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Chapter 7

Modeling Integer and
Combinatorial Programs

This is Chapter 7 of “Junior Level Web-Book Optimization
Models for decision Making” by Katta G. Murty.

7.1 Types of Integer Programs, an Exam-

ple Puzzle Problem, and a Classical

Solution Method

So far, we considered continuous variable optimization models. In this
chapter we will discuss modeling discrete or mixed discrete opti-
mization problems in which all or some of the decision variables are
restricted to assume values within specified discrete sets, and com-
binatorial optimization problems in which an optimum combina-
tion/arrangement out of a possible set of combinations/arrangements
has to be determined. Many of these problems can be modeled as LPs
with additional integer restrictions on some, or all, of the variables.
LP models with additional integer restrictions on decision variables
are called integer linear programming problems or just integer
programs. They can be classified into the following types.
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288 Ch.7. Integer Programs

Pure (or, all) integer programs: These are integer programs in which
all the decision variables are restricted to assume only integer val-
ues.

0−1 pure integer programs: These are pure integer programs, and
in addition, all decision variables are bounded variables with
lower bound 0, and upper bound 1; i.e., in effect, every decision
variable in them is required to be either 0 or 1.

Mixed integer programs or MIPs: Integer programs in which there
are some continuous decision variables and some integer decision
variables.

0−1 mixed integer programs (0-1 MIPs): These are MIPs in which
all the integer decision variables are 0−1 variables.

Integer feasibility problems: Mathematical models in which it is
required to find an integer solution to a given system of linear
constraints, without any optimization.

0−1 integer feasibility problems: Integer feasibility problems to find
a 0−1 solution to a given system of linear constraints.

Many problems involve various yes - no decisions, which can be
considered as the 0−1 values of integer variables so constrained. Vari-
ables which are restricted to the values 0 or 1 are called 0−1 variables
or binary variables or boolean variables. That’s why 0−1 integer
programs are also called binary (or boolean) variable optimiza-
tion problems.
And in many practical problems, activities and resources (like ma-

chines, ships, and operators) are indivisible, leading to integer decision
variables in models involving them.
Many puzzles, riddles, and diversions in recreational mathematics

and mathematical games are combinatorial problems that can be for-
mulated as integer programs, or plain integer feasibility problems. We
now provide a 0−1 integer feasibility formulation for a problem dis-
cussed in the superbly entertaining book [R. M. Smullyan, 1978].
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Example 7.1.1: An Integer program in the play Mer-
chant of Venice by William Shakespeare

The setting of this problem from [R. M. Smullyan, 1978] is William
Shakespeare’s play “The Merchant of Venice” written in the year 1597.
In this play, a girl named Portia is the lead female character. She was
a law graduate with an obsession for highly intelligent boys. Her sole
concern was with “intelligence”, completely ignoring other character-
istics that girls usually associate with desirable life-mates. Her life’s
ambition was to marry an extremely intelligent boy, no matter how he
looks or behaves, or how wealthy he is. For achieving this goal she
devised a very clever scheme to choose her fiance.
She purchased three caskets, one of gold, silver, and lead, and hid

a stunningly beautiful portrait of herself in one of them. The suitor
was asked to identify the casket containing the portrait. If his choice is
correct, he can claim Portia as his bride; otherwise he will be perma-
nently banished to guarantee that he won’t appear for the test again.
To help the suitor choose intelligently, Portia put inscriptions on the
caskets as in Figure 7.1. And she explained that at most one of the
three inscriptions was true. She reasoned that only an intelligent boy
could identify the casket containing the portrait with these clues.

The portrait is in
this casket

The portrait is
not in this casket

The portrait is
not in the gold
casket

1 = Gold 2 = Silver 3 = Lead

Figure 7.1

We will now show that the problem of identifying the casket con-
taining the portrait, can be modeled as a 0−1 integer feasibility prob-
lem. The model uses 0−1 variables known as combinatorial choice
variables corresponding to the various possibilities in this problem,
defined above. These decision variables are, for j = 1, 2, 3,
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xj =
1, if the jth casket contains the portrait
0, otherwise

(7.1.1)

yj =
1, if the inscription on the jth casket is true
0, otherwise

These variables have to satisfy the following constraints

x1 +x2 +x3 = 1
−x1 +y1 = 0

x2 +y2 = 1
x1 +y3 = 1

y1 +y2 +y3 ≤ 1 (7.1.2)

xj, yj = 0 or 1 for all j

The first constraint in (7.1.2) must hold because only one casket
contains the portrait. The second, third, fourth constraints must hold
because of the inscriptions on caskets 1, 2, 3, and the definitions of the
variables x1, y1; x2, y2; x3, y3. The fifth constraint must hold because
at most one inscription was true.
In (7.1.2), the 0−1 values for each variable denote the two distinct

possibilities associated with that variable. Fractional values for any of
the variables in (7.1.2) do not represent anything in the model, and
hence do not make any sense for the problem. Also, given the defini-
tions of the variables in (7.1.1), we cannot claim that a fractional value
like 0.99 for one of these variables is closer to 1 than 0 for this variable.
Due to this, we cannot take a fractional solution to the system consist-
ing of the top 5 constraints in (7.1.2), and somehow try to round it to
satisfy the integer requirements on the values of the variables also. The
usual technique of rounding a fractional solution to a nearest integer
point does not make any sense at all when dealing with integer models
involving combinatorial choice variables like those in this problem.
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Since there is no objective function to be optimized in (7.1.2), it is
a 0−1 integer feasibility problem. It is a formulation for Portia’s casket
problem involving 0−1 integer variables.

A Classical Solution Method, Total Enu-
meration

In a pure 0−1 problem with three 0−1 variables x = (x1, x2, x3),
the only vectors that could be solution vectors are (0, 0, 0), (0, 0, 1),
(0,1, 0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1, 1, 1). So, by checking each
of these 23 = 8 vectors we can identify the set of all feasible solutions,
and also the set of optimum solutions for the problem.

In the same way, an optimum solution of a 0−1 problem in binary
variables x = (x1, . . . , xn) can be found by checking the set of all 0−1
vectors x which number 2n. Since the spirit of this method is to check
all possible vectors for the optimum solution, this classical method is
called the total enumeration method.

In the same way, when dealing with integer variables (or variables
that can take only values in discrete sets), the set of all vectors that
could be solutions is a discrete set which can be enumerated one by one
to check and identify the best solution. This is the total enumeration
method. The name of the method refers to the fact that the method
examines every possible solution and selects the best feasible solution
among them.

In a pure integer program there are only a finite number of solutions
if all the variables have finite lower and upper bounds specified for
them. A solution is obtained by giving each variable an integer value
within its bounds. This solution is a feasible solution to the problem
if it satisfies all the other equality and inequality constraints in the
system; and if it is feasible, we evaluate the objective function at it. By
examining each possible integer solution this way, and then comparing
the objective values at the feasible solutions among them, we can find
an optimum feasible solution if the problem has a feasible solution.

If there is no upper or lower bound on the value of one or more
variables in a pure integer program, the number of solutions to examine
in the above method could be infinite. But still they could be evaluated
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one by one as discussed above.

In MIPs there are some integer and some continuous decision vari-
ables. The total enumeration method uses the following enumeration
scheme to solve an MIP. First, all the integer variables are given specific
integer values within their bounds. The remaining problem, consist-
ing of only the continuous decision variables, is a linear program, and
can be solved by the methods discussed earlier. If this LP is feasible,
this yields the best possible feasible solution for the original problem
with all the integer variables fixed at their current values. Repeat this
process with each possible choice of integer values for the integer vari-
ables, and select the best among all the feasible solutions obtained as
the optimum solution for the original problem.

Solution of Portia’s problem by total enumera-
tion: As an example, we will illustrate how the total enumeration
method solves Portia’s casket problem. The only possible choices for
the vector x = (x1, x2, x3)

T to satisfy the first and sixth constraints
in (7.2) are (1, 0, 0)T , (0, 1, 0)T , and (0, 0, 1)T . We try each of these
choices and see whether we can generate a vector y = (y1, y2, y3)

T

which together with this x satisfies the remaining constraints in (7.2).

If x = (1, 0, 0)T , by the second and third constraints in (7.1.2),
we get y1 = 1, y2 = 1, and the fifth constraint will be violated. So,
x = (1, 0, 0)T cannot lead to a feasible solution to (7.1.2).

If x = (0, 1, 0)T , from the second, third, and fourth constraints
in (7.1.2), we get y1 = 0, y2 = 0, and y3 = 1, and we verify that
x = (0, 1, 0)T , y = (0, 0, 1)T satisfies all the constraints in the problem,
hence it is a feasible solution to (7.1.2).

In the same way we verify that x = (0, 0, 1)T does not lead to a
feasible solution to (7.1.2).

Hence the unique solution of (7.1.2) is x = (0, 1, 0)T , y = (0, 0, 1)T ;
which by the definition of the variables implies that casket 2 (silver
casket) must contain Portia’s portrait.

Thus total enumeration involves checking every possibility. It is an
extremely simple method, and it works well if the number of possi-
bilities to be examined is small. In fact, this is the method used to
solve problems of Category 1 discussed in Chapter 1, 2. Unfortunately,
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in real world applications of integer programming and combinatorial
optimization, the number of possibilities to check tends to be so huge,
that even using the fastest and most sophisticated computers available
today, the answer to the problem cannot be obtained by total enumer-
ation within the lifetime of the decision maker, making it impractical.
Thus for solving large scale problems of Category 2 discussed in

Chapter 1, total enumeration is not a practical approach. We need
more efficient algorithms to handle these problems. An improved ap-
proach based on partial enumeration is presented in Chapter 8.

Conclusion of Portia’s Story

As R. Smullyan reports in his 1978 book, an intelligent, nice, and
handsome suitor showed up for Portia’s test. He chose correctly and
claimed Portia’s hand in marriage, and they lived happily for a while.
The sequel to this story is stated in the following Exercise 7.1.1.

Exercises: Some puzzle problems to model as integer
programs: Below are some puzzle problems that can be modeled using
combinatorial choice variables by direct arguments. Somewhat more
difficult puzzle problems that need the use of the modeling tool called
indicator variables or given later.

7.1.1: This exercise is also adapted from the excellent 1978 book
of R. Smullyan. As

The portrait is
not in the silver
casket

The portrait is
not in this casket

The portrait is in
this casket

1 = Gold 2 = Silver 3 = Lead

Figure 7.2

discussed under the marriage problem in Chapter 3, familiarity breeds
contempt, and after a brief blissful period of married life, Portia was
haunted by the following thought: “My husband displayed intelligence
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by solving my casket problem correctly, but that problem was quite
easy. I could have posed a much harder problem, and gotten a more
intelligent husband.” Because of her craving for intelligence, she could
not continue her married life with this thought, and being a lawyer,
she was able to secure a divorce easily. This time she wanted to find
a more intelligent husband by the casket method again, and had the
inscriptions put on the caskets as shown in Figure 7.2.

She explained to the suitors that at least one of the three inscrip-
tions is true, and at least one of them is false.

Formulate the problem of identifying the casket containing the por-
trait in this situation as a 0−1 integer feasibility problem, and solve it
by total enumeration.

P.S. To complete the story, the first man who solved this casket
problem turned out to be Portia’s ex-husband. So, they got mar-
ried again. He took her home, and being not only intelligent but also
worldly-wise he was able to convince her that he is the right man for
her, and they lived happily ever after.

7.1.2: Four persons, one of whom has committed a terrible crime,
made the following statements when questioned by the police. Anita:
“Kitty did it.” Kitty: “Robin did it.” Ved: “I didn’t do it.” Robin:
“Kitty lied.”

If only one of these four statements is true, formulate the problem
of finding the guilty person as a 0−1 feasibility problem, and find its
solution by total enumeration.

Who is the guilty person if only one of the four statements is false?
Formulate this as a 0−1 feasibility problem and solve it.

7.1.3: Lady or Tigers-1: (Adopted from R. Smullyan, 1982) In
trying to win the hand of his beloved, a man becomes a prisoner, and is
faced with a decision where he must open the door of one of four rooms.
Each room may be either empty, or hiding a tiger, or his beloved. Each
door has a sign bearing a statement that may be true or false. The
statements on the four doors are:

Door 1: The lady is in an odd-numbered room
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Door 2: This room is empty

Door 3: The sign on door 1 is false

Door 4: The lady is not in room 1

The prisoner is given several clues: He is informed that the lady is
in one of the rooms. The sign on the door hiding the lady is true, the
signs on all doors hiding tigers are false, and the signs on the doors of
empty rooms can be either true or false. Also, either the sign on door
2 is right, or that on door 4 is wrong.

If the prisoner opens the door to find the lady, he can marry her; if
he opens the door to find a tiger he will be eaten alive; and if he opens
an empty room, he will be banished alone to a distant foreign land.

Help the prisoner by formulating the problem of finding all the doors
which may be hiding his beloved, subject to all the clues.

7.1.4: Color of the mule: (From R. Smullyan, 1997)

The setting of this puzzle is the “Tales of the Arabian Nights” with
Scheherazade entertaining her husband, the King, with some puzzles,
so he will stay her execution until next day. This is the puzzle she told
him on the 1003rd night.

“A certain Sheik named Hassan once met three boys and told them
about his mule.

“What color is he?” asked one boy. “Well he is either brown, black,
or gray. Make some guesses.”

“He is black” one boy said. “He is either brown or gray” said
another. “He is brown” the third said.

Hassan said “at least one of you guessed right, and at least one of
you guessed wrong”.

Formulate the problem of finding the mule’s color as an integer
feasibility problem, and solve it using total enumeration.

7.1.5: (From R. Smullyan, 1997)
Abdul has a shop which was robbed, but the loot was recovered. A,

I and H were the three suspects. They made the following statements.
These may be true or lies.
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A: I did not commit the robbery.

I: H certainly didn’t.

H: Yes, I did.

Later two of them confessed to having lied, and this is correct. It
is reqiured to find who committed the robbery. Formulate this as an
integer feasibility problem, and solve it using total enumeration. �Y

In the following sections we show how a variety of combinatorial
conditions arising in practical applications can be modeled through
linear constraints involving 0−1 integer variables. And we present sev-
eral integer programming models that appear often in applications.

7.2 The Knapsack Problems

Knapsack problems (or one dimensional knapsack problems to
be specific, see later on) are single constraint pure integer programs.
The knapsack model refers to the following situation. Articles of n
different types are available. Each article of type i has weight wi kg.
and value $vi. A knapsack that can hold a weight of at most w kg. is
available for loading as many of these objects as will fit into it, so as to
maximize the value of the articles included subject to the knapsack’s
weight capacity. Articles cannot be broken, only a nonnegative integer
number of articles of each type can be loaded. For j = 1 to n define

xj = number of articles of type j included in the knapsack

In terms of these decision variables, the problem is

Maximize z(x) =
n

j=1

vjxj

subject to
n

j=1

wjxj ≤ w (7.2.1)

xj ≥ 0 and integer for all j
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This is known as the nonnegative integer knapsack problem.
It is characterized by a single inequality constraint of “≤” type, and
all positive integral data elements.

If the last condition in (7.2.1) is replaced by “xj = 0 or 1 for all j”,
the problem becomes the 0−1 knapsack problem.
The knapsack problem is the simplest integer program, but it has

many applications in capital budgeting, project selection, etc. It also
appears as a subproblem in algorithms for cutting stock problems and
other integer programming algorithms.

Example 7.2.1: Journal Subscription Problem

We now present an application for the knapsack model to a problem
that arose at the University of Michigan Engineering Library in Ann
Arbor. At that time the library was subscribing to 1200 serial journals,
and the annual subscription budget was about $300,000. The unending
battle to balance the serials budget, and the exorbitant price increases
for subscriptions to scholarly journals, have made it essential for the
library to consider a reduction in acquisitions. This led to the prob-
lem of determining which subscriptions to renew and which to cancel,
in order to bring the total serials subscription expenditure to within
the specified budget. To protect the library’s traditional strengths as
a research facility, the librarian has set the goal of making these re-
newal/cancellation decisions in order to provide the greatest number
of patrons the most convenient access to the serial literature they re-
quire within allotted budget. Anticipating this problem, the library
staff has been gathering data on the use of journals for about four
years. We constructed a sample problem to illustrate this application,
using the data from 8 different journals. The value or the readership
of a journal given in the following table is the average number of uses
per year per title.

Suppose the total budget available for subscriptions to these 8 jour-
nals is $670. Defining for j = 1 to 8

xj =
1, if subscription to journal j is renewed
0, otherwise
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Journal j Subscription $/year, wj Readership, vj
1 80 7840
2 95 6175
3 115 8510
4 165 15015
5 125 7375
6 78 1794
7 69 897
8 99 8316

we get the following 0−1 integer programming formulation for the li-
brary’s problem of determining which journal subscriptions to renew,
to maximize readership subject to the budget constraint.

Max. z(x) = 7840x1 + 6175x2 + 8510x3 + 15015x4 + 7375x5 + 1794x6 + 897x7

+8316x8

s. to 80x1 + 95x2 + 115x3 + 165x4 + 125x5 + 78x6 + 69x7 + 99x8 ≤ 670
xj = 0 or 1 for all j

Clearly, this problem is a 0−1 knapsack problem.

The Multidimensional Knapsack Problem

Consider the knapsack problem involving n articles. Suppose we are
given the value of each article, and both its weight as well as volume.
And assume that the knapsack has a capacity on both the weight and
the volume that it can hold. Then the problem of determining the
optimum number of articles of each type to load into the knapsack,
to maximize the total value loaded subject to both the weight and
volume constraints, is a problem of the form (7.3) with two constraints
instead of one. A problem of this form is in called amultidimensional
knapsack problem. A general multidimensional knapsack problem is
the following problem
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Maximize z(x) = cx

subject to Ax ≤ b (7.2.2)

x ≥ 0 and integer

where A is an m× n matrix, and A, b, c are all > 0 and integer.

0−1 Multidimensional Knapsack Problem
with Additional Multiple Choice Constraints

Consider a multidimensional knapsack problem involving n articles,
in which at most one copy of each article is available for packing into
the knapsack. So, the decision variables in this problem are, for j = 1
to n

xj =
1, if jth article is packed into the knapsack
0, otherwise

Let cj be the value of article j, so z(x) = cjxj is the objective
function to be maximized in this problem. Let Ax ≤ b be the system
of m multidimensional knapsack constraints in this problem.
In addition, suppose the n articles are partitioned into p disjoint

subsets {1, . . . , n1}, {n1+1, . . . , n1+n2}, . . . , {n1+. . .+np−1+1, . . . , n1+
. . .+np} consisting of n1, n2, . . ., np articles respectively, where n1+. . .+
np = n, and it is specified that precisely one article must be selected
from each of these subsets. These additional requirements impose the
following constraints

x1 + . . .+ xn1 = 1
xn1+1 + . . .+ xn1+n2 = 1

.. .
...

xn1+...+np−1+1 + . . .+ xn = 1

A system of equality constraints of this type in 0−1 variables is
called a system of multiple choice constraints. Each constraint
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among these specifies that a single variable among a subset of variables
has to be set equal to 1, while all the other variables in that subset are
set equal to 0. The combined problem is the following

Max. z(x) = cx
s. to Ax ≤ b

x1 + . . .+ xn1 = 1
xn1+1 + . . .+ xn1+n2 = 1

.. .
...

xn1+...+np−1+1 + . . .+ xn = 1
xj = 0 or 1 for all j

This is the general 0−1 multidimensional knapsack problem with
additional multiple choice constraints.

Exercises

7.2.1: Girlscout fruit problem: (Lisa Schaefer) A school girl is
raising money for Girlscouts by selling fruit in the neighborhood of her
school. She picks the fruit at her school in a knapsack, and carries it
around door to door in the neighborhood trying to sell. Her carrying
capacity is 25 lbs of fruit, and wants to earn the maximum possible
amount in each round. The following fruit is available, we also provide
the selling price/piece. It is required to determine the highest total
value that can be packed in the knapsack subject to the 25 lbs weight
limit. Formulate this problem.

Fruit Per piece Quantity
Weight(lbs) Selling price ($) available

Cantalopue 3 2 4
Watermelon 6 8 3
Honeydew 4 5 6
Apple 0.5 0.95 15
Grapefruit 1 0.75 10
Orange 0.7 0.6 15
Bunch of 3 bananas 0.9 1 6
Mango 1.2 2 10
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7.2.2: Formulate the Girlscout Fruit Problem in Exercise 7.2.1 as
a 0−1 knapsack problem (Hint: Introduce groups of new variables, all
variables in each group associated with the same data).

7.2.3: A Capital Budgeting Problem: There is a total of w0 =
$35 mil. available to invest. There are 8 independent investment pos-
sibilities, with the jth one costing wj in mil.$, and yielding an annual
payoff of vj in units of $10,000, j = 1 to 8. The following table pro-
vides this data. Each investment possibility requires full participation,
partial investments are not acceptable. The problem is to select a sub-
set of these possibilities to invest, to maximize the total annual payoff
(measured in units of $10,000) subject to the constraint on available
funds. Formulate as a knapsack problem.

Investment cost wj Annual payoff
possibility j in $mil. vj in $10,000 units

1 3 12
2 4 12
3 3 9
4 3 15
5 15 90
6 13 26
7 16 112
8 12 62

7.2.4: A Multiperiod Capital Budgeting Problem: An in-
vestor who is expecting to receive sizable income annually over the next
three years is investigating 8 independent projects to invest the spare
income. Each project requires full participation, no partial participa-
tion is allowed. If selected, a project may require cash contributions
yearly over the next 3 years, as in the following table. At the end of
the 4th year, the investor expects to sell off all the selected projects
at the expected prices given in the following table. The investor needs
to determine the subset of projects to invest in, to maximize the total
expected amount obtained by selling off the projects at the end of the
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4th year, subject to the constraint on available funds in years 1, 2, 3.
Formulate as a multidimensional knapsack problem.

Project Investment in $104 units Expected selling price
needed in year in 4th year in $104 units
1 2 3

1 20 30 10 70
2 40 20 0 75
3 50 30 10 110
4 25 25 35 105
5 15 25 30 85
6 7 22 23 65
7 23 23 23 82
8 13 28 15 70

Funds 95 70 65
available

7.2.5: Problem with Multiple Choice Constraints: Consider
the investment problem discussed in Exercise 7.2.3. Projects 1, 2 there
deal with fertilizer manufacturing; projects 3, 4 deal with tractor leas-
ing; and projects 5, 6, 7, 8 are miscellaneous projects. The investor
would like to invest in one fertilizer project, one tractor leasing project,
and at least one miscellaneous project. Derive a formulation of the
problem that includes these additional constraints.

7.3 Set Covering, Set Packing, and

Set Partitioning Problems

Consider the following problem faced by the US Senate. They have
various committees having responsibility for carrying out the senate’s
work, or pursuing various investigations. Membership in committees
brings prestige and visibility to the senators, and they are quite vigor-
ously contested. We present an example dealing with that of forming a
senate committee to investigate a political problem. There are 10 sen-
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ators, numbered 1 to 10, who are eligible to serve on this committee.
They belong to the following groups.

Group Eligible senators
in this group

Southern senators {1, 2, 3, 4, 5}
Northern senators {6, 7, 8, 9, 10}
Liberals {2, 3, 8, 9, 10}
Conservatives {1, 5, 6, 7}
Democrats {3, 4, 5, 6, 7, 9}
Republicans {1, 2, 8, 10}

It is required to form the smallest size committee which contains
at least one representative from each of the above groups. Notice that
here the groups are not disjoint, and the same person may belong to
several groups. Each person selected as a member of the committee
will be counted as representing each group to which s/he belongs. So,
the size of an optimum committee may be smaller that the number of
groups.
We will give a 0−1 integer formulation for this problem. For j = 1

to 10, define

xj =
1, if senator j is selected for the committee
0, otherwise

Then the committee size is xj which has to be minimized. From
the definition of the decision variables, we see that the number of sen-
ators selected for the committee, from group 1 is x1+x2+x3+x4+x5
and this is required to be ≥ 1. Continuing in the same way, we get the
following integer programming formulation for this problem

Minimize z(x) =
10

j=1

xj

subject to x1 + x2 + x3 + x4 + x5 ≥ 1

x6 + x7 + x8 + x9 + x10 ≥ 1

x2 + x3 + x8 + x9 + x10 ≥ 1
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x1 + x5 + x6 + x7 ≥ 1

x3 + x4 + x5 + x6 + x7 + x9 ≥ 1

x1 + x2 + x8 + x10 ≥ 1

xj = 0 or 1 for all j

This is a pure 0−1 integer program in which all the constraints are
≥ inequalities, all the right hand side constants are 1, and the matrix
of coefficients is a 0−1 matrix. Each constraint corresponds to a group,
and when a 0−1 solution satisfies it, the associated committee has at
least one member from this group. A 0−1 integer program of this form
is called a set covering problem. The general set covering problem
is of the following form

Minimize z(x) = cx

subject to Ax ≥ e (7.3.1)

xj = 0 or 1 for all j

where A is a 0−1 matrix of order m × n, and e is the vector of all 1s
in Rm. The set covering model has many applications, we now provide
examples of some of its important applications.

Example 7.3.1: Application in Delivery and Routing
Problems using a Column Generation Approach:

These problems are also called truck dispatching or truck schedul-
ing problems. A warehouse (or sometimes referred to as a depot)
with a fleet of trucks has to make deliveries to m customers in a region.
In Figure 7.3, the warehouse location is marked by “ ”, and customer
locations are marked by an “x”. The problem is to make up routes
for trucks which begin at the depot, visit customers to make deliveries,
and return to the depot at the end. The input data consists of the
cost (either distance or driving time) for traveling between every pair
of locations among the depot and the customers, the quantity to be
delivered to each customer, sayin tons, and the capacity of each truck
in tons. A single truck route covering all the customers may not be
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Figure 7.3: “ ” marks the location of the depot. Each customers
location is marked by an “x”. Two feasible truck routes are shown,
one in dashed lines, another in solid lines.

feasible if the total quantity to be delivered to all the customers exceeds
the truck capacity, or if the total distance or time of the route exceeds
the distance or time that a truck driver can work per day by union
regulations or company policy. So, the problem is to partition the set
of all customers into subsets each of which can be handled by a truck
in a feasible manner, and the actual route to be followed by each truck
(i.e., the order in which the truck will visit the customers in its subset),
so as to minimize the total cost incurred in making all the deliveries.

One approach for solving this problem generates a List consisting of
a large number of feasible routes which are good (i.e., have good cost
performance for the deliveries they make) one after the other using
appropriate heuristic rules, and selects a subset of them to implement
using a set covering model. In Figure 7.3 we show two routes, one with
dashed lines, and the other with continuous lines. Let n denote the
list size, i.e., the total number of routes generated, and cj the cost of
route j, j = 1 to n. Each customer may lie on several of the routes
generated, in fact the larger n is, the better the final output. Let Fi
denote the subset of routes in the list, which contain the ith customer,
i = 1 to m. Since each of the m customers has to be visited, at least
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one of the routes from the set Fi has to be implemented, for i = 1 to
m. Define

xj =
1, if the j route is implemented by a truck
0, otherwise

Then the problem of finding the best subset of routes to implement
is

Minimize
n

j=1

cjxj

subject to
j∈Fi

xj ≥ 1, for each i = 1 to m (7.3.2)

xj = 0 or 1 for all j = 1 to n

(7.3.2) is a set covering problem. If x̄ is an optimum solution of
(7.3.2), the routes to implement are those in the set {j: x̄j = 1}.
If only one route from this set contains a customer i on it, the truck
following that route makes the delivery to this customer. If two or more
routes from this set contain customer i on them, we select any one of
the trucks following these routes to make the delivery to customer i,
and the other trucks pass through customer i’s location on their route
without stopping.
Define the incidence vector of a route in the list as a column

vector of order m where for each i = 1 to m the entry in position i is
1 if this route visits customer i, 0 otherwise. For example, if there are
10 customers in all numbered 1 to 10, and if a route visits customers
2, 6, 8, 9; them its incidence vector will be (0, 1, 0, 0, 0, 1, 0, 1, 1, 0)T .
Then we verify that the incidence vector of route j in the list is ac-

tually the column vector of the corresponding variable xj in the model
(7.3.2). Hence, each route in the list generated corresponds to a vari-
able in the set covering model, and the column vector of that variable
is actually the incidence vector of that route.
That’s why this type of approach for modeling problems is com-

monly known as the column generation approach. For handling
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large scale routing and other allocation problems, column generation
works with a generated list of good solution components, and selects
a subset of them to implement using a set covering or some other 0−1
model.

In applications, there are many problems that are too complex and
not amenable to a direct mathematical model to find an optimum so-
lution for them. In some of these problems, the solution consists of
several components that need to cover or span a given set of require-
ments. Column generation is a common approach used to handle such

Route no. Route Cost
R1 0-3-8-0 6
R2 0-1-3-7-0 8
R3 0-2-4-1-5-0 9
R4 0-4-6-8-0 10
R5 0-5-7-6-0 7
R6 0-8-2-7-0 11
R7 0-1-8-6-0 8
R8 0-8-4-2-0 7
R9 0-3-5-0 7

x1 x2 x3 x4 x5 x6 x7 x8 x9
0 1 1 0 0 0 1 0 0 ≥1
0 0 1 0 0 1 0 1 0 ≥1
1 1 0 0 0 0 0 0 1 ≥1
0 0 1 1 0 0 0 1 0 ≥1
0 0 1 0 1 0 0 0 1 ≥1
0 0 0 1 1 0 1 0 0 ≥1
0 1 0 0 1 1 0 0 0 ≥1
1 0 0 1 0 1 1 1 0 ≥1
6 8 9 10 7 11 8 7 7 = z, min.

xj = 0 or 1 for all j.

problems. It involves enumerating several (i.e., typically as many as
possible) good components based on practical considerations, and then
selecting the best subset of them to implement using either an integer
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programming model (like the set covering model discussed in this ex-
ample) or a linear programming model and some heuristic procedures.

Here is a numerical example from a delivery problem. A depot num-
bered 0 has to make deliveries to customers at locations numbered 1 to
8. A set of 9 good routes for delivery vehicles have been generated and
given in the table above. The first route 0-3-8-0 means that the vehicle
starts at the depot 0, visits customer 3 first, from there goes to visit
customer 8, and from there returns to the depot. The cost of the route
given below is its expected driving time in hours. The integer pro-
gramming formulation for determining which of these 9 routes should
be implemented so as to minimize the total driving time of all the ve-
hicles used to make the deliveries uses binary decision variables xj for
j = 1 to 9; where xj takes the value 1 if the route Rj is implemented,
0 otherwise; is given after the table.

The i-th contraint in the model corresponds to the i-th customer
location for i = 1 to 8. For example the first constraint x2+x3+x7 ≥ 1
requires that among the set of routes {R2, R3, R7} at least one must
be implemented, as these are the only routes in the generated list that
pass through customer location 1.

Example 7.3.2: Locating Fire Hydrants, a Node (or Ver-
tex) Covering Model:

Given a network of traffic centers (nodes, also called vertices, in a
network), and street segments (edges in the network, each edge joining
a pair of nodes), this problem is to find a subset of nodes for locating fire
hydrants so that each street segment contains at least one fire hydrant.
Suppose there are n nodes numbered 1 to n, and let cj be the cost of
locating a fire hydrant at node j. A subset of nodes in the network
satisfying the property that every edge in the network contains at least
one node from the subset is called a node (or vertex cover) for the
network. The constraint requires that the subset of nodes where fire
hydrants are located should be a node (or vertex) cover, covering all
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Figure 7.4: Street network for fire hydrant location problem. Nodes
are traffic centers. Edges are street segments.

Minimize 7
j=1 cjxj

subject to x1 +x7 ≥ 1
x1 +x2 ≥ 1
x1 +x5 ≥ 1

x2 +x3 ≥ 1
x2 +x5 ≥ 1

x3 +x4 ≥ 1
x4 +x5 ≥ 1
x4 +x6 ≥ 1

x6 +x7 ≥ 1

xj = 0 or 1 for all j

the edges. Thus the problem is to determine a minimum cost node
cover. Define for j = 1 to n

xj =
1, if a fire hydrant is located at node j
0, otherwise

Then the problem is to determine a 0−1 vector x to minimize cjxj
subject to the constraints that xi + xj ≥ 1 for every edge (i; j) in the
network. For the network in Figure 7.4, the problem is the one following
the figure.
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Each constraint in this model corresponds to an edge in the network.
For example, the first constraint requires that a fire hydrant should be
located at at least one of the two nodes 1, 7 on the edge e1 in the
network in Figure 7.4. This is a set covering problem in which each
constraint involves exactly two variables. Such problems are known as
node covering or vertex covering problems in networks.

Example 7.3.3: Facility Location Problems: These prob-
lems have the following features. A region is partitioned into m neigh-
borhoods, each of which requires the use of some facility (fire stations,
snow removal equipment banks, etc.). There are n possible locations
in the region for building these facilities. dij = the distance in miles
between neighborhood i and location j, is given for all i = 1 to m, j =
1 to n. (A neighborhood could be a large area; the distance between
a location and a neighborhood is usually defined to be the distance
between the location and the population center of the neighborhood.)
cj = the cost of building a facility at location j, is given for j = 1 to
n. There is a state restriction that every neighborhood must be within
a distance of at most d miles from its nearest facility. The problem is
to select a minimum cost subset of locations to build the facilities that
meets the state’s restrictions. For i = 1 to m define Fi = {location j:
dij ≤ d}. Let

xj =
1, if a facility is built at location j
0, otherwise

Then the problem of finding the optimum subset of locations to
build the facilities is exactly the set covering problem of the form (7.3.2)
with the definitions of xj and Fi as stated here.
Here is a numerical example in which a residential region is divided

into 8 zones. The best location for a fire station in each zone has been
determined already. From these locations and the population centers
in each zone, we have estimates for the average number of minutes of
fire truck driving time to respond to an emergency in zone j from a
possible fire station located in zone i, given in the first table below.
An estimate of more than 75 minutes indicates that it is not feasible
to respond to an emergency within reasonable time using that route,
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so that cell is left blank. Because of traffic patterns etc., the estimate
matrix is not symmetric.

Average driving time
to j = 1 2 3 4 5 6 7 8

from i = 1 10 25 40 30
2 8 60 35 60 20
3 30 5 15 30 60 20
4 25 30 15 30 60 25
5 40 60 35 10 32 23
6 50 40 70 20 25
7 60 20 20 35 14 24
8 30 25 25 30 25 9

x1 x2 x3 x4 x5 x6 x7 x8
1 0 0 1 0 0 0 0 ≥ 1
0 1 0 0 0 0 1 0 ≥ 1
1 0 1 0 0 0 0 1 ≥ 1
0 0 1 1 0 0 1 0 ≥ 1
0 0 0 0 1 0 0 1 ≥ 1
0 0 0 0 0 1 0 0 ≥ 1
0 1 1 1 0 0 1 1 ≥ 1
0 0 0 0 1 1 1 1 ≥ 1

xj = 0 or 1 for all j.

It is not necessary to have a fire station in each zone, but each
zone must be within an average 25 minute driving time reach of a
fire station. We are required to formulate the problem of determining
the zones in which fire stations should be located, so as to meet the
constraint stated above with the smallest number of fire stations.
Define the decision variables: for i = 1 to 8, let xi be the binary

variable which takes the value 1 if a fire station is set up in the location
in Zone i, 0 otherwise.
There will be a constraint in the model corresponding to each zone

j, that requires xi to be equal to 1 for at least one i such that the
distance from location i to zone j is ≤ 25 minutes. So, for Zone j = 1
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this constraint is x1 + x4 ≥ 1, because locations 1, 4 are the only ones
from which the driving time to Zone 1 is ≤ 25 minutes. Arguing the
same way, we get the model for the problem given above. It is a set
covering model.

Example 7.3.4: Airline Crew Scheduling (or Crew Pair-
ing) Problem: This is a very important large scale application for

Leg 1 Leg 2 Leg 3

Leg 4

Leg 5

Leg 6Leg 7Leg 7Leg 8Leg 9

Domicile city

Duty period 1

Duty period 2

Duty period 3

Figure 7.5: A pairing for a crew in airline operations.

the set covering model. The basic elements in this problem are flight
legs. A flight leg is a flight between two cities, departing at one city at
a specified time and landing next at the second city at a specified time,
in an airline’s timetable. A duty period for a crew is a continuous
block of time during which the crew is on duty, consisting of a sequence
of flight legs each one following the other in chronological order. A
pairing for a crew is a sequence of duty periods that begins and ends
at the same domicile. Federal aviation regulations, union rules, and
company policies impose a complex set of restrictions in the formation
of pairings. In particular, a duty period can contain no more than 7
flight legs, and cannot exceed 12 hours in duration; and a minimum
rest period of 9.5 hours is required between consecutive duty periods
in a pairing. And the crew can fly no more than 16 hours in any 48
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hour interval. A pairing may include several days of work for a crew.
Even for a moderate sized airline the monthly crew scheduling prob-

lem may involve 500 flight legs. The problem of forming a minimum
cost set of pairings which cover all the flight legs in a time table is a
tantalizing combinatorial optimization problem.
One approach (a column generation approach) for handling this

problem proceeds as follows. It generates a list consisting of a large
number of good pairings using a pairing generator to enumerate can-
didate crew schedules, and computes the cost of each pairing. Suppose
the list has n pairings. Each flight leg may appear in several pairings
in the list. For i = 1 to m, let Fi = set of all pairings in the list that
contain the ith flight leg. For j = 1 to n let cj be the cost of the jth
pairing in the list. Define for j = 1 to n

xj =
1, if the jth pairing in the list is implemented
0, otherwise

Then the problem of selecting a minimum cost subset of pairings
in the list to implement to cover all the flight legs is exactly the set
covering problem of the form (7.3.2) with xj and Fi as defined here.
The quality of solutions obtained improves when the list contains

pairings of a variety of mixes including samples of as many types of
combinations as possible. Crew pairing planners usually generate many
thousands of pairings, and the resulting set covering model to select the
subset of pairings in the list to implement becomes a very large scale
problem that may take a long time to solve exactly. Often heuristic
approaches are used to obtain good solutions for these models. �Y

The set covering model finds many other applications in such diverse
areas as the design of switching circuits, assembly line balancing, etc.

The Set Packing Problem

A pure 0−1 integer program of the following form is known as a
set packing problem.

Maximize z(x) = cx
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subject to Ax ≤ e (7.3.3)

xj = 0 or 1 for all j

where A is a 0−1 matrix of order m× n, and e is the vector of all 1’s
in Rm.

Example 7.3.5: Meetings scheduling problem: Here is an
example of an application of the set packing problem. Large organiza-
tions such as big hospitals etc. are run by teams of administrators. In
the course of the workweek these administrators attend several meet-
ings where decisions are taken, and administrative and policy problems
are ironed out. This application is concerned with the timely schedul-
ing of the necessary meetings. Suppose in a particular week there are
n different meetings to be scheduled. For the sake of simplicity assume
that each meeting lasts exactly one hour. Suppose we have T differ-
ent time slots of one hour duration each, available during the week to
hold the meetings (for example, if meetings can be held every morning
Monday to Friday from 8 to 10 AM, we have T = 10 time slots avail-
able). Suppose there are k administrators in all, and we are given the
following data: for i = 1 to k, j = 1 to n

aij =
1, if the ith administrator has to attend the jth meeting
0, otherwise

The 0−1 matrix (aij) is given. If two meetings require the atten-
dance of the same administrator, they cannot both be scheduled in the
same time slot, because that will create a conflict for that administra-
tor. On the other hand if there is no common administrator that is
required to attend two meetings, both of them can be scheduled in the
same time slot. The problem is to schedule as many of the n meetings
as possible in the T time slots available, subject to these conditions.
For j = 1 to n, t = 1 to T , define

xjt =
1, if meeting j is scheduled for time slot t
0, otherwise

Then the problem of scheduling as many of the meetings as pos-
sible in the available time slots without creating any conflicts for any
administrator is the following set packing model
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Maximize
n

j=1

T

t=1

xjt

subject to
n

j=1

aijxjt ≤ 1, for i = 1 to k, t = 1 to T (7.3.4)

T

t=1

xjt ≤ 1, for j = 1 to n

xjt = 0 or 1 for all j, t

The first set of constraints represents the fact that each adminis-
trator can attend at most one meeting in any time slot. The second set
of constraints assures that each meeting is assigned at most one time
slot.

Here is a numerical example from an undergraduate student project

Meeting Administrators that must attend
M1 1, 2, 3
M2 1, 4, 5, 8
M3 3, 5, 6
M4 2, 4, 6, 13
M5 8, 9
M6 10, 11, 13
M7 5, 7
M8 9, 10, 12
M9 7, 11, 12

I supervised in the 1970’s for the UM (University of Michigan) Hos-
pital. In those days the hospital was administered by a large team
of administrators. The administrators would periodically have a large
number of meetings to discuss various policy issues; and these meet-
ings would be held over a whole week. Each meeting would last about
half-a-day, and would require the attendance of a specified subset of
administrators, even though some other interested administrators may
attend voluntarily. Meetings that did not require the attendance of a
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common administrator can be held concurrently. Those with a common
required administrator must be scheduled in different half-day periods.
We show the data for a set of 9 meetings involving 13 administrators

numbered 1 to 13. The table given above provides the data on the set
of administrators required to attend each meeting.

A =

M1 M2 M3 M4 M5 M6 M7 M8 M9

1 1 1 0 0 0 0 0 0 0
2 1 0 0 1 0 0 0 0 0
3 1 0 1 0 0 0 0 0 0
4 0 1 0 1 0 0 0 0 0
5 0 1 1 0 0 0 1 0 0
6 0 0 1 1 0 0 0 0 0
7 0 0 0 0 0 0 1 0 1
8 0 1 0 0 1 0 0 0 0
9 0 0 0 0 1 0 0 1 0
10 0 0 0 0 0 1 0 1 0
11 0 0 0 0 0 1 0 0 1
12 0 0 0 0 0 0 0 1 1
13 0 0 0 1 0 1 0 0 0

We consider the problem of finding the maximum number of these
meetings that can be scheduled without conflicts over a time horizon
consisting of three half-days.
For j = 1 to 9, t = 1, 2, 3, define the binary decision variable

xjt which takes the value 1 if Mj is held in t-th half-day time slot; 0
otherwise.
Also, let A = (aij) be the matrix of order 13×9 where aij = 1 if the

i-th administrator is required to attend the j-th meeting, 0 otherwise,
given above. Then the model to find a schedule that maximizes the
number of meetings that can be held in time periods 1, 2, 3 is:

Maximize
9

j=1

3

t=1

xjt

subject to
9

j=1

aijxjt ≤ 1, for i = 1 to 13, t = 1 to 3
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3

t=1

xjt ≤ 1, for j = 1 to 9

xjt = 0 or 1 for all j, t

For example the first constraint above, 9
j=1 aijxjt ≤ 1 for all t = 1

to 3 implies that in each time slot, at most one meeting that requires
the i-th administrator’s attendance can be held.
In this example we illustrated one application of the set packing

model to determine the maximum number of meetings that can be
held witrhout conflicts in a limited time period. In the UM Hospital
project they were actually interested in determining a schedule for all
the meetings without conflicts using the smallest time period. This
problem has a much simpler formulation directly as a combinatorial
model which we used. This model is discussed in Section 7.9.

The Set Partitioning Problem

A set partitioning problem is a 0−1 pure integer program of the
following form

Minimize z(x) = cx

subject to Ax = e (7.3.5)

xj = 0 or 1 for all j

where A is a 0−1 matrix, and e is the column vector of all 1s of appro-
priate order. Notice the difference between the set covering problem
(in which the constraints are of the form Ax ≥ e), the set packing
problem (in which the constraints are of the form Ax ≤ e), and the set
partitioning problem (in which the constraints are of the form Ax = e).
The set partitioning problem also finds many applications. One of

them is the following. Consider a region consisting of many, say m,
sales areas numbered 1 to m. These areas have to be arranged into
groups to be called sales districts such that each district can be han-
dled by one sales representative. The problem is to determine how to
form the various sales areas into districts. One approach for handling
this problem (a column generation approach) involves generating a list
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consisting of a large number of subsets of sales areas, each of which
could form a good district (i.e., provides enough work for a sales repre-
sentative and satisfies any other constraints that may be required). Let
n be the number of such subsets generated, number them as subsets
1, . . . , n. For i = 1 to m, let Fi = {j: subset j includes the ith sales
area}. For j = 1 to n let cj denote the cost of forming the subset j in
the list into a sales district. The approach now selects subsets from the
list to form into sales districts using a set partitioning model. Define

xj =
1, if the jth subset in the list is formed into a sales district
0, otherwise

Since each sales area must be in a district, our problem leads to the
following set partitioning model.

Minimize
n

j=1

cjxj

subject to
j∈Fi

xj = 1, for each i = 1 to m

xj = 0 or 1 for all j

In a similar manner, the set partitioning model has applications in
political districting, and in various other problems in which a set has
to be partitioned at minimum cost subject to various conditions.

Example 7.3.6: A political districting example:

Here is a highly simplified version of the political districting prob-
lem. A region (consisting of one or more cities) is divided into zones
called wards for administrative and representative purposes. A precinct
is an election (or political) district composed of a set of wards, which
is a geographical area from which a representative will be elected for
a political office. This example deals with the problem of forming
precincts out of a region consisting of 14 wards numbered 1 to 14. The
following list of 16 subsets of wards has been formed. Each of these
subsets satisfies all the conditions required for a subset of wards to be
a precinct.
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{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11}, {12, 13, 14}, {1, 4, 6, 8}, {2, 3, 9, 10},
{5, 7, 12}, {11, 13, 14}, {4, 6, 9, 12}, {2, 5, 7, 14}, {1, 3, 10, 11}, {8, 13},
{1, 5, 9, 12}, {2, 8, 11}, {3, 6, 7, 10}, {9, 13, 14}}.

Call subsets in the list S1 to S16 in that order. Based on past voting
records, the republican party estimates that the chance of a republican
candidate winning in these subsets is the following vector: p = (0.45,
0.33, 0.78, 0.56, 0.85, 0.28, 0.67, 0.91, 0.35, 0.45, 0.18, 0.47, 0.29, 0.39,
0.15, 0.21)T .
Clearly the expected number of republican candidates who win in

this region, is the sum of the above probabilities over subsets in the list
which are selected as precincts. In this example we will formulate the
problem of determining which subsets in the list the republican party
should champion for being selected as precincts. The constraints are
that the precincts selected should form a partition of the set of wards,
i.e., each ward should belong to one and only one precinct.
For j = 1 to 16, define the binary decision variable xj which takes

the value 1 if the subset Sj is selected as a precinct, 0 otherwise. Let
x = (xj), a column vector. Then the expected number of republican
candidates winning is 16

1 pjxj = p
Tx, which is the objective function

to be maximized.
The constraints in the model come from the requirement that each

ward should lie in exactly one precinct. we verify that Ward 1 lies in
the subsets S1, S5, S11, S13, so this leads to the constraint x1 + x5 +
x11 + x13 = 1.
In the same way each of the wards leads to one constraint in the

model for the problem given below.

Maximize pTx

subject to x1 + x5 + x11 + x13 = 1

x1 + x6 + x10 + x14 = 1

x1 + x6 + x11 + x15 = 1

x1 + x5 + x9 = 1

x2 + x7 + x10 + x13 = 1

x2 + x5 + x9 + x15 = 1
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x2 + x7 + x10 + x15 = 1

x2 + x5 + x12 + x14 = 1

x3 + x6 + x9 + x13 + x16 = 1

x3 + x6 + x11 + x15 = 1

x3 + x8 + x11 + x14 = 1

x4 + x7 + x9 + x13 = 1

x4 + x8 + x12 + x16 = 1

x4 + x8 + x10 + x16 = 1

all xj ∈ {0, 1}

They should champion all the subsets Sj corresponding to xj = 1
in an optimum solution of this model, to become precincts.

Exercises

7.3.1: A Facilities Location Problem: A newly developing

Average driving time
to j = 1 2 3 4 5 6 7 8 9

from i = 1 7 30 40 20 14 31
2 25 12 24 20 29 38
3 35 15 35 18 20 12
4 22 35 5 10 32
5 24 13 10 38 12 13
6 13 10 40 13 15
7 16 14 8 39 10
8 20 42 30 9 42 17 12
9 29 15 16 19 10 19 20

region is divided into 9 zones. In each zone there is a location reserved
for setting up a fire station, if a decision is made to set up a fire station
in that zone. From these locations, we have the following estimates for
the average number of minutes of fire truck driving time to respond to
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an emergency in zone j from a possible fire station located in zone i.
An estimate of more than 45 minutes indicates that it is not feasible
to respond to an emergency within reasonable time using that route,
so that cell is left blank. Because of traffic patterns etc., the estimate
matrix is not symmetric.

It is not necessary to have a fire station in each zone, but each
zone must be within an average 25 minute driving time reach of a fire
station. Formulate the problem of determining the zones in which fire
stations should be located, so as to meet the constraint stated above
with the smallest number of fire stations.

7.3.2: A delivery problem: From the depot numbered 0, deliv-
eries have to be made to customers at locations 1 to 10. To model this
problem using column generation, the following list of good routes has
been generated. Here routes are denoted in this way: 0-1-2-3-0, 40.6;
this means that the vehicle following this route starts at the depot 0,
stops at locations 1, 2, 3 making deliveries at these locations in this
order, and then returns to depot 0; and that the total length of this
route is 40.6 miles.

List = {0-1-2-3-0, 40.6; 0-3-4-7-0, 45.6; 0-2-1-5-6-0, 42.3; 0-7-6-1-0,
38.9; 0-5-9-4-0, 29.3; 0-8-6-4-2-0, 34.7; 0-3-9-4-0, 37.6; 0-4-2-5-0, 45.3;
0-3-9-8-0, 28.8; 0-5-7-9-0, 36.4; 0-1-5-6,0, 31.7}.

Comment on whether this is a good list of routes for modeling our
problem by column generation. Explain your reasons for the same.

In addition to the above, include these additional routes: {0-9-5-7-
0, 28.7; 0-8-10-2-0, 44.3; 0-1-10-3-0, 39.9; 0-10-6-2-0, 43.9}, and write
the model for the problem of minimizing the total mileage of all the
vehicles used.

If each of these routes is one days work for a driver, write the model
for completing the deliveries using the smallest number of drivers.

7.3.3: A node covering problem: Write the model for the node
covering problem in the network given in Figure 7.6.
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Figure 7.6:

7.3.4: A meeting scheduling problem: There are 8 top ad-
ministrators numbered 1 to 8 in a company. In a particular week 7
different meetings are to be held for important planning discussions.
Each meeting needs the attendance of some of these administrators as
explained in the following table.

Meeting Presence required of:
M1 1, 4, 6
M2 2, 5, 4, 7
M3 3, 8, 1, 2
M4 2, 3, 5
M5 7, 8
M6 3, 4, 5
M7 1, 6, 8

These meetings will be held in a conference center that has many
suitable rooms to hold meetings. Each meeting requires half-a-day.
Meetings that do not require the attendance of a common administrator
can be held concurrently.

Formulate the problem of finding the maximum number of these
meetings that can be scheduled in one day.

Discuss a strategy to find the smallest total time period needed for
holding all the meetings, using this set packing model more than once
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if necessary.

7.3.5: A political districting problem: This is a political dis-
tricting problem similar to that in Example 7.3.6, and uses the same
terminology. In this problem there are 12 wards numbered 1 to 12.
The following list of subsets of wards have been formed, each satisfying
all the conditions for being a precinct.

{{1, 2}, {3, 4, 5}, {6, 7}, {8, 9, 10}, {11, 12}, {1, 3, 6}, {2, 4, 5}, {7, 8, 9},
{10, 11, 12}, {1, 6}, {2, 8, 10}, {3, 5, 11}, {4, 7}, {9, 12}, {1, 8, 9}, {2, 12, 5},
{3, 7, 11}, {4, 6, 10}}.

Call these subsets S1 to S18. The democrats estimate that the
probability of the democratic candidate winning in these subsets is the
vector p = (0.81, 0.43, 0.28, 0.59, 0.63, 0.74, 0.31, 0.39, 0.69, 0.58, 0.49,
0.57, 0.63, 0.30, 0.29, 0.46, 0.38, 0.57)T .
Formulate the problem of determining which subsets the democratic

party should champion to be made into precincts, to maximize the
expected number of democrastic candidates winning.

7.4 Plant Location Problems

Plant location problems are an important class of problems that can be
modeled as MIPs. The simplest problems of this type have the following
structure. There are n sites in a region that require a product. Over the
planning horizon, the demand for the product in the area containing
site i is estimated to be di units, i = 1 to n. The demand has to be
met by manufacturing the product within the region. A decision has
been taken to set up at most m plants for manufacturing the product.
The set-up cost for building a plant at site i is $fi, and its production
capacity will be at most ki units over the planning horizon, i = 1 to n.
$cij is the cost of transporting the product per unit from site i to site
j.
In practice, m = the number of plants to be set up, will be much

smaller than n = the number of sites where plants can be set up, and
the product will be shipped from where it is manufactured to all other
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sites in the region. The problem is to determine an optimal subset of
sites for locating the plants, and a shipping plan over the entire horizon
so as to meet the demands at minimum total cost which includes the
cost of building the plants and transportation costs. To determine the
subset of sites for locating the plants is a combinatorial optimization
problem. Once the optimum solution of this combinatorial problem is
known, determining the amounts to be transported along the various
routes is a simple transportation problem. For i, j = 1 to n, define

yi =
1, if a plant is located at site i
0, otherwise

xij = units of product transported from site i to j over
the planning horizon

The MIP model for the problem is

Minimize
i

fiyi +
i j

cijxij

subject to
j

xij − kiyi ≤ 0 for all i (7.4.1)

i

xij ≥ dj for all j

i

yi ≤ m

yi = 0 or 1, xij ≥ 0 for all i, j

Other plant location problems may have more complicated con-
straints in them. They can be formulated as integer programs using
similar ideas.

Illustrative Small Numerical Example

Suppose there are three sites, S1, S2, S3 where production facilities
can be set up. In the following table, money data is given in coded



7.4: Plant Location Problems 325

money units; production, demand, etc. are given in coded production
units. Depots D1 to D4 will be set up to stock the product in four
major markets, with each depot distributing the product in its region.
Data is based on estimates for a 10-year lifecycle of the product. The
company would like to set up at most two plants. We formulate the
problem of meeting the demand over the lifecycle at minimum total
cost. The decision variables are the xij , yi for i = 1 to 3, j = 1 to 4.
The MIP model for the problem is given following the data table:

Bldg. cij to j = fi pi ki
Site i D1 D2 D3 D4
S1 6 9 10 12 3000 60 10,000
S2 15 8 6 4 5000 50 20,000
S3 9 5 7 11 7000 55 15,000
dj 9000 12000 7000 15000
cij = transportation cost/unit from i to j, fi = set up cost at i
pi = production cost/unit at i, ki = production capacity at i
dj = estimated demand at depot Dj

Minimize 3000y1 + 5000y2 + 7000y3 +
3

i=1

cijxij

+60(
4

j=1

x1j) + 50(
4

j=1

x2j) + 55(
4

j=1

x3j)

subject to
4

j=1

xij − kiyi ≤ 0, for i = 1 to 3

3

i=1

xij ≥ dj for j = 1 to 4

3

i=1

yi ≤ 2

yi binary xij ≥ 0 for all i, j

The Uncapacitated Plant Location Problem

In some applications there is freedom to select the production ca-
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pacities of plants. Then the production capacity constraints do not
apply, and the problem is known as the uncapacitated plant loca-
tion problem. Here, if a plant is built at site i, there is no upper
limit on how much can be shipped from this plant to any other sites.
Also, if production cost/unit is the same at all the sites, the shipping
cost itself is minimized if each site’s demand dj is completely satisfied
from the plant at site i where i attains the minimum in min{crj : over
r such that a plant is built at siter}. As an example, suppose plants
are built at sites 1 and 2. To meet site 3’s demand, if c13 = 10 and
c23 = 20 since each plant can produce as much as necessary, and at the
same cost/unit, we would not ship any product to site 3 from the plant
at site 2, since it is cheaper to ship from the plant at site 1 instead.
So, in this case there exists an optimum shipping plan, in which each
site receives all its demand from only one plant. Using this fact we can
simplify the formulation of the problem in this case. For i, j = 1 to n,
define new variables

zij = fraction of demand at site j shipped from a plant at site i

So, these variables satisfy i zij = 1 for each j = 1 to n. We can
think of the variable zij to be equal to xij/dj in terms of the variable xij
defined earlier. Also, since the production level at each plant depends
on which sites it is required to supply in this case, the cost of setting it
up may depend on that level. So, we assume that the cost of setting up
a plant of capacity α at site i is fi + siα, where fi is a fixed cost, and
si is the variable cost of setting up production capacity/unit at site i.
With yi defined as before, here is the formulation of the problem.

Minimize
n

i=1

fiyi +
n

i=1

si(
n

j=1

djzij) +
n

i=1

n

j=1

cijdjzij

subject to
n

i=1

zij = 1, j = 1 to n (7.4.2)

n

j=1

zij ≤ nyi, i = 1 to n

zij ≥ 0, yi = 0 or 1, for all i, j
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By the constraints in (7.4.2), zij = 0 for all j if no plant is set up at
site i. Hence in the 2nd term in the objective function, the coefficient
of si is guaranteed to be 0 if no plant is set up at site i.

Numerical Example

Consider the problem in the numerical example given above, but
now suppose that ki =∞ for all i = 1 to 3, and s = (si) = (100, 150,
120). To model this problem, the decision variables are the zij defined
above for i = 1 to 3, j = 1 to 4. Once the plants are set up, assume
that the production cost/unit is the same at all the sites. The model
is (7.4.2) with j ranging over 1 to n = 4, and i ranging from 1 to 3.

Exercises

7.4.1: There are four sites S1 to S4, where a company can set up
production facilities for a new product. The company will stock the
product at depots D1 to D5 located in strategic locations. From these
depots the product will be distributed to all the markets. All relevant
data for the 15 year estimated lifetime of the product is given below.
Formulate the problem at meeting the demand at minimum total cost
if the company wants to set up at most three plants.

Bldg. cij to j = fi pi ki
Site i D1 D2 D3 D4 D5
S1 2 6 4 9 7 6000 80 15000
S2 8 3 5 6 2 9000 100 30000
S3 9 7 6 4 8 10,000 90 40000
S4 3 4 7 5 4 5000 60 50000
dj 20000 35000 25000 17000 40000
cij = transportation cost/unit from i to j, fi = set up cost at i
pi = production cost/unit at i, ki = production capacity at i
dj = estimated demand at depot Dj

7.4.2: Consider Exercise 7.4.1, but assume now that ki =∞ for all
i = 1 to 4. Also assume that the cost of setting up a plant of capacity
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α is fi + αsi, where s = (si) = (130, 150, 120, 125). Also, once the
plants are set up, the production cost/unit at all the sites is the same.
Formulate the problem with these changes.

7.5 Batch Size Problems

In addition to the usual linear equality-inequality constraints and non-
negativity restrictions in a linear program, suppose there are con-
straints of the following form: variable xj in the model can be either 0,
or if it is positive it must be ≥ some specified positive lower bound fj .
Constraints of this type arise when the model includes variables that
represent the amounts of some raw materials used, and the suppliers
for these raw materials will only supply in amounts ≥ specified lower
bounds.
There are two conditions on the decision variable xj here, xj = 0,

or xj ≥ fj, and the constraint requires that one of these two condi-
tions must hold. We define a 0−1 variable yj to indicate these two
possibilities for xj , as given below.

yj =
0, if xj = 0 (7.5.1)
1, if xj ≥ fj

To model this situation using the binary variables yj correctly, it is
necessary that xj be bounded above in the problem; i.e., there must
exist an upper bound such that xj is ≤ it at all feasible solutions to the
problem. Let αj be such an upper bound for xj at all feasible solutions
to the problem. The constraint that:

xj is either 0, or ≥ fj is then equivalent to (7.5.2).

xj − fjyj ≥ 0

xj − αjyj ≤ 0 (7.5.2)

yj = 0 or 1
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(7.5.2) represents through linear constraints the definition of the
binary variable yj associated with the two conditions on xj as defined
in (7.5.1).
Constraints like this can be introduced into the model for each such

batch size restricted variable in the model. This transforms the model
into an integer program.
As an example, suppose we have the constraints

Either x1 = 0, or x1 ≥ 10; and either x2 = 0, or x2 ≥ 25 (7.5.3)

in a linear programming model. Suppose 1000 is an upper bound for
both x1, x2 among feasible solutions of this model. Then defining the
binary variables y1, y2 corresponding to the two possibilities on x1, x2
respectively as in (7.5.1), we augment the following constraints to the
LP model to make sure that (7.5.3) will hold.

x1 − 10y1 ≥ 0

x1 − 1000y1 ≤ 0

x2 − 25y2 ≥ 0

x2 − 1000y2 ≤ 0

y1, y2 are both 0 or 1

Exercises

7.5.1: A problem has been modeled as the linear program

Minimize z(x) = cx

subject to Ax = b

x ≥ 0

The set of feasible solutions of this LP is known to be unbounded
with every variable being unbounded above on it.
It has been realized that two constraints in the real problem have

not been included in this LP model. They are: “x1 should be either 0,
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or ≥ 10”; and “x2 has to be either 0, or ≥ 50”. Is it possible to model
the whole problem as an MIP using the techniques discussed in this
section? Why or why not?
Discuss how to solve this problem.

7.5.2: Formulate the following problem as an MIP.

Minimize z = 7x1 − 20x2 − 35x3
subject to 2x1 + 5x2 − 7x3 ≥ 100

x2 + 8x3 ≥ 150

3x1 + 8x2 ≥ 200

8x1 + 10x3 ≥ 120

0 ≤ xj ≤ 200 j = 1, 2, 3

x1 = 0 or ≥ 20 x2 = 0 or ≥ 30

7.6 Other “Either, Or” Constraints

Let x be the column vector of decision variables in an LP, in which we
have an additional constraint involving m conditions

g1(x) ≥ 0
... (7.6.1)

gm(x) ≥ 0

where each of these conditions is a linear inequality. The additional
constraint does not require that all the conditions in (7.6.1) must hold,
but only specifies that at least k of the m conditions in (7.6.1) must
hold. To model this requirement using linear constraints we define
binary variables y1, . . . , ym with the following definitions.

yi =
0, if the condition gi(x) ≥ 0 holds (7.6.2)
1, otherwise



7.6: “Either, Or” constraints 331

To model this situation correctly using these binary variables, it
is necessary that each of these functions gi(x) be bounded below on
the set of feasible solutions of the original LP model. Let Li be a
positive number such that −Li is a lower bound for gi(x) on the set of
feasible solutions of the original LP model. Then the following system
of constraints, augmented to the LP model, will guarantee that at least
k of the conditions in (7.6.1) will hold.

g1(x) + L1y1 ≥ 0
...

gm(x) + Lmym ≥ 0 (7.6.3)

y1 + . . .+ ym ≤ m− k
yi = 0 or 1 for all i

In the same way, any restriction of the type that at least (or ex-
actly, or at most) k conditions must hold in a given system of linear
conditions, can be modeled using a system of linear constraints of the
form (7.6.3) involving binary variables.

As an example, consider the system of linear constraints 0 ≤ x1 ≤
10, 0 ≤ x2 ≤ 10, on the two variables x1, x2 in the two dimensional
Cartesian plane. In addition, suppose we impose the constraint that
“either x1 ≤ 5, or x2 ≤ 5” must hold. This constraint states that at
least one of the following two conditions must hold.

g1(x) = 5− x1 ≥ 0 (7.6.4)

g2(x) = 5− x2 ≥ 0

With this constraint, the set of feasible solutions of the combined
system is the nonconvex dotted region in Figure 7.7.

A lower bound for both g1(x), g2(x) in (7.6.4) in the original cube
is −15. So, the constraint that at least one of the two constraints in
(7.6.4) must hold is equivalent to the following system
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Figure 7.7:

5− x1 +15y1 ≥ 0
5− x2 +15y2 ≥ 0 (7.6.5)

y1 +y2 =1
y1, y2 = 0 or 1

When the constraints in (7.6.5) are augmented to the constraints
0 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 10 of the original cube, we get a system that
represents the dotted region in the x1, x2-plane in Figure 7.7, using the
binary variables y1, y2. Using similar arguments, sets that are not nec-
essarily convex, but can be represented as the union of a finite number
of convex polyhedra, can be represented as the set of feasible solutions
of systems of linear constraints involving some binary variables.

Example 7.6.1: Consider the following integer programming
model.

Minimize 6x1 − 7x2 + 8x3
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subject to x1 − x2 + 2x3 ≥ 10

2x1 + 3x2 − x3 ≥ 15

−8x1 + 14x2 + x3 ≥ 20

4x1 + 2x2 + 2x3 ≥ 20

x1, x2 ≥ 0,−5 ≤ x3 ≤ 5 all xj integer

Suppose it is required to impose an additional constraint that x3 W= 0
in this model. We will now show how this can be done.
Since x3 is an integer bounded variable between −5 and +5, requir-

ing that x3 W= 0 is equivalent to requiring that exactly one of the two
constraints: x3 ≤ −1 or x3 ≥ +1 must hold. Define decision variables
y1, y2 with the definitions:

y1 =
0, if −x3 + 1 ≥ 0 holds
1, otherwise

y2 =
0, if x3 + 1 ≥ 0 holds
1, otherwise

Then the combined model is

Minimize 6x1 − 7x2 + 8x3
subject to x1 − x2 + 2x3 ≥ 10

2x1 + 3x2 − x3 ≥ 15

−8x1 + 14x2 + x3 ≥ 20

4x1 + 2x2 + 2x3 ≥ 20

−x3 + 1 + 6y1 ≥ 0

x3 + 1 + 6y2 ≥ 0

y1 + y2 = 1

x1, x2 ≥ 0,−5 ≤ x3 ≤ 5 all xj integer, y1, y2 binary.

7.7 Indicator Variables

Indicator variables form a modeling tool for situations similar to
those discussed in Sections 7.5, 7.6. They are binary variables that can
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be used in integer programming models to develop a system of linear
constraints that will force the indicator variable to assume the value of
1 iff some property on the value of an affine function f(x) (i.e., a linear
function + a constant) holds. They are useful in modeling situations
that call for enforcing some logical conditions.

Table 7.7.1
Property Constraints that make definition of y true

y is a binary variable in all the following

1. f(x) ≥ α
f(x)− (U − α+ 1)y ≤ α− 1
f(x)− (α− L)y ≥ L

2. f(x) ≤ α
f(x) + (α+ 1− L)y ≥ α+ 1
f(x) + (U − L)y ≤ α+ U − L

3. f(x) = α where
L < α < U

f(x)− (U − α+ 1)y1 ≤ α− 1
f(x)− (α− L)y1 ≥ L
f(x) + (α+ 1− L)y2 ≥ α+ 1
f(x) + (U − L)y2 ≤ α+ U − L
y = y1 + y2 − 1
y1, y2 binary

4.f(x) = L
f(x) + y ≥ L+ 1
f(x) + (U − L)y ≤ U

5. f(x) = U
f(x)− y ≤ U − 1
f(x)− (U − L)y ≥ L

6. f(x) W= α

f(x)− (U − α+ 1)y1 ≤ α− 1
f(x)− (α− L)y1 ≥ L
f(x) + (α+ 1− L)y2 ≥ α+ 1
f(x) + (U − L)y2 ≤ α+ U − L
y = 2− y1 − y2
y1, y2 binary

We will denote the indicator variables by symbols y, y1, or y2. f(x)
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is the affine function in variables x = (x1, . . . , xn)
T whose value we are

concerned with.
An important thing to remember is that indicator variables are use-

ful modeling tools in constructing integer programming models, so here
we are assuming that x1, . . . , xn are either binary or integer variables
in the problem and that the function f(x) takes only integer values at
all integer vectors x.
The techniques discussed in this section only work if f(x) is bounded

below and above over the feasible region in the x-space, we will denote
these lower, uper bounds by L,U respectively (both L,U are integer).
We will now discuss various properties on the values of f(x) and

how to define indictor variables for them. The main indicator variable
is the binary variable denoted by y, it must have the property that
y = 1 iff the property holds, y = 0 otherwise. Here α is integer. Table
7.7.1 lists the properties, and the corresponding constraints
In understanding Property 3, remember that when L < α < U , if

f(x) = α does not hold, then either f(x) ≤ α−1 or f(x) ≥ α+1 must
hold. Same way when α = L (α = U), if f(x) = α does not hold, then
f(x) ≥ L+ 1 (f(x) ≤ U − 1) must hold.
We will now illustrate the use of indicator variables in modeling,

with some examples taken from Chlond & Toase [2003]. The problems
modeled are puzzle problems taken from [Smullyan 1978].

Example 7.7.1: A reporter is visiting a forest in which every
human inhabitant is either an A or B. An A-person always tells the
truth, a B-person always lies. In addition, some people also call them-
selves Cs, each C-person is of course either an A or B. The reporter
meets 3 people P1, P2, P3 exactly one of whom is a C. They make the
following statements:

P1: I am a C.

P2: I am a C

P3: At most one of us is an A.

We will now formulate the problem of classifying these 3 people
as an integer feasibility problem. Define binary decision variables xi
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which takes value 1 if Pi is an A, 0 if Pi is a B; and yi which takes the
value 1 if Pi is a C, 0 otherwise; for i = 1 to 3.

Since only one person is a C-type, we have the constraint y1+ y2+
y3 = 1.

If P1 is an A-type, then x1 = 1, and since A-type always tells the
truth, from P1’s statement we have y1 = 1. Thus x1 = 1 implies
y1 = 1. Also, if P1 is a B-type, then x1 = 0; and since P1’s statement
“I am a C” must be a lie in this case, we must have y1 = 0. Thus
x1 = 0 implies y1 = 0. From this analysis, P1’s statement implies the
constraint x1 = y1. Exactly the same analysis on P2’s statement yields
the constraint x2 = y2.

P3’s statement is true iff x1+x2+x3 ≤ 1, so this inequality implies
that P3’s statement is true, which implies that P3 must be an A-type,
i.e., x3 = 1. So, we conclude that f(x) = x1 + x2 + x3 ≤ α = 1 implies
x3 = 1; i.e., x3 is like an indicator variable for this condition. The
minimum and maximum values for f(x) = x1 + x2 + x3 are L = 0 and
U = 3, since each xi is a binary variable. So, by item 2 in Table 7.7.1,
we have the constraints: x1 + x2 + 3x3 ≥ 2 and x1 + x2 + 4x3 ≤ 4.
Similarly, P3’s statement is a lie iff x1 + x2 + x3 ≥ 2, and in this

case P3 must be a B-type, i.e., x3 = 0. Thus x1 + x2 + x3 ≥ 2 implies
that z3 = 1 − x3 = 1, i.e., z3 is like an indicator variable for this
condition. So, by item 1 in the above table, we have the constraints:
x1 + x2 + 3x3 ≤ 3, x1 + x2 + 3x3 ≥ 2.
Putting all the constraints together, we get the system:

y1 +y2 +y3 = 1
y1 −x1 = 0

y2 −x2 = 0
x1 +x2 +3x3 ≥ 2
x1 +x2 +4x3 ≤ 4
x1 +x2 +3x3 ≤ 3

All variables are binary.

To solve this system by total enumeration, we first try x1 = 1, and
verify that this leads to inconsistency. So does x2 = 1. Trying x3 = 1,
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it leads to the solution x = (0, 0, 1)T , y = (0, 0, 1)T , the unique solution
of the system; i.e., P1, P2 are B-type, and P3 is a C-type and also an
A-type.

Example 7.7.2: The setting of this example is exactly the same
as that in Example 7.7.1, but this time the reporter is given the infor-
mation that among P1, P2, P3 there is exactly one C-type and that this
person is also A-type; and he gets only two statements:

P1: At least one of the three of us is a B.

P2: P3 is an A

The problem is to find who is the C-type. To model this problem,
we define the same decision variables as in Example 7.7.1.
From the information given there is only one C-type person, this

leads to the constraint y1 + y2 + y3 = 1. The fact that the C-type
person is an A, along with the setting of this problem can be modeled
into the constraint xi ≥ yi for i = 1, 2, 3.

y1 +y2 +y3 = 1
−x2 +x3 = 0

4x1 +x2 +x3 ≥ 3
4x1 +x2 +x3 ≤ 5

y1 −x1 ≤ 0
y2 −x2 ≤ 0

y3 −x3 ≤ 0

All variables are binary.

We verify that P1’s statement cannot be a lie, it must be true, so P1
is anA-type; i.e., this statement, which says that x1+x2+x3 ≤ 2 implies
that x1 = 1. So, x1 is like an indicator variable for this condition; which
leads to the constraints: 4x1 + x2 + x3 ≥ 3, 4x1 + x2 + x3 ≤ 5.
If P2’s statement (x3 = 1) is true, P2 must be an A; i.e., x3 = 1

implies x2 = 1. Similarly if P2’s statement is false (x3 = 0), P2 must
be a B, or x2 must be 0. So, this statement leads to the constraint
x3 = x2.
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Putting all the constraints together we get the system given above,
which is an integer feasibility model for this problem.
We leave it to the reader to solve this system by total enumeration.

Exercises

7.7.1 Lady or Tigers-2: (Adopted from R. Smullyan, 1982). In
trying to win the hand of his beloved, a man becomes a prisoner, and is
faced with a decision where he must open the door of one of nine rooms.
Each room may be either empty, or hiding a tiger, or his beloved. Each
door has a sign bearing a statement. The statements on the nine doors
are:

Door 1: The lady is in an odd-numbered room.

Door 2: This room is empty.

Door 3: Either the sign on door 5 is right, or that on sign
7 is wrong.

Door 4: The sign on door 1 is wrong.

Door 5: Either the sign on door 2, or that on door 4 is right.

Door 6: The sign on door 3 is wrong.

Door 7: The lady is not in room 1.

Door 8: This room contains a tiger and room 9 is empty.

Door 9: This room contains a tiger, and the sign on door 6
is wrong.

The prisoner is given several clues: He is informed that the lady is
in one of the rooms. The sign on the door hiding the lady is true, the
signs on all doors hiding tigers are false, and the signs on the doors of
empty rooms can be either true or false.
If the prisoner opens the door to find the lady, he can marry her; if

he opens the door to find a tiger he will be eaten alive; and if he opens
an empty room, he will be banished alone to a distant foreign land.

(i): Help the prisoner by formulating the problem of finding all the
doors which may be hiding his beloved, subject to all the clues.
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(ii): It turns out that the system does not have a unique solution.
The prisoner asks for a decent clue, whether room 8 is empty or not.
If he was told that room 8 was empty, it would have been impossible
for him to have found the lady.
He was told that room 8 was not empty. With this additional clue,

the prisoner was able to uniquely identify the right, wrong status of all
the signs, and identify the unique room containing the lady. Find it.

7.7.2: (Adopted from R. Smullyan, 1982). Three robbers, let us
call them A,B, and C stole a horse, a mule, and a camel; each one
stealing one animal. They were finally caught, but it was not known
which thief stole what. At the trial they made the following statements.

A: The horse was stolen by B.

C: Not so, B stole the mule.

B: Those are both lies, I didn’t steal either.

The clues are: the one who stole the camel was lying, and the one
who stole the horse was telling the truth. Required to find out who
stole which animal. Formulate as a 0−1 integer feasibility system.

7.7.3: (Adopted from R. Smullyan, 1997). On the 1009th night
the King tells his wife “tonight I am in a mood for some logic puzzles”.
“Very well” said she, and continues “This is one from a curious town in
Persia where every inhabitant is either an M or an A. All Ms always
tell the truth, they never lie; and all As never tell the truth, they always
lie. A reporter came across a group of 10 inhabitants, call them I1 to
I10, and asks them how many of them are Ms and how many As. The
statements made by them are:

Ii: Exactly i of us are As; for i = 1 to 9.

I10: All 10 of us are As.

It is required to find out for each i = 1 to 10, whether Ii is an M or
an A. Formulate this as a 0−1 integer feasbility problem. Show that
system has a unique solution, and find that solution.



340 Ch.7. Integer Programs

7.8 Discrete Valued Variables

Consider an LP model with the additional requirement that some vari-
ables can only lie in specified discrete sets. For example, in the problem
of designing a water distribution system, one of the variables is the di-
ameter of the pipe in inches; this variable must lie in the set {6, 8,
10, 12, 16, 20, 24, 30, 36} because the pipe is available only in these
diameters.

In general, if x1 is a decision variable that is restricted to assume
values in the discrete set {α1, . . . ,αk}, this constraint is equivalent to

x1 − (α1y1 + . . .+ αkyk) = 0

y1 + . . .+ yk = 1

yj = 0 or 1 for each j

Such constraints can be augmented to the other linear equality and
inequality constraints in the model for each discrete valued variable.
This transforms the problem into an integer program.

7.8.1: A bank van had several bags of coins, each containing either
16, 17, 23, 24, 39, or 40 coins. While the van was parked on the street,
thieves stole some bags. A total of 100 coins were lost. It is required to
find how many bags were stolen. Formulate this as a discrete variable
feasibility model, and also transform this into a 0−1 model.

7.8.2: A merchant has bags of emeralds (nine to a bag), and rubies
(four to a bag). He has a total of 59 jewels. Required to find how many
of his jewels are rubies. Formulate as a 0−1 integer feasibility system.

7.9 The Graph Coloring Problem

A graph G is a network (N ,A) where N is a set of nodes, and A is
a set of edges, each edge joining a distinct pair of nodes. When the
picture of a graph is drawn on paper for illustrative purposes, it is
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possible that some edges drawn intersect at a point on paper which is
not a node in the network.

When N has n nodes, we will usually number them and denote
them by their numbers 1,. . . , n and refer to them by their numbers.
The edge joining nodes i, and j will be denoted by the symbol (i; j)
(or (i, j) in some books). Nodes i, and j are said to be adjacent in
the graph, if there is an edge joining them.

Computer programs usually store the graph G by storing the set
N = {1, . . . , n} and the set A as a set of pairs of nodes (i; j). Graph
theory is the branch of mathematics dealing with the mathematical
study of graphs and their properties.

A graph G is said to be a planar graph if it is possible to represent
the nodes in it as points on a piece of paper, and draw all the edges
in such a way that every pair of edges without a common node never
intersect in the picture. A nonplanar graph is one that is not planar.

An optimization problem in graphs that has many applications and
has been investigated extensively is the graph coloring problem:
given a graph G = (N ,A), find a coloring of its nodes with each node
colored by a single color, satisfying the constraint that for each edge
(i; j) ∈ A, the colors used for coloring i and j are different; using the
smallest possible number of colors. It is a combinatorial optimiza-
tion problem.

As an example consider the graph with 5 nodes on the left side of
Figure 7.8.

Suppose we use color 1 to color node 1. Since nodes 2, 5, 4 are
all adjacent to node 1, none of them can be colored with color 1; but
node 3 which is not adjacent to node 1 can be colored with color 1.
Since node 5 is adjacent to node 3, we cannot also use color 2 to color
node 5; so suppose we color node 5 with color 3. We can color node
4 with color 2. The colors used are shown in Figure 7.8, on the right
side. This coloring satisfies all the constraints, and clearly it uses the
smallest number of colors, 3.

History of the Graph Coloring Problem

Interest in the graph coloring problem was originally ignited by a
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1 2 1

4 3

5

2

4 3

5

Color 1 Color 2

Color 2 Color 1

Color 3

Figure 7.8: Graph to be colored is on the left, the coloring obtained is
shown on the right.

highly publicized mathematics problem known as the four color prob-
lem. Dating back to 1852, credit for making the four color problem
popular belongs to a British mapmaker, Francis Guthrie.

The basic rule for coloring a map is that no two regions sharing a
common boundary line of positive length can be colored with the same
color, to avoid ambiguity. If two regions meet at only a single point,
and do not have a common boundary line, it is okay for them to be
colored with the same color. If you look at an atlas, you can verify
that this is how all familiar maps are colored.

In the trade, mapmakers have known for a long time that if you
plan well enough, you will never need more than four colors to color
any map. No mapmaker has ever stumbled upon a map that required
the use of five colors. This puzzled Francis Guthrie, so in 1852 he
dashed off a letter to his brother Frederick Guthrie who is an academic,
enquiring whether he can explain the reasons for the same. Frederick
showed the letter to his advisor, the mathematics professor DeMorgan.
This brought the question to the attention of the European mathe-
matics community at that time, who perceived it as an interesting but
surprisingly difficult problem to solve.

Represent each region in the map by a node in a graph. Join a
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pair or nodes by an edge if the corresponding regions have a common
boundary line of positive length. The resulting graph G will be a
planar graph. In terms of graph coloring, the problem posed by Francis
Guthrie is to prove that one needs no more than four colors to color
any planar graph. Over the years it has become known as the four
color conjecture. Here is a map and the corresponding graph that
needs actually four colors.

1

2 4

3

5

Color 3 Color 3
Color 4

Color 2

Color 1

1 2

4

5

3

Color 1

Color 3

Color 3

Color 2

Color 4

Figure 7.9: A map with five regions numbered 1 to 5. Its planar graph
representation is shown. A feasible coloring with four colors is shown.

Shortly after the problem became known, a simple and fairly short
proof has been constructed to show that actually five colrs are sufficient
to color any planar graph, this has become famous as the “five color
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theorem”, but the goal of showing that four will be sufficient turned out
to be elusive. Until the 1970s, several claimed proofs of the four color
conjecture have been published, but their incorrectness was recognized
after a few years. But these failed proofs did have some value, ideas
in them were used by other mathematicians to make various forms of
progress on the four color problem.
Finally in 1976 Kenneth Appel and Wolfgang Haken proved the

four color conjecture using a computer program that is thousands of
lines long and took over 1200 hours to run. Since then the four color
conjecture has been referred to as the “four color theorem”. A simpler,
human-verifiable, but still quite long and complicated proof was devel-
oped in 1997 by N. Robertson, D. P. Sanders, P. D. Seymour, and R.
Thomas, see the website: http://www.math.gatech.edu/˜ thomas/FC/
fourcolor.html for details.

An Integer Programming Formulation of the Graph
Coloring Problem

The graph coloring problem can be modeled as an integer program.
Let G = (N ,A) be the graph with n nodes that we want to color.
Clearly no more than n colors are needed to color G, our aim is to find
a coloring using the smallest number of colors. For i = 1 to n, define
the decision variable

xi = number of the color used to color node i

Then xi is an integer variable taking values between 1 to n. So,
for any pair of nodes i, j, xi − xj varies between −n to +n; and we
require it to be different from 0 if (i; j) is an edge of G. So, here
is the integer programming formulation for the coloring of G (here
yij1, yij2 are indicator variables to require that either xi − xj ≤ −1, or
xi − xj ≥ +1 for each edge (i; j) in G):

Minimize θ

subject to xi − xj − 1 + 2nyij1 ≥ 0 for each (i; j) ∈ A
−xi + xj − 1 + 2nyij2 ≥ 0 for each (i; j) ∈ A
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yij1 + yij2 = 1 for each (i; j) ∈ A
1 ≤ xi ≤ n for all i

θ ≥ xi for all i

xi integer for all i,

yij1, yij2 binary for all (i; j) ∈ A
From the constraints it is clear that θ ≥maximum{x1, . . . , xn}; and

since θ is being minimized, in the optimum solution θ will be equal to
maximum{x1, . . . , xn}, and consequently equal to the number of colors
used. So the optimum solution of this model will give a coloring of G
using the smallest number of colors.
But no one really uses an integer programming model for solving

graph coloring problems, because even with the best algorithms avail-
able today, these models take very long to reach optimality. Several
efficient and fast heuristic methods have been developed for graph col-
oring that yield results very close to the optimum. Practitioners invari-
ably use these heuristic methods. We discuss some of these heuristic
methods in Chapter 9.

An Application of the Graph Coloring Problem

The graph coloring problem appears in many applications. One
such is as a direct model for the meeting scheduling problem discussed
in Section 7.3. There we modeled the problem of determining the
maximum number of meetings that can be scheduled without conflicts
in a given time period. Now we show that the problem of determining
the smallest number of time slots needed for scheduling all the meetings
without any conflicts can be modeled and solved as a graph coloring
problem.
Represent each meeting by a node in a graph G = (N ,A). N

is the set of meeting nodes. Join the two nodes i, and j by an edge
(i; j) iff meetings i and j both require the attendance of a common
administrator. A is the set of edges obtained this way.
Thus if two meetings do not require a common administrator to

attend them, there won’t be an edge connecting their nodes in G.
The time slot into which a meeting is scheduled can play the role
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of the color for coloring its node. Clearly the scheduling conflict con-
straint is exactly the coloring constraint for coloring G. So under this
representation, the meeting scheduling problem is exactly the coloring
problem for G.

Find the coloring of nodes of G using the smallest number of colors.
Its optimum value is the smallest number of time slots required for the
meeting scheduling problem. An optimum schedule is to schedule all
meetings corresponding to nodes of the same color in one time slot.

For our project at the UM Hospital, we used a graph coloring heuris-
tic to solve the problem. It produced very satisfactory results.

Example 7.9.1:

2

34

5

1

Color 1

Color 3

Color 1Color 2

Color 2
{A , A , A }1 2 3 {A , A , A }1 2 4

{A , A , A }3 5 7 {A , A , A }4 5 6

{A , A , A }1 4 5

Figure 7.10: A graph coloring formulation of the meeting scheduling
problem. Each node represents a meeting, we show the set of adminis-
trators who should attend it by its side. The color gives the time slot
number for scheduling the meeting.

Consider a meeting scheduling problem for 7 administrators num-
bered A1 to A7, involving 5 different meetings numbered M1 to M5;
with the required sets of administrators to attend each meeting as
shown in the following table.
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Meeting Administrators
required to attend

M1 A1, A2, A3
M2 A1, A2, A4
M3 A4, A5, A6
M4 A3, A5, A7
M5 A1, A4, A5

The graph representation of this problem is shown in Figure 7.10.
Node i represents meeting Mi for i = 1 to 5, and by the side of each
meeting node, the set of administrators required to attend it is shown.
Nodes 1, 2 are joined by an edge in the graph because the sets of
administrators required to attend these meetings has A1 (and also A2)
in common. Nodes 1, 3 do not have an edge joining them because the
sets of administrators required to attend them are disjoint.

An optimal coloring for the graph is shown in the figure, it requires
3 colors. So, 3 time slots are needed to schedule the meetings without
conflicts. Letting color k represent time slot k, here is an optimum
schedule.

Time slot Meetings scheduled
1 M1,M3

2 M2,M4

3 M5

Verify that any two meetings scheduled in the same time slot do
not require a common administrator to attend them, so they can take
place simultaneously without creating any conflicts.

Exercises

7.9.1: Model the meeting scheduling problem discussed in Example
7.3.5 as a graph coloring problem.
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7.10 The Traveling Salesman Problem (TSP)

A salesperson has to visit cities 2, . . . , n, and his/her trip begins at, and
must end in, city 1. cij = the cost of traveling from city i to city j, is
given for all i W= j = 1 to n, and c = (cij) of order n×n is known as the
cost matrix for the problem. Beginning in city 1, the trip must visit
each of the cities 2, . . . , n once and only once in some order, and must
return to city 1 at the end. The cost matrix is the input data for the
problem. The problem is to determine an optimal order for traveling
the cities so that the total cost is minimized.

This is a classic combinatorial optimization problem that has been
the object of very intense research since the late 1950s.

If the salesperson travels to the cities in the order i to i+ 1, i = 1
to n− 1, and then from city n to city 1, this route can be represented
by the order “1, 2, . . . , n; 1”. Such an order is known as a tour or a
hamiltonian.

From the initial city 1 the salesperson can go to any of the other n−1
cities. So, there are n − 1 different possibilities for selecting the first
city to travel from the initial city 1. From that city the salesperson
can travel to any of the remaining n − 2 cities, etc. Thus the total
number of possible tours in a n city traveling salesman problem is
(n − 1)(n − 2) . . . 1 = (n − 1)!. This number grows explosively as n
increases.

Let N = {1, . . . , n} be the set of cities under consideration. Let N1
be a proper subset of N . A tour covering the cities in N1 only, without
touching any of the cities in N\N1 is known as a subtour covering or
spanning the subset of cities N1. See Figure 7.11.
We will use the symbol τ to denote tours. Given a tour τ , define

binary variables xij by

xij =
1, if the salesperson goes from city i to city j in tour τ
0, otherwise

Then the n × n matrix x = (xij) is obviously an assignment, i.e.,
a feasible solution of an assignment problem (3.8.1), (3.8.2) of Section
3.8; it is the assignment corresponding to the tour τ . Hence every
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tour corresponds to an assignment. For example, the assignment cor-
responding to the tour 1, 5, 2, 6, 3, 4; 1 in Figure 7.11 follows the
figure.

1

46

3

2

51

4

6

3

5

2

Figure 7.11: Each node represents a city. On the left is the tour 1, 5,
2, 6, 3, 4; 1. On the right we have two subtours 1, 5, 2; 1 and 3, 6, 4;
3.

to j=1 2 3 4 5 6
from i = 1 1

2 1
3 1
4 1
5 1
6 1

where the blank entries in the matrix are all zeros. In the notation
of Chapter 5, this is the assignment {(1,5), (5,2), (2,6), (6,3), (3,4),
(4,1)}. An assignment is called a tour assignment iff it corresponds
to a tour.
As an example, the assignment {(1,5), (5,2), (2,1), (3,6), (6,4),

(4,3)} is not a tour assignment since it represents the two subtours on
the right hand side of Figure 7.11.
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So, the traveling salesman problem (usually abbreviated as
TSP) of order n with the cost matrix c = (cij) is

Minimize zc(x) =
n

i=1

n

j=1

cijxij

Subject to
n

j=1

xij = 1 for i = 1 to n (7.10.1)

n

i=1

xij = 1 for j = 1 to n

xij = 0 or 1 for all i, j

and x = (xij) is a tour assignment

Since the salesperson is always going from a city to a different city,
the variables xii will always be 0 in every tour assignment. To make
sure that all the variables xii will be 0, we define the cost coefficients
cii to be equal to a very large positive number for all i = 1 to n in
(7.10.1)

There are n! assignments of order n. Of these, only (n − 1)! are
tour assignments. The last constraint that x = (xij) must be a tour
assignment makes this a hard problem to solve.

Notice that the formulation given in (7.10.1) for the TSP is not
an integer programming model, since the last constraint in it is not a
linear constraint. There are several ways for modeling the TSP as an
integer program, but the model (7.10.1) with the nonlinear constraint
that x be a tour assignment turns out to be the most useful to develop
approaches to solve the TSP. So, we will not discuss those integer
programming models for the TSP in this book.

7.11 Exercises

7.1: A Word Puzzle: Following is a list of 47 words each having
three letters (these may not be words in the English language)
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ADV AFT BET BKS CCW CIR DER DIP EAT EGO
FAR FIN GHQ GOO HAT HOI HUG ION IVE JCS
JOE KEN LKK LIP LYE MOL MTG NES NTH OIL
OSF PIP PRF QMG QUE ROE RUG STG SIP TUE
TVA UTE VIP WHO XIN YES ZIP

Each letter corresponds to a unique numerical value, these letter
values are: A = 1, B = 2, . . ., Z = 26, in the usual order.

It is required to select a subset of 8 words from the list given above
to satisfy the following: let st = sum of the letter values of the tth
letter in the selected words, t = 1, 2, 3. Then s1 must be less than
both s2 and s3. The selection should maximize s1 + s2 + s3 subject to
these constraints.

(i) Formulate this problem and solve it using an integer program-
ming software package.

(ii) If there are ties for the optimum solution of the above problem,
find a solution that maximizes s1 among those tied.

(iii) If there are still ties, it is required to find the solution that maxi-
mizes s2 among those that tie for (ii). Give an argument to show
that the solution found in (ii) meets this requirement.

([G. Weber, 1990]).

7.2: It is required to assign distinct values 1 through 9 to the
letters A, E, F, H, O, P, R, S, T, to satisfy the conditions and achieve
the objective mentioned below. Two groups of 6 words each are given
below.
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Group 1 Group 2
AREA ERST
FORT FOOT
HOPE HEAT
SPAR PAST
THAT PROF
TREE STOP

Let s1, s2 refer to the totals for groups 1, 2 using the letter values
assigned.

(i) The letter value assignment should minimize s1 − s2. Formulate
this problem and find an optimum solution for it. Use the decision
variables

xij =
1 if ith letter is given value j
0 otherwise

(ii) It is required to find a letter-value assignment that maximizes s1
subject to the constraint that s1−s2 = 0. Formulate this problem
and find an optimum solution for it using an integer programming
software package.

([G. Weber, 1990]).

7.3: Round table conference of European Foreign Minis-
ters: The foreign ministers of European countries (east and west) num-
bered 1 to 10 are planning a round table conference. In Figure 7.12
each minister is represented by a node, and a line joins two nodes if the
corresponding ministers speak a common language. If there is no line
joining two nodes, it means that the corresponding ministers cannot
speak with each other without an interpreter.
An ideal seating arrangement around the table is one in which every

pair of ministers occupying adjacent seats both know a common lan-
guage. If an ideal one does not exist, an optimal arrangement should
minimize the number of pairs of adjacent ministers who cannot speak
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with each other. Formulate the problem of finding an ideal or optimal
seating arrangement as a traveling salesman problem, and try to get a
good solution for it by trial and error.

1

109

87

56

3

42

Figure 7.12:

7.4: Ms Skorean’s parties in Washington D.C.: Ms. Skorean
is famous for her parties in the Washington, D.C. area. In each four-
year administration she throws k parties, sets m tables at each party
and seats n people at each table. She makes a list of mn influential
people at the start of the four year period and invites them to every
party. Her tables are all distinct from each other (teak, oak, cherry
etc.) and k ≤ m. It is rumored that her parties are famous because
of her clever seating arrangements. She makes sure that each of her
guests sits at each table at most once. And she believes very strongly
that the atmosphere remains lively if each guest meets different people
at his/her table at each party. So, every time any pair of guests find
themselves at the same table after the first time, she awards herself an
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imaginary penalty of c units, where c > 0. Given k,m, n (all positive
integers ≥ 2 and k ≤ m). Formulate the problem of determining the
seating arrangement of her guests at the tables at the various parties,
subject to the constraint that no guest sits at a table more than once
and the overall penalty is as small as possible, as an integer program.

If k = m, what conditions should m,n satisfy to guarantee that a
zero penalty seating arrangement exists?

When k = m = n = 2, show that there is no zero penalty seating
arrangement using your formulation above. (Vishwas Bawle).

7.5: Subset-Sum Problem: We are given n positive integers
w1, . . . , wn; and another positive integer, w, called the goal. It is
required to find a subset of {w1, . . . , wn} such that the sum of the
elements in the subset is closest to the goal, without exceeding it. For-
mulate this as a special case of the knapsack problem. When the set
of integers is {80, 66, 23, 17, 19, 9, 21, 32}, and the goal is 142, write
this formulation, and see if you can solve it.

7.6: Bin Packing Problem n objects are given, with the ith
object having the positive integer weight wi kg., i = 1 to n. The
objects need to be packed in bins, all of which are identical, and can
hold any subset of objects as long as their total weight is ≤ w kg.,
which is the positive integral weight capacity of each bin. Assume that
w ≥ wi for each i = 1 to n. Objects cannot be split, and each must
be packed whole into a bin. Formulate the problem of determining the
minimum number of bins required for this packing, subject to the bin’s
weight holding capacity, as an integer program. Write this formulation
when there are 8 objects with weights 80, 66, 23, 17, 19, 9, 21, 32 kg,
respectively, and the bins weight holding capacity is 93 kg. See if you
can solve it.

7.7: A company can form 6 different teams using 10 experts it has
available. In the following table if there is an entry of 1 in the first line
in the row of team i and the column of expert j, then expert j has to
be on team i if it is formed (in this case, the amount in $ that he/she is
to be paid for being a member of this team, rij, is given just below this
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1); he/she need not be included on this team otherwise. In addition
to the team membership fee rij, if expert j is included in one or more
teams that are formed, he/she has to be paid a retainer fee of $cj given
in the last row of the table. If team i is formed, the company derives a
gross profit of $di given in the last column of the table. Also, because
of other work commitments, company rules stipulate that no expert
can work on more than two teams. It is required to determine which
teams should be formed to maximize company’s total net profit (gross
profit from the teams formed, minus the retainer and team membership
fees paid to the experts). Formulate this as an integer program. (T.
Ramesh).

Team Expert di
1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 10,000
200 200 300 200

2 1 1 1 1 15,000
200 400 200 300

3 1 1 1 1 6,000
300 200 250 150

4 1 1 1 1 8,000
200 400 250 200

5 1 1 1 1 12,000
200 200 150 150

6 1 1 1 1 9,000
200 200 150 200

cj 800 500 600 700 800 600 400 500 400 500

cj = Retainer fees, di = gross profit

7.8: Balancing with available weights: There is an object
whose weight is w kg. There are n types of stones, each stone of type
i weighs exactly ai kg., for i = 1 to n; and an unlimited number of
copies of each are available. w; a1, . . . , an are given positive integers.
The object is placed in the right pan of a balance. It is required to place
stones in the right and/or left pans of the balance so that it becomes
perfectly balanced. It is required to do this using the smallest possible
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number of stones. Formulate this as an integer program. Write this
formulation for the instance in which n = 5, w = 3437, and a1 to a5
are 1, 5, 15, 25, 57, 117, respectively.

7.9:Assembly line balancing: An assembly line is being de-
signed for manufacturing a discrete part. There are 7 operations num-
bered 1 to 7 to be performed on each part. Each operation can be
started on a part any time after all its immediate predecessor opera-
tions given in the following table are completed, but not before. The
table also gives the time it takes an operator to carry out each opera-
tion, in seconds. The cycle time of the assembly line will be 20 seconds
(i.e., each operator will have up to 20 seconds to work on a part before
it has to be put back on the line). An operator on the assembly line can
be assigned to carry out any subset of operations, as long as the work
can be completed within the cycle time and the assignments do not
violate the precedence constraints among the operations. It is required
to determine the assignment of operations to operators on this line, so
as to minimize the number of operators needed. Formulate this as an
integer program.

Operation Immediate predecessors Time in secs.
1 7
2 9
3 1,2 6
4 1 4
5 3 8
6 4 7
7 5,6 5

7.10: 5000 acceptable units of a discrete product need to be manu-
factured in one day. There are 4 machines which can make this product,
but the production rates, costs, and percentage defectives produced
vary from machine to machine. Data is given below. Formulate a
production plan to meet the demand at minimum cost.
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Machine Setup Prod. cost/unit Max. daily Expected
cost after mc. setup production defective %

1 400 4 2000 10
2 1000 6 4000 5
3 600 2 1000 15
4 300 5 3000 8

7.11: There are 5 locations where oil wells need to be drilled. There
are two platforms from each of which any of these wells can be drilled.
If a platform is to be used for drilling one or more of these wells, it needs
to be prepared, the cost of which is given below. Once a platform is
prepared, the drilling cost of each well depends on the drilling angle and
other considerations. All the costs are in coded money units. Formulate
the problem of determining which platform to use for drilling each well
to complete all drilling at minimum total cost.

Platform Preparation Cost of drilling to location
cost 1 2 3 4 5

1 15 10 8 30 15 19
2 20 14 25 25 15 16

7.12: A company has 5 projects under consideration for carrying

Project Required expenditure in Expected annual yield
Year 1 Year 2 Year 3 after construction

1 10 5 15 3
2 5 5 11 2
3 15 20 25 10
4 20 10 5 7
5 10 8 6 5

Available 50 40 50
funds

out over the next 3 years. If selected, each project requires a certain
level of investment in each year over the 3 year period, and will result
in an expected yield annually after this 3 year construction period. In
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the data given below, expenditures and income are in units of $10,000.
Formulate the problem of selecting projects to carry out, to maximize
total return.

7.13: There are 5 objects which can be loaded on a vessel. The
weight wi (in tons), volume vi (in ft

3), and value ri (in units of $1000)
per unit of object i is given below for i = 1 to 5. Only 4 copies of
object 1 and 5 copies of object 2 are available; but the other objects 3,
4, 5 are available in unlimited number of copies. For each object, the
number of copies loaded has to be a nonnegative integer. The vessel
can take a maximum cargo load of w = 112 tons, and has a maximum
space of v = 109 ft3. Formulate the problem of maximizing the value
of cargo loaded subject to all the constraints.

Object i wi vi ri
1 5 1 4
2 8 8 7
3 3 6 6
4 2 5 5
5 7 4 4

7.14: The 800-telephone service of an airline operates round the
clock. Data on

Period Time of day Min. operators needed
1 3 AM to 7 AM 26
2 7 AM to 11 AM 52
3 11 AM to 3 PM 86
4 3PM to 7 PM 120
5 7 PM to 11 PM 75
6 11 PM to 3 AM 35

the estimated number of operators needed during the various periods
in a day, for attending to most of the calls in a satisfactory manner, is
given above. Assume that each operator works for a consecutive period
of 8 hours, but they can start work at the beginning of any of the 6
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periods. Let xt denote the number of operators starting work at the
beginning of period t, t = 1 to 6. Formulate the problem of finding the
optimum values for xt, to meet the requirements in all the periods by
employing the least number of operators.

7.15: The public works division in a region has the responsibility to
subcontract work to private contractors. The work is of several types,
and is carried out by teams, each of which is capable of doing all types
of work.

The region is divided into 16 districts, and estimates of the amount
of work to be done in each district are available.

There are 28 contractors of which the first 10 are experienced con-
tractors. Data on the following quantities is provided.

i = 1 to 10 are indices representing experienced contractors; i =
11 to 28 are indices representing other contractors.

j = 1 to 16 are indices representing the various districts.
ai = number of teams contractor i can provide.
bj = number of teams required by district j.
ej = 2 or 3, is the specified minimum number of contractors al-

lotted to district j, this is to prevent overdependence on any
one contractor.

cij = expected yearly cost of a team from contractor i allotted to
district j.

At least one experienced contractor must be appointed in each dis-
trict, a precaution in case some difficult work arises. Enough teams
must be allotted to meet the estimated demand in each district, and
no contractor can be asked to provide more teams than it has available.
Formulate the problem of determining the number of teams from each
contractor to allot to each district, so as to satisfy the above constraints
at minimum cost.

Also, develop a heuristic method to find a reasonably good solution
to this problem. ([M. Cheshire, K. I. M. McKinnon, and H. P. Williams,
August 1984]).
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7.16: Equitable Distribution of Assets There are n assets
with the value of the ith asset being $ai for i = 1 to n. A = n

i=1 ai
is the total value of all the assets. It is required to allot these assets
to two beneficiaries in an equitable manner. Assets are indivisible, i.e.,
each asset has to be given completely to one beneficiary or the other,
but cannot be split. Let A1, A2 be the total value of assets allotted
to beneficiary 1, 2 respectively. It is required to distribute the assets
in such a way that the difference between A1 and A2 is as small as
possible. Formulate the problem of finding such a distribution as an
integer program. Give this formulation for the numerical example with
data n = 10, and (ai) = (14, 76, 46, 54, 22, 5, 68, 68, 94, 39). Do the
same for the problem with data n = 10, and (ai) = (8, 12, 117, 148,
2, 85, 15, 92, 152, 130). Solve both these problems using an available
integer programming package. ([H. M. Weingartner and B. Gavish,
May 1993]

7.17: There are 10 customers for a product and 9 potential loca-
tions where facilities for manufacturing it can be established. In the

Cust. i cij for j = di
1 2 3 4 5 6 7 8 9

1 15 16 27 28 25 27 27 14 15 28
2 20 13 15 24 13 16 15 15 20 44
3 12 17 25 16 22 15 20 24 26 26
4 25 27 16 23 21 25 26 24 26 31
5 22 10 9 19 18 23 10 22 23 39
6 20 16 24 19 26 24 19 17 20 30
7 17 17 16 25 19 26 14 12 24 43
8 18 20 23 22 28 18 19 17 15 37
9 23 17 16 24 12 25 17 19 22 39
10 14 14 16 20 25 12 23 23 19 30
kj 46 55 74 68 38 67 52 49 48
fj 727 547 674 501 605 482 382 442 606

above table di = expected demand of customer i for the product (in
units) over the lifetime of the facilities, kj = expected production ca-
pacity of a facility if established in location j, cij = cost of transporting
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the product (per unit) to customer i from a facility established at loca-
tion j, and fj = cost of establishing a manufacturing facility at location
j.

It is required to determine in which locations manufacturing facili-
ties should be established, and the shipping pattern from the facilities
to the customers, so as to meet the demands at minimum total cost
which is = the cost of establishing the facilities + the cost of meeting
the demand at the customers from the established facilities. Formulate
this as an MIP. How does the formulation change if it is required to es-
tablish no more than 5 manufacturing facilities? ([K. Darby-Dowman
and H. S. Lewis, November 1988]).

7.18: There are n assets with the value of the ith asset being $ai,
i = 1 to n. These assets have to be distributed to two beneficiaries in
such a way that the first beneficiary gets a fraction f of the total value
of all the assets as closely as possible. The assets are indivisible, i.e.,
each asset has to be given to one beneficiary or the other and cannot
be split. Formulate this as an integer program. Obtain an optimum
solution for the problem with data n = 10, f = 0.7, and (ai) = (8, 12,
117, 148, 2, 85, 15, 92, 152, 130). )[H. M. Weingartner and B. Gavish,
May 1993]).

7.19: There are three sites 1, 2, 3 for possible location of man-
ufacturing facilities. There are two products P1, P2, and two types of
manufacturing facilities (L = large with 4000 units/month production
capacity of either product, and S = small with 2000 units/month pro-
duction capacity of either product) that can be opened at any site.

Site Monthly set-up cost to make
P1 P2

1 $1815 2255
2 1975 2015
3 2215 2575

The fixed monthly set-up cost of operating an L-facility (S-facility)
at any site is $4000 ($2000). Once the fixed monthly set-up cost of
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operating a facility at a site is paid, there is an additional monthly
set-up cost for equipping that facility to manufacture a product, these
are given in the above table.

Data on the unit transportation costs for shipping products is given
below.

Shipping cost/unit from site i to j
P1 P2

j = 1 2 3 1 2 3
i = 1 1.92 28.8 38.4 6.4 9.6 12.8

2 9.6 6.4 12.8 28.4 25.6 51.2
3 12.8 12.8 6.4 12.8 12.8 6.4

The monthly demand for each product at sites 1, 2, 3, of 500,
1000, 800 units respectively, has to be met. Formulate the problem
of determining at which sites facilities have to be set up, of what types,
and the shipping patterns, so as to meet the demand at minimum cost
(= sum of monthly set-up costs and transportation costs).

7.20: A university library is considering 15 journals as candidates
for weeding out of their collection to yield annual subscription savings
to meet a proposed budget cut.

The citation counts COi in the subject, and CRi in related area, of
a journal Ji refer to the average number of times per year that articles
appearing in Ji are referenced in the appropriate scientific literature.
The faculty rating Ri of Ji is an average score between 1 and 5 given
by the faculty of the university as an indication of the importance
of journal Ji, in which the higher the score, the more important the
journal is considered to be. The usage data ui of Ji is the average
number of times issues of journal Ji have been removed from the shelf
for either borrowing or reading inside the library per quarter, obtained
from data collected by the library. The availability rating ai of journal
Ji is an evaluation by the librarian on how easily available this journal
is from other libraries; the smaller this rating the easier it is to obtain
this journal from other sources. All this data is given below.
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Journal Subscription ($/year) COi CRi Ri ui ai
J1 300 200 110 5 70 2
J2 220 50 120 5 70 1
J3 400 400 200 2 90 2

J4 700 60 80 4 90 2
J5 350 70 100 3 60 2
J6 260 160 210 5 90 3

J7 250 351 152 2 105 2
J8 360 130 111 1 85 2
J9 250 85 95 6 70 2

J10 210 70 65 5 40 3
J11 260 215 98 3 65 2
J12 320 45 35 4 45 1

J13 200 66 43 5 50 2
J14 520 130 120 4 70 3
J15 200 312 110 1 90 4

The following constraints have to be met.

(a) Citation count in subject: Keep the average of the citation
count in subject, per canceled journal, to ≤ 800.

(b) Citation count in related area: Keep the average of the cita-
tion count in related area, per canceled journal, to ≤ 500.

(c) Faculty ratings: Keep the average of the faculty rating, per
canceled journal, to ≤ 3.

(d) Journal usage: Keep the total usage rate per quarter, of all
the journals canceled from this list, at 500 or less.

(e) Availability from other sources: Keep the average of the
availability rating, per canceled journal, to ≤ 2.
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Formulate the problem of determining which journals to cancel, to
maximize the total subscription cost of journals canceled, subject to the
constraints given. ([M. J. Schniederjans and R. Santhanam, 1989]).

7.21: There are 5 projects being considered for approval. The
following table presents the data on AR = expected annual return, FI
= investment needed in first year, WC = working capital expenses, and
SE = expected safety and accident expenses, on each project in some
money units.

Project AR FI WC SE
1 49.3 150 105 1.09
2 39.5 120 83 1.64
3 52.6 90 92 0.95
4 35.7 20 47 0.37
5 38.2 80 54 0.44

Constraint ≥ 100 ≤ 250 ≤ 300 ≤ 3.8
on total

Formulate the problem of determining which projects to approve
to maximize the expected annual return from the approved projects,
subject to the constraints mentioned above.
7.22: There are 7 projects which are being considered for approval.

Project Other projects that must Profit or cost of this project
be approved if this is

1 2 $10 m. profit
2 $8 m. cost
3 1, 5 $2 m. profit
4 2, 6 $ 4 m. profit
5 $5 m. cost
6 $ 3 m. profit
7 3 $ 2 m. profit

Some projects can be approved only if other specified projects are
also approved, as explained in the above table. Each project results
in a profit or cost as indicated in the table. Formulate the problem of
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determining which projects to approve, so as to maximize the total net
profit.

([H. P. Williams, Feb. 1982]).

7.23: There are 5 project proposals. If any of these proposals is
accepted, the amount of investment money granted for its implemen-
tation must be 1, 2, 3, or 4 units (the money unit in this problem is
$100,000). Rejecting a proposal is equivalent to accepting it with an
investment grant of 0 units for its implementation. Data on the manag-
ing costs (MC), the expected annual returns (EAR), and the % interest
expenses on investment (I) on each project are tabulated below.

Proj. MC and EAR if amount granted is I
1 2 3 4

MC EAR MC EAR MC EAR MC EAR
1 0.02 0.045 0.04 0.087 0.06 0.117 0.08 0.147 1
2 0.03 0.055 0.054 0.106 0.078 0.146 0.1 0.166 2
3 0.07 0.08 0.13 0.14 0.18 0.18 0.22 0.19 3
4 0.05 0.07 0.1 0.123 0.14 0.163 0.18 0.193 4
5 0.04 0.065 0.075 0.121 0.11 0.171 0.14 0.191 5

The total interest expenses cannot exceed 0.17, and the total man-
aging costs have to be ≤ 0.2 in money units. Formulate the problem
of determining which projects to accept, and how much investment
money to grant to each of the accepted projects, so as to maximize
the total expected annual return from the accepted projects, subject
to these constraints, as an integer program with the smallest possible
number of constraints. Find an optimum solution to the problem.

7.24: An investment firm is faced with a pool of 20 capital invest-
ment projects, and has as its constraints a limited capital budget of
600, 450, and 80 for periods 1, 2, 3, respectively; and target cash flow
requirements of 240, 300, 320, 350, 130, 125, and 120 for periods 4 to
10, respectively. Formulate the problem of selecting the projects to
invest in to maximize the present value of total return over the 10 year
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planning horizon with 8% as the interest rate for money per period,
subject to these constraints.

Project Net cash flow in period
1 2 3 4 5 6 7 8 9 10

1 −50 −50 15 25 15 15 30 20 10 0
2 −80 −35 −35 40 70 70 70 0 0 0
3 −70 −60 −60 45 45 50 50 50 50 50

4 −35 −45 25 25 25 30 30 0 0 0
5 −50 −30 −30 0 0 0 40 20 20 20
6 −5 −45 −10 30 15 15 15 20 20 0

7 −100 −30 20 35 35 40 20 10 10 10
8 −50 10 −40 20 20 0 0 0 0 0
9 −20 −30 −40 −15 20 25 30 35 40 45

10 −55 0 5 35 15 10 0 0 0 0
11 −40 −10 25 10 10 15 15 10 5 5
12 −30 −50 −20 25 25 25 20 0 0 0

13 0 −20 −25 10 20 30 30 10 0 0
14 −60 −50 −20 −25 40 50 60 0 0 0
15 −10 −25 −20 20 25 35 20 0 0 0

16 −100 −20 15 20 20 30 0 0 0 0
17 −30 5 −10 15 15 15 15 15 15 15
18 −55 −10 10 15 20 20 20 0 0 0

19 −55 5 10 30 30 0 0 0 0 0
20 −75 −50 −30 20 30 40 40 20 20 20

7.25: Metal Ingot Production A steel company has to fill
orders for 4 types of ingots. For i = 1 to 4, ri is the number of ingots
of type i to be delivered, this and other data is given below.
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Ingot type 1 2 3 4
Weight (tons) 7 11 15 23

ri 53 84 117 243

They smelt the metal in vessels of fixed size of 100 tons, and then
cast it into ingots. A vessel of liquid metal which is ready to be poured
is called a heat, it is cast into as many full ingots as possible that can
be made with it, and any leftover metal is poured out and has to be
remelted - an expensive operation. That’s why leftover metal at the
end of pouring a heat is called wastage (measured in tons) and the
company tries to minimize the total wastage generated.

The company prepares several combinations of ingots of various
types that can be poured from a heat. For example, here are two
combinations: Combination 1 - 4 ingots of type 4, and 1 ingot of type
1; Combination 2 - 5 ingots of type 3, 1 ingot of type 2, and 2 ingots
of type 1. If Combination 1 is poured, the wastage is 100 − 4×23 −
1×7 = 1 ton. If Combination 2 is poured, the wastage is 100 − 5×15
− 1×11 − 2×7 = 0.
Generate at least 10 different good combinations, i.e., those in which

the wastage is reasonably small.

Construct a model to determine how many heats should be poured
for each of the combinations generated by you so that the number of
ingots of type i produced is ≥ ri for all i, while minimizing 3(wastage)
+ (weight of ingots of all types left over after the order is filled). Find
an optimum solution for this model using one of the available integer
programming software packages.

Discuss how the company’s Industrial Engineer should organize the
weekly pouring schedule if there are many types of ingots to consider
(as many as 50 different types), and the number of ingots of each type
to be produced that week becomes known at the beginning of the week.
([R. W. Ashford and R. C. Daniel, May 1992]).

7.26:A firm is faced with a pool of 12 investment projects which
are examined over a 5-year horizon, and have as constraints a limited
capital budget in periods 1 and 2, as well as a target cash inflow for
periods 3, 4, 5. The following table presents the data.
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It is required to determine the projects to invest in, to maximize the
total return while meeting all the constraints. Formulate this problem.

Project Net cash flow in period
1 2 3 4 5

1 −45 −15 40 60 0
2 −90 25 35 70 0
3 −50 0 30 50 0
4 −60 −10 10 60 40

5 −100 −10 25 60 80
6 −40 −35 30 50 30
7 −60 5 10 30 50
8 −80 −15 35 40 60

9 −75 0 −10 50 75
10 −30 −20 −5 40 40
11 −35 −10 −5 30 40
12 −54 −20 −15 50 70

Available 500 80
budget
Target 90 290 245

cash inflow

7.27: A company is making plans to manufacture two products
P1, P2. There are 6 operations O1 to O6, some are required by both
products, others are required by only one product, as explained below.
There are three types of machines, M1,M2,M3 each of which can per-
form some of the operations on one or both of the products as explained
below.

Product data
Product Operations to be performed Annual Prod. target (units)
P1 O1, O2, O6, O5 48,000
P2 O2, O3, O5, O4 38,000



7.11: Exercises 369

Processing time (PT) data (minutes/unit)
Operation P1 P2

PT if carried out on
M1 M2 M3 M1 M2 M3

O1 5.2 6.2 7.3
O2 3.0 3.0 2.5 2.9
O3 4.0 5.2
O4 2.0 2.0 2.4
O5 2.0 2.2 5.9 7.1 8.1
O6 7.0 8.2 9.0

Blank indicates either that operation not needed for product,

or that mc. can’t perform operation on product

Each machine will be available to work 1900 hours/year. Machine
types M1,M2,M3 cost $96,000, $82,000, $70,000 respectively per copy.
The company can buy a nonnegative number of copies of each machine
type. The problem is to determine how many copies of each machine
type to buy, and how much of each product-operation combination
to allot to each machine purchased, in order to carry out the yearly
workload with minimum investment. Formulate as an MIP. (Y. Bozer).

7.28: Segregated Storage Problem There are m different
products to be stored, with ai > 0 being the quantity of product i to
be stored in some units. There are n different storage compartments,
with bj > 0 being the capacity in units of storage compartment j.

However, in each compartment, at most one product may be stored.
A typical problem of this type is the ‘silo problem’ in which different
varieties of grain are to be stored separately in the various compart-
ments of the silo. Other examples are: different types of crude oil in
storage tanks, customer orders on trucks with no mixing of different
orders on any truck, etc.

We assume that there exists external storage space, available at
premium cost, which is capable of storing any and all products. Call
this external storage the (n+1)st compartment. For i = 1 to m, j = 1
to n+1, let cij denote the unit cost of storing product i in compartment
j.
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It is required to store the available quantities of the products in the
compartments at minimum cost, subject to the storage capacities of
compartments 1 to n, and the constraint that each of the compartments
1 to n can hold at most one product. Formulate this problem. Give
this formulation for the numerical example with the following data
in which the fourth compartment represents external storage ([A. W.
Neebe, Sept. 1987]).

cij for j =
Compartment j = 1 2 3 4 ai

Product i = 1 20 14 19 24 1
2 15 13 20 22 8
3 18 18 15 22 7

Capacity bj 3 7 4 16

7.29: The Symmetric Assignment Problem There are 6
students in a projects course. It is required to form them into groups
of at most 2 students each (so a single student can constitute a group
by himself/herself). Here is the cost data. It is required to find a
minimum cost grouping. Formulate this as an integer program.

Cost of forming students i, j into a group, for j ≥ i
j = 1 2 3 4 5 6
i = 1 16 10 8 58 198 70

2 10 6 72 50 32
3 15 26 198 24
4 15 14 18
5 13 6
6 10

7.30: The Asymmetric Assignment Problem Let C = (cij)
be an n × n cost matrix for an assignment problem, with cii = ∞
for all i (i.e., all cells (i, i) are forbidden cells). Here we want a mini-
mum cost assignment satisfying the additional constraints “if xij = 1,
then xji = 0, for all i W= j.” These conditions are called asymmetry
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constraints since they force the feasible assignment to be asymmetric.
Because of this the assignment problem with these constraints is known
as the asymmetric assignment problem. Give a formulation of this
problem.

Additional exercises for this chapter are available in Chap-
ter 13 at the end.
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