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Chapter 8

The Branch and Bound
Approach

This is Chapter 8 of “Junior Level Web-Book for Optimization
Models for decision Making” by Katta G. Murty.

8.1 The Difference Between Linear
and Integer Programming Models

The algorithms that we discussed in earlier chapters for linear pro-
grams, and some recently developed algorithms such as interior point
methods not discussed in this book, are able to solve very large scale
LP models arising in real world applications within reasonable times
(i.e., within a few hours of time on modern supercomputers for truly
large models). This has made linear programming a highly viable prac-
tical tool. If a problem can be modeled as an LP with all the data in
it available, then we can expect to solve it and use the solution for
decision making; given adequate resources such as computer facilities
and a good software package, which are becoming very widely available
everywhere these days.

Unfortunately, the situation is not that rosy for integer and com-
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376 Ch.8. Branch And Bound

binatorial optimization models. The research effort devoted to these
areas is substantial, and it has produced very fundamental and elegant
theory, but has not delivered algorithms on which practitioners can
place faith that exact optimum solutions for large scale models can be
obtained within reasonable times.

Certain types of problems, like the knapsack problem, and the
traveling salesman problem (TSP), seem easier to handle than others.
Knapsack problems involving 10,000 or more 0—1 variables and TSPs
involving a few thousands of cities, have been solved very successfully
in at most a few hours of computer time on modern parallel process-
ing supercomputers by implementations of branch and bound methods
discussed in this chapter custom-made to solve them using their special
structure. But for many other types of problems discussed in Chapter
7, only moderate sized problems may be solvable to optimality within
these times by existing techniques. Real world applications sometimes
lead to large scale problems. When faced with such problems, prac-
titioners usually resort to heuristic methods which may obtain good
solutions in general, but cannot guarantee that they will be optimal.
We discuss some of these heuristic methods in Chapter 9.

The main theoretical differences between linear programs, and the
discrete optimization problems discussed in Chapter 7 are summarized
below.

Linear programs There are theoretically proven necessary and suf-
ficient optimality conditions which can be used
to check efficiently whether a given feasible so-
lution is an optimum solution or not (these are
existence of a dual feasible solution that satis-
fies the complementary slackness optimality con-
ditions together with the given primal feasible so-
lution). These optimality conditions have been
used to develop algebraic methods such as the
simplex method and other methods for solving
LPs.
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Discrete and For these problems discussed in Chapter 7, there
combinatorial are no known optimality conditions to check
optimization whether a given feasible solution is optimal, other
problems than comparing this solution with every other fea-

sible solution implicitly or explicitly. That is why
discrete optimization problems are solved by enu-
merative methods that search for the optimum so-
lution in the set of feasible solutions.

8.2 The Three Main Tools in the Branch
and Bound Approach

The total enumeration method presented in Chapter 7 evaluates every
feasible solution to the problem and selects the best. This method
is fine for solving small problems for which the number of solutions is
small. But for large scale real world applications, the total enumeration
method is impractical as the number of solutions to evaluate is very
large.

Branch and bound is an approach to search for an optimum feasi-
ble solution by doing only a partial enumeration. The Branch and
Bound approach was developed independently in the context of the
traveling salesman problem (TSP) in [K. G. Murty, C. Karel, and J.
D. C. Little, 1962], and in the context of integer programming in [A.
H. Land and A. G. Doig, 1960]. Particularly, the important concept of
bounding is from the former reference.

We will use the abbreviation “B&B” for “Branch and Bound”. We
will describe the main principles behind the B&B approach using a
problem in which an objective function z(z) is to be minimized (as
before, a problem in which an objective function 2'(x) is to be maxi-
mized is handled through the equivalent problem of minimizing —2z'(z)
subject to the same constraints). Let K, denote the set of feasible so-
lutions of the original problem, and zy the unknown optimum objective
value in it. The main tools that the B&B approach uses to solve this
problem are the following.
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Branching or Partitioning In the course of applying the B&B ap-
proach, Ky is partitioned into many simpler subsets. This is what one
would do in practice if one is looking, say, for a needle in a haystack.
The haystack is big and it is impossible to search all of it simultane-
ously. So, one divides it visually into approximately its right and left
halves, and selects one of the halves to search for the needle first, while
keeping the other half aside to be pursued later if necessary.

Each subset in the partition of Ky will be the set of feasible so-
lutions of a problem called a candidate problem abbreviated as
“CP”, which is the original problem augmented by additional con-
straints called branching constraints generated by the branching
operation. This subset is actually stored by storing the CP, i.e., essen-
tially storing the branching constraints in that CP.

In each stage, one promising subset in the partition is chosen and
an effort made to find the best feasible solution from it. If the best
feasible solution in that subset is found, or if it is discovered that the
subset is empty (which happens if the corresponding CP is infeasible),
we say that the associated CP is fathomed. If it is not fathomed, that
subset may again be partitioned into two or more simpler subsets (this
is the branching operation) and the same process repeated on them.

Bounding The B&B approach computes and uses both upper and
lower bounds for the optimum objective value.

The upper bound u, of which there is only one at any stage, is always
an upper bound for the unknown zy, the minimum objective value in
the original problem. It is always the objective value at some known
feasible solution. To find an upper bound one finds a feasible solution
Z (preferably one with an objective value close to the minimum) and
takes z(z) as the upper bound. When there are constraints, it may be
difficult to find a feasible solution satisfying them. In that case we will
not have an upper bound at the beginning of the algorithm, but the
moment a feasible solution is produced in the algorithm we will begin
to have an upper bound.

At any stage, u, the current upper bound for zj is the least among
the objective values of all the feasible solutions that turned up in the
algorithm so far. The feasible solution whose objective value is the
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current upper bound u is called the incumbent at that stage. Thus
the incumbent and the upper bound change whenever a better feasible
solution appears during the algorithm.

In contrast to the upper bound of which there is only one at any
stage, each candidate problem has its own separate lower bound for

the minimum objective value among feasible solutions of that CP. For
any CP,

Lower bound for a CP = it is a number ¢ computed
by a procedure called the
lower bounding strategy,
satisfying the property that
every feasible solution for
this CP has objective value
> /.

Pruning Suppose we have an upper bound wu for the unknown z
at some stage. Any CP associated with a lower bound ¢ > u has
the property that all its feasible solutions have objective value > u =
objective value of the current incumbent, so none of them is better
than the current incumbent. In this case the algorithm prunes that
CP, i.e., discards its set of feasible solutions from further consideration.

As an example, suppose Z is the current incumbent (i.e., the best
feasible solution to the original problem known so far) with an objective
value of 30. Since the objective function z(z) is to be minimized, we
know that the optimum objective value in the original problem zj is
< 30, so u = 30 is the current upper bound for the unknown zy. If the
lower bound for the minimum objectve value in a CP, say CP1 is 32, we
can prune CP1, because every feasible solution for CP1 has objective
value > 32, and the current incumbent Z is better than all of them.

High Quality Lower Bounds Consider a particular CP, say
CP1. Let z; denote the unknown minimum value for the objective
function z(z) among feasible solutions of CP1. Suppose we are able to

compute a lower bound for z; by two different methods, say Method1,
and Method?2.
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Suppose Methodl gives 25 as a lower bound for z; (i.e., it con-
cldes that z; > 25); and Method2 gives 32 as the lower bound for z;.
Here both the methods are correct, but the information obtained by
Method2 that z; > 32 is more valuable than the information given by
Methodl. That’s why the quality of a lower bound (for the optimum
objective value z; in this problem CP1) is judged by how large it is,
the larger the lower bound the higher its quality.

There are usually many different strategies that one can use to
compute a lower bound for z;. The computational effort needed for
them, and the values of the lower bound produced by them for z; may
be different. Once an incumbent for the problem is obtained, if the
lower bounding strategy used on each CP produces a high quality
lower bound (i.e., a lower bound as high as possible, or close to the
minimum objective value in this CP), then a lot of pruning may take
place, thereby curtailing enumeration.

Thus the bounding step in the B&B approach contributes signifi-
cantly to the efficiency of the search for an optimum solution of the
original problem, particularly if the lower bounding strategy used pro-
duces high quality lower bounds without too much computational ef-
fort. The lower bounds are used in selecting promising CPs to pursue
in the search for the optimum, and in pruning CPs whose set of feasi-
ble solutions cannot possibly contain a better solution than the current
incumbent. Also, the lower bounding strategy applied on a CP may
produce fortuitously the best feasible solution for it, thus fathoming it.

8.3 The Strategies Needed to Apply the
Branch and Bound Approach

As before, we consider a problem in which an objective function z(z) is
to be minimized subject to a given system of constraints on the decision
variables. We denote the set of feasible solutions of the original problem
by Ky, and the unknown minimum value of z(z) in the original problem
by 2.
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8.3.1 The Lower Bounding Strategy

20, the minimum value of z(z), is obtained precisely if the original prob-
lem is solved, but it may be hard to solve. The purpose of applying
the lower bounding strategy on the original problem is to compute a
lower bound for zj, i.e., a number ¢ satisfying ¢ < z(z) for all feasi-
ble solutions = of the original problem. It should be relatively easy
to implement and computationally very efficient. Among several lower
bounding strategies, the one which gives a bound closest to the mini-
mum objective value without too much computational effort, is likely
to make the B&B approach most efficient. Thus in designing a lower
bounding strategy, we need to strike a balance between

the quality of the lower bound obtained (the larger the better)

the computational effort involved (the lesser the better)

Lower Bounding by Solving a Relaxed Problem

There are several principles that can be used for constructing lower
bounding strategies, but we will only discuss the most important one
in this book. It is based on solving a relaxed problem.

In the lower bounding strategy based on relaxation, we identify the
hard or difficult constraints in the problem. A subset of constraints
is said to be hard if there is an efficient algorithm to solve the remaining
problem after deleting these constraints. We select one such set, and
relax the constraints in it. The remaining problem is called the relaxed
problem. Since the relaxed problem has fewer (or less restrictive)
constraints than the original, its set of feasible solutions contains Ky
inside it. Hence the minimum objective value in the relaxed problem is
a lower bound for the minimum objective value in the original problem.

As an example suppose we want to solve an integer program. Sup-
pose we have a software package to solve linear programs very effi-
ciently. Unfortunately, it cannot be used to solve the integer program
we need to solve, since it cannot enforce the condition the the variables
must take only integer values. In this case we consider the integer con-
straints on the variables as the hard constraints in the original problem,
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if we relax them we get what is known as the LP relaxation of the
original integer program. This LP relaxation can be solved by our LP
software package, and the minimum objectve value in it will be a lower
bound for the minimum objective value in the original integer program.

The importance of computing good bounds for the minimum ob-
jective value in a combinatorial minimization problem, particularly the
lower bound, cannot be overemphasized. In the branch and bound
approach, computing a good lower bound is an essential component
without which the approach degenerates into total enumeration and
will be almost impractical on large scale problems.

Let Z be the optimum solution of the relaxed problem. It is known
as the initial relaxed optimum. Its objective value, z(Z), is the lower
bound for z; obtained by the lower bounding strategy.

If z satisfies the hard constraints that were relaxed, it is feasible to
the original problem, and since z(z) > z(&) for all feasible solutions
x of the original problem, Z is an optimum solution for the original
problem. If this happens we say that the original problem is fathomed,
and terminate. Otherwise, the algorithm now applies the branching
strategy on the original problem.

8.3.2 The Branching Strategy

The branching strategy partitions the set of feasible solutions of the
original problem into two or more subsets. Each subset in the parti-
tion is the set of feasible solutions of a problem obtained by imposing
additional simple constraints called the branching constraints on the
original problem. These problems are called candidate problems.

Branching Using a 0—1 Variable

If there is a 0—1 variable, x; say, in the problem, we can generate
two candidate problems by adding the constraint “z; = 0”7 to the
original problem for one of them, and “z; = 1” for the other. Clearly
the sets of feasible solutions of the two CPs generated are disjoint, and
since x; is required to be either 0 or 1 in every feasible solution of the
original problem, the union of the sets of feasible solutions of the two
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CPs is K. Thus this branching operation partitions Ky into the sets
of feasible solutions of the two CPs generated.

Branching Using a Nonnegative Integer Variable

Suppose there is a variable, x5 say, in the problem which is a non-
negative integer variable, and the value of x5 in the relaxed optimum is
6.4 say (in general assume it is Z5). Then we can generate two candidate
problems by adding the constraint “ze < 6” (in general “zy < |Z3]”)
to the original problem for one of them, and “zy > 7 (in general
“rg > |Z2) +17) for the other. Here again, clearly the set of feasible
solutions of the two CPs is a partition of Kj.

The variables z1,x, used in the branching operations described
above are known as the branching variables for those operations.

Applying Lower Bounding Strategy on Each New
CP Generated

Now the lower bounding strategy is applied on each CP generated.
The constraints relaxed in the CP for lower bounding will always be the
hard constraints from the system of constraints in the original prob-
lem; the branching constraints in the CP are never relaxed for lower
bounding because these constraints are usually simple constraints that
can be handled easily by algorithms used to solve the relaxed problem.

Z, the computed optimum solution of the relaxed problem used for
getting a lower bound for the minimum objective value in that CP, is
known as the relaxed optimum for that CP.

Then z(z) is a lower bound for the minimum objective value in that
CP. If 7 satisfies all the relaxed constraints (i.e., it is a feasible solution
for the CP), then by the argument made earlier, Z is in fact an optimum
solution for this CP, and hence z(%) is the true minimum objective value
in this CP. If this happens we say that this CP is fathomed.

In general, a CP is said to be fathomed whenever we find a feasible
solution z for it with objective value equal to the computed lower bound
for the minimum objective value in this CP, then Z is an optimum
solution for that CP.
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If this is the first CP to be fathomed, & becomes the first in-
cumbent, and z(Z) the current upper bound for the unknown 2y, the
minimum objective value in the original problem. If this is not the first
CP to be fathomed, Z replaces the present incumbent to become the
new incumbent if z(Z) < the present upper bound for zy; and z(%) be-
comes the new upper bound for z; (this operation is called updating
the incumbent). Otherwise (i.e., if 2(Z) > the present upper bound
for zj), there is no change in the incumbent and the CP is pruned.
Thus, the current incumbent at any stage is the best feasible so-
lution obtained so far, and its objective value is the current upper
bound for the unknown z.

If a candidate problem, P say, is not fathomed, we only have a lower
bound for the minimum objective value in it. When this candidate
problem P is pursued next, the branching strategy will be applied
on it to generate two candidate subproblems such that the following
properties hold.

1. Each candidate subproblem is obtained by imposing additional
branching constraints on the candidate problem P.

2. The sets of feasible solutions of the candidate subproblems form a
partition of the set of feasible solutions of the candidate problem
P.

3. The lower bounds for the minimum objective values in the can-
didate subproblems are as high as possible.

The operation of generating the candidate subproblems is called
branching the candidate problem P. The candidate problem P
is known as the parent problem for the candidate subproblems gen-
erated; and the candidate subproblems are the children of P. The
important thing to remember is that a candidate subproblem always
has all the constraints in the original problem, and all the branching
constraints of its parent, and the branching constraints added to the
system by the branching operation which created it. Thus every can-
didate subproblem inherits all the constraints of its parent, plus the
branching constraint just introduced. Hence the lower bound for the
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minimum objective value in any candidate subproblem will be > the
lower bound associated with its parent.

How to Select the Branching Variable Among Sev-
eral Available?

When there are several variables which can be selected as the branch-
ing variable, it should be selected among them so as to satisfy Property
3 above as best as possible to increase the overall efficiency of the al-
gorithm.

The branching strategy must provide good selection criteria for
branching variables, to achieve this goal. One way this is done is to
compute an estimate for the difference between the lower bound for the
most important among the candidate subproblems generated, and the
lower bound for the parent, if a particular eligible variable is selected
as the branching variable at that stage. An estimate like that is known
as an evaluation coefficient for that variable. Then the branching
variable can be selected to be the variable with the highest evaluation
coefficient among the eligible variables.

8.3.3 The Search Strategy

Initially the original problem is the only candidate problem. Begin by
applying the lower bounding strategy on it. Let z° be the relaxed op-
timum solution obtained, and L the lower bound for 2. If 2° satisfies
the hard constraints that were relaxed, it is an optimum solution for
the original problem which is fathomed in this case, and the algorithm
terminates. If 2° violates some of the relaxed constraints, the situation
at this stage can be represented as in Figure 8.1.

Now apply the branching strategy on the original problem, gener-
ating candidate problems CP 1 and CP 2. Apply the lower bounding
strategy on these CPs and enter them as in Figure 10.2. This diagram
is known as the search tree at this stage. The original problem has
already been branched, and CP 1, CP 2 are its children. Nodes CP 1,
CP 2 which have not yet been branched and hence have no children yet,
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Original
problem

— Lower bound L,

Figure 8.1:

are known as terminal nodes (also called live nodes in the search
tree at this stage.

At any stage of the algorithm, the list (also called stack in some
books, but we will use the word stack in a slightly different sense when
using backtrack search strategy discussed later) denotes the collection
of all the unfathomed and unpruned CPs which are terminal nodes at
that stage.

If either of CP 1, CP 2 is fathomed, the optimum solution in it
becomes the incumbent and its objective value the upper bound u for
the unknown z,. There is no reason to pursue a fathomed CP, hence
it is deleted from the list. If both CP1, CP 2 are fathomed, the best of
their optimum solutions is an optimum solution of the original problem,
and the algorithm terminates.

Suppose Ly < L. If CP 1 is fathomed, then L; = current upper
bound = objective value of the current incumbent which is the optimum
solution for CP 1. In this case the lower bound L, for CP 2 is >
the objective value of the incumbent, and hence CP 2 is pruned; and
the algorithm terminates again with the incumbent as the optimum
solution for the original problem.

If CP 2 is fathomed but not CP 1 and L; < Ls, then we cannot
prune CP 1 since it may contain a feasible solution better than the
present incumbent. In this case CP 1 joins the list and it will be
branched next.
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Original
problem

/ B wr bound L,

CP1 CP2

Lower bound L, Lower bound L,

Figure 8.2:

Suppose both CP 1 are CP 2 are unfathomed and L; < L,. Now
there is a possibility that the optimum solution for CP 1 has an objec-
tive value < Lo, and if so it will be optimal to the original problem.
Thus at this stage both CP 1 and CP 2 are in the list, but CP 1 is
branched next, while CP 2 is left in the list to be pursued later if
necessary. Any CP which is not branched yet, not fathomed and not
pruned, is known as a live node in the search tree at this stage. It is
a terminal node which is in the list.

When CP 1 is branched, suppose the candidate subproblems CP
11, CP 12 are generated. The search tree at this stage is shown in
Figure 8.3. CP 1 is is no longer a terminal node, so it is deleted from
the list.

Now the lower bounding strategy is applied on the new CPs, CP 11,
CP 12. Any CP whose relaxed problem is infeasible cannot have any
feasible solution, and so is pruned. If any of these CPs is fathomed,
update the incumbent and the upper bound for z;. The incumbent
at any stage is the best (i.e., the one with the least objective value)
among feasible solutions of the original problem identified at the various
occurrences of fathoming so far, and its objective value is the current
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upper bound for the minimum objective value in the original problem.
Whenever a newly generated CP is fathomed, it is never added to the
list, the optimum solution in it is used to update the incumbent. Any
CP whose lower bound is > the upper bound for zy, is pruned and
taken off the list. Therefore at any stage of the algorithm, the list (or
stack) consists of all the unpruned, unfathomed, and unbranched CPs
at that stage. The following properties will hold.

(i) The sets of feasible solutions of the CPs in the list (or stack) are
mutually disjoint.

(ii) If there is an incumbent at this stage, any feasible solution of the
original problem that is strictly better than the current incum-
bent is a feasible solution of some CP in the list.

Original

problem
Lower bound L,

Lower bound L;

Lower bound L,

Lower bound Ly Lower bound L,

Figure 8.3:

(iii) If there is no incumbent at this stage, the union of the sets of fea-
sible solutions of the CPs in the list is the set of feasible solutions
of the original problem.
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In a general stage, identify a CP that is associated with the least
lower bound among all CPs in the list at this stage. Denote this CP
by P. Delete P from the list and apply the branching strategy on
it. Apply the lower bounding strategy on the candidate subproblems
generated. If any of them turn out to be infeasible, prune them. If any
of them is fathomed, update the incumbent. If there is a change in the
incumbent, look through the list and prune. Add the unpruned and
unfathomed among the newly generated candidate subproblems to the
list. Then go to the next stage.

At the stage depicted in Figure 8.3, CP 2, CP 11, CP 12 are in the
list. If Ly = min{Ly, L1, L12}, then CP 2 is branched next producing
CP 21, CP 22 say with lower bounds Lsy, Los respectively, leading to the
search tree in Figure 8.4. The search trees are drawn in this discussion
to illustrate how the search is progressing. In practice, the algorithm
can be operated with the list of CPs, and the incumbent when it is
obtained, and updating these after each stage.

Criterion for Selecting the Next CP From List to
Branch

In general the search strategy specifies the sequence in which the
generated CPs will be branched. We discussed the search strategy
which always selects the next CP to be branched, to be the one as-
sociated with the least lower bound among all the CPs in the list
at that stage. It is a priority strategy with the least lower bound
as the priority criterion. Some people call it a jump-track strategy
because it always jumps over the list looking for the node with the
least lower bound to branch next. This search strategy with the least
lower bound criterion seems to be an excellent strategy that helps to
minimize the total number of nodes branched before the termination
of the algorithm.

The algorithm terminates when the list of CPs becomes empty. At
termination if there is an incumbent, it is an optimum feasible solution
of the original problem. If there is no incumbent at termination, the
original problem is infeasible.

Another search strategy that is popular in computer science appli-
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Lower
bound L,

Original
problem

Lower

Lower
bound L, bound L,
Lower Lower Lower Lower
bound L, bound L, bound L,; bound L,,

Figure 8.4:

cations is the backtrack search strategy based on depth-first search.
It keeps one of the CPs from the list for the purpose of the search and
calls it the current candidate problem or current CP. The other
CPs in the list constitute the stack.

If the current CP is fathomed, the incumbent is updated and the
current CP is discarded. If the incumbent changes, the necessary prun-
ing is carried out in the stack. Then a CP from the stack is selected
as the new current CP (the selection criterion is discussed below), and
the algorithm is continued.

If the current CP is not fathomed, the branching strategy is ap-
plied on it and the lower bounding strategy applied on the candidate
subproblems generated. If both these candidate subproblems are fath-
omed, the incumbent is updated, pruning is carried out in the stack,
and a new current CP is selected from the stack (see below for the se-
lection criterion). If only one of the candidate subproblems generated
is fathomed, the incumbent is updated, pruning is carried out in the
stack, and if the other candidate subproblem is unpruned it is made the
new current CP. If neither of the subproblems generated is fathomed,
the more promising one among them (may be the one associated with
the least lower bound among them) is made the new current CP, the
other candidate subproblem is added to the stack and the algorithm is
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continued.

How to Select a Current CP From the Stack in
Backtrack

In backtrack search, whenever the current CP is fathomed, or after
branching the current CP if the two child CPs generated are fathomed
or pruned, a new current CP has to be selected from the stack to
continue the algorithm.

When the algorithm has to select a current CP from the stack, the
best selection criteria seems to be that of choosing the most recent CP
added to the stack. This selection criterion is called LIFO (Last In
First Out).

If backtrack search strategy is employed, the algorithm terminates
when it is necessary to select a CP from the stack, and the stack is
found empty at that time. If there is an incumbent at that stage, it is
an optimum solution of the original problem. If there is no incumbent
at that stage, the original problem is infeasible.

In either search strategy, if a CP is sufficiently small that it is
practical to search for an optimum solution for it by total enumeration,
it is better to do it than to continue branching it further.

How to Make B&B Approach Efficient?

For the B&B approach to work well, the bounding strategy must
provide a lower bound fairly close to the minimum objective value in the
problem but with little computational effort. The branching strategy
must generate candidate subproblems that have lower bounds as high
as possible.

A well designed B&B algorithm makes it possible to do extensive
and effective pruning throughout, and thus enables location of the op-
timum by examining only a small fraction of the overall set of feasible
solutions. That is why B&B methods are known as partial enumer-
ation methods.

Practical experience indicates that the search strategy based on the
least lower bound allows for extensive pruning, and hence leads to more
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efficient algorithms.

In most well designed B&B algorithms, it often happens that an
optimum feasible solution of the original problem is obtained as an
incumbent at an early stage, but the method goes through a lot of
computation afterwards to confirm its optimality. That is why a good
heuristic to use on large scale problems is to terminate the algorithm
when the limit on available computer time is reached, and take the
current incumbent as a near optimum solution.

We will now formally state the basic step in the B&B approach to
solve a problem. First, a lower bounding strategy, a branching strategy,
and a search strategy have to be developed for the problem. If the
problem size is large, good lower bounding and branching strategies
are very critical to the overall efficiency of the algorithm; and almost
always these strategies have to be tailormade for the problem to exploit
its special nature, structure and geometry. Once these strategies are
developed, the algorithm proceeds as follows.

THE BRANCH AND BOUND ALGORITHM

Initialization  Apply the lower bounding strategy on the original
problem and compute a lower bound for the minimum objective
value. If the original problem is fathomed, we have an optimum
solution, terminate. If the relaxed problem used for lower bound-
ing is infeasible, the original problem is infeasible too, terminate.
If neither of these occur, put the original problem in the list and
go to the general step.

General Step  If the list has no CPs in it; the original problem is
infeasible if there is no incumbent at this stage; otherwise the
current incumbent is an optimum solution for it. Terminate.

If the list is nonempty, use the search strategy to retrieve a CP
from it for branching next. Apply the branching strategy on the
selected CP, and apply the lower bounding strategy on each of the
candidate subproblems generated at branching. Prune or discard
any of them that turn out to be infeasible; and if any of them are
fathomed, update the incumbent and the upper bound for the
minimum. Any candidate subproblem, or CP in the list whose
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lower bound is > the present upper bound is now pruned. Add
the unfathomed and unpruned candidate subproblems to the list,
and go to the next step.

The application of the B&B approach will now be illustrated with
some examples.

8.4 The 0—1 Knapsack Problem

We consider the 0—1 knapsack problem in this section. As described in
Chapter 7, in this problem there are n objects which can be loaded into
a knapsack whose capacity by weight is wy weight units. For j = 1 ton,
object j has weight w; weight units, and value v; money units. Only
one copy of each object is available to be loaded into the knapsack.
None of the objects can be broken; i.e., each object should be either
loaded whole into the knapsack, or should be left out. The problem is
to decide the subset of objects to be loaded into the knapsack so as to
maximize the total value of the objects included, subject to the weight
capacity of the knapsack. So, defining for j =1 to n

~_ ] 1, if jth article is packed into the knapsack
7771 0, otherwise

the problem is

Minimize z(z) = —)_v;z;
=1
subject to Y wjz; < wy (8.4.1)
j=1
0<z; <1 for all j
x; integer for all j (8.4.2)

Here the objective function z(z) is the negative total value of the
objects loaded into the knapsack, it states the objective function in
minimization form.
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Eliminating Objects Heavier than Knapsack Ca-
pacity

If there is an object j such that w; > wy, it cannot enter the
knapsack because its weight exceeds the knapsack’s weight capacity.
For all such objects j, z; = 0 in every feasible solution of (8.4.1),
(8.4.2). Identify all such objects and fix all the corresponding variables
at 0 and delete them from further consideration. To solve the problem,
we need only find the values of the remaining variables x; satisfying
w; < wp, in an optimum solution.

The remaining problem (8.4.1) is an LP; and so if we relax the
integer requirements (8.4.2), we can solve the remaining problem by
efficient LP methods. The lower bounding strategy based on relaxing
the integer requirements on the variables is called the LP relaxation
strategy. We will use it. Because of its special structure (only one
constraint, and all the variables are subject to finite lower and upper
bounds), the relaxed LP (8.4.1) can be solved very efficiently by the
following special procedure. The objective value of the optimum so-
lution of the relaxed LP is a lower bound for the minimum objective
value in the original problem.

Special Procedure for Solving the LP Relaxation
of the 0—1 Knapsack Problem

Suppose the knapsacks weight capacity is wy weight units; and there
are n objects available for loading into it, with the jth object having
weight w; weight units and value v; money units, for j = 1 to n.

In the LP relaxation, variables are allowed to take fractional values.
Since it is an LP with only one equality constraint, it can be solved
by a special algorithm (different from the simplex method discussed
earlier for general LPs) which is very efficient, we describe this special
algorithm now.

To find the optimum solution of the LP relaxation of the 0—1 knap-
sack problem, first fix all variables x; corresponding to j satisfying
w; > wy at 0 and remove them from further consideration.

Then compute the density (value per unit weight, d; = v;/w, for
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object j) of each remaining object, and arrange the objects in decreas-
ing order of this density from top to bottom. Begin making z; = 1
from the top in this order until the weight capacity of the knapsack is
reached, at that stage make the last variable equal to a fraction until
the weight capacity is completely used up; and make all the remaining
variables equal to 0.

Example 8.4.1:

Consider the journal subscription problem discussed in Section 7.2.
The various journals are the objects in it, the subscription price of the
journal plays the role of its weight, and the readership of the journal
plays the role of its value. Here is the data for the problem from Section
7.2, with the objects arranged in decreasing order of density from top
to bottom.

*Object 5 *Weight w; *value v; *Density *Cumulative

1 80 7840 98 80
8 99 8316 84 179
4 165 15015 74 344
3 115 8510 74 459
2 95 6175 65 554
5 125 7375 59 679
6 78 1794 23 757
7 69 897 13 826

* Object = journal, weight = annual subscription
value = annual readership, density = v;/wj,
cumulative = total weight upto this object

From Section 7.2, the available budget for annual subscription to
these journals, $670 = w, plays the role of the knapsack’s capacity
by weight in this example, and all objects have weight < wg. In the
last column of the table we provided the cumulative total weight of
all the objects from the top and up to (including) that object. We
begin loading objects into the knapsack (here it can be interpreted as
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renewing the subscriptions) from the top. By the time we come to
object number 2, $554 of the knapsack’s capacity is used up, leaving
$670 — 554 = 116. The next journal, object 5, has a subscription
price of $125, the money left in the budget at this stage covers only
116/125 of this journal’s subscription. So, the optimum solution of the
LP relaxation of this example problem is & = (&1, s, 24, &3, T2, Ts,
Z¢, 7) = (1, 1,1, 1, 1, 116/125, 0, 0). Or, arranging the variables in
serial order of subscripts, and as a column vector it is & = (1, to Zg)
= (1,1, 1,1, 116/125, 0, 0, 1)7.

Fathoming Strategy

If the optimum solution, Z, of the LP relaxation is integral (i.e.,
every variable has a value of 0 or 1 in it), then that solution Z is an
optimum solution of the original 0—1 problem, and thus the original
problem is fathomed.

The Branching Strategy

From the procedure described above, it is clear that if the optimum
solution for the LP relaxation, z, is not integral, there will be exactly
one variable which has a fractional value in it. Suppose it is Z,. A con-
venient branching strategy is to select x,, as the branching variable and
generate two CPs, CP 1 (CP 2) by including the branching constraint
“r, = 0" (“xz, = 17) over those of the original problem. Since Z, is
fractional, this branching strategy eliminates the present LP relaxed
optimum Z from further consideration as it is not feasible to either CP
1 or CP 2. We will use this branching strategy because it identifies the
branching variable unambiguously, and its property of eliminating the
current LP relaxed optimum from further consideration is quite nice.

The branching constraints in a general CP, say CP N, in this algo-
rithm will be of the following form.

Tyy =Tgo=...=Tq = 0 (8.4.3)

Tpy = Tpy = ... = Tp,
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CP N is the original problem with these branching constraints as
additional constraints. The r + u variables z,, ..., z,., Zp,, ..., Tp, are
called fixed variables in this CP N because their values are fixed in
it by the branching constraints.

In the same way every CP obtained in this algorithm will fix a
subset of variables at 0, and another subset of variables at 1. And the
sum of the weights of the variables fixed at 1 in any CP will always
be < the knapsack’s weight capacity, as otherwise the CP will have no
feasible solution.

In CP N, objects py, ..., p, are required to be included in the knap-
sack, and objects ¢, ..., q, are required to be excluded from it by the
branching constraints. So, we only have wl’ = wg — (wp, + ... + wy,)
of the knapsack’s weight capacity left to be considered in CP N; and
objects in 'y = {1,...,n}\{a@1,...,4,D1,...,pu} available to load.
Any object j € I'y whose weight w; is > wj = remaining knapsack
capacity, cannot be included in the knapsack in this CP; hence the
corresponding variable x; must be fixed at 0 and removed from further
consideration in this CP. We assume that these constraints are already
included in (8.4.3).

All variables z; for j € I'y which are not fixed in CP N, are called
free variables in this CP, since they are free to assume values of 0 or
1 in feasible solutions of this CP. So, the remaining problem in CP N is
a smaller knapsack problem with choice restricted to objects in I'y and
knapsack’s weight capacity equal to w{'. It is the following problem.

Minimize — Z ;T
JjerN
subject to Y wjz; < wy (8.4.4)
jer'n
z; = 0 orlforallj

So, to get a lower bound for the minimum objective value in CP
N, we need to solve the LP relaxation of (8.4.4), for which the special
procedure discussed earlier can be used. When the optimum solution
for the LP relaxation of (8.4.4) is combined with the values of the
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CPN
Branching constraints | Branching
in (8.3). variable is X,

Free variables are X;

forjin 'y
CPN 2
CPN 1 (8.3)and x,=1
(8.3)and x, =0 and x; = 0 for all

jin I'w satisfying

wrw—(w+w +..+w )
J 0 t Pl B,

Figure 8.5: Candidate problems generated when CP N is branched
using x; as the branching variable.

fixed variables in the branching constraints in (8.4.3) in this CP N, we
get the LP relaxed optimum, Z say, for CP N; and its objective value
is a lower bound for the minimum objective value in CP N. If z is
integral, it is an optimum solution for CP N, and in this case CP N
is fathomed. If this happens, we update the incumbent, remove CP N
from the list, and select a new CP from the list to branch next and
continue the algorithm. If Z is not integral, there will be a unique
variable which has a fractional value in it, suppose it is ;. When CP
N is to be branched, we will choose x; as the branching variable. This
generates two CPs as shown in Figure 8.5.
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Now the lower bounding strategy is applied on each of CPN 1, CPN
2, and the method is continued.

Fathoming a CP With Small Number
of Free Variables by Enumeration

Consider CP N defined by the branching constraints (8.4.3). The
number of free variables in it is s = n—r—wu. The remaining problem in
CP N, (8.4.4), is to decide which of the remaining free objects in I'y to
load into the remaining part of the knapsack with residual capacity w'.
Since |I'y| = s, the optimum solution in this CP can be determined
by evaluating each of the 2° subsets of I'y to see which are feasible
to (8.4.4), and selecting the best among those feasible. This becomes
practical if s is small. Thus if s is small, we find the optimum solution
of CP N by this enumeration instead of continuing to branch it. This
is appropriately called fathoming the CP by enumeration.

Example 8.4.2: For a numerical example we consider a knap-
sack problem in which the knapsack’s weight capacity is wy = 35 weight
units. There are 9 objects available for loading into the knapsack with
data given in the following table.

Object j  Weight w; Value v; Density d; = v;/w,

1 3 21 7
2 4 24 6
3 3 12 4
4 21 168 8
) 15 135 9
6 13 26 2
7 16 192 12
8 20 200 10
9 40 800 20

Define the decision variables as:

1, if jth article is packed into the knapsack
.Ij = .
0, otherwise
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Here is the problem.

Minimize z(x) = —21z — 24xs — 1223 — 16824 —135x5 —
26x¢ — 19227 — 20025 — 800x9
subject to 3xq + 4xo + 3x3 + 2124 +15z5 +
1326 + 1627 + 2025 + 4029 < 35 (8.4.5)
0<z; <1 forallj

x; integer for all j (8.4.6)

We fix 9 = 0 because wg = 40 > wy = 35, and remove object 9
from further consideration. We need to find the values of the remaining
variables z1 to g in an optimum solution with xg fixed at 0. The lower
bounding strategy relaxes (8.4.6) and solves the LP relaxation (8.4.5)
with xg fixed at 0. The densities of the objects are given in the last
column in the above tableau. Using the procedure discussed above we
find that the LP relaxed optimum is z = (z; to z9) = (0, 0, 0, 0, 0, 0,
1, 19/20, 0) with an objective value of —382. Since g is not integral
in this solution, the original problem is not fathomed. A lower bound
for the minimum objective value in the original problem is —382.

Now the original problem has to be branched. As discussed above,
we use the variable xg with a fractional value in the LP relaxed optimum
as the branching variable. CP 1, CP 2 with branching constraints
“xg = 07, “zg = 17 respectively are generated. In CP 2 object 8 is
already loaded into the knapsack, which leaves only 15 weight units
of residual capacity in it. Hence object 7 with a weight of 16 cannot
fit into the knapsack in CP 2. Thus in CP 2 “z; = 0” is an implied
branching constraint (the constraint “xg = 1”7 implies “x; = 0” in this
problem).

The entire search tree for the algorithm is shown in Figure 8.6.
The branching constraints in each CP are recorded inside the node
representing that CP. Besides each node the LP relaxed optimum for it
is recorded by giving the values of the variables that are nonzero in this
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X, 18 fixed at 0

since w, =40 >35=w,
x,=1,x,=19/20

LB =-382

Original
Problem

X, =X;=1
X7_ZS/_2% LB=-335=7
X Fathomed. First
LB =-359 incumbent.
X, =X, =X, =1
x,=1/4 =1
LB =-354 ’

Fathomed. Second
incumbent.

x,=1/13 X=X, =X=1
LB=-350{ x,=x,=0 X, =1/3
Pruned LB =-346
Pruned
Figure 8.6:

solution. The following abbreviations are used: LB = lower bound, BV
= branching variable used for branching.

Here is an explanation of the various stages in the algorithm.

CP 2 is fathomed since the relaxed LP optimum for it is integral.
This solution z! = (0, 0, 0, 0, 1, 0, 0, 1, 0)T is the first incumbent,
and its objective value, z! = —335, is the present upper bound for the
minimum objective value in the original problem.

Now CP 1 is the only CP in the list, so it is branched next. x4,
the fractional variable in its relaxed optimum, is used as the BV. This
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branching generates CP 3, CP 4. In CP 4 z,4 is fixed at 1, and zg, xg
are fixed at 0. So, this is a knapsack problem with residual capacity of
35—21 = 14, and since ws, wy are both > 14, we need to set 5 = 7 =0
also as branching constraints in this CP, CP 4. And since the lower
bound for CP 4 , —233, is > present upper bound of —335, it is pruned.

Now CP 3 is the only CP in the list, so it is branched next, resulting
in CP 5, CP 6. CP 6 is fathomed, and the integral relaxed LP optimum
init, 2 = (0, 1, 0, 0, 1, 0, 1, 0, 0)T replaces the present incumbent '
as the next incumbent since its objective value 22 = —351 < z!. 22 is
the new upper bound for the minimum objective value in the original
problem.

CP 5, the only CP in the list now is branched next, resulting in CP
7, CP 8. Both these are pruned since their lower bounds are > z?. The
list is now empty, so the present incumbent z?> = (0, 1, 0, 0, 1, 0, 1,
0, 0)T is an optimum solution for the original knapsack problem. This
implies that an optimum choice to load into the knapsack is objects 2,
5, and 7, yielding a maximum value loaded of 351, and using up all the
35 units of weight capacity. >

This is the basic B&B approach for the 0—1 knapsack problem. Re-
cently, several simple mathematical tests have been developed to check
whether a given CP in this algorithm has a feasible solution whose
objective value is strictly better than that of the current incumbent.
If one of these tests indicates that a CP cannot have a feasible solu-
tion better than the current incumbent, then the CP is pruned right
away. These tests are simple and computationally inexpensive. By
implementing such tests we can expect extensive pruning to take place
during the algorithm, making the enumeration efficient. With a battery
of such tests, modern software packages are able to solve practical 0—1
knapsack problems involving thousands of variables in a few minutes
of computer time.

The Greedy Heuristic for the 0—1 Knapsack Problem

As mentioned above, high quality software is available for solving
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large scale 0—1 knapsack problems. However, some practitioners are
often reluctant to use such sophisticated techniques to solve their prob-
lems, preferring to obtain a near optimum solution by simple heuristic
methods instead. The data in their models may not be very reliable,
and may contain errors of unknown magnitudes. Or, the true data
in the real problem may be subject to random fluctuations, and their
model may have been constructed using numbers that represent the
best educated guess about their expected values. In such situations, a
global optimum solution for the model with the current data may not
actually be an optimum solution for the real problem. Investing money
to acquire a sophisticated but possibly expensive software package to
solve the model with approximate data may not be worthwhile in these
situations. So, they reason that it is better to obtain a near optimum
solution for the model using a simple heuristic technique.

The most popular among the simple heuristic methods for the 0—1
knapsack problem is the greedy heuristic which selects objects for
inclusion in the knapsack using the density as the criterion to be greedy
upon. It proceeds this way.

Consider the problem involving n objects with w;,v;,d; = v;/w; as
the weight, value, density respectively of object j for 7 = 1 to n; and
wp as the knapsacks’s weight capacity. It first sets all z; for j satisfying
w; > wp at value 0. Then it arranges the remaining objects

Object j  Weight w; Value v; Density d; = v;/w;,

1 15 225 15
2 26 260 10
3 45 495 11
4 10 80 8
5 16 112 7
6 10 60 6
7 6 30 5

in decreasing order of density from top to bottom. Starting from the
top it begins to make z; = 1 as it goes down until the weight capacity
of the knapsack is reached. At some stage if the next object cannot
be included in the knapsack because its weight exceeds the remaining
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capacity, it makes z; = 0 for that object; then the process continues
with the object below it. It terminates when either the knapsack’s
weight capacity is used up (in this case, z; is made equal to O for
all objects below the current one), or when all the objects have been
examined in this way in decreasing order of density.

As an example consider the 0—1 knapsack problem involving a
knapsack of weight capacity 40 weight units, and 7 objects with data
given above.

On this problem the greedy method selects the values of the vari-
ables in this order: z3 =0, 21 =1, 20 =0, 24 =1, x5 = 0, x4 = 1,
x7 = 0; leading to the solution (z; to z7) = (1, 0, 0, 1, 0, 1, 0)T.

The greedy method is not guaranteed to produce an optimum solu-
tion in general, but usually produces a solution close to the optimum.
A mathematical upper bound for the difference between the value of
the greedy solution and that of an optimum solution can be derived.
For results on these, see [O. H. Ibarra and C. E. Kim, 1975].

0—1 Knapsack Problems with Flexible Data,

In many applications we encounter 0—1 knapsack models in which
slight changes in the value of wy = the knapsack’s weight capacity are
entirely permissible. An example of this is the journal subscription
problem discussed in Example 8.4.1. In this model, the knapsack’s
weight capacity is the budgeted amount of $670 for journal subscrip-
tions. The financial VP will be delighted if the librarian wants to
decrease this quantity by any amount; also he may not object to small
increases in this quantity. If this quantity can be increased to $679 (a
small increase of $9), then the solution (z; to z5) = (1, 1, 1, 1, 1, 0,
0, 1)T becomes feasible (this solution is obtained by selecting journals
in decreasing order of density, and uses up the budgeted quantity of
$679 exactly) and is an optimum solution for the problem with this
modification. Here, it makes sense to argue with the financial VP to
agree to this slight modification.

In all such situations where the value of wy is flexible, one can look
at two solutions to the original problem. One is Z, the solution of
the original problem obtained by the greedy heuristic. The other is &



8.5: B&B for the General MIP 405

obtained by rounding up to 1 the value of the fractional variable in the
LP relaxed optimum corresponding to the original problem. If one can
increase wy to the capacity used by Z, then Z is an optimum solution for
the modified problem. If wy can be decreased to the capacity used by Z,
then Z is either optimal or near optimal to the modified problem. The
decision makers can look at both & and ¥ and decide which solution is
more desirable for the real problem, and make the appropriate change.
In this situation, this may be the most appropriate way to handle this
problem instead of trying to solve the model with the original value for
wy to optimality using an expensive B&B package.

8.5 B&B Approach for the General MIP

We consider the following general MIP

Minimize z(z,y) = cx + dy

subject to Az +Dy = b (8.5.1)
Yy = 0
y integer vector (8.5.2)

If there are no continuous variables z in the problem, it is a pure
IP.

A lower bounding strategy for this problem is to solve the relaxed
LP (8.5.1) obtained by relaxing the integer requirements (8.5.2), using
LP techniques. If the relaxed LP (8.5.1) is infeasible, the MIP is clearly
infeasible too, then prune it and terminate. On the other hand if
the relaxed LP has an optimum solution suppose it is (z°,4°) with
an objective value of 20. If y° satisfies the constraints (8.5.1) that
were relaxed, (2%, 4°) is an optimum solution of the MIP which is now
fathomed, terminate. Otherwise, 2° is a lower bound for the minimum
objective value in the MIP.

A convenient branching strategy is to select one of the integer vari-
ables y; whose value y?, in the relaxed LP optimum is noninteger, as
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the branching variable. If y; is a 0—1 variable, generate two CPs by
imposing one additional constraint “y; = 0” or “y; = 1”7 on the original
MIP. If y; is a general nonnegative integer variable, generate two CPs
by imposing one additional constraint “y; < [y or “y; > 14 [y]]”
respectively on the original MIP. Here |y?] is what is called “the floor

of 427, which is the greatest integer value that is < 3. For example,

16.2] =6, and |—7.2| = —8.

If there are several j’s such that y? is noninteger, the branching
variable is selected from them so as to make the lower bounds for
the CPs generated after branching as high as possible. The data in
the optimum simplex tableau (the optimum dual solution, i.e., the
marginal values) can be used to get estimates (called penalties) of the
amount by which the lower bounds for the CPs are greater than the
lower bound of their parent, but this takes us beyond the scope of this
book. Interested readers can see [G. L. Nemhauser and L. A. Wolsey,
1988] for a discussion of these penalties and their use in selecting the
branching variable.

A consequence of selecting the branching variable among integer
variables with fractional values in the relaxed LP optimum (z°,¢°) is
that this point (z°,9°) is eliminated from further consideration. This
is a nice property.

The lower bounds for the newly generated CPs are computed by
solving the relaxed LPs obtained by relaxing the integer requirements
on the y’s in them. The relaxed LP corresponding to a CP contains just
one additional constraint (the new branching constraint in it) over those
in the relaxed LP for the parent problem. From the known relaxed LP
optimum of the parent problem, a relaxed LP optimum for the CP
can be obtained by using very efficient sensitivity analysis techniques
(these techniques to handle the addition of a new constraint are not
discussed in this book; see [K. G. Murty, 1983] for them).

A CP is fathomed when the relaxed LP optimum for it satisfies the
integer requirements on the y’s. The moment a CP is fathomed in the
algorithm, we have an incumbent. Each time a new CP is fathomed,
we update the incumbent. The current upper bound for the minimum
objective value in the original MIP is always the objective value of the
current incumbent. Any CP in the list whose lower bound is > the
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current upper bound is immediately pruned. Also, if the relaxed LP
corresponding to a CP is infeasible, so is that CP, and hence that CP
is pruned.

CPs for branching are selected from the list by the least lower bound
criterion. The algorithm terminates when the list becomes empty. If
there is no incumbent at termination, the original MIP is infeasible.

Otherwise, the final incumbent is an optimum solution of the original
MIP.

Example: Consider the following MIP

Original Tableau: Tableau 1

Yr Y2 T1 T2 X3 Tg —X b
1 0 O 1 -2 1 0 3/2
0O 1 0 2 1 -1 0 5/2
0O 0 1 -1 1 1 0 4
0 0 O 3 4 ) 1 —20

Y1, Y2 > 0, and integer; x; to x4 > 0; z to be minimized

We obtain the LP relaxation of this MIP by relaxing the integer
requirements on the variables y;, 2. It can be verified that Tableau 1
is already the canonical tableau WRT the basic vector (y1, y9, 1), and
that it actually satisfies the optimality criterion for the LP relaxation.
From it, we find that the optimum solution for the relaxed LLP obtained
by relaxing the integer requirements on y;, 4, is (y°,2°%) = (3/2, 5/2;
4,0, 0, 0), with an objective value of 2 = 20. Since this solution does
not satisfy the integer requirements on ¥,y the MIP is not fathomed.
It has to be branched.

Both y, 2 have nonintegral values in the relaxed LP optimum so-
lution. We selected ys as the branching variable (BV). Branching leads
to CP 1, CP 2 shown in Figure 8.7 given below. The constraints inside
a node in Figure 8.7 are the additional (branching) constraints in it
over those of the original problem. By the side of each node in Figure
8.7 we give the relaxed LP optimum (RO) corresponding to that node.

For example, the relaxed LP for CP 2 is the following, where s; is
the slack variable = y, — 3 for the branching constraint y, > 3 in it.
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CP 2 with branching constraints: Tableau 2

Y1 Yo T Ty X3 Ty S —Z b
1 0 0 1 —=2 1 0 0 3/2
o1 0 2 1 -1 0 0 5/2
O 0 1 -1 1 1 0 0 4
0O 1 0 0 0 0 -1 0 3
0O 0 0 3 4 5 0 1 —20

Y1,Y2 > 0,81 > 0 ; 21 to x4 > 0; z to be minimized

Continuing, we get the following search tree.

RO (y; x) =
Original (3/2,5/2;4,0,0,0).
problem LB=20.BVisy,.

RO (y;x) =
(1,3;9/2,0,0,1/2).
LB=90/4.
Fathomed. First
incumbent.

RO (y;x) =
(5/4,2;17/4,1/4,0,0).
LB=83/4.BVisy,.

RO (y;x) =

(1,3/2;9/2,1/2,0,0). RO (y; x) =

LB=286/4. (2,2,19/5,1/10,3/10,0)
Pruned LB=286/4.

Fathomed. Second incumbent
optimal to original MIP.

Figure 8.7:

The optimum solution of the original MIP is the second incumbent
(y;2) = (2, 2; 19/5, 1/10, 3/10, 0), with an objective value of 86/4.
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8.6 B&B Approach for Pure 0—1 IPs

We consider the problem (8.6.1) where A is of order m xn and = € R".
For some j if ¢; is < 0, transform the problem by substituting z; =
1 — y;. In the transformed problem, the objective coefficient of y; is
> 0. After similar transformations as necessary, we get a problem of
the same form as (8.6.1), but with ¢ > 0. In the rest of the section we
assume that ¢ > 0.

Minimize z(z) = cx
subject to Az < b (8.6.1)

zj = Oorlforallj

Example 8.6.1: For example, consider the problem with n = 4,
and x = (z1, 72,73, 74)7 as the vector of binary variables in it. Let the
objective function to be minimized be z(x) = —7x; — bxe + 3z4, with
negative cost coefficients for xy, xs.

Transform the problem by substituting z; = 1 —y1, 2o = 1 — y»
wherever z1,xs appear in the problem. The objective function z(z)
becomes —7(1—1y;)—5(1—y—2)+3x4 = Ty; +5y2+3x4—12. So, when
expressed in terms of the new variables (1,2, 23, 74)T, the objective
function to be minimized is 2'(y1, Yo, o3, 4)T = Ty1 + 5y — 2+ 34 — 12
and —12 being a constant can be dropped from the optimization effort.
So, in the modified problem the objective function to be minimized is
Ty1 + by + 3z4 with nonnegative cost coefficients for all the variables.

If an optimum solution of the modified problem is (¥i, §a, Z3, T4)7
the corresponding optimum solution of the original problem is (z; =
1—f1,T =1 — U2, 23, 24)" .

The Structure of a General CP in this Algorithm

In the B&B algorithm discussed below, CPs are obtained by select-
ing a subset of the variables z; and fixing each of them at value 0 or 1
(these are the branching constraints in this CP). Any variable fixed at
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0 (1) is called a O-variable (1-variable) in that CP. The 0-variables
fixed at value 0, and the 1-variables fixed at value 1, constitute what
is known as a partial solution. Each CP generated in the algorithm
corresponds to a partial solution. Variables that are not fixed at 0 or 1
in a CP are called free variables in that CP. Given a partial solution,
a completion of it is obtained by giving values of 0 or 1 to each of
the free variables.

The B&B approaches discussed below for this pure 0—1 IP are called
implicit enumeration methods in the literature. In general the
name implicit enumeration is used for the class of B&B algorithms
designed specifically for the pure 0—1 IP.

Analysis to be Performed on a Typical CP in Implicit
Enumeration

When a new CP is formed after branching, this analysis is applied
on it before the lower bounding strategy. The purpose of this analysis
is:

e If there is no incumbent yet in the algorithm, it applies simple
and efficient tests to check if the system of constraints in the
CP is infeasible (i.e., does not have a 0—1 solution). Several such
tests have been developed exploiting the special properties of 0—1
variables, we will discuss a few of them for illustrating the main
ideas. If one of these tests leads to the infeasibility conclusion,
this CP is pruned right away.

The branching constraints may force some free variables to have
the same value (0 or 1) in all feasible solutions of the CP. Some
of the tests can locate such variables if they exist. If they are
identified, they are classified as 0-variables or 1-variables in the
CP, making the CP into a smaller problem.

e If there is an incumbent Z with objective value Z at this stage, we
are only interested in feasible solutions of the CP with objective
value < Z. So, in this case we add an additional constraint cx < z
to the constraints of the CP, and carry out the same tests on this
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augmented system. If this augmented system is infeasible, this
CP is pruned right away. If some free variables can be shown
to have the same value (0 or 1) at all feasible solutions of this
augmented system, then the CP is modified by including those
variables as 0- or 1-variables.

We will now discuss the analysis to be performed on a typical CP
briefly. Consider the CP in which Uy, Uy, U; are the sets of sub-
scripts of the 0-, 1-variables, and the free variables, respectively. Uy =
{1,...,n}\(UoUUy). Compute the vector b’ = (b;) =b — X ey, 4

The fathoming criterion for this CP is ¥ > 0. If ¥/ > 0, the
completion obtained by giving the value of 0 to all the free variables
is optimal to the CP (because of our assumption that ¢ > 0), and the
optimum objective value in it is }_ ey, ¢;.

If ¥ # 0, several tests are applied to check whether the CP is
infeasible (i.e., has no feasible completion) and whether it has a feasible
completion better than the current incumbent. Let Z be the present
upper bound for the minimum objective value in the original problem
(i.e., the objective value of the current incumbent), or oo if there is
no incumbent at this stage. For applying these tests on the CP, the
system of constraints to be considered is

>z < b, = b; — > ayi=1tom (8.6.2)
J€Uy jeUy
Z am—&-l,jxj S m—|—1 =z — Z am+1,] (863)
J€U; JEUL
zj=0orl for all j € Uy (8.6.4)

where for notational convenience we denote c¢; by a,,4+1,;. The con-
straint (8.6.3) is omitted from this system if there is no incumbent at
this stage.

Example 8.6.2: For an example consider the following original
IP.

Minimize z(x) = 61 + bxg + Txs + 4x4 + b5 + 8¢
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subject to 3xy — 6xs + 2203 — 1y + x5+ Taxg < 12
221+ 3x9 — 8x3 — bxy — x5 — 8z < —12
—9.’L‘1 - 7$2 + x5+ 2.’L‘4 — 5$5 — 6$6 S —11

z; € {0,1} for all j =1 to 6.

Suppose at this stage we have an incumbent z = (1,0,1,0,0,1)7
with objective value z = 26.

Consider the CP in which Uy = {1, 2}, U; = {3}, and Uy = {4, 5, 6}.
So in this CP the branching constraints are: z; = 0, zo = 0, and
r3 = 1. Fixing these values for these variables, the constraints in the
CP in terms of the free variables are:

— x4+ x5+ Trg < 12—2=10
—bzy —3x5 — 8z < —12—(—8)=—4
204 — 5x5 — b6 < —11—-1=-12

Ty, Ty, T are all binary.

The objective function in this CP is 74+4x4+5x5+8x¢, and since we
are only interested in feasible solutions of this CP that are better than
the present incumbent, they have to satisfy: 7+ 4x4 + 5x5 + 8z < 26,
or 4zy + bzs + 8x6 < 26 — 7 = 19. So, the system (8.6.2) to (8.6.4)
corresponding to this CP is:

— x4+ x5+ T < 12—2=10
—5x4 — 3x5 — 8z < —12—(—8) = —4
2x4 — bxs — 61 < —11—-1=-12 (8.6.5)
4ry + 5x5+ 8 < 19
T4,T5,Tg are all binary. <

Some of the tests examine each of the constraints in (8.6.2), (8.6.3)
individually to check whether it can be satisfied in 0—1 variables. For
example, one of the tests is the following.
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Test 1:In the ith constraint in (8.6.2), (8.6.3), if ey, (min{a;;, 0}) >
b;, obviously it cannot be satisfied; and hence the system (8.6.2) to
(8.6.4) is infeasible and the CP is pruned.

Example 8.6.3: Asan example, consider the constraint number
i = 3 in (8.6.5) which is 2z4 — bxs — 626 < —12. Applying this test
on this constraint, the left hand side 3¢y, (min{a;;, 0}) = min{2, 0} +
min{—5,0} + min{—6,0} =0 —5 — 6 = —11, and the right hand side
b, in this constraint is —12. Since —11 > —12, this test shows that
system (8.6.5) is infeasible (cannot have a 0—1 solution), so this CP
should be pruned. >

The tests may also determine that some of the free variables must
have a specific value in {0, 1} for (8.6.2)-(8.6.4) to be feasible. Here is
an example of such a test.

Test 2: Suppose there is a k € Uy and an 7 between 1 to m + 1
such that 3 ey, (min{a;;, 0}) + |ai| > b;. Then obviously z; must be
0if ag > 0, or 1 if a; < 0; for (8.6.2)-(8.6.4) to be feasible. If such
variables are identified by the tests, they are included in the sets of 0-
or 1-variables in this CP, accordingly.

Example 8.6.4: As a numerical example, suppose the ith con-
straint in (8.6.2), (8.6.3) is:

6([‘10 — 7.@11 — 9([‘12 + 9$13 S —&.

Applying the test on this constraint with x; = x12, we get the left
hand side = min{6,0} + min{—7,0} + min{—9,0} + min{9,0} + |—9|
=—7—949 = —7 > —8, the right hand side in this constraint. Hence
we conclude that x5 must equal 1 (because the coefficient of x5 in
this constraint is —9, negative) in every feasible solution of this CP.
Applying the test on the same constraint with z; = x13, we conclude
that z13 must be 0 in every feasible solution of this CP. Therefore we
make x15 a 1-variable, and x,3 a O-variable, take the indices 12, 13 out
of the set Uy, and continue. >
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Surrogate Constraints: Let u = (p1,. .., ftm+1) be a nonnegative
vector. Any solution satisfying (8.6.2), (8.6.3) must obviously satisfy

m—+1 m+1

Z: pi( D aiws) < Z pib; (8.6.6)

jEUf

So, if (8.6.6) does not have a 0—1 solution, (8.6.2)-(8.6.4) must be
infeasible and the CP can be pruned. A constraint like this obtained by
taking a nonnegative linear combination of constraints in the system
(8.6.2), (8.6.3), is known as a surrogate constraint. For example
from the system

—1
-1

T1 — T2
—x1 + 229

IN N

we get the surrogate constraint xo, < —2 by taking the multiplier vec-
tor p = (1,1), i.e., summing the two constraints. From this surrogate
constraint we clearly see that the system has no 0—1 solution, even
though we cannot make this conclusion by considering any one of the
two original constraints individually. In the same way, often a surro-
gate constraint enables us to make some conclusions about the system
(8.6.2)-(8.6.4), which are not apparent from anyone of the constraints
in the system considered individually. If a surrogate constraint has
no 0—1 solution, the system (8.6.2)-(8.6.4) is infeasible and the CP is
pruned. If some of the free variables must have specific values of 0, 1
in every 0—1 solution for the surrogate constraint, those free variables
must have the same specific values in every 0—1 solution for the CP
that is better than the current incumbent, and hence they are included
accordingly in the sets of 0-, 1-variables defining the CP. <

We have only discussed a few tests developed in implicit enumera-
tion. There are many others. Software systems for 0—1 IPs based on
implicit enumeration use several of these tests to improve the efficiency
of the package. For a detailed discussion of useful tests, and methods
for generating useful surrogate constraints, see [F. Glover, 1968] and
|G. L. Nemhauser and L. A. Wolsey, 1988].
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Lower Bounding Strategies

Let m = (m,...,m,) be a nonnegative vector. Since every feasible
solution of (8.6.2) to (8.6.4) is a feasible solution for the problem (8.6.7),
> jeu, ¢j+ (minimum objective value in (8.6.7)) is a lower bound for
the minimum objective value in

Minimize Z Cjx;

jEUf
subject to > m( > ayz;) < Zmb; (8.6.7)
=1 jeU; i=1

zj=0or1lforall j € Uy

the CP. (8.6.7) is a 0—1 IP with a single constraint, and hence can be
solved by algorithms discussed for the knapsack problem. By applying
a few steps of the knapsack algorithm on (8.6.7) if we can determine
that the lower bound for the minimum objective value in the CP is
> the cost of the present incumbent, then the CP can be pruned. It
has been proved that the best m-vector to use for forming the problem
(8.6.7) is the negative dual optimum solution associated with the re-
laxed LP for the CP. See [G. L. Nemhauser and L. A. Wolsey, 1988] for
a proof of this result, and other ways of generating and using surrogate
constraints effectively.

If all this work determines that (8.6.2)-(8.6.4) is infeasible, the CP
is pruned. Otherwise let UE),U/1 be the sets of subscripts of the 0-
and 1-variables respectively in the CP after augmenting the 0- and 1-
variables determined by the tests to Up, U; respectively. The set of
free variables is U/f ={1,...,n}\(U, U U}). Another lower bound for
the minimum objective value in the CP is ) jeu!, G-

THE ALGORITHM

We now state the algorithm completely. It uses the backtrack search
strategy mentioned in Section 8.3.3 with the LIFO selection criterion.
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Initially the original problem is the current CP with both the subscript
sets of 0- and 1-variables empty. The stack is empty initially.

In a general stage of the algorithm suppose the current CP is defined
by the subscript sets Uy, U; for 0- and 1-variables respectively. Do the
following.

Step 1.

Step 2.

Step 3.

If the current CP is fathomed update the incumbent, prune the
stack and go to Step 2. If the current CP is pruned go to Step 2.

If the stack is empty at this stage, the incumbent is an optimum
solution of the original problem, terminate. If the stack is empty
and there is no incumbent at this stage, the original problem is
infeasible, terminate. If the stack is nonempty, retrieve a CP from
the stack using the LIFO selection criterion, and make it the new
current CP, and go to Step 3.

If the current CP is not fathomed apply the tests on it. If the
current CP is pruned by the tests, go to Step 2. If it is not
pruned by the tests, let UE,, U/1 be the subscript sets of 0- and
1-variables in the problem after augmenting the new 0- and 1-
variables identified by the tests, to Uy, U; respectively. U/f =
{1,...,n}\(U, U U)) is the subscript set of free variables in the
problem.

If U/f = (), the current CP is fathomed; go to Step 1. If U'f =+ (),
select an z; with 7 € U'f as the branching variable. Branching
generates two candidate subproblems. CP 1 has Uy, U U {j} as
the subscript sets for 0- and 1-variables respectively. CP 2 has
U, U {5}, U] as the subscript sets for 0- and 1-variables respec-
tively. Add CP 2 to the stack. Make CP 1 the new current CP
and continue by applying this Step 3 on it.

For efficient branching variable selection criteria in this algorithm
see [G. L. Nemhauser and L. A. Wolsey, 1988|.
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8.7 Advantages and Limitations of the B&B
Approach, Recent Developments

In this chapter we discussed the general B&B approach and its appli-
cation to solve a variety of problems. Various techniques for developing
bounding, branching, and search strategies have also been illustrated in
these applications. The examples provide insight into how B&B algo-
rithms can be developed for solving integer programs and combinatorial
optimization problems.

Recent Developments, Cutting Planes, Polyhedral
Combinatorics, Branch & Cut

Consider the set of feasible solutions, I';, of a pure or mixed integer
program. Let P; denote the convex hull of I'; (i.e., set of all convex
combinations of points in I';). Let P denote the set of feasible solutions
of the LP relaxation of this integer program. Thus P; is a subset of P.

See Figure 8.8 for a 2-dimensional illustration. The dots in the
figure (grid points) are the integer points in R? (z;, o~ two dimensional
plane). The LP relaxation is characterized by 5 linear inequalities in
x1, To9; the half-spaces corresponding to them are shown in solid lines
with arrows pointing on the feasible side on each of them, and these
are numbered 1 to 5. So, P, the set of feasible solutions of the LP
relaxation, is the region bounded by the solid lines, consisting of both
the shaded and dashed regions.

In this integer program, suppose both the variables x,, z, are re-
quired to be integral. So, I';, the set of feasible solutions of the integer
program, is the set of all grid points inside of P including those on the
boundary of P, consisting of a total of 25 integer points.

Py, the convex hull of I';, is the shaded region inside P. We see from
the figure that P; can be represented by linear constraints (in x1, 3)
only, without any integer requirements on the variables. However, the
linear constraint representation of P; requires additional inequality con-
straints besides those in the linear constraint representation of the LP
relaxation P, these are the ones numbered 6, 7, 8, 9 in the figure with
dashed lines with arrows on each of them pointing on the feasible side
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of each of them.

Figure 8.8: P,T';, P; corresponding to an integer program in two vari-
ables z1,x5. See above para for details. Constraints 1 to 5 are con-
straints in the linear relaxation. Constraints 6, 7, 8, 9 are cuts to
augment to the LP relaxation, to characterize the convex hull of inte-
ger feasible solutions.

This feature that P; can be characterized through a system of lin-
ear constraints (with no integer restrictions on the variables), is true
for integer and mixed integer programs in any number of variables.
However, this requires other constraints in addition to those in the LP
relaxation. These additional constraints in the linear constraint rep-
resentation of P are called cuts or cutting planes or valid cuts or
valid inequalities.

Augmenting the system of inequalities of the LP relaxation with all
the necessary cuts to characterize Pj satisfies two important properties:
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1. It keeps all the points in I'; feasible (i.e., every feasible
solution of the original integer program is feasible to the
augmented system).

2. It removes regions in P not contained in P;.

Once a complete linear constraint representation of P; is available,
the original integer program is the same as minimizing the original
objective function subject to all these constraints to obtain an extreme
point optimum. Hence it can be solved as a linear program with no
integer restrictions on the variables.

The branch of mathematics dealing with the problem of obtain-
ing all the necessary cuts for integer programs is called cutting plane
theory. Unfortunately, in integer programs with more than three vari-
ables, the number of cuts needed to characterize P; is typically very
large (tends to grow exponentially with the number of integer vari-
ables), so the general cutting plane theory is of very limited practical
use.

But it has been found that by adding just a selected few good cuts
to the LP relaxation, one can get very high quality lower bounds for the
integer program. The branch of mathematics dealing with identifying
good families of cuts (linear constraints) to add to the LP relaxation
of an integer program to get high quality lower bounds for the integer
program’s minimium objective value is called polyhedral combina-
torics. This is a deep and very exciting area of research in integer
programming. The B&B algorithm based on lower bounds computed
using these additional cuts is known as the branch and cut (B&C)
algorithm. Branch and cut algorithms are always specialized algo-
rithms for a specific type of integer program, because identifying good
families of cuts to use in it requires deep knowledge about the geometric
structure of the original integer program.

On some problems with nice mathematical structure (such as the
TSP, the knapsack problem, and certain special types of pure 0—1 IPs)
great strides have been made recently in developing B&B, and B&C
algorithms for solving large scale instances of the problem by exploiting
their special structure.

Outside of this class of problems with nice mathematical structure,
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the performance of B&B algorithms is uneven, particularly as the size
of the instance (as measured by say, the number of 0—1 variables in
the model) becomes large. On such problems the B&B algorithm may
require an enormous amount of computer time, as the number of nodes
examined in the search tree grows exponentially with the size of the
instance. However, it usually produces very good incumbents early in
the search effort. Even though these early incumbents are not guaran-
teed to be optimal to the problem, they usually turn out to be very
close to the optimum. This is what makes the B&B approach useful in
applications.

8.8 Exercises

8.8.1: Solve the 0—1 knapsack problem with 10 available objects with
the following data, to maximize the value loaded into a knapsack of
weight capacity 40 weight units.

Object Weight Value

1 19 380
2 15 225
3 20 320
4 8 96
) ) 70
6 7 126
7 3 30
8 2 22
9 4 68
10 42 900

8.8.2: Consider an undirected network consisting of nodes (repre-
sented by little circles with its number entered inside, in a figure of the
network); and edges, each of which is a line joining a pair of distinct
nodes. A clique in such a network is a subset of nodes N satisfying
the property that every pair of nodes in N is joined by an edge in the
network.

As an example, in the network in Figure 8.9 with 11 nodes; the
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subset of nodes {1,10,9,2} is not a clique because nodes 1 and 9 in
this subset are not joined by an edge in the network. But the subset of
nodes {1,2,3,5} is a clique because every pair of nodes in this subset
is joined by an edge in the network.

The cost of including each node in a clique is given. Typically, these
cost coefficients are negative. The cost of a clique is defined to be the
sum of the cost coefficients of nodes in it. For example, the cost of the
clique {1, 2, 3, 5} in the network in Figure 8.9is —2—5—-7—1 = —15.

Develop a B&B algorithm for finding a minimum cost clique. And
find a minimum cost clique in the network in Figure 8.9 using your
algorithm.

-10 -6

Figure 8.9: The negative number by the side of each node is its cost
coefficient.

8.8.3: Formulate and solve the following multiconstraint 0—1 knap-
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sack problem. The total value included in the knapsack is to be maxi-
mized subject to the knapsack’s weight and volume constraints.

Object Weight (Ibs.) Volume (ft®) Value ($)
1 20 41 84
2 12 o1 34
3 7 24 31
4 75 40 14
) 93 84 67
6 21 70 65
7 75 34 86
8 67 41 98
9 34 49 20
10 28 27 7

Knapsack’s 190 250
capacity

(IW. Shih, April 1979])

8.8.4: Solve the following MIPs by the B&B approach

Maximize 2x7 + z2 + 3y1 + 4y
subject to x4+ 3z — Y1 + 2y 16
—x1 + 2% + Y1 + Yo

Ty, T2, Y1, Y2

r1, X9 are integer

(AVAR VAN VAN
W

Maximize 4y; + 5x1 + x2

10
11
13

subject to  3y; + 223
U1 + 4!131
3y1 + 3[L‘1 + X2

Y, x1, )

(AVAR VAR VAR VAN
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x1,To are integer
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