cost coefficient c̄pq of the
nonbasic entering cell (p, q) in the θ-loop. We state this fact in the
following theorem.
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THEOREM 6.7.1 Let B be a basic set of cells for the m×n trans-
portation problem WRT which the relative cost coefficients for nonba-
sic cells are (c̄ij). Let (p, q) be a nonbasic cell. Then the set of cells
B∪{(p, q)} contains a unique θ-loop which can be obtained by putting a
+θ entry in the nonbasic cell (p, q), and alternately entries of −θ and
+θ among basic cells as described above, until these adjustments cancel
out in each row and column. This θ-loop satisfies conditions (i), (ii),
(iii) stated above. And the net cost of this θ-loop as defined above is
c̄pq, the relative cost coefficient in (p, q) WRT B.

For a proof of this theorem see [K. G. Murty, 1983]. Now considering
the present BFS x̄ WRT the basic set B, and the new solution x(θ)
obtained as above, with the nonbasic cell (p, q) as the entering cell, we
find from Theorem 6.7.1 that the objective value of x(θ) is z(x(θ)) =
z(x̄) + θ(net cost of the θ-loop in B ∪ {(p, q)}) = z(x̄) + θc̄pq.
Thus the relative cost coefficient c̄pq in the nonbasic cell (p, q) is the

rate of change in the objective value, per unit change in the value of
the nonbasic variable xpq from its present value of 0, while all the other
nonbasic variables stay fixed at their present value of 0.
This is the reason for selecting the entering cell to be one with

a negative relative cost coefficient, since it can lead to an improved
solution with reduced objective value. If the relative cost coefficient of
the entering cell is 0(> 0), you get a solution with the same (higher)
objective value. This also explains the rationale behind the optimality
criterion. If all nonbasic relative cost coefficients are ≥ 0, there is no
way we can get a new feasible solution with a strictly better objective
value by increasing the values of any nonbasic variables from their
present values of 0.
Since z(x(θ)) = z(x̄)+θc̄pq, and c̄pq < 0, as θ increases, the objective

value of x(θ) decreases. To get the best solution in this step, we should
give θ the maximum value it can have. As θ increases, the value of
xij(θ) decreases in donor cells (i, j). So, for x(θ) to remain feasible to
the problem, we need x̄ij − θ ≥ 0 for all donor cells (i, j) in the θ-loop.
Thus the maximum value that θ can have while keeping x(θ) feasible
is

θ = min{x̄ij : (i, j) a donor cell in the θ-loop}
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The value of θ defined above is called the minimum ratio for
the operation of bringing the entering cell (p, q) into the present basic
vector B.
All donor cells (i, j) which tie for the minimum in the above equa-

tion are said to be eligible to drop from the present basic vector
when (p, q) enters it. When θ is made equal to the minimum ra-
tio defined in the above equation in x(θ), xij(θ) becomes zero in all
these cells (i, j). One of these eligible to drop basic cells is selected
as the dropping cell to be replaced by the entering cell, leading to
the new feasible basic vector. x(θ) with the value of θ defined by the
above equation is the BFS associated with it; its objective value is
z(x(θ)) = z(x̄) + θc̄pq ≤ z(x̄) since c̄pq < 0 and θ ≥ 0. Since xij(θ) = 0
for the dropping cell (i, j), it becomes a nonbasic cell now. Any other
donor cells which tied for the minimum in the above equation will stay
as basic cells with the value of the basic variable in them zero in the
new BFS.

After selecting the entering cell (p, q), all the work involved in find-
ing the the new basic vector and its BFS is called a pivot step. In a
pivot step the basic vector changes by exactly one variable.

Example 6.7.1: : Example of a pivot step: Consider the
feasible basic vector and the BFS displayed in Array 6.6.1 for the prob-
lem discussed in Example 6.5.1. The nonbasic cell (2, 1) with relative
cost coefficient c̄21 = −1 is the only cell eligible to enter this basic
vector. x(θ) is marked with +θ, −θ entries in the following array.

Plant
1 2 3 ui

Mine 1 400 − θ 200 + θ 200
11 8 2 2

−1 5

Mine 2 θ 300 − θ
7 5 4 −1

vj 9 6 0
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The recipient cells in this θ-loop are (2, 1), (1, 2); and the donor
cells are (1, 1), (2, 2). The net cost of making a unit adjustment along
this θ-loop is c21 + c12 − c11 − c22 = 7 + 8 − 11 − 5 = −1 = c̄21,
verifying the statement in Theorem 6.1. For x(θ) to be feasible, we
need 400− θ ≥ 0, 300− θ ≥ 0, i.e., the maximum value that θ can have
is min{400, 300} = 300 which is the minimum ratio. When θ = 300,
x22(θ) becomes zero, it is the only basic cell with this property, so it
is the dropping basic cell. So, we put θ = 300 and replace the basic
cell (2, 2) by the entering cell (2, 1) leading to the next basic vector
given in Array 6.7.1. Since c̄21 = −1, and minimum ratio θ = 300, the
change in the objective value in this pivot step is −1× 300 = −300 (it
drops from $7900 to $7600).

Array 6.7.1
Plant

1 2 3 ui

Mine 1 100 500 200
11 8 2 2

1 6

Mine 2 300
7 5 4 −2

vj 9 6 0

We computed the dual basic solution and the nonbasic relative cost
coefficients WRT the basic vector in Array 6.7.1 and entered them.
Since all the nonbasic relative cost coefficients are > 0, the optimality
criterion holds in Array 6.7.1, hence the BFS there is an optimum
solution to the problem and its cost is $7600. This solution requires
shipping

100 tons of ore from mine 1 to plant 1
500 tons of ore from mine 1 to plant 2
200 tons of ore from mine 1 to plant 3
300 tons of ore from mine 2 to plant 1



270 Ch. 6. Transportation Problem

Example 6.7.2: An example of the trial and error method
for finding the θ-loop: Here we give another example of using the
trial and error method to find the θ-loop in B ∪ {(p, q)} where B is
a given feasible basic set for a balanced transportation problem, and
(p, q) is the selected nonbasic entering cell. In the following array, the
basic vector consists of all the cells with a square in the middle, with
the value of the corresponding basic variable in the BFS entered inside
this square.

Array 6.7.2
1 2 3 4 5 ui

1 7 −6
1 18 − θ 20 + θ

6 3 4 5 5 11
7 6 11

2 27 − θ 35 + θ

10 15 15 14 16 16
−1 10 −5

3 0 + θ 27 − θ

8 5 7 11 9 14
−6 −13 −2

4 θ 25 65 − θ

13 4 16 12 25 25
vj −6 −8 −7 −13 0

Relative cost coefficients in nonbasic cells are entered in the upper
left corner of the cell as usual. Every cell with a negative cost coefficient
is eligible to enter this basic vector; of these we selected the cell (4, 2)
as the entering cell.
We make the value of x42 = θ by putting a θ in the center of cell

(4, 2). All other nonbasic variables remain fixed at their present value
of 0. To continue to satisfy the equality constraints in the problem,
we need to add a −θ to the value in one of the basic cells in row 4,
i.e., in cells (4, 4) or (4, 5). If we add −θ to x̄44, since this is the only
basic cell in column 4, we cannot make the next balancing correction
of adding a +θ in another basic cell in this column. So, the basic cell
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(4, 4) is the wrong cell to make the −θ adjustment in row 4, hence this
adjustment must be made in the basic cell (4, 5). This is the trial and
error feature of this procedure. Continuing in this manner, we get the
entire θ-loop in this example, marked in the above array.

Exercises

6.7.1.

(i): Write the donor, recipient cells in the θ-loop in Array 6.7.2.

(ii): Verify that the net cost of making a unit adjustment along
the θ-loop in Array 6.7.2 is −13 = c̄42, the relative cost coefficient of
the entering cell.

(iii): Compute the cost of the present BFS (remember that θ =
0 in it).

(iv): Find the minimum ratio, and select a dropping basic cell
when (4, 2) enters this basic vector. Draw another array, and mark the
new basic vector and the new BFS in it.

(v): Compute the cost of the new BFS and verify that it is = cost
of the old BFS + θc̄42.

(vi): Is the new basic vector optimal? Why?

(vii): If the new basic vector is not optimal, continue the process
by selecting an entering variable into it and performing a pivot step.
Repeat until you get an optimum solution to the problem.

How to Find the θ-loop in a Pivot Step

We only discussed a trial and error procedure for finding the θ-loop
in a pivot step. This trial and error procedure is fine for solving small
problems by hand computation, but it is very inefficient for solving
large real world problems on a computer. Efficient methods for find-
ing θ-loops are based on predecessor labeling schemes for storing tree
structures; see [K. G. Murty, 1983] for details on them. Using these
efficient schemes, large scale transportation problems with thousands
of sources and sinks can be solved in a matter of seconds on modern
digital computers.
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Nondegenerate, Degenerate Pivot Steps

A BFS for (6.3.2) is said to be nondegenerate if all the m +
n − 1 basic variables are strictly > 0 in it; otherwise it is said to be
degenerate. The BFSs found in Examples 6.5.1 and 6.5.2 are all
nondegenerate, while the BFS found in Example 6.5.3 is degenerate.

Let B be a feasible basic vector for the problem, associated with the
BFS x̄ = (x̄ij). If the nonbasic cell (p, q) is selected as the entering cell
into B, the ensuing pivot step is said to be a nondegenerate pivot
step if the minimum ratio in it, θ is > 0; degenerate pivot step if
this minimum ratio is 0.

If x̄ is a nondegenerate BFS, since the minimum ratio in this step is
the minimum of x̄ij over all donor cells (i, j) in the θ-loop, all of which
are basic cells, it is strictly > 0, and hence this pivot step will be a
nondegenerate pivot step. So, a pivot step in a basic vector can only be
degenerate if that basic vector is primal degenerate. Even if the BFS
x̄ is degenerate, if all the donor cells (i, j) in the θ-loop satisfy x̄ij > 0,
the pivot step will be nondegenerate.

If c̄pq is the relative cost coefficient of the entering cell, we have
seen that the objective value of the new BFS obtained at the end of
this pivot step is = (objective value of the old BFS) + θc̄pq. Since
c̄pq < 0 and θ > 0 in a nondegenerate pivot step, the change in the
objective value in it, θc̄pq, is < 0. Thus after a nondegenerate pivot
step, we will obtain a new BFS with a strictly better objective value.
In a degenerate pivot step, θ = 0, and hence the BFS and its objective
value do not change, but we get a new basic vector corresponding to
the same old BFS with a different set of zero valued basic variables in
it.

The pivot steps discussed in Examples 6.7.1 and 6.7.2 are nonde-
generate pivot steps, since the minimum ratios are > 0 in them.

Example 6.7.3: : Example of a degenerate pivot step
Consider the degenerate BFS associated with the basic vector in Array
6.5.4 derived in Example 6.5.3. The dual basic solution and the relative
cost coefficients WRT this basic vector are given below.
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Array 6.7.3
Sink

1 2 3 ui
−5

Source 1 7 − θ 8 + θ
1 2 3 8

1

2 0 − θ 19 + θ
4 4 10 10

−2 −4
3 θ 11 − θ

6 5 15 15

vj −7 −6 0

The nonbasic cell (3, 1) with relative cost coefficient −2 is selected
as the entering cell. The θ-loop is entered on the array. The minimum
ratio = min{7, 0, 11} = 0, hence this is a degenerate pivot step. The
entering cell (3, 1) replaces the basic cell (2, 2) as the new zero valued
basic cell, leading to the new basic vector given below.

Array 6.7.4
Sink

1 2 3

Source 1 7 8
1 2 3

2 19
4 4 10

3 0 11
6 5 15
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Even though the basic vector is different, the BFS and the objective
value corresponding to it are exactly the same as before. This is what
happens in a degenerate pivot step. Thus in a degenerate pivot step
there is no change in the primal solution or objective value; but in
every pivot step, whether degenerate or not, the basic vector changes
by one variable.
Verify that in the basic vector in Array 6.7.3, if we had selected

the entering cell to be (1, 3) instead of (3, 1), it would have resulted in
a nondegenerate pivot step with a strict decrease in the objective value.

We now state the steps in the primal simplex algorithm for the
balanced transportation problem.

6.8 The Primal Simplex Algorithm for the

Balanced Transportation Problem

BEGIN

Initialization Obtain an initial primal feasible basic vector for the
problem and the BFS associated with it, as discussed in Section
6.5. With this basic vector go to the first iteration.

General Iteration Find the dual basic solution and the nonbasic
relative cost coefficients corresponding to the present basic vec-
tor, as discussed in Section 6.6. If all the nonbasic relative cost
coefficients are ≥ 0, the optimality criterion is satisfied, and the
present primal and dual solutions are optimal to the respective
problems. In this case, if some forbidden cells are still in the final
basic vector with positive values for the basic variables in them in
the BFS, it is an indication that there is no feasible solution for
the original problem with xij = 0 for all forbidden cells (i, j) ∈ F.
On the other hand, if all forbidden variables are zero in the fi-
nal BFS when the optimality criterion is satisfied, that BFS is
an optimum feasible solution for the original problem with the
constraints that all forbidden variables be zero. Terminate.
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If the optimality criterion is not satisfied, select a nonbasic cell
with a negative relative cost coefficient as the entering cell, and
perform the pivot step as in Section 6.7. With the new basic
vector and the BFS associated with it, go to the next iteration.

END

Example 6.8.1: Consider the following balanced problem faced
by a truck rental agency. They have some free trucks available at
Detroit, Washinton DC, and Denver; and need additional trucks in
Orlando, Dallas, and Seattle. Data on the cost of transportation per
truck (cij in coded units of money) and other data is given below.

Sink city j No. trucks
Source city i 1 2 3 available, ai

Detroit 1 6
9 6 8

Washington DC 2 11
10 5 12

Denver 3 4
11 13 20

No. trucks

needed, bj 3 4 14

Let xij denote the number of trucks sent from source city i to sink
city j; i, j = 1 to 3. The transportation cost is z(x) =

�3
i=1

�3
j=1 cijxij .

The objective is to find an x that meets the requirements at minimal
cost.
To solve this problem we determine an initial primal feasible basic

vector and the associated BFS as discussed in Section 6.5 using the
greedy rule to select basic cells in each step. We show this basic vector
in the following array. The associated basic solution and the relative
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cost coefficients of nonbasic variables, computed as shown in Section
6.6, are also entered in the array.

Sink
1 2 3 ui

3 5

Source 1 6
9 6 8 8

2 3 − θ 4 4 + θ
10 5 12 12

−7 0

3 θ 4 − θ
11 13 20 20

vj −2 −7 0

The optimality criterion is violated since c̄31 = −7 < 0. (3, 1) is
selected as the entering cell, and the θ-loop is already entered on the
array. The minimum ratio is min{3, 4} = 3. So, this is a nondegenerate
pivot step, and the basic cell (2, 1) is the dropping cell. The next BFS
is given in the following array.

Array 6.8.1
Sink

1 2 3 ui
10 5

Source 1 6
9 6 8 8

7

2 4 7
10 5 12 12

0

3 3 1
11 13 20 20

vj −9 −7 0



6.8. Transportation Simplex Method 277

Now the optimality criterion is satisfied, so the present BFS is an
optimum solution. It requires the following shipments and has the
minimum cost of 205 units of money.

6 trucks from Detroit to Seattle
4 trucks from Washington DC to Dallas
7 trucks from Washington DC to Seattle
3 trucks from Denver to Orlando
1 truck from Denver to Seattle

Initiating the Primal Simplex Algorithm With a
Given Primal Feasible Basic Vector

Consider a balanced transportation problem for which a primal fea-
sible basic vector B is provided. We can initiate the primal simplex
algorithm with B. First we have to compute the primal basic solution
corresponding to B. All variables xij not contained in B are nonbasic
variables, they are fixed at 0 in this basic solution. In the system of
equality constraints in (6.3.2), when all these nonbasic variables are
fixed at 0 and deleted, the remaining system can be solved by back
substitution for the values of the basic variables; leading to the BFS
corresponding to B. Once this BFS is computed, the primal simplex
algorithm can be applied beginning with it.
As an example, consider the iron ore shipping problem discussed in

Section 6.5 with data shown in Array 6.5.1. Consider the basic vector
B = (x11, x12, x22, x23) for this problem. Fixing the nonbasic variables
x13 = x21 = 0, the system of equality constraints in this problem
becomes

x11 +x12 = 800
x22 +x23 = 300

x11 = 400
x12 +x22 = 500

x23 = 200
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When this system is solved by back substitution, it leads to the
BFS corresponding to B given below.

Plant
1 2 3

Mine 1 400 400
11 8 2

Mine 2 100 200
7 5 4

With this BFS, the transportation simplex algorithm discussed above
can be initiated to solve this problem.

6.9 Marginal Analysis in the Balanced Trans-

portation Problem

Marginal analysis deals with the rate of change in the optimum objec-
tive value, per unit change in the RHS constants (i.e., the availabilities
and requirements, ai and bj) in the problem. In the balanced trans-
portation model (6.1.1), the balance condition is necessary for feasi-
bility. Since the balance condition holds originally, if only one quan-
tity among a1, . . . , am; b1, . . . , bn changes while all the others remain
fixed, the modified problem will be infeasible. So, if changes occur, at
least two quantities among a1, . . . , am; b1, . . . , bn must change, and the
changes must be such that the modified data also satisfies the balance
condition.
We will consider three fundamental types of changes in the avail-

ability and requirement data that preserve the balance condition: (i)
increased demand at sink j and a balancing increase in availability at
source i (i.e., same increase in both an ai and a bj), (ii) increase ap and
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decrease ai by the same amount (this shifts the supply from source i to
source p), and (iii) increase bq and decrease bj by the same amount. In
each of these categories, all the other data in the problem is assumed
to remain fixed at present values. The marginal value of each type is
the rate of change in the optimum objective value, per unit change of
this type.

Let x̄ = (x̄ij), and (ū, v̄) be optimum primal, dual solutions for
original (6.3.2). Assume that x̄ is a nondegenerate BFS. Then by Re-
sults 5.5.2, 5.5.3, the marginal values associated with the three types
of changes discussed above are as given below.

Change Marginal value
(i) bj and ai increase by the same amount vj + ui
(ii) ap increases and ai decreases by the
same amount

up − ui

(iii) bq increases and bj decreases by the
same amount

vq − vj

Example 6.9.1: Consider the balanced transportation problem
with the following data, and an optimum BFS for it marked in the
following array.

1 2 3 4 ai ui

1 10 15 20 45
25 36 20 10 10

2 40 30 70
47 40 30 20 20

3 50 50
20 33 15 14 5

bj 60 40 15 50
vj 15 20 10 0
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The optimum transportation cost in this problem is $3950.
What will the rate of change in the optimum objective value be if

b2 were to increase from its current value of 40, and a corresponding
change were made in a3 to keep the problem balanced? It is v2+ u3 =
20 + 5 = $25 per unit change.
From answers to the above questions, it is clear that if demand were

to increase at any demand center, the best place to create additional
supplies to satisfy that additional demand, purely from a transporta-
tion cost point of view, is source 3 (it is the source with the smallest
ui). This results in the smallest growth in the total transportation cost
to meet the additional demand.
How much can the company save in transportation dollars by shift-

ing supply from source 2 to source 3? The rate of change in the opti-
mum transportation cost per unit shift is u3−u2 = 5− 20 = − $15, or
a saving of $15. �Y

Thus using this marginal analysis, we can determine if the trans-
portation costs can be reduced by shifting production from existing
centers to different places. However this analysis has not taken into
account any differences in production costs between centers. To deter-
mine the net savings in shifting supplies, one has to take into account
the differences in production costs between places too.

6.10 What to do if There is Excess Supply

or Demand

The transportation problem (6.1) in which all the constraints are equa-
tions has a feasible solution iff the total supply

�
ai is equal to the total

demand
�
bj .

Suppose we have a situation in which the total supply
�
ai strictly

exceeds the total demand
�
bj . In this case, after all the demand is

met, an amount ∆ =
�
ai−� bj will be left unused at the sources. So,

to solve this problem, we open a new (n+1)th column in the array. In
row i, the cell (i, n+1) represents the material left unused at source i,
i.e., not shipped out of source i. Since there is no cost for not shipping
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the material, we make the cost coefficients for all the cells in the new
column (n + 1) equal to zero. Make bn+1 = ∆, the total amount of
material that will be left unused at all the sources. Solve this modified
m × (n + 1) problem as a balanced transportation problem. In the
optimum solution of this modified problem, basic values in the cells of
column (n+ 1) represent unused material at the sources.

As an example, consider a company with three refineries with daily
production capacities for gasoline as shown in the following array. The
company has contracts to sell gasoline to four wholesalers daily as
shown below. Total availability =

�3
i=1 ai = 55 units, while the

Transportation cost
from refinery to Daily

wholesaler(money/unit) availability
Wholesaler 1 2 3 4 (unit = 106 gal.)

Refinery 1 5 8 10 11 23
2 8 6 5 8 16
3 9 6 5 8 16

Daily requirement 15 3 14 14

1 2 3 4 Dummy 5 ai

1 15 8 23
5 8 10 11 0

2 14 2 16
8 6 5 8 0

3 3 12 1 16
9 6 5 8 0

bj 15 3 14 14 9

total requirement is
�4
j=1 bj = 46 units with an excess supply of ∆
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= 9 units daily. Open a fifth column (dummy sink) with a demand
for 9 units (unused supply at the refineries) leading to the balanced
transportation problem given above.

An optimum solution for this problem is also entered in the array.
From the basic values in the dummy column, we find that in order to
meet the existing demand at minimum transportation cost, it is best
to cut down production at refinery 1 to 23−8 = 15 units/day, and that
at refinery 3 to also 16− 1 = 15 units/day, while operating refinery 2
at its full capacity of 16 units/day.
Consider the other situation where total demand

�
bj exceeds total

supply
�
ai. In this case there is a shortage of d =

�
bj −� ai, and

there is no way we can meet all the demand with the existing supply
only.
To meet all of the existing demand, we need to identify a new source

that can supply d units. In this case, if it is only required to find how
to distribute the existing supply to meet as much of the demand as
possible at minimum transportation cost, we open a dummy source
row (the (m + 1)th), cells in which represent unfulfilled demand at
the sinks. Make the cost coefficients of all the cells in this dummy
row equal to zero (since they represent demand not fulfilled, i.e., not
shipped), and make am+1 = d, and solve the resulting (m + 1) × n
balanced transportation problem.

6.11 Exercises

6.1: A company making canned foods has vegetable farms and canning
facilities in cities FC1, FC2, FC3. They store the canned produce
in warehouses located in cities denoted by W1, W2, W3, W4. They
supply their canned produce to customers all over the country from
these warehouses. At each canning facility, as soon as a full truckload
is produced, it is sent to a warehouse for storing.
The forcasted output at each canning facility (in truckloads), the

storage space availability at each warehouse (in truckloads), and the
trucking cost cij (money units/truckload) between the pair (FCi, Wj)
for i = 1, 2, 3 and j = 1 to 4 is given in the following table.
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Source i cij to sink j Output
W1 W2 W3 W4

FC1 3 7 6 4 150
FC2 2 4 3 2 250
FC3 4 3 8 5 300
Storage 200 150 200 250
Space

Determine how many truckloads to send from each canning facility
to each warehouse to minimize the trucking cost incurred.

6.2: Production allocation to plants: A company makes and
markets products P1 to P4. They have 5 plants in the country to make
these products. Each plant can make one or more of the products, but
the manufacturing cost of each product varies from plant to plant. For
i = 1 to 4, j = 1 to 5, let

cij = Production cost (in money units/unit, money unit is a
coded unit) of producing Pi at plant j.

bj = Total production capacity (units/year) of Plant j. Each
plant can make any combination of products that they
can make, upto their production capacity.

ai = Demand for Product i (units/year).

The company would like to meet the demand for all the products.
If they are unable to make any product to the full demand level, they
can subcontract the unmet demand to a subsidiary. Here is the data.
Blank entries indicate that the plant cannot make that product.

Pi cij at Plant j ai
1 2 3 4 5

P1 50 70 65 1500
P2 40 51 65 50 1000
P3 30 45 40 5000
P4 12 15 30 20 10,000
bj 600 400 600 1200 1000
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How many units of each product should they make at each of their
plants in order to minimize their total production cost? What portion
of the demand would this solution leave for the subsidiary?

6.3: Solve the following balanced transportation problem using
{(1, 2), (1, 5), (2, 4), (2, 5), (3, 1), (3, 3), (4, 2), (4, 3)} as the initial basic
set of cells. cij is the shipping cost/unit from source i to market j.
Suppose the requirement at market 5, b5, increases from its current

value of 19. What is the best source, say source p, at which to create
additional supplies to meet this extra demand? Explain the reasons
for the choice of p clearly.

Source i cij ai = supply (units)
1 2 3 4 5

1 12 6 12 8 8 20
2 15 9 14 8 10 21
3 12 9 13 10 9 8
4 11 7 11 9 12 13

bj = requirement 6 14 11 12 19

Increase both b5 and ap by δ, and obtain the new optimum solution
as a function of δ, and find its optimality range.

6.4: Consider the balanced transportation problem with m = 4
sources, n = 6 markets, a = (ai) = (13, 31, 51, 21), b = (bj) = (17, 4,
16, 13, 54, 12); where ai, bj are the amounts available to be shipped out
of source i, required at market j respectively. cij = cost of transporting
from source i to market j/unit, and

c = (cij) =

⎛⎜⎜⎜⎝
10 2 9 1 11 12
12 9 3 11 4 15
3 7 10 9 6 6
12 9 11 3 5 18

⎞⎟⎟⎟⎠
Find an initial BFS to this problem using Vogel’s method. Solve

the problem beginning with that BFS.
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