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Chapter 9

Heuristic Methods for
Combinatorial Optimization
Problems

This is Chapter 9 of “Junior Level Web-Book for Optimization
Models for decision Making” by Katta G. Murty.

9.1 What Are Heuristic Methods?

The word heuristic comes from the Old Greek word heuriskein which
means “discovering new methods for solving problems” or “the art of
problem solving.” In computer science and artificial intelligence, the
term “heuristic” is applied usually to methods for intelligent search.
In this sense “heuristic search” uses all the available information and
knowledge to lead to a solution along the most promising path, omitting
the least promising ones. Here its aim is to enable the search process
to avoid examining dead ends, based on information contained in the
data gathered already.
However, in operations research the term “heuristic” is often applied

to methods (which may or may not involve search) that are based on
intuitive and plausible arguments likely to lead to reasonable solutions
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426 Ch.9. Heuristic Methods

but are not guaranteed to do so. They are methods for the problem
under study, based on rules of thumb, common sense, or adaptations
of exact methods for simpler models. They are methods used to find
reasonable solutions to problems that are hard to solve exactly. In op-
timization in particular, a heuristic method refers to a practical and
quick method based on strategies that are likely to (but not guaran-
teed to) lead to a solution that is approximately optimal or near op-
timal. Usually they provide robust approaches to obtain high-quality
solutions to problems of a realistic size in reasonable time. So, while
discussing these heuristic methods, the verb “solve” has the connota-
tion of “finding a satisfactory approximation to the optimum.” Thus
heuristic methods can, but do not guarantee the finding of an opti-
mum solution; although good heuristic methods in principle determine
the best solution obtainable within the allowed time. Many heuristic
methods do involve some type of search to look for a good approximate
solution.

9.2 Why Use Heuristic Methods?

Heuristic methods are as old as decision making itself. Until the 1950s
when computers became available and machine computation became
possible, inelegant but effective heuristics were the only methods used
to tackle large scale decision making.

Exact Algorithms for Linear, Convex Quadratic,
and Convex Nonlinear Programming Problems

By an exact algorithm for an optimization problem, we mean an
algorithm that is guaranteed to find an optimum solution if one exists,
within a reasonable time.

In the 1960s and 70s exact algorithms based on sophisticated math-
ematical constructs were developed for certain types of optimization
problems such as linear programs, convex quadratic programs, and
nonlinear convex programming problems. The special distinguishing
feature of all these problems is that optimality conditions providing
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efficient characterizations for optimum solutions for them are known.
The exact algorithms for them are based on these optimality condi-
tions. Because of this special feature, these problems are considered to
be nice problems among optimization models. The development of
exact algorithms for these nice problems has been a significant research
achievement for optimization theory.

By the 1980s, software packages implementing these sophisticated
algorithms, and computer systems that can execute them, became very
widely available. So, now-a-days there is no reason to resort to heuristic
methods to solve instances of these nice problems, as they can be solved
very efficiently by these exact algorithms.

Status of Algorithms for Discrete, Integer, Com-
binatorial, and Nonconvex Nonlinear Programs; and
the Need to Use Heuristic Approaches

Unfortunately, research though extensive, did not lead to any re-
liable exact solution method for other optimization problems such as
the discrete and integer programming problems and combinatorial op-
timization problems discussed in Chapters 7 and 8 that are not in the
nice class. The B&B approach of Chapter 8 based on partial enumer-
ation can solve instances of moderate sizes of these problems, but in
general the time requirement of this approach grows exponentially with
the size of the instance. Real world applications of combinatorial opti-
mization usually lead to large scale models. We illustrate this with an
application in the automobile industry.

Example 9.2.1: A task allocation problem

This problem, posed by K. N. Rao, deals with determining a min-
imum cost design for an automobile’s microcomputer architecture. In
the modern automobile, many tasks such as integrated chassis and
active suspension monitoring, etc. are performed by microcomputers
linked by high speed and/or slow speed communication lines. The
system’s cost is the sum of the costs of the processors (microcomput-
ers), and of the data links that provide inter-processor communication
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bandwidth.
Each task deals with the processing of data coming from sensors,

actuators, signal processors, digital filters, etc., and has a throughput
requirement in KOP (kilo operations per second). Several types of
processors are available. For each, we are given its cost, maximum
number of tasks it can handle, and its throughput capacity in terms of
the KOP it can handle.
The tasks are inter-dependent. To complete a task we may need

data from another. So, the typical communication pattern between
tasks is that if two tasks are assigned to different processors, they need
communication link capacity (in bits/second) between them. Tasks
executing in the same processor do not have communication overhead.
Here is the notation for the data.

n = number of tasks to be performed (varies between
50 - 100 in applications)

ai = throughput requirement (in KOP) of task i, i = 1
to n

T = maximum number of processors that may be
needed

ρt, γt, βt = cost ($), capacity in KOP, and upper bound on
the number of tasks to be allotted, to processor t,
t = 1 to T

cij, dij = low speed and high speed communication link ca-
pacity (in bits/second) needed for task pair i, j if
they are assigned to different processors

L,H = unit cost of installing low speed and high speed
communication bandwidth

To model this problem, we define the following decision variables
for i, j = 1 to n and t = 1 to T .

For i W= j, xijt =

l
1, if both tasks i and j are assigned to processor t
0, otherwise

xiit =

l
1, if task i is assigned to processor t
0, otherwise
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yt =

l
1, if processor t is used (i.e., it is allotted some tasks)
0, otherwise

In terms of these decision variables the model for the minimum cost
design is

Min.
n−13
i=1

n3
j=i+1

(Lcij +Hdij)(1−
T3
t=1

xijt) +
T3
t=1

ρtyt

s. to
3
(xijt : over j W= i)− (βt − 1)xiit ≤ 0,

for i = 1 to n
t = 1 to T

n3
i=1

aixiit ≤ γtyt, for t = 1 to T

n3
i=1

xiit ≤ βtyt, for t = 1 to T

n3
i=1

xiit ≥ yt, for t = 1 to T

T3
t=1

xiit = 1, for i = 1 to n

xijt, yt are all 0 or 1

The first constraint guarantees that the processor t to which task i
is assigned, is not assigned more than βt − 1 other tasks. The second
constraint guarantees that the total KOP requirements of all the tasks
assigned to processor t is ≤ its KOP capacity of γt. The third and
fourth constraints together guarantee that processor t is either not
used, or if it is used then it is assigned no more than βt tasks. The
fifth constraint guarantees that each task is assigned to a processor.
This is a 0−1 IP model with T (n2 + 1) integer variables. Even for

n = 50, and T = 10, the number of 0−1 variables in the model is over
25,000, which is very large. �Y

In the same manner, problems in the optimum design of many man-
ufactured items, in telecommunication system design, and other areas,
lead to large scale combinatorial optimization models.
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Research in computational complexity and NP-completeness theory
since the 1970s has shown that many of the integer programming and
combinatorial optimization problems discussed in Chapters 7 and 8
are hard intractable problems. It has provided evidence that there
may be no effective exact algorithms to solve large scale versions of
these problems, i.e., algorithms which can find optimum solutions to
these problems within acceptable computer time.

As a consequence, it has been recognized that the only practical
alternative to attack large scale instances of these problems is through
good heuristic methods. In fact, practitioners facing these problems
have always had an interest in heuristics as a means of finding good
approximate solutions. And experience indicates that there are many
heuristic methods which are simple to implement relative to the com-
plexity of the problem, and although they do not always necessarily
yield a solution close to the optimum, they quite often do. Moreover,
at the termination of a heuristic method, we can always improve per-
formance by resorting to another heuristic search algorithm to resume
the search for a better solution.

For some of the hard combinatorial optimization problems such
as the TSP, a detailed study based on their mathematical structure
has made it possible to construct special bounding schemes. B&B al-
gorithms based on them have successfully solved several large scale
instances of these problems within reasonable times. There is no guar-
antee that these special algorithms will give the same effective perfor-
mance on all large scale instances of these problems, but their record so
far is very impressive. However, many practitioners still seem to pre-
fer to solve these problems approximately using much simpler heuristic
methods. One reason for this is the fact that real world applications
are often messy, and the data available for them is liable to contain
unknown errors. Because of these errors in the data, an optimum solu-
tion of the model is at best a guide to a reasonable solution for the real
problem, and an approximate solution obtained by a good but simple
heuristic would serve the same purpose without the need for expensive
computer hardware and software for a highly sophisticated algorithm.

For all these reasons, heuristic methods are the methods of choice
for handling large scale combinatorial optimization problems.
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9.3 General Principles in

Designing Heuristic Methods

The literature classifies heuristic algorithms into two broad classes:
constructive heuristic algorithms (these methods develop a so-
lution to the problem element by element, or part by part, and they
terminate when a complete solution is constructed); and iterative im-
provement heuristic algorithms (these methods start with some
initial solution, and search for ways of changing it into a better solu-
tion).
Heuristic methods are always problem-specific, but there are several

widely applicable principles for designing them.

The Greedy Principle

A popular principle for developing constructive heuristics is the
greedy principle which leads to greedy methods, perhaps the most
important constructive methods among single pass heuristics that
create a solution in a single sweep through the data. Each successive
step in these methods is taken so as to minimize the immediate cost (or
maximize the immediate gain). The characteristic features of greedy
methods are the following.

The incremental feature They represent the problem in such a
way that a solution can be viewed either as a subset of a set of
elements, or as a sequencing of a set of elements in some order.
The approach builds up the solution set, or the solution sequence,
one element at a time starting from scratch, and terminates with
the first complete solution, see Section 9.4 for examples.

The no-backtracking feature Once an element is selected for in-
clusion in the solution set (or an element is included in the se-
quence in the current position) it is never taken back or replaced
by some other element (or its position in the sequence is never
altered again). That is, in a greedy algorithm, decisions made at
some stage in the algorithm are never revised later on.
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The greedy selection feature Each additional element selected
for inclusion in the solution set, or selected to fill the next position
in the sequence, is the best among those available for selection
at that stage by some criterion, in the sense that it contributes
at that stage the least amount to the total cost, or the maximum
amount to the total gain, when viewed through that criterion.

The myopic feature When selecting an item for inclusion in the
solution set at some stage, or selected to fill the next position in
the sequence, usually, only the contribution to the overall cost
of that inclusion at that stage is considered; and not the conse-
quences of that inclusion in later stages.

Several different criteria could be used to characterize the “best”
when making the greedy selection, depending on the nature of the
problem being solved. The success of the approach depends critically
on the choice of this criterion.
Thus the greedy approach constructs the solution stepwise. In each

step it selects the element to include in the solution to be the cheapest
among those that are eligible for inclusion at that time. It is very
naive. The selection at each stage is based on the situation at that
time, without any features of look-ahead, etc. Hence greedy methods
are also known as myopic methods.

Neighborhood Search Process

Another approach for designing heuristic methods is based on start-
ing with a complete solution to the problem, and trying to improve it
by a local search in the neighborhood of that solution by an iterative
improvement process. The initial solution may be either a randomly
generated solution, or one obtained by another method like the greedy
method. Each subsequent step in the method takes the solution at the
end of the previous step, and tries to improve it by either exchanging
a small number of elements in the solution with those not in the so-
lution, or some other technique of local search. The process continues
until no improving solution can be found by such local search, at which
point we have a local minimum. These methods are variously known
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as interchange heuristic methods or local search heuristics or
descent methods. A local optimum is at least as good as or better
than all solutions in its neighborhood, but it may not be a global op-
timum, i.e., it may not be the best solution for the problem. One of
the shortcomings of a descent method is the fact that it obtains a local
minimum which in most cases may not be a global minimum. To over-
come this limitation people normally apply the descent method many
times, with different initial solutions, and take as the final output the
best among all the local minima obtained. This restart approach is
known as the iterated descent method.

The general design principle of local improvement through small
changes in the feasible solution is also the principle behind the sim-
ulated annealing, and tabu search techniques, which also admit
steps that decrease solution quality based on a probabilistic scheme.
After reaching a local optimum, these techniques move randomly for a
period and then resume a trajectory of descent again.

And then there are heuristic methods known as genetic algo-
rithms which are probabilistic methods that start with an initial pop-
ulation of likely problem solutions and then evolve towards better so-
lution versions. In these methods new solutions are generated through
the use of genetic operators patterned upon the reproductive processes
in nature.

Sometimes several heuristic methods may be applied on a problem
in a sequence. If the first heuristic starts from scratch to find an initial
solution, the second may have the aim of improving it. And when this
heuristic comes to its end, a third may succeed it. This could continue
until all the heuristics in the list fail in a row to improve the current
solution. This type of strategy of using a combination of different
heuristic methods leads to a metaheuristic method.

There are major differences between the techniques appropriate to
different problems. As in the B&B approach, details of a heuristic
algorithm depend on the structure of the problem being solved. In
the following sections we discuss the essential ideas behind the popular
heuristic methods, and illustrate their application on several problem
types discussed in Chapter 7.
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9.4 The Greedy Approach

We will now discuss greedy methods for various problems from Chapter
7.

9.4.1 A Greedy Method for the 0−1 Knapsack Prob-
lem

Consider the 0−1 knapsack problem in which there are n objects that
could be loaded into a knapsack of weight capacity w0 weight units.
For j = 1 to n, vj in money units is the value, and wj in weight units
is the weight, of object j. Only one copy of each object is available
to be loaded into the knapsack. None of the objects can be broken;
i.e., each object should be either loaded whole into the knapsack, or
should be left out. The problem is to decide the subset of objects to
be loaded into the knapsack so as to maximize the total value of the
objects included, subject to the weight capacity of the knapsack. So,
defining for j = 1 to n

xj =

l
1, if jth article is packed into the knapsack
0, otherwise

the problem is

Maximize z(x) =
n3
j=1

vjxj

subject to
n3
j=1

wjxj ≤ w0 (9.4.1)

0 ≤ xj ≤ 1 for all j

xj integer for all j (9.4.2)

To apply the greedy approach on this problem, the criterion to be
greedy upon for selecting objects to include in the knapsack, could be
either the value of the object, or its density = value/weight. Once this
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criterion is decided, the objects are arranged in decreasing order of the
criterion and loaded into the knapsack in this order. At some stage,
if an object’s weight is > remaining knapsack’s weight capacity, we
leave it out and continue the process with the next object in this order,
until all the objects are examined. The set of objects loaded into the
knapsack at the end of this process is the solution set determined by
the greedy algorithm with the selected criterion.

As an example, consider the 0−1 knapsack problem with knapsack’s
weight capacity of 35 weight units, and 9 different objects available for
loading into it, discussed in Example 8.4.2, with the following data.

Object j Weight wj Value vj Density dj = vj/wj
1 3 21 7
2 4 24 6
3 3 12 4
4 21 168 8
5 15 135 9
6 13 26 2
7 16 192 12
8 20 200 10
9 40 800 20

The solution set obtained by the greedy algorithm with object’s
value as the criterion to be greedy upon is {objects 8, 5} using up the
knapsack’s weight capacity completely, and attaining the value of 335
money units for the total value of objects loaded into the knapsack.

The solution set obtained by the greedy method with density as the
criterion to be greedy upon is {objects 7, 5, 1} with a total value of
348 money units.

The optimum objective value in this problem, found by the B&B
algorithm in Example 8.4.2 is 351 money units. So, neither of the
solution sets obtained by the greedy algorithms above are optimal.
However, the greedy algorithm with the density criterion yielded a
much better solution than the one with the object’s value criterion.

What is the Best Criterion to be Greedy upon?
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In general, the greedy algorithm with object’s density as the crite-
rion to be greedy upon yields much better solutions than the one with
the object’s value as the criterion. Thus, for the 0−1 knapsack prob-
lem, the greedy algorithm is always implemented with object’s density
as the criterion to be greedy upon. And “the greedy solution for this
problem” usually means the solution obtained by this version of the
greedy algorithm.
For this algorithm, the following result has been proved.

Theorem 9.4.1: Consider the 0−1 knapsack problem (9.4.1), (9.4.2)
with w0 = knapsack’s weight capacity, n = number of available objects;
and wj, vj , dj = vj/wj, as the weight, value, and density of object j, for
j = 1 to n. Eliminate all objects j with wj > w0 since they won’t fit
into the knapsack (i.e., fix xj = 0 for all such j). So, assume wj ≤ w0
for all j = 1 to n. Let x̂ = (x̂j) be the solution obtained by the greedy
algorithm with object’s density as the criterion to be greedy upon (i.e.,
x̂j = 1 if object j is included in the knapsack by this algorithm, x̂j = 0
otherwise), and v̂ =

�n
j=1 vjxj, ŵ =

�n
j=1wjxj.

(i) The greedy solution x̂ is an optimum solution for the original
problem (9.4.1), (9.4.2), if the following conditions hold:

• ŵ = w0 (i.e., the greedy solution uses up the knapsack’s
weight capacity exactly),

• and all the objects j left out of the greedy solution set (i.e.,
with x̂j = 0) have density dj ≤ the density of every one of
the objects in the greedy solution.

(ii) Let v∗ denote the unknown optimum objective value in (9.4.1),
(9.4.2). If the conditions in (i) are not satisfied x̂ may not be
optimal to (9.1), (9.2), but v∗ − v̂ ≤ max{v1, . . . , vn}.

For a proof of Theorem 9.4.1, see [G. L. Nemhauser and L. A.
Wolsey, 1988]. It gives an upper bound for the difference between the
optimum objective value and the objective value of the greedy solution.
In practice the greedy heuristic with density as the criterion to be

greedy upon, usually yields solutions close to the optimum, and hence
is very widely used for tackling 0−1 knapsack problems.
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Exercises

9.4.1: Consider the 0−1 knapsack problem with w0 = 16 = knap-
sack’s weight capacity, and 4 objects with data given below, available
to load into the knapsack.

Object j Weight wj Value vj
1 2 16
2 15 105
3 1 6
4 13 13

Find the optimum solution of this problem by total enumeration.
Apply the greedy heuristic with density as the criterion to be greedy
upon and obtain the greedy solution for the problem. Verify that the
greedy solution uses up the knapsack’s weight capacity exactly, but
that it is not optimal because the second condition in (i) of Theorem
9.4.1 does not hold.

9.4.2 A Greedy Heuristic for the Set Covering Prob-
lem

The set covering problem discussed in Section 7.3 is a pure 0−1 IP of
the following form:

Minimize z(x) = cx

subject to Ax ≥ e (9.4.3)

xj = 0 or 1 for all j

where A = (aij) is a 0−1 matrix of order m × n and e is the column
vector of all 1s in Rm. We will use the following problem as an example.

Min. z(x) = 3x1 + 2x2 + 5x3 + 6x4 + 11x5 + x6

+12x7 + 7x8 + 8x9 + 4x10 + 2x11+
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6x12 + 9x13 − 2x14 + 2x16
subject to x7 + x9 + x10 + x13 ≥ 1

x2 + x8 + x9 + x13 ≥ 1

x3 + x9 + x10 + x12 ≥ 1

x4 + x5 + x8 + x9 ≥ 1

x3 + x6 + x8 + x11 ≥ 1 (9.4.4)

x3 + x6 + x7 + x10 ≥ 1

x2 + x4 + x5 + x12 ≥ 1

x4 + x5 + x6 + x13 ≥ 1

x1 + x2 + x4 + x11 ≥ 1

x1 + x5 + x7 + x12 ≥ 1

x14 + x16 ≥ 1

x15 + x16 ≥ 1

xj = 0 or 1 for all j

In (9.4.3) a variable xj is said to cover the ith constraint if xj
appears with a coefficient of 1 in this constraint. If xj covers the ith
constraint, any 0−1 vector x in which the variable xj = 1 satisfies this
constraint automatically. We will now discuss some results which help
to fix the values of some of the variables at 1 or 0, and eliminate some
constraints, and thereby reduce the problem into an equivalent smaller
size problem.

Result 9.4.1: If c ≤ 0, an optimum solution for (9.4.3) is
x = en, the vector in R

n with all entries equal to 1. Terminate.

In Result 9.4.1, en is the column vector in R
n with all entries equal

to 1. As an example, consider the set covering problem with n = 4,
i.e., the variables in this problem are x = (x1, x2, x3, x4)

T , all binary.
If the vector of cost coefficients is c = (−2, 0, 0,−7), which is ≤ 0,
x̄ = (1, 1, 1, 1)T is an optimum solution of the problem yielding a value
of −9 to the objective function (because −9 is the smallest value that
cx can have in binary variables, and x̄ will be clearly feasible because
every variable has the value of 1 in it).
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Result 9.4.2: In (9.4.3) suppose c W≤ 0. If j is such that cj ≤ 0
we can fix the corresponding variable xj at 1 and eliminate all the
constraints covered by this variable. If there are no more constraints
left, fix all the remaining variables at 0, and this leads to an optimum
solution to the problem in this case, terminate.

For an example of Result 9.4.2, consider the following small set
covering problem.

Minimize z(x) = −6x1 + 2x3 + 5x4 + 6x5
subject to x1 + x3 ≥ 1

x2 + x4 ≥ 1

xj = 0 or 1 for all j

In this problem, the smallest value that z(x) can have in binary
variables is −6, and x̄ = (1, 1, 0, 0, 0)T attains this value for z(x) and
is clearly feasible to the problem, so it is an optimum solution to the
problem.

Result 9.4.3: If j is such that cj > 0 and the variable xj does
not appear in any of the remaining constraints, fix the variable xj at 0.

As an example, consider the set covering problem given under Re-
sult 9.4.2. The binary variable x5 there has a positive cost coefficient
of 6, and does not appear in any of the constraints. So, making x5 = 1
does not in any way help in satisfying any constraint, and costs a pos-
itive amount, hence it is optimal to fix x5 = 0.
Apply the above results as many times as possible and reduce the

problem. At the end we are left with a reduced problem of the same
form as (9.4.3), in which every variable has a positive coefficient in the
objective function. The greedy method is applied on this reduced prob-
lem, and it consists of applying the following general step repeatedly.
Here, a free variable is one whose value is not fixed at 1 or 0 already.

GENERAL STEP: In the remaining problem, for each free
variable xj, let dj be the number of remaining constraints covered by
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xj . cj/dj can be interpreted as the cost per constraint covered, asso-
ciated with the free variable xj at this stage. Find a free variable xr
which is associated with the smallest cost per constraint covered in the
remaining problem. So, cr/dr = min{cj/dj : j such that xj is a free
variable}. Fix xr at 1, and eliminate all the constraints covered by xr.
If there are no constraints left, fix all the remaining free variables at 0,
and terminate with the vector obtained as the greedy solution vector.
Otherwise apply Result 9.4.3 to the remaining problem and then go to
the next step.

The solution vector at termination is the greedy solution for the set
covering problem.

As an example, we will find the greedy solution for the set covering
problem (9.4.4). First, applying Result 9.4.2, we fix x14 = x15 = 1 since
their coefficients in z(x) are ≤ 0 and eliminate the last two constraints
covered by these variables. Now applying Result 9.4.3, we fix x16 = 0.
The remaining problem is given in Table 1. All blank entries in the
table are zero.

Table 1
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

1 1 1 1 ≥ 1
1 1 1 1 ≥ 1

1 1 1 1 ≥ 1
1 1 1 1 ≥ 1

1 1 1 1 ≥ 1
1 1 1 1 ≥ 1

1 1 1 1 ≥ 1
1 1 1 1 ≥ 1

1 1 1 1 ≥ 1
1 1 1 1 ≥ 1
3 2 5 6 11 1 12 7 8 4 2 6 9 = z(x)

xj = 0 or 1 for all j. Minimize z(x)

Letting dj = number of remaining constraints covered by free vari-
able xj, we have the following information on the free variables at this
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stage.

Free var. x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13
cj 3 2 5 6 11 1 12 7 8 4 2 6 9
dj 2 3 3 4 4 3 3 3 4 3 2 3 3

cj
dj

3
2

2
3

5
3

6
4

11
4

1
3

4 7
3

2 4
3

1 2 3

The free variable with the smallest cj/dj of 1/3 at this stage is x6.
So we fix x6 = 1, and eliminate constraints 5, 6, 8 in the above tableau
covered by x6. The remaining problem is given in Table 2.

Table 2
x1 x2 x3 x4 x5 x7 x8 x9 x10 x11 x12 x13

1 1 1 1 ≥ 1
1 1 1 1 ≥ 1

1 1 1 1 ≥ 1
1 1 1 1 ≥ 1

1 1 1 1 ≥ 1
1 1 1 1 ≥ 1
1 1 1 1 ≥ 1
3 2 5 6 11 12 7 8 4 2 6 9 = z(x)

xj = 0 or 1 for all j. Minimize z(x)

We have the following information on the free variables at this stage.

Free var. x1 x2 x3 x4 x5 x7 x8 x9 x10 x11 x12 x13
cj 3 2 5 6 11 12 7 8 4 2 6 9
dj 2 3 1 3 3 2 2 4 2 1 3 2

cj
dj

3
2

2
3

5 2 11
3

6 7
2

2 2 2 2 9
2

The free variable with the smallest cj/dj of 2/3 at this stage is x2.
We fix x2 = 1, and eliminate constraints 2, 5, 6 in Table 2 covered
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by x2. x11 with a cost coefficient of 2 does not appear in any of the
remaining constraints, so we fix it at 0. The remaining problem is given
in Table 3.

Table 3
x1 x3 x4 x5 x7 x8 x9 x10 x12 x13

1 1 1 1 ≥ 1
1 1 1 1 ≥ 1

1 1 1 1 ≥ 1
1 1 1 1 ≥ 1
3 5 6 11 12 7 8 4 6 9 = z(x)

xj = 0 or 1 for all j. Minimize z(x)

We have the following information on the free variables at this stage.

Free var. x1 x3 x4 x5 x7 x8 x9 x10 x12 x13
cj 3 5 6 11 12 7 8 4 6 9
dj 1 1 1 2 2 1 3 2 2 1

cj
dj

3 5 6 11
2

6 7 8
3

2 3 9

The free variable with the smallest cj/dj of 2 at this stage is x10.
We fix x10 = 1 and eliminate constraints 1, 2 in Table 3. x3, x13,
with positive cost coefficients, do not appear in any of the remaining
constraints, so we fix them at 0. The remaining problem is given in
Table 4.

Table 4
x1 x4 x5 x7 x8 x9 x12

1 1 1 1 ≥ 1
1 1 1 1 ≥ 1
3 6 11 12 7 8 6 = z(x)
xj = 0 or 1 for all j. Minimize z(x)

We have the following information on the free variables at this stage.



9.4: Greedy Heuristics 443

Free var. x1 x4 x5 x7 x8 x9 x12
cj 3 6 11 12 7 8 6
dj 1 1 2 1 1 1 1

cj
dj

3 6 11
2

12 7 8 6

The free variable x1 has the smallest cj/dj of 3 at this stage. We
fix x1 = 1 and eliminate constraint 2 in the above tableau covered by
it. x7, x12 which do not appear in the remaining constraint are fixed at
0. The remaining problem is:

Minimize 6x4 + 11x5 + 7x8 + 8x9

subject to x4 + x5 + x8 + x9 ≥ 1

xj = 0 or 1 for all j

This remaining problem has only one constraint. The free variable
x4 has the smallest cj/dj of 6, so we fix it at 1 and the remaining free
variables x5, x8, x9 at 0.
Collecting the values given to the variables at various stages, we see

that the greedy solution obtained is (x1, to x16) = (1, 1, 0, 1, 0, 1, 0,
0, 0, 1, 0, 0, 0, 1, 1, 0)T , with an objective value of 14.

9.4.3 Greedy-Type Methods for the TSP

An n-city TSP with cost matrix c = (cij) is the problem of determining
a minimum cost tour, which is an order of visiting n cities each once
and only once, beginning with a starting city and terminating at the
initial city in the end. Hence it is a sequencing problem.
Let the cities in the problem be 1, 2, . . ., n. If the tour begins

in city 1, travels the remaining cities in the order i2, i3, . . . , in, and
then returns to the initial city 1 from in; the tour will be denoted by
1, i2, i3, . . . , in; 1. The arcs in this tour are: (1, i2), (i2, i3), . . . , (in−1, in),
(in, 1).
For example, if the cities are traveled in serial order 1, 2, 3, . . . , n−

1, n and then finally back to 1, the tour will be denoted by 1, 2, 3, . . . , n; 1.
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The greedy methods for the TSP try to construct a near-optimal
tour by building the sequence one element at a time using a greedy ap-
proach. Hence they are classified as tour construction procedures
or heuristics. We describe some of the popular ones here.

1. Nearest neighbor heuristic This nearest neighbor method is
obtained by applying the greedy approach to the TSP subject
to the constraint that the tour being constructed grow in a con-
nected fashion.

Starting with an initial city, this procedure builds a sequence one
city at a time. The next city in the sequence is always the closest
to the current city among the unincluded cities. In the end the
last city is joined to the initial city.

Typically, this process is repeated with each city selected as the
initial one. The best among the n tours generated in this process
is selected as the output of this algorithm.

It can be proved [D. Rosenkratz, R. Sterns, and P. Lewis, 1977]
that for the Euclidean TSP (i.e., the distance matrix is positive,
symmetric, and satisfies the triangle inequality), the following
result holds.

Length of the nearest neighbor tour

Length of an optimum tour
≤ 1
2
(1 + log2 n)

Example 9.4.1

to j = 1 2 3 4 5 6
from i = 1 × 14 23 25 36 42

2 14 × 17 23 30 36
c = (cij) = 3 23 17 × 29 35 28

4 25 23 29 × 17 11
5 36 30 35 17 × 6
6 42 36 28 11 6 ×

Consider a 6 city TSP with the cost matrix given above. Here
are the tours obtained by the nearest neighbor heuristic in this
problem.
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Starting city Nearest neighbor tour cost
1 1, 2, 3, 6, 5, 4; 1 107
2 2, 1, 3, 6, 5, 4; 2 111
3 3, 2, 1, 4, 6, 5; 3 108
4 4, 6, 5, 2, 1, 3; 4 113
5 5, 6, 4, 2, 1, 3; 5 112
6 6, 5, 4, 2, 1, 3; 6 111

So, the output of this algorithm is the tour 1, 2, 3, 6, 5, 4; 1 with
a cost of 107.

2. The Clark and Wright savings heuristic Select an initial
city, say city 1. Think of the initial city as a central depot,
beginning at which all the cities have to be visited. For each
ordered pair of cities not containing the initial city, (i, j) say,
compute the savings sij of visiting the cities in the order 1, i, j,
1 as opposed to visiting each of them independently from 1 as in
the orders 1, i, 1 and 1, j, 1. This savings sij is therefore equal
to (c1i + ci1) + (c1j + cj1) − (c1i + cij + cj1). If the cost matrix
c = (cij) is symmetric, we have sij = sji = ci1 + c1j − cij .
Order these savings values in decreasing order from top to bot-
tom. Starting at the top of the savings list and moving down-
wards, form ever larger subtours by inserting new cities, one at
a time, adjacent to the initial city on either side of the subtour,
as indicated by the pair corresponding to the present savings,
whenever it is feasible to do so. Repeat until a tour is formed.

Typically this process is repeated with each city as the initial one,
and the best of all the tours obtained is taken as the output.

As an example, consider the TSP of order 6 with the cost matrix
given in Example 9.4.1. Since the cost matrix is symmetric, the
savings sij = sji for all i, j; so we need to compute them only
for j > i. Suppose city 1 is selected as the initial city. s23 =
c12 + c13 − c23 = 14 + 23 − 17 = 20. The savings coefficients
computed this way are given below.
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sij for j > i
j = 2 3 4 5 6
i = 2 × 20 16 20 20

3 × 19 24 37
4 × 44 56
5 × 72
6 ×

The savings coefficients arranged in decreasing order, and the
subtour grown are shown below (here we used the fact that the
cost matrix is symmetric).

Savings coeff. Its value Present subtour
s56 72 1, 5, 6, 1
s46 56 1, 5, 6, 4, 1
s45 44 ”
s36 37 ”
s35 24 1, 3, 5, 6, 4, 1
s23 20 1, 2, 3, 5, 6, 4; 1

So, the tour 1, 2, 3, 5, 6, 4; 1 with a cost of 108 is obtained
by this procedure beginning with city 1 as the initial tour. The
same process can be repeated with other cities as initial cities.
The best of all the tours generated is the output of the algorithm.

3. Nearest insertion heuristic The insertion procedure grows a
subtour until it becomes a tour. In each step it determines which
node not already in the subtour should be added next, and where
in the subtour it should be inserted.

The algorithm selects one city as the initial city, say city i. Then
find p W= i such that cip = min{cij : j W= i}. The initial subtour is
i, p, i.

Given a subtour, S say, find a city r not in S, and a city k in
S such that ckr = min{cpq : p ∈ S, q W∈ S}. City r is known as
the closest or nearest city to S among those not in it. It is
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selected as the city to be added to the subtour at this stage. Find
an arc (i, j) in subtour which minimizes cir + crj − cij. Insert r
between i and j on the subtour S.

Repeat until the subtour becomes a tour.

As an example, consider the TSP of order 6 with the cost matrix
given in Example 9.4.1. Suppose city 1 is selected as the initial
city. Min{c1j : j W= 1} is c12. So, the initial subtour is 1, 2, 1.
The closest outside city to this subtour is city 3, and by symmetry
inserting it on any arc of the subtour adds the same to the cost,
so we take the next subtour to be 1, 3, 2, 1. The nearest outside
city to this subtour is city 4. Min{c14 + c43 − c13, c34 + c42 −
c32, c24 + c41 − c21} = c14 + c43 − c13 = 31. So, the new subtour
is 1, 4, 3, 2, 1. Continuing this way we get the subtour 1, 4, 6,
3, 2, 1; and finally the tour 1, 4, 5, 6, 3, 2; 1 with a cost of 107.
The procedure can be repeated with each city as the initial city,
and the best of the tours obtained taken as the output of the
algorithm.

It has been proved [D. Rosenkratz, R. Sterns, and P. Lewis, 1977]
that on a Euclidean TSP, the tour obtained by this method has
a cost no more than twice the cost of an optimum tour.

4. Cheapest insertion heuristic This procedure also grows a sub-
tour until it becomes a tour. It is initiated the same way as the
nearest insertion heuristic. Given a subtour S say, it finds an arc
(i, j) in S and a city r not in S such that the index cir + crj − cij
is minimal, and then inserts r between i and j. Repeat until a
tour is obtained. This procedure also can be repeated with each
city as the initial city, and the best of the tours obtained taken
as the output. On Euclidean TSPs, this method has the same
worst case bound as the nearest insertion heuristic.

As an example, consider the TSP of order 6 with the cost matrix
given in Example 9.4.1. Suppose city 1 is selected as the initial
city. Min{c1j : j W= 1} is c12. So, the initial subtour is 1, 2; 1 with
two arcs (1, 2), (2, 1). The indices for selecting the next insertion
among cities 3, 4, 5, 6 missing in present subtour are:
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Arc (i, j) in Index cir + crj − cij for r =
present subtour 3 4 5 6

(1, 2) 26 34 52 64
(2, 1) 26 34 52 64

So, inserting r = 3 between arc (1, 2) or (2, 1) in the present
subtour provides the cheapest insertion (smallest index value =
26). Hence at this stage we can insert 3 between arc (1, 2) or
(2,1) in the present subtour. Suppose we insert 3 between 1 and
2, leading to the new subtour 1,3,2;1 with arcs (1, 3), (3, 2), (2,1).
The indices for the next insertion are:

Arc (i, j) in Index cir + crj − cij for r =
present subtour 4 5 6

(1, 3) 31 48 47
(3, 2)) 35 48 47
(2, 1) 34 52 64

Here the cheapest insertion (index value of 31) is to insert 4 in
arc (1, 3) of the present subtour, leading to the next subtour 1,
4, 3, 2;1. The indices for the next insertion are:

Arc (i, j) in Index cir + crj − cij for r =
present subtour 5 6

(1, 4) 28 28
(4, 3) 23 10
(3, 2)) 48 47
(2, 1) 52 64

Here the cheapest insertion (index value of 10) is to insert 6 in
arc (4, 3) of the present subtour, leading to the next subtour 1,
4, 6, 3, 2;1. Only city 5 remains to be inserted now. The indices
for for its insertion are:
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Index Arc (i, j) in present subtour
(1, 4) (4, 6) (6, 3) (3, 2) (2, 1)

ci5 + c5j − cij 28 12 13 48 52

So, the cheapest insertion for 5 is on arc (4, 6) of the present
subtour. It leads to the tour 1, 4, 5, 6, 3, 2;1 which is the output
of this heuristic.

5. Nearest merger heuristic This procedure is initiated with n
subtours, each consisting of a single city and no arcs. In each
step it finds the least costly arc, (a, b) say, that goes between two
subtours in the current list, and merges these two subtours into
a single subtour.

If a, b are two single city subtours in the current list, their merger
replaces them with the subtour a, b, a.

If one of a, b is in a single city subtour, say a, and the other in
a multi-city subtour; insert a into the subtour containing b using
the cheapest way of inserting it as discussed under the cheapest
insertion heuristic.

If the subtours in the current list containing cities a and b each
have two or more cities, find the arc (p1, q1) in the first subtour,
and the arc (p2, q2) in the second subtour, such that cp1p2+cq2q1−
cp1q1 − cp2q2 is minimized. Then merge these subtours by delet-
ing arcs (p1, q1), (p2, q2) from them, and adding (p1, p2), (q2, q1) to
them.

As an exercise, we ask the reader to apply this heuristic on the TSP
of order 6 with the cost matrix given in Example 9.4.1.

We discussed a variety of greedy-type single pass heuristics for the
TSP to give the reader some idea of how greedy methods can be de-
veloped for combinatorial optimization problems. All the methods dis-
cussed here for the TSP produce reasonably good tours with objective
values usually close to the optimum objective value.
On the same problem different heuristics may give different results,

as the reader can verify from the results on the 6-city TSP with cost
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matrix given in Example 9.4.1. That’s why some times people solve
their problem with different heuristics, and take for implementation
the best solution obtained.

9.4.4 A Greedy Method for the Single Depot Ve-
hicle Routing Problem

This problem is concerned with delivering goods to customers at various
locations in a region by a fleet of vehicles based at a depot. The index
i = 0 denotes the depot, and i = 1 to n denote the customer locations.
N denotes the number of vehicles available at the depot. The following
data is given.

cij = distance (or cost, or driving time for traveling)
from i to j, for i, j = 0 to n.

kv = capacity of vehicle v in tons or some other units,
v = 1 to N .

Tv = maximum distance (or cost, or driving time) that
vehicle v can operate, v = 1 to N .

di = demand or amount of material (in tons or other
units in which vehicle capacities are also mea-
sured) to be delivered to customer i, i = 1 to n;
d0 = 0.

All customer demands need to be delivered. The problem is to
determine: (i) the subset of customers to be allotted to each vehicle that
is used, and (ii) the route that each vehicle should follow (i.e., the order
in which it should visit its allotted customers) so as to minimize the
total distance (or cost or driving time) of all the vehicles used to make
the deliveries. This is a prototype of a common problem faced by many
warehouses, department stores, parcel carriers, and trucking firms and
is therefore a very important problem. We will discuss a greedy-type
method known as the Clarke and Wright savings heuristic [G.
Clarke and J. Wright, 1964] that is very popular. It is an exchange
procedure, which in each step exchanges the current set of routes for a
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better set. Initially, think of each customer being serviced by a separate
vehicle from the depot. See the left part of Figure 9.1.

i

j

Depot

i

j

Depot

Figure 9.1: On the left, customers i and j are serviced by two vehicles
from the depot. On the right, they are both serviced by the same
vehicle.

If it is feasible to service customer j by the same vehicle which ser-
viced customer i (i.e., if the vehicle capacity and maximum distance
constraints are not violated by doing this) before returning to the de-
pot (see the right part of Figure 11.1), the savings in distance will be
sij = c0i + ci0 + c0j + cj0 − (c0i + cij + cj0) = ci0 + c0j − cij . These
savings coefficients sij are computed for all i W= j = 1 to n, and or-
dered in decreasing order from top to bottom. Starting at the top of
their savings list, form a route for vehicle 1 (which will be a subtour
beginning and ending at the depot) by inserting new customers, one at
a time, adjacent to the depot on either side of the depot as discussed
in the Clark and Wright savings heuristic for the TSP, until either the
vehicle capacity is used up or the maximum distance it can travel is
reached. Now delete the customers allotted to vehicle 1 from the list.

Repeat the same process to form a route for vehicle 2 with the
savings coefficients for pairs of remaining customers; and continue in
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the same way until all the customers are allotted to a vehicle.
The above process determines the subset of customers to be serviced

by each vehicle used, and a tour to be followed by each vehicle to service
its customers. One can now try to find a better tour for each vehicle
to service its allotted customers using some of the algorithms discussed
in Sections 9.4.3 and 9.5.
As an example, consider the problem involving 12 customers and

the following data. The symmetric distance matrix (cij) (cij is the
distance in miles between customers i, j) is:

Symmetric distance matrix (miles) = (cij)
to 0 1 2 3 4 5 6 7 8 9 10 11 12

from 0 × 9 14 21 23 22 25 32 36 38 42 50 50
1 × 5 12 22 21 24 31 35 37 41 49 51
2 × 7 17 16 23 26 30 36 36 44 46
3 × 10 21 30 27 37 43 31 37 39
4 × 19 28 25 35 41 29 31 29
5 × 9 10 16 22 20 28 30
6 × 7 11 13 17 25 27
7 × 10 16 10 18 20
8 × 6 6 14 16
9 × 12 12 20
10 × 8 10
11 × 10
12 ×

There is no limit on the distance that a truck can travel. For i = 1
to 12, data on di = the amount to be delivered to customer i in gallons
is:

Customer i 1 2 3 4 5 6
di 1200 1700 1500 1400 1700 1400

Customer i 7 8 9 10 11 12
di 1200 1900 1800 1600 1700 1100

Truck capacity (gallons) Up to 4000 4000-5000 5000-6000
Number of trucks available 10 7 4
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Since the distance matrix is symmetric, the matrix of savings coef-
ficients is also symmetric. For example s2,1 = s1,2 = c1,0 + c0,2 − c1,2
= 9 + 14 − 5 = 18. All the savings coefficients are computed in the
same manner and are given below.

Symmetric savings matrix (miles) = (sij)
j = 1 2 3 4 5 6 7 8 9 10 11 12
i = 1 × 18 18 10 10 10 10 10 10 10 10 8

2 × 28 20 20 16 20 20 16 20 20 18
3 × 34 22 16 26 20 16 32 34 32
4 × 26 20 30 24 20 36 42 44
5 × 38 44 42 38 44 44 42
6 × 50 50 50 50 50 48
7 × 58 54 64 64 62
8 × 68 72 72 70
9 × 68 76 68
10 × 84 82
11 × 90
12 ×

The largest savings coefficient is s11,12 = 90. So, the initial sub-
tour for vehicle 1 is 0, 11, 12; 0. The demand at customers 11, 12
put together is 1700 + 1100 = 2800 gallons. The next biggest savings
coefficient is s10,11 = 84. So, we insert customer 10 into the subtour for
vehicle 1, leading to the new subtour 0, 10, 11, 12; 0 with a total de-
mand of 1600 + 2800 = 4400 gallons. Customers 10, 11, 12 are already
assigned to vehicle 1. The next largest savings coefficient involving one
of the remaining customers is s9,11 = 76, but adding customer 9 to
vehicle 1 will make the total demand = 1800 + 4400 = 6200 gallons;
but the depot has no vehicles of this capacity, so we drop customer 9
from consideration for vehicle 1. The next highest savings coefficients
are s8,10 = s8,11 = s8,12 = 72, but again, customer 8 cannot be allocated
to vehicle 1 because this allocation will make the total demand > the
largest capacity of available vehicles.
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The next highest savings coefficient is s8,9 = 68 and both customers
8 and 9 are presently unassigned. So, we select 0, 8, 9; 0 as initial
subtour for vehicle 2. The combined demand of these two customers is
1900 + 1800 = 3700 gallons.

The next highest savings coefficients are s7,10 = s7,11 = s7,12 = 64.
So we insert customer 7 into the subtour for vehicle 1, leading to the
new subtour 0, 7, 10, 11, 12; 0 with a total demand of 5600 gallons for
vehicle 1. So, we make vehicle 1 to be one of the vehicles with capacity
5000-6000 gallons, and τ1 = 0, 7, 10, 11, 12; 0 as the subtour for it
to follow. No more customers can be added to this vehicle because of
the capacity constraint. Since this vehicle is now full, in the sequel we
ignore all the savings coefficients involving one of the customers 7, 10,
11, or 12 assigned to this vehicle. And there are 3 vehicles of capacity
5000-6000 gallons still available.

The next highest savings coefficient involving an unassigned cus-
tomer is s6,8 = 50. So, we combine customer 6 in vehicle 2 leading
to the new subtour for it of 0, 6, 8, 9; 0 with a total demand of 5100
gallons. No more customers can be assigned to vehicle 2 because of
the capacity constraint. Thus we make vehicle 2 to be another vehicle
with capacity 5000-6000 gallons, and τ2 = 0, 6, 8, 9; 0 as the subtour
for it to follow. And there are 2 more vehicles of capacity 5000-6000
gallons left.

The next highest savings coefficient involving unassigned customers
is s3,4 = 34. So, we combine customers 3, 4 into the subtour 0, 3, 4;
0 which will be the initial subtour for vehicle 3 with a total demand
of 2900 gallons. The next highest savings coefficient not involving a
customer assigned to the already full vehicles 1, 2, is s2,3 = 28. So, we
insert customer 2 into the subtour for vehicle 3, changing it into 0, 2,
3, 4; 0 with a total demand of 4600 gallons.

The next highest savings coefficients of s45 = 26, s12 = 18 cannot
be used because adding any of customers 5 or 1 to vehicle 3 will exceed
maximum available vehicle capacity. This leads to the next highest
savings coefficient s1,5 = 10. Hence we combine customers 1, 5 into the
subtour 0, 1, 5; 0 with a total demand of 2900 gallons for vehicle 4. Now
all the customers are assigned. Here is a summary of the assignments.
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Vehicle Its subtour Total demand Vehicle capacity
1 τ1 = 0, 7, 10, 11, 12; 0 5600 gal. 5000-6000 gal.
2 τ2 = 0, 6, 8, 9; 0 5100 gal. ”
3 τ3 = 0, 2, 3, 4; 0 4600 gal. 4000-5000 gal.
4 τ4 = 0, 1, 5; 0 2900 gal. 4000 gal.

We should now try to find better tours for each vehicle to cover the
customers assigned to it, using some of the other methods discussed in
Sections 9.4.3 and the following sections.

9.4.5 General Comments on Greedy Heuristics

So far we discussed a variety of ways of developing single pass heuris-
tic methods for a variety of problems based on the greedy principle.
One important point to notice is that heuristic methods are always
tailormade for the problem being solved, taking its special structure
into account. Practical experience indicates that for the problems dis-
cussed in this section, the heuristic methods discussed usually lead to
satisfactory near-optimal solutions.

A point of caution. It is perfectly reasonable to use greedy
or other single pass heuristic methods if either theoretical worst case
analysis, or extensive computational testing, has already established
that the method leads to reasonable near optimal solutions. In the
absence of encouraging theoretical results on worst case error bounds,
or encouraging results from computational tests, one should be wary of
relying solely on a greedy or any other single pass heuristic. In this case
it is always better to combine it with some heuristic search methods
discussed in the following sections.

Exercises

9.4.1: A bank account location problem A business firm has
clients in cities i = 1 tom, and can maintain bank accounts in locations
j = 1 to n. When the payment for a client is mailed by a check, there
is usually some time lag before the check is cashed (time for the mail
to reach back and forth), in that time the firm continues to collect
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interest on that money. Depending on the volume of business in city i,
and the time it takes for mail to go between city i and location j, one
can estimate the float = expected benefit sij in the form of this interest
if clients in city i are paid by checks drawn out of a bank account in
location j, i = 1 to m, j = 1 to n. The following data is given.

cj= cost in money units for maintaining a bank ac-
count in location j = 1 to n, per year

sij= total float (= expected benefit in the form of in-
terest on money between the time a check for it
is mailed, and the time that check is cashed) per
year, if payments due for customers in city i are
mailed in the form of checks drawn out of a bank
account in location j, i = 1 to m, j = 1 to n.

N= upper bound on the number of bank accounts that
the firm is willing to maintain in locations 1 to n.

Here is the data for a numerical example: m = 7, n = 5, N = 3,
and

j = 1 2 3 4 5
i = 1 2 11 6 9 8

2 7 1 8 2 10
3 7 3 2 3 4

(sij) = 4 10 9 4 2 1
5 3 8 5 6 2
6 4 3 4 1 6
7 6 5 1 8 4
cj 3 2 1 3 4

(i) Formulate the problem of determining the subset of locations
where bank accounts should be maintained, and the bank accounts
through which customers in each city should be paid, so as to maximize
(the total annual float earned − yearly cost of maintaining the bank
accounts), as a 0−1 pure IP.
(ii) Consider the numerical example with data given above. Suppose
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J ⊂ {1, . . . , n}, the subset of locations where bank accounts are to be
maintained, is given. Then clearly for each i = 1 to m, customers in
city i should be paid by checks drawn out of location r where r attains
the maximum in max{sij : j ∈ J}, i.e., each customer should be paid
from the bank account in location with the maximum float value in the
row of the customer city, to maximize total float.
For illustration, if bank accounts are opened in locations j = 1 and

3 only in the example given above: customers in cities i = 1, 2, 5 should
be paid out of locations j = 3; customers in cities i = 3, 4, 7 should
be paid out of location j = 1; and customers in city i = 6 can be paid
out of locations j = 1 or 3 (the float values are equal). Also if a new
bank account is opened in location 4, only customers in cities 1, 5, and
7 should be switched from their current account to this new account,
because this will increase the float coming from them. Thus when bank
accounts are already available in locations 1, 3, opening a new bank
account in location 4 leads to a net extra profit of (9 − 6) + (6 − 5) +
(8 − 6) − 3 = 3 money units (here the terms 9 − 6, 6 − 5, 8 − 6 are
the extra floats that will be obtained when customers in cities 1, 5, 7
are switched from their present account to this new account; and the
last term 3 is the cost of maintaining an account in the new location).
This net quantity 3 is called the evaluation of location 4 when bank
accounts are already available in locations 1, 3. It measures the net
extra profit that can be gained by opening a new account at location
4.
Using such evaluations as the criterion to be greedy upon, develop a

greedy method for finding the subset of locations where bank accounts
should be maintained in this problem. The method should open one
new account at a time, until either N accounts are opened, or it turns
out that opening a new account only decreases the net income. Solve
the problem with data given above, using this method.

9.5 Interchange Heuristics

Interchange (or exchange) heuristics are local search methods that start
with a solution and search for better solutions through local improve-
ment, i.e., through small changes in the solution in each step. When
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the problem is represented as one of selecting an optimal subset from a
set (or as one of arranging a set of objects in a sequence optimally), the
method starts with an initial solution which may either be randomly
generated or obtained by a single pass heuristic such as the greedy
method; and attempts to improve it by exchanging a small number of
elements in the solution with those outside it (or by changing the po-
sitions of a small number of objects in a sequence). If a better solution
is found by such interchanges, the same process is repeated on it. This
process is continued until a solution that cannot be improved by such
interchanges is found. This final solution is a local minimum under
such interchange operations. The procedure is usually repeated with
several initial solutions, and the best of the local minima found is taken
as the output of the algorithm. Heuristic methods based on this type
of search are called interchange or exchange heuristic methods.
For TSP, the most popular exchange heuristic methods are 2-Opt

or 3-Opt (starting with a tour, these procedures try to find a better
tour by exchnging two (in 2-opt) or three (in 3-opt) arcs in the tour
with two or three arcs not in the tour). We discuss these metods next.

2-Opt Heuristic for the Symmetric Traveling Sales-
man Problem (TSP), and 3-Opt Heuristic for the
Symmetric or Asymmetric TSP

We now consider the n-city TSP with cost matrix c = (cij), where
cij = cost of travel from city i to city j, for i, j = 1 to n, i W= j. We
are required to find a tour, beginning at some city, visiting each of the
other cities once and only once in some order, returning to the starting
city at the end; that has the smallest cost among all such tours.
If the cost matrix c is symmetric, i.e., cij = cji for all i, j; then

this TSP is known as a symmetric TSP. In a symmetric TSP, a link
between any pair of cities i, j can be traveled in either of the two
directions (i to j, or j to i) for the same cost. Hence in this case all
links between various pairs of cities can be treated as edges without
any specified orientation, so every tour is a cycle containing all the
cities, its cost is the same whether it is traveled in the clockwise or
anticlockwise direction. See Figure 9.2.



9.5: Interchange Heuristics 459

1

5 2

34

Figure 9.2: Tour covering cities 1 to 5 in a symmetric TSP is a cycle
without specified orientation. Orienting this in the clockwise direction,
as indicated by the arrow, gives the tour 1, 2, 3, 4, 5; 1. When oriented
in the anticlockwise direction, it leads to the tour 1, 5, 4, 3, 2; 1. Both
the tours have the same cost, and correspond to the same set of edges.

If c is not symmetric, i.e., cij W= cji for at least one pair of cities i, j;
then this TSP is known as an asymmetric TSP. In this case the cost
of traveling on the link between cities i, j in the two directions may be
different; so all the links joining pairs of cities are treated as directed
arcs with travel allowed only in the direction specified for that arc.

The interchange heuristic for either TSPs begins with a tour τ , and
searches for a better tour among all those that differ from τ in 2, 3, or
a small number of arcs, or edges. If such a tour is found, the method

moves to that and continues in the same way. The final tour obtained
by the 2 edge interchange scheme is called a 2-0pt tour, and the one
obtained by the 3 arc interchange scheme is called a 3-Opt tour for
the TSP.

2-edge interchange works only for the symmetric TSP. Figure 9.3
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1
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Figure 9.3: Original tour shown on the left, with the thick edges (2; 3),
(5, 6) to be deleted from it in the 2-edge interchange operation. Since
the remaining four edges in this tour are staying, the only two edges
that can replace the dropped edges are (2; 5), (6; 3). New tour shown
on right. For each tour we mark the clockwise orientation at node 1.

shows the 2-edge interchange operation carried out on a tour (on the
left) covering n = 6 cities (each city represented by a node with the
city number entered inside it), 1 to 6; and the new tour obtained after
the interchange on the right.

Notice that in the new tour obtained after the 2-edge interchange,
some of the remaining old edges will be travelled in the direction op-
posite to that in the original tour, but in a symmetric TSP this is OK,
since each edge can be traveled in either direction.

The 3-link interchange works both for the symmetric or asymmetric

TSP, we illustrate it treating each link as a directed arc. In Figure
9.4 we display a 3-arc interchange. The nodes represent the cities with
their numbers entered inside. The initial tour τ1 is drawn in solid lines.
The second tour τ2 is obtained by exchanging the three thick arcs in τ1
with the three dashed arcs.
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Figure 9.4: The three arc swap.

Deleting the thick arcs in the solid tour τ1 in Figure 9.4 is equivalent
to looking at the restricted problem with the arcs (1, 2), (2, 3); (4, 5),
(5, 6); (7, 8) already fixed in the tour. To avoid subtours, this implies
that arcs (3, 1), (6, 4), and (8, 7) are forbidden. Hence the three best
outside arcs to replace the thick arcs in Figure 9.4 are the arcs in an
optimum tour for the TSP of order 3 with the following cost matrix:

to 1 4 7
from 3 × c34 c37

6 c61 × c67
8 c81 c84 ×

which can be solved easily by inspection, since a TSP of order 3 has
only 2 possible tours. If this produces a tour τ2 with total cost less than
that of τ1, the choice of the set of three thick arcs to exchange from τ1
has been successful, and the process is now repeated with the new tour
τ2. If the cost of τ2 is ≥ the cost of τ1, the process is continued with τ1
and a different subset of three arcs from it to exchange. If every subset
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of three arcs to exchange from τ1 leads to a tour whose cost is ≥ that
of τ1, the three arc interchange heuristic terminates with τ1 as a near
optimum (3-opt) tour. To obtain a close approximation to an optimum
tour, one should repeat this interchange procedure with a number of
initial tours, and take the best of all the tours obtained as the final
output.

We will now discuss an interchange heuristic method for a location
problem.

9.5.1 An Interchange Heuristic for a
Training Center Location Problem

A large company has offices in many cities around the country. Due to
the continuing development of new technologies, they expect to have
a steady demand in the future for the training of their employees.
Hence they are embarking on a huge employee training and education
program. They want to develop a few training centers, these will be
located in a subset of cities where the company has offices. Once these
centers are established, employees from various cities will be sent to
these centers for training. We assume that each center will have the
capacity to take an unlimited number of trainees.

All the employees needing training in a city will be assigned to the
same training site (i.e., they will not be split between different training
sites). Also, a trainee may have to make several trips back and forth
before his training is complete. We are given the following data.

n = number of cities where offices are located
si = expected number of employees at city i needing

training annually, i = 1 to n
mi = expected number of trips between city i and train-

ing center annually by trainees from city i, i = 1
to n
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cij = cost per trip between cities i and j, i, j = 1 to n
dj = expected staying cost per trainee during training

program, if a training center is located in city j,
j = 1 to n

rij = sidj + micij = total cost (travel + staying) in-
curred annually by trainees from city i if they are
assigned to a training center located in city j, i, j
= 1 to n

p = number of training centers to be opened

Suppose V = {j1, . . . , jp}, the set of cities among 1 to n where
training centers will be opened, is given. Then, to minimize the total
cost, we should assign the trainees from city i to the cheapest training
site in V , i.e., to jt ∈ V where jt satisfies rijt = min{rijk : k = 1
to p}, for each i = 1 to n. Thus given the set of training sites V =
{j1, . . . , jp}, the minimum total annual cost (expected annual cost of
travel + stay at assigned training centers during training for all the
trainees) is

�n
i=1(min{rijk : k = 1 to p}).

The problem is to find the set of training sites that minimizes the
total annual cost. This problem is known as the p-median problem.
The interchange heuristic for this problem is initiated with a set

of p sites for training centers, and applies the following general step
repeatedly:

General Step Let V be the present set of sites for training centers.
For each a ∈ V, b W∈ V define ∆ab as the change in the total cost
if a in V is replaced by b. For each a ∈ V define

Ta = market set for city a, i.e., the set of cities which
send their trainees to a, it is {i : ria = min{rij :
j ∈ V }}.

For any a ∈ V, b W∈ V , to compute ∆ab it is necessary to find the
“cheapest” new assignments for trainees from cities in Ta when b
replaces a from V ; and any other cities outside Ta which will also
be switched from their present assignments to b.
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Start computing ∆ab for a ∈ V, b W∈ V . In this process, if ∆gq

for g ∈ V, q W∈ V is the first negative quantity obtained, let V I =
{q}∪ (V \{g}. With V I as the new set of sites for training centers
repeat this general step.

On the other hand, if ∆ab ≥ 0 for all a ∈ V, b W∈ V , accept
the present set V as a near optimum set of training sites, and
terminate.

Example 9.5.1

As an example, consider the problem with the following data. n =
8, p = 2, si = number of trainees from city i annually, mi = number of
trips by trainees from city i to training site annually [J. G. Klincewicz,
1980].

i City si mi di = staying cost/trainee
1 Dallas 2 8 $1800
2 Denver 3 12 1590
3 G. Falls 6 24 1290
4 L.A. 8 32 2100
5 Omaha 5 20 1560
6 St. Louis 4 16 1650
7 S.F. 7 28 2130
8 Seattle 1 4 1680

cij = travel cost/trip (symmetric)
to j 1 2 3 4 5 6 7 8

from i = 1 0
2 170 0
3 266 163 0
4 262 197 223 0
5 158 141 202 273 0
6 152 191 260 318 115 0
7 301 216 204 113 292 343 0
8 333 227 146 217 282 340 172 0
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We compute rij = sidj +micij = total cost of trainees from city i
to be trained at a training center in city j, and give them below.

rij
j = 1 2 3 4 5 6 7 8

i = 1 3600 4510 4708 6296 4384 4516 6668 6024
2 7440 4770 5826 8664 6372 6242 8982 7764
3 17184 13452 7740 17952 14208 16140 17676 13584
4 22784 19024 17456 16800 21216 23376 20656 20384
5 12160 10770 10490 15960 7800 10550 16490 14040
6 9632 9506 9800 13488 8080 6600 14128 12160
7 21028 17178 14742 17864 19096 21154 14910 16576
8 3132 2498 1874 2968 2688 3010 2818 1680

Suppose the initial set of sites for training centers is V1 = {6, 8}.
With this set of training centers, since r16 = 4516 < r18 = 6024, trainees
from city 1 will be assigned to the training center at city 6, i.e., city 1
is in the market set for training center at city 6. In the same way, we
find that the market set for the center at city 6 is T6 = {1, 2, 5, 6};
and the market set for the center at city 8 is T8 = {3, 4, 7, 8}.
If 8 in V1 is replaced by 1, we verify that cities 3 and 8 in T8 will join

the market set of 6 after the change, but 4 and 7 will join the market
set of 1. Also, city 1 will move from the market set of 6 to that of 1.
So, ∆8,1 = (3600 − 4516) + (16140 − 13584) + (22784 − 20384) +
(21028 − 16576) + (3010 − 1680) = 9822 > 0. So, replacing 8 by 1 in
V1 only increases the total cost.
Similarly we compute ∆8,2 = −4048 < 0. Thus replacing 8 by 2

in V1 reduces the total cost by $4048. So, we make the exchange and
have the new set of sites for training centers V2 = {6, 2}.
The algorithm can be continued with the new set V2 in the same

way. It will terminate when a set of sites for training centers which
cannot be improved by such interchanges is obtained.
To get even better solutions, the procedure should be repeated with

different initial sets, and the best of all the solutions obtained is taken
as the output.
Practical experience indicates that the interchange heuristic dis-

cussed here for the training center location problem, and other p-
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median type location problems similar to it, gives excellent results.
In a computational experiment, this heuristic obtained solutions ver-
ified to be optimal by the B&B approach in 26 out of the 27 cases
tested, and within 1% of the optimum cost in the other case.
In general, a composite heuristic approach consisting of something

like a greedy method to generate one or more good initial solutions, and
an interchange method to search for better solutions by local improve-
ment beginning with the initial solutions produced by the first method,
leads to reasonable solutions for large scale combinatorial optimization
problems in applications.

Exercises

9.5.1: Formulate the problem of finding the best locations for train-
ing centers, and the assignment of cities to training centers, for the
numerical example in Example 9.5.1 as a pure 0−1 IP.

9.6 General Local Search Methods

The interchange heuristic methods discussed in Section 9.5 are special
types of local search methods that have yielded excellent results on
some types of combinatorial optimization problems. In this section, we
will summarize the basic principles behind local search methods.

Some Classical Concepts from Nonlinear Program-
ming

The classical concepts of neighborhood of a feasible solution,
local optimum (minimum or maximum) have been developed in
continuous variable nonlinear programming many ceuturies ago, for
dealing with the problem of minimizing (maximizing) a real valued
function, say f(x), over Rn (this is the classical problem of finding the
unconstrained optimum of f(x) over Rn). For this problem, given an
x̄ ∈ Rn,

a neighborhood of x̄ is defined to be the set of all x ∈ Rn
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satisfying ||x − x̄|| < 6 for some 6 > 0, where for any y =

(y1, . . . , yn)
T ∈ Rn, ||y|| =

�
y21 + . . .+ y2n is the Euclidean

norm of y (i.e., the Euclidean disctance between 0 and y).

x̄ is said to be a local minimum for f(x) if for some
6 > 0, x̄ is the global minimum for f(x) in the neighbor-
hood {x : ||x − x̄|| < 6}; i.e., f(x) ≥ f(x̄) for all x in this
neighborhood. See Figure 9.5.
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Figure 9.5:

The concept of a local maximum is defined similarly if the original
problem is to maximize f(x) over Rn. But we will continue our dis-
cussion in terms of minimization, since maximizing f(x) is the same as
minimizing −f(x) subject to the same constraints if any.

Neighborhood Structures for Combinatorial Opti-
mization Problems

The concepts of neighborhood of a feasible solution and local mini-
mum have been extended recently to the setting of combinatorial (dis-
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crete) optimization problems, as a prelude to developing very effective
local search (also called neighborhood search) algorithms for han-
dling such problems arising in many application domains.

For continuous optimization over Rn, the set {x : ||x − x̄|| < 6}
for 6 > 0 offers a very natural neighborhood for x̄ ∈ Rn. Combinato-
rial optimization problems form a wide variety, and historically there
has not been a concept of the neighborhood of a feasible solution in
them. Now many different neighborhood structures have been defined
for combinatorial optimization problems, and neighborhood search al-
gorithms have been developed using them. These algorithms have now
become important tools for handling these problems.

For a problem, once a neighborhood structure is selected, a solution
x̄ is defined to be a local minimum (optimum) with respect to this
neighborhood structure if x̄ is the best solution in its neighborhood
N(x̄) (i.e., a locally optimal solution is one that does not have a better
neighbor). The local (neighborhood) search algorithm proceeds this
way to solve the problem.

Step 1: Initial solution: Select an initial solution. This may be
constructed by a different algorithm, or generated randomly.

Step 2: Neighborhood search: Let x̄ be the current solution.
Search for a better solution than x̄ in N(x̄), the neighborhood of x̄.

If no such solution is found in N(x̄), terminate with x̄ as a locally
optimal solution.

If a better solution than x̄ is found in N(x̄), replace x̄ with it as the
current solution, and repeat this Step 2 with it.

Step 3: Running the Algorithm with Different starting
Points: In using local search methods to solve a problem, one generally
performs many runs of it with different starting points, and selects the
best solution obtained in all these runs as the output of the approach.

As an example consider a symmetric TSP. the 2-opt (3-opt) inter-
change heuristics for it discussed earlier are local search methods in
which the neighborhood of a tour τ is the set of all tours that differ
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from τ in exactly two (or three) arecs or edges.

Small or Large Neighborhoods

The choice of the neighborhood structure, (i.e., how the neighbor-
hood of a feasible solution is defined), plays a critical role in the quality
of solutions produced by the neighborhood search approach. Most of
the neighborhood search algorithms in the literature use small neigh-
borhoods (i.e., those with small number of solutions in them) as they
explicitly enumerate and evaluate all neighbors to find a better solution
than x̄ in the neighborhood N(x̄) of x̄.

However, intutively it seems natural to expect that the larger the
neighborhood, the better the quality of the final local optimum solution
obtained. But if the search for a better solution in the neighborhood is
carried out by enumeration, the larger the neighborhood, the longer it
takes to search the neighborhood in each iteration. So, larger neighbor-
hoods become practical only if one can search them for a better solution
using an efficient algorithm. For a few specialized combinatorial opti-
mization problems, techniques based on efficient search algorithms that
can identify an improved neighbor without explicitly enumerating and
evaluating all the neighbors have been developed. For these problems
we have local search methods using very large neighborhoods.

Types of Combinatorial Optimization Problems
Solved by Local Search

Local search methods are usually applied to solve unconstrained
combinatorial optimization problems (i.e., those for which a feasible
solution can be generated easily), and in fact all feasible solutions can
be enumerated one by one easily. Examples are the unconstrained
traveling salesman problem (TSP), for which the feasible solutions are
all the tours, etc.

If the problem is a constrained combinatorial optimization problem,
the constraints may be simple ones that can be handled easily, or hard
constraints that make even the problem of finding a feasible solution a
hard problem.
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For an example of a constrained problem subject to hard con-
straints, consider a constrained TSP with time windows. In this prob-
lem, in addition to the cost matrix (cij), the travel time matrix (tij)
where tij = time to travel from city i to city j directly, is given, ‘ the
starting city (origin of the tour) is specified, say city 1; and for each
city other than the origin, the time windows during which the sales-
man must arrive there, are specified. For example, if city 1 is the origin,
and the time window for city 2 is 10 to 12 hours; this requires that the
salesman must arrive at city 2 between 10 to 12 hours after starting
at city 1. Even finding a feasible solution for this problem is hard;
and it is very difficult to apply local search to handle this problem.
One way of handling such a problem is to relax the constraints and
include a penalty term for their violation in the objective function to
be minimized. But this makes local search messy, and since it cannot
guarantee that the penalty term can be made zero, it may not even
produce a feasible solution for the problem. We will not consider the
application of local search to solve such constrained problems subject
to hard constraints in this book.

If the problem to be solved is a constrained problem in which the
constraints are simple (i.e., it is easy to find a feasible solution for it,
and in fact all feasible solutions for it can be enumerated easily one
by one, if necessary), there are two ways in which one can proceed to
apply local search to solve it. These are:

Exclusion: Infeasible solutions are always discarded, and only fea-
sible solutions are kept. That is, the set of neighbors of a feasible
solution is taken as the set of neighbors defined for the corresponding
unconstrained problem after discarding the infeasible solutions in it.

Repair: The local search method is applied on the corresponding
unconstrained problem, ignoring the constraints. If the method yields
an infeasible solution, it is changed or repaired so that it becomes fea-
sible. This requires a method to find a feasible solution that retains
the essential characeristics of the infeasible solution which has been
produced. Often this is taken as the best feasible solution in the neigh-
borhood of that infeasible solution, if the computational expense of
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finding it is not too much.

General Issues

To apply local search to a problem, a number of choices must be
made.

First we must decide how to choose the initial solution to apply
the algorithm. Sometimes, people use another constructive heuristic
like the greedy heuristic to obtaian the initial feasible solution for local
search. Often, local search is executed from several different randomly
chosen starting points, and then the best result from all the runs is
selected for implementing.

Next we must choose a neighborhood structure for the problem, and
a method for searching the neighbor hood of a point. This is a major
challenge for getting good results from local search. Since local search
is applied on a very diverse set of problems, and each application has
its own peculiarities and difficulties to be overcome, making this choice
depends on the specific problem being solved. Illustrating the use of
large neighborhoods developed for some problems, and discussing the
efficient methods used to search them is beyond the scope of this book.
So, we will discuss the application of local search on some problems us-
ing small neighborhoods and enumeration to search them and refer the
interested reader to more advanced references for other developments.

Examples of Application of Local search

1. Partitioning Problems: In general these problems have the
following features: We are given a set A = {a1, . . . , an} of elements
which is required to be partitioned into k subsets S = {S1, . . . , Sk} (S
is said to be a partition ofA; if ∪ki=1Si = A, and Si∩Sj = ∅ for all i W= j).
ci(Si) is the cost of forming the elements in the set Si as a set in the
partition; and the total cost z =

�k
i=1 ci(Si) is to be minimized. Usually

the statement of the problem includes a procedure for computing ci(Si)
for any given set of elements Si. Many combinatorial optimization
problems belong to this partitioning framework.

For example, the task allocation problem discussed in Example 9.2.1
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becomes a partitioning problem when it is viewed as the problem of
allocating tasks in {1, . . . , n} to the T processors; i.e., one of partition-
ing the set of tasks {1, . . . , n} into S = {S1, . . . , Sn} where for i = 1 to
T , Si is the set of tasks allocated to the ith processor. Then

ci(Si) =

l
0, if Si = ∅

ρi +
�
j∈Si
�
pW∈Si(Lcjp +Hdjp) otherwise.

Delivery and routing problems discussed in Section 7.3 are essen-
tially partitioning problems in which the set of all customers to whom
deliveries have to be made is to be partitioned into S = {S1, . . . , Sn},
where Si is the set of customers handled by a single truck. Given Si,
ci(Si) is the total mileage of the truck to start from the depot, cover
all the customers in Si in an optimum order, and then return to the
depot.
The set partitioning problem and its various applications discussed

in Section 7.3 can be seen to belong to the partitioning framework
directly.
The training center location problem discussed in Section 9.5 is

actually the problem of partitioning the set {1, . . . , n} of cities where
offices of the company are located, into subsets {S1, . . . , Sk} where
each Si is a set of cities from which employees will all train at the same
training center. Given Si, ci(Si) is the cost of training all the employees
from cities in Si at a single center located optimally within Si.

Neighborhood Structures Commonly Used to Solve
Partitioning Problems Using Local Search

Perhaps the simplest and most popular neighborhood for parti-
tioning problems is the two-exchange neioghborhood. In this,
the neighbors of a given partition S = {S1, . . . , Sk} are all the par-
titions obtained by transferring single elements between two different
subsets in S; i.e., partitions of the form {S1, . . . , Si−1, ((Si\{ai1}) ∪
{aj1}), Si+1, . . . , Sj−1, ((Sj\{aj1}) ∪ {ai1}), Sj+1, . . . , Sk}, where ai1 is
an element in Si and aj1 is an element in Sj .
As a numerical example, suppose n = 8, and consider the partition

S = {S1, S2, S3} where S1 = {1, 2}, S2 = {3, 4, 5}, S3 = {6, 7, 8}.
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Exchanging the element 2 in S1 with the element 6 in S3, we get the
neighbor partition S I = {{1, 6}, {3, 4, 5}, {2, 7, 8}.
If n is the number of elements in the original set, in this neighbor-

hood structure each solution (i.e., partition) has about O(n2) neigh-
bors. So, it is computationally feasible to identify the best solution
in the neighborhood of a solution by explicitly examining the entire
neighborhood.

On these problems, the local search algorithm starts off with an ini-
tial partition. In each step it searches the neighborhood of the current
partition for another of lower cost. If none found, the current partition
is a local optimum and the method terminates. If a better partition
is found in the neighborhood, it replaces the current partition and the
search continues.

2. The Traveling Salesman Problem (TSP): The most famous
local search algorithms for the TSP are the 2-opt and 3-opt discussed
in Section 9.5.

The neighborhood of a tour τ used in 2-opt for the symmetric TSP
is the 2-change (or the 2-exchange, or 2-interchange) neighborhood, it
is the set of all tours that differ from τ in exactly two edges as explained
in Section 9.5.

The neighborhood of a tour τ used in 3-opt for the asymmetric or
symmetric TSP is the 3-change (or the 3-exchange, or 3-interchange)
neighborhood, that consists of all the tours that differ from τ in at
most three arcs or edges.

With these neighbors, the local search algorithm is exactly the in-
terchange heuristic method for the TSP discussed in Section 9.5.

3. Sequencing Problems: Many scheduling problems in com-
puter, manufacturing, and other systems deal with efficient allocation
of one or more resources to activities over time.

Using the terminology from manufacturing, in these problems we
need to perform a set of jobs, each may require operations on some
machines which are the resources that can perform at most one activ-
ity at a time. Many such machine scheduling problems deal with the
problem of finding an optimal order, or sequence, in which the jobs are
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to be processed. Given the processing sequence for the jobs, the cost
corresponding to that sequence can easily be computed. The problem
is to find the optimal sequence that minimizes the cost.

As an example, suppose there are n = 3 jobs, J1, J2, J3, each of
which needs to be processed on two machines M1,M2; on M1 first and
then on M2 (this type of problem is called a flowshop scheduling
problem in the literature). The processing times of the jobs on the
machines are given below.

Job Units of processing time on
M1 M2

J1 2 1
J2 3 1
J3 2 3

Assuming that the processing of this set of jobs begins at time 0, let
ti denote the time at which the processing of Ji is finished onM2. Then
the criterion to be optimized in these problems is usually a function of
(t1, . . . , tn) (here n = 3); for example the total processing duration =
max{t1, . . . , tn}, or sum finishing time =

�n
i=1 ti, etc. These objective

functions depend on the order in which the jobs are processed.

For example, if the jobs are processed in the order (J1, J2, J3), it
can be verified from Figure 9.6 that (t1, t2, t3) = (3, 6, 10). So the total
processing duration under this order is 10, the sum finishing time is
19. Figure 9.6 indicates the jobs being processed on the two machines
in the various time units from 1 to 10.

Time → 0 1 2 3 4 5 6 7 8 9 10
M1 J1 J1 J2 J2 J2 J3 J3
M2 J1 J2 J3 J3 J3

Figure 9.6: Processing order is (J1, J2, J3). Blank entry for a ma-
chine in a time period indicates that the machine is idle during that
period. Verify that processing of J1, J2, J3 is finished at the end of
times units 3, 6, 10 respectively.

Local Search for Sequencing Problems
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Among the small neighborhoods used for solving these problems,
there are four, in each the neighbors of a sequence S are all the se-
quences that can be obtained by carrying out a specified operation
once. These operations for the four different neighborhoods are listed
below, and we illustrate each by considering a typical neighbor of a
sequence S1 = (A,B,C,D,E, F,G,H) of eight jobs labeled A to H.

Transpose: Swap (or interchange) two adjacent jobs in the se-
quence. Thus (A,B,D,C,E,F,G,H) is a neighbor of S1 in the neigh-
borhood defined by this operation.

Insert (or Shift): Remove a job from one position in the sequence
and insert it at another position (either before or after the original
position). Thus (A,E,B,C,D,F,G,H) and (A,B,C,D,F,G,E,H)
are both neighbors of S1 in the neighborhood defined by this operation.

Swap: Swap two jobs that may not be adjacent. Thus (A,F,C,D,E,
B,G,H) is a neighbor of S1 in the neighborhood defined by this oper-
ation.

Block Insert: Move a subsequence of jobs from one position in
the sequence, and insert that subsequence in another position.

There are of course more complex neighborhoods. The neighbor-
hood defined by transpose has (n − 1) neighbors, that by insert has
(n − 1)2 neighbors, that by swap has n(n − 1)/2 neighbors, and that
by block insert has n(n+ 1)(n− 1)/6 neighbors.
Once a neighborhood structure is selected, the local search method

begins with an initial sequence as the current sequence, and in each
step replaces it by a better neighbor until a local optimum is reached.

Summary

In this section we discussed the basic principles behind designing
local search methods for combinatorial optimization problems, and il-
lustrated them with some examples.
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9.7 Simulated Annealing

Simulated annealing (SA) is a type of local search heuristic involving
some random elements in the way the algorithm proceeds.

For a problem in which the objective function is to be minimized,
the simplest form of local search is a descent method that starts with
an initial solution. The method should have a mechanism for generat-
ing a neighbor of the current solution. If the generated neighbor has a
smaller objective value, it becomes the new current solution, otherwise
the current solution is retained. The process is repeated until a solu-
tion is reached with no possibility of improvement in its neighborhood,
such a point is a local minimum, and the descent method terminates.
This is one of the disadvantages of simple local search methods. By
requiring that the iterative steps move only downhill on the objective
function surface, they may get stuck at a local minimum which may be
far away from any global minimum. Simple local search methods try
to avoid this difficulty by running the descent method several times,
starting from different initial solutions, and finally taking the best of
the local minima found.

On the other hand, SA avoids getting trapped at a local minimum
by sometimes accepting a neighborhood move that increases the ob-
jective value, using a probabilistic acceptance criterion. These uphill
moves make it possible to move away from local minima and explore
the feasible region in its entirety. In the course of an SA algorithm, the
probability of accepting such uphill moves slowly decreases to 0.

The motivation for the SA algorithm, and its name, come from an
analogy with a highly successful Monte Carlo simulation model for the
physical annealing process of finding low energy states of a solid. Phys-
ical annealing is the process of finding the ground state of a solid which
corresponds to the minimum energy configuration, by initially melting
the substance, and then lowering the temperature slowly, spending a
long time at temperatures close to the freezing point. Metropolis et al.
[1953] introduced the simple Monte Carlo simulation algorithm that
modeled the physical annealing process very successfully. At each it-
eration of this algorithm, the system is given a small displacement,
and the resulting change δ in the energy of the system is calculated.
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If δ < 0, the resulting change is accepted, but if δ > 0 the change is
accepted with probability exp(−δ/T ) where T is a constant times the
temperature, which we will refer to as the temperature. If a large num-
ber of iterations are carried out at each temperature, the model finds
the thermal equilibrium that the system attains at that temperature.
Simulating the transition to the equilibrium, and decreasing the tem-
perature, one can find states of the system with smaller and smaller
values of mean energy.

By first melting the model system at a high effective temperature,
and then lowering the temperature in slow deliberate steps after wait-
ing for equilibrium to be established at each temperature, one has in
effect performed a simulated annealing procedure. Experimentally it
is precisely such annealing that has the best chance of bringing a solid
to a good approximation of its true ground state rather than freezing
it into a metastable configuration that corresponds to a local but not
global minimum energy level. The sequence of temperatures used, the
number of rearrangements attempted to reach equilibrium at each tem-
perature, and the criterion used for stopping, are collectively known as
the cooling or annealing schedule.

In the analogy, the different feasible solutions of a combinatorial op-
timization problem correspond to the different states of the substance.
The objective function to be minimized corresponds to the energy of
the system. However, the concept of temperature in the physical sys-
tem has no obvious equivalent in combinatorial optimization problems.
In SA algorithms for optimization, this temperature is simply a con-
trol parameter in the same units as the cost function. The probability
of accepting an uphill move which causes an increase δ > 0 in the
objective function, exp(−δ/T ), is called the acceptance function.
This acceptance function implies that small increases in the objective
function are more likely to be accepted than large increases, and that
when T is high, most moves will be accepted; but as T approaches 0,
most uphill moves will be rejected. So, in SA, the algorithm is started
with a high value of T to avoid being permanently trapped at a local
minimum. The algorithm drops the temperature parameter gradually,
making a certain number of neighborhood moves at each temperature.

The simple local search method that accepts only rearrangements
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that lower the cost function, corresponds to extremely rapid quenching
where the temperature is reduced quickly, so it should not be surprising
that the resulting solutions are usually metastable. SA provides a gen-
eralization of iterative improvement in which controlled uphill moves
are incorporated in the search for a better solution. This helps to attain
some of the speed and reliability of descent algorithms while avoiding
their propensity to stick at local minima.

Let X denote the set of feasible solutions of a combinatorial op-
timization problem, and z(x) the objective function to be minimized
overX. |X| is exponentially large in terms of the natural measure of the
size of the problem: For example, in the TSP of order n, |X| = (n−1)!.
To apply SA on this problem we need to define a neighborhood for
each x ∈ X. The essential feature of these neighborhoods is: from any
point in X we should be able to reach any other point in X by a path
consisting of moves from a point to an adjacent point. Also, usually
neighborhoods are symmetric, i.e., y is in the neighborhood of x iff
x is in the neighborhood of y. The efficiency of SA depends on the
neighborhood structure that is used.

If the problem is posed as one of finding an optimum sequence of a
set of elements, it is convenient to incorporate any constraints on the
desired sequence, in the objective function using appropriate penalty
function terms corresponding to them. Then X becomes the set of
all permutations of the elements. The neighbors of a sequence could
be considered as all those that can be obtained by interchanging the
elements in two positions, or those obtained by reversing the order of
the elements in a segment of the sequence, etc. By designing neighbor-
hoods taking advantage of the problem structure, the efficiency of the
SA algorithm can be improved substantially.

We also need an x0 ∈ X to initiate the algorithm, the initial value
T0 of the temperature parameter T , the decreasing sequence Tt, t = 0,
1, . . . of values of temperature to be used, the number of iterations to
be performed at each temperature (Nt at temperature Tt, t = 0, 1, . . .),
and a stopping criterion to terminate the algorithm. We also need a
mechanism to select a solution y from the neighborhood of the current
point x in each step of the algorithm. Once these choices are made,
the algorithm proceeds as below.
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GENERAL SA ALGORITHM

Initialization Let x0, T0 be the initial solution and temperature,
respectively.

General Step When the temperature is Tt, do the following. Set
iteration counter n to 0. If xi is the current solution, find a
solution y in the neighborhood of xi at random. If z(y) ≤ z(xi)
make xi+1 = y. If z(y) > z(xi) make

xi+1 =

⎧⎨⎩ y with probability exp
p
−z(y)−z(xi))

Tt

Q
xi with probability 1 − exp

p
− z(y)−z(xi)

Tt

Q
Increase the iteration count n by 1 and continue with xi+1 as the
current solution. When n = Nt, change T to Tt+1 and start the
next step.

Continue until the stopping criterion is met.

Discussion

The cooling schedule may be developed by trial and error for a
given problem, but a great variety of cooling schedules have now been
suggested. Tt+1 = αTt where α is a number between 0.8 to 0.99 is
sometimes used, with Nt being determined as a sufficient number of
iterations subject to a constant upper bound. The cooling schedule
Tt = d/ log t where d is some positive constant, is also quite popular.
As an example we consider the TSP of order n with c = (cij) as

the cost matrix. We will represent the tour x = p1, p2, . . . , pn; p1 by the
permutation p1, p2, . . . , pn, and its cost is z(x) =

�n−1
r=1 cpr,pr+1 + cpn,p1.

We take the neighborhood of a tour to be the set of all tours corre-
sponding to permutations obtained by selecting a pair of positions in
its permutation and reversing the segment between them. For exam-
ple, consider n = 7, and the tour x0 corresponding to the permutation
6, 3, 7, 2, 5, 4, 1. The tour x1 corresponding to the permutation 6, 4,
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5, 2, 7, 3, 1 is obtained by reversing the segment between positions 1
and 6 in the permutation for x0; it is a neighbor of x0.
We now describe the various steps in the SA algorithm for the TSP

based on this definition of neighborhood. Here the symbol n denotes
the number of cities, i.e., the order of the TSP. We take Nt, a target
for the number of iterations to be performed at temperature Tt, to be
n for all t. The actual value of Nt used may be more than n depending
on the observed performance during the algorithm. We use the symbol
i as an iteration counter, and also use it in defining the neighborhood
of the current tour from which the next tour will be selected.

AN SA ALGORITHM FOR THE TSP

Step 1 Select the initial permutation x0 = p01, . . . , p
0
n and initial

temperature T0.

Step 2 Let x = p1, . . . , pn be the present permutation, z(x) the cost
of the corresponding tour, and T the current temperature.

Step 3 Set i = 1.

Step 4 Let x = p1, . . . , pn be the present permutation. Select an
integer j W= i between 1 to n at random. Define a = min{i, j}, b =
max{i, j}. Define y to be the permutation obtained by reversing
the segment between a and b in the present permutation x, and
z(y) the cost of the tour corresponding to y.

If z(y) ≤ z(x) accept y as the new current permutation. If z(y) >
z(x), let the new current permutation be:⎧⎨⎩ y with probability exp

p
− z(y)−z(x)

T

Q
x with probability 1 − exp

p
−z(y)−z(x)

T

Q
where T is the current temperature. Go to Step 5.

Step 5 If i < n, increase it by 1 and go back to Step 4. If i = n and
enough number of iterations have been performed at the current
temperature, go to Step 6; otherwise, go to Step 3.
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Step 6 If the temperature has reached the smallest value, terminate
with the best tour obtained so far. Otherwise, change the tem-
perature to the next value in the temperature sequence and go
back to Step 2.

One has to repeat the iterations at each temperature until an equi-
librium seems to have been reached. Then the temperature is decreased
and the process repeated. Repeating this, solutions of improved cost
will result, and one has to decide suitable stopping criteria. In the
end, one can perform a deterministic local search beginning with the
best solution obtained in the algorithm and continue as long as better
solutions are found.
The attraction of SA is that it is general, yet simple to apply. Solv-

ing a problem with it requires a neighborhood structure to be specified
and a procedure for generating neighbors of solution points at ran-
dom. Researchers are using SA extensively on various problems and
obtaining good results.

9.8 Genetic Algorithms

Inspired by biological systems that adapt to the environment and evolve
into highly successful organisms over many generations, J. Holland
[1975] proposed heuristic search methods for hard combinatorial op-
timization problems based on operations called mating, reproduc-
tion, cloning, crossover, and mutation; these are patterned upon
biological activities bearing the same names. Hence these methods are
appropriately called genetic algorithms (GA). GAs are robust and
effective iterative adaptive search algorithms with some of the creativ-
ity of human reasoning.
The first step to develop a GA for an optimization problem is to

represent it so that every solution for it is in the form of a string of
bits (integers or characters), all of them consisting of the same number
of elements, say n. Each candidate solution represented as a string is
known as an organism or a chromosome. So each chromosome is a
bit string of length n. The variable in a position on the chromosome is
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called the gene at that position, and its value in a particular chromo-
some is called its allele in that chromosome. For example, if n = 3,
a general chromosome is x = (x1, x2, x3) where x1, x2, and x3 are the
genes on this chromosome in the three positions. In the chromosome
(3, 8, 9), the second gene has allele 8.

We will discuss GAs as they apply to minimization problems. We
assume that the objective function value at every chromosome is posi-
tive; this can be arranged by adding a suitable positive constant to the
objective function value of every chromosome, if necessary.

To develop a GA, the problem has to be transformed into an uncon-
strained optimization problem so that every string of length n can be
looked upon as a solution vector for the problem. For this purpose, a
penalty function, consisting of nonnegative penalty terms correspond-
ing to each constraint in the original problem, is constructed. Each
penalty term is always 0 at every point satisfying it, and positive at
every point violating it. So, the penalty function has value 0 at every
feasible solution to the original problem, and a positive value at every
infeasible point. Also, the value of the penalty function at an infeasible
point increases rapidly as the point moves farther away from the feasi-
ble region. The construction of the penalty function is illustrated later
with an example. The fitness measure is defined to be the objective
function plus the penalty function. It is also called the evaluation
function. Thus at every feasible solution to the original problem, the
fitness measure is equal to the objective function value at that point.
Hence associated with each chromosome is an objective function value
and a fitness measure. From the way the fitness measure is defined,
among two points the one with a smaller fitness measure is better than
the other.

GAs start with an initial population of likely problem solutions, and
evolve towards better solutions. The population changes over time, but
always has the same number of members. New solutions are generated
through operations resembling reproductive processes observed in na-
ture. To evolve towards better solutions, it is necessary to reject the
worst solutions and only allow the best ones to survive and reproduce.
This incorporates nature’s law of survival of the fittest which only al-
lows organisms that adapt best to the environment to thrive. When
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applying GA to a minimization problem, the role of the environment
is played by the fitness measure, the degree of adaptation of a solution
point to the environment is interpreted as getting better as its fitness
measure decreases. In successive generations, solutions improve until
the best in the population is near-optimal.
We will now discuss the essential components for applying a GA on

a minimization problem. After each component is discussed, we show
how it applies on two problems; one is the TSP, and the other the task
allocation problem modeled in Example 9.2.1.

Genetic representation of solutions As mentioned above, the
problem is transformed and represented in such a way that every
solution can be represented by a string of bits. All strings cor-
responding to solution vectors of the problem contain the same
number of bits, say n.

For some problems, developing this representation may be a non-
trivial effort requiring careful thought, but for many others, a
natural representation is usually available. For example, if the
problem is one of finding an optimum sequence for n elements
numbered 1 to n, every solution is a permutation of {1, . . . , n}.
In this case the permutation of {1, . . . , n} provides a string rep-
resentation for solutions to the problem. Valid strings are those
which are permutations of {1, . . . , n}; i.e., strings in which each
of the symbols 1, . . . , n appears once and only once.

For the TSP involving cities 1 to n; a tour i1, i2, . . . , in; i1 can
be represented by the permutation i1, . . . , in (i.e., the sequence of
cities in the order in which they are visited). So, here again, valid
strings are those in which each of the symbols 1, . . . , n appears
once and only once.

For the task allocation problem involving the allocation of n tasks
to T processors discussed in Example 9.2.1, a solution can be rep-
resented as a string of n numbers x1, . . . , xn where for each j =
1 to n, xj is the number of the processor to which task j is allot-
ted. So, here valid strings are all sequences of the form x1, . . . , xn
where each xj is an integer between 1 to T . As an example, if
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the number of tasks n = 6, and the number of processors T =
4, the string 1, 1, 3, 2, 1, 3 is a valid chromosome. It represents
allocating tasks 1, 2, 5 to processor 1; task 4 to processor 2; and
tasks 3, 6 to processor 3; and not using processor 4 at all.

Developing evaluation function We assume that the objective
function to be minimized has a positive value at every solution.
GAs deal with a relaxed version of the problem in an uncon-
strained form, to allow the search to be carried out among all
valid strings. The evaluation function or the fitness measure of
any valid chromosome is the sum of its objective function value
and that of the penalty function providing an infeasibility mea-
sure of the corresponding solution to the constraints in the orig-
inal problem. GAs use the evaluation function value at a chro-
mosome to verify its degree of fitness to the environment, and to
lower the probability allotted to undesirable chromosomes to sur-
vive and to reproduce. This evolutionary aspect of the algorithm
provides for the elimination of trial solutions that are relatively
unsuccessful. Hence the choice of the evaluation function has a
great influence on the overall performance of the algorithm.

For the TSP involving n cities and positive cost matrix (cij),
when solutions are represented by permutations of {1, . . . , n},
the evaluation function value of a chromosome can be taken to be
the cost of the corresponding tour which is

�n−1
j=1 cxj ,xj+1 + cxn,x1 .

There are no penalty terms needed here as every valid string
corresponds to a feasible tour.

Now consider the task allocation problem involving the alloca-
tion of n tasks to T processors discussed in Example 11.1.1. As
discussed above, we represent each solution by a string x1, . . . , xn
where xj is the number of the processor to which task j is al-
lotted. A string x1, . . . , xn is valid if xj is an integer between
1 to T for all j. A valid string x = x1, . . . , xn is infeasible to
the problem if either (i) it allots a processor more tasks than it
can handle, or (ii) if the sum of the KOP requirements of tasks
assigned to a processor exceeds its throughput capacity. So, to
represent this problem in an unconstrained fashion, we need two
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penalty terms, one for each of the above types of infeasibility. We
can use quadratic penalty functions in which

Penalty for exceeding the ca-
pacity on no. of tasks allot-
ted

= δ1(excess no. of tasks)
2

Penalty for exceeding
throughput capacity

= δ2(excess throughput
over capacity)2

where δ1, and δ2 are appropriate positive penalty coefficients.
Such penalty terms are commonly used, as they seem to pro-
duce good results. We get the total penalty function value at
x by summing the above penalties for each processor for which
infeasibility of type (i) or (ii) mentioned above, or both, occur in
x.

The objective function value corresponding to this string x is the
sum of the costs of the processors used plus the sum of the costs
of data link capacity needed by various pairs of tasks allotted to
different processors in it. And the evaluation function for x is the
sum of the objective value and the penalty function value at x.
As an illustration, we will now provide a numerical example to
show how to compute the evaluation function in this problem.

Consider the instance with number of tasks n = 6, number of
processors T = 4, and the following data:

Processor t Cost ρt Max. no. tasks βt Throughput capacity γt
1 40 1 425 KOP
2 30 3 300
3 20 1 350
4 45 2 500
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Task i 1 2 3 4 5 6
Throughput 150 150 250 250 150 80
requirement ai

Cost of data link capacity for
task pair i, j if allotted to

different processors (symmetric)
j = 1 2 3 4 5 6
i = 1 × 2 3 1 5 7

2 × 4 2 3 2
3 × 5 2 4
4 × 4 1
5 × 3
6 ×

Consider the string x = 1, 1, 3, 2, 1, 3 discussed above. It allots
tasks 1, 2, 5 to processor 1 with a total throughput requirement of
150 + 150 + 150 = 450 KOP, exceeding the throughput capacity
of 425 KOP of this processor. Also, the number of tasks allotted
to this processor, 3, exceeds the capacity of 1 task that it can
handle. So the penalty terms for processor 1 total to δ1(3 −
1)2 + δ2(450 − 425)2 = 4δ1 + 625δ2. Similarly, x allotted only
task 4 with a throughput requirement of 150 KOP to processor
2, this is within the specified capacity of this processor, so there
is no penalty from processor 2 for x. x has allotted tasks 3, 6
with a total throughput requirement of 250 + 80 = 330 KOP to
processor 3 which has a throughput capacity of 350 KOP, but it
can handle only 1 task. So, the penalty from processor 3 for x is
δ1(2− 1)2 = δ1. And processor 4 is not used. Hence, the overall
penalty function value at x is 5δ1 + 625δ2.

The objective function value at x is the sum of the costs of the
processors used + the data link costs. Since tasks 1, 2, 5 are
allotted to processor 1; task 4 to processor 2; and tasks 3, 6 to
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processor 3; data link costs are incurred for the pairs of tasks
(1, 4), (1, 3), (1, 6), (2, 4), (2, 3), (2, 6), (5, 4), (5, 3), (5, 6),
(4, 3), (4, 6) allotted to different processors. Thus, the objective
function value at x is (40 + 30 + 20) + (1 + 3 + 7 + 2 + 4 + 2
+ 4 + 2 + 3 + 5 + 1) = 124.

So, the overall evaluation function value at x is 124 + 5δ1+625δ2.
Given appropriate positive values to the penalty coefficients δ1
and δ2, this fitness measure can be computed.

Initial population An initial population of solutions is created
usually randomly. In some applications, the initial population is
generated by using some other method.

The population size is maintained constant through successive
generations. It is usually 40 to 250 or larger, depending on the
size of the problem being solved.

Developing genetic operators, reproduction, cloning, crossover,
and mutation A GA evaluates a population and generates a
new one iteratively. Each successive population is called a gen-
eration.

Individuals in the population are selected for survival into the
next generation, or for mating, according to certain probabilities.
This probability is increased as the individuals fitness measure
gets better. In our case smaller values of the evaluation function
are more desirable, so we make the probability of selection of a
chromosome to be inversely proportional to its evaluation func-
tion value. Through this artificial evolution, GAs seek to breed
solutions that are highly fit (i.e., optimal or near-optimal).

A certain percentage (typically between 10% to 40%) of the chro-
mosomes in the population are usually copied as they are into the
next generation. There are two possible ways (called reproduc-
tion and cloning or clonal propagation) for selecting these
individuals. We discuss them below.

Reproduction This operation is probabilistic; it selects
individuals from the current population according to prob-
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abilities inversely proportional to their evaluation function
value as discussed above, and copies the selected individuals
into the next generation. The process is repeated until the
required number of individuals are selected.

Cloning This operation is deterministic. It selects the
required number of individuals who have the best values for
the evaluation function in the current population, and copies
them as they are into the next generation. It is an elitist
type of strategy. The advantage of using cloning over repro-
duction is that the best solution is monotonically improving
from one generation to another.

A majority of the remaining individuals in the next population
are generated by mating, and a small percentage by mutation.
We discuss mating first. Two parent chromosomes are selected
probabilistically as described above, from the current population,
to mate. The mating operation is called crossover. It creates
children whose genetic material resembles the parents genes in
some fashion. Many different crossover mechanisms have been
developed. We describe some of them.

One-point crossover This operation generates two chil-
dren. Given parent chromosomes x = x1, . . . , xn; y = y1, . . . ,
yn to mate; this operation selects a position called the

crossover point, r, between 1 to n at random. The two
children are obtained by exchanging the blocks of alleles be-
tween positions r to n among the two parents. Thus the chil-
dren are c1 = x1, . . . , xr−1, yr, . . . , yn and c2 = y1, . . . , yr−1,
xr, . . . , xn.

Now we have a choice between two possible strategies. Strat-
egy 1 includes both the children in the next generation.
Strategy 2 includes only the child with the best evaluation
function value in the next generation, and discards the other.

Two-point crossover Given parent chromosomes x =
x1, . . . , xn; y = y1, . . . , yn to mate; this operation selects
two positions r < s between 1 to n at random, and swaps
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the blocks of alleles between positions r to s among the
two parents, to get the two children. So, the two chil-
dren are c1 = x1, . . . , xr−1, yr, . . . , ys, xs+1, . . . , xn, and c2 =
y1, . . . , yr−1, xr, . . . , xs, ys+1, . . . , yn. Either both the chil-
dren, or the best among them, get included in the next
generation as discussed above.

Random crossover Given parent chromosomes x = x1, . . . ,
xn; and y = y1, . . . , yn; this operation creates children u =
u1, . . . , un; and v = v1, . . . , vn where for j = 1 to n

uj =

l
xj with probability α
yj with probability 1 −α

vj =

l
yj with probability α
xj with probability 1 −α

for some preselected 0 < α < 1. Values of α between 0.5
to 0.8 are often used. Either both the children, or the best
among them, get included in the next generation as dis-
cussed above.

In problems in which the order of the alleles in the chromosome
has no significance, the above crossover operations produce valid
child strings for the problem. For the task allocation problem
with the representation discussed above, all the above crossover
operations produce valid child strings.

However, for the TSP with each tour represented by a permu-
tation of the cities, each of the above crossover operators may
produce invalid child strings. As an example consider the two
strings x = 4, 5, 2, 1, 3 and y = 1, 2, 4, 3, 5 for a 5-city TSP.
With position 3 as the crossover point, the one-point crossover
operator generates the children c1 = 4, 5, 4, 3, 5 and c2 = 1, 2, 2,
1, 3 both of which are invalid strings for this problem since neither
of them is a permutation of {1, 2, 3, 4, 5}. So, for the TSP and
for other problems in which solutions are represented by permu-
tations of {1, . . . , n}, the following custom designed crossover op-
erator called partially matched crossover operator or PMX
can be used.
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PMX for permutation strings Let x = x1, . . . , xn;
and y = y1, . . . , yn; be two parent permutations. Select
two crossover positions r < s randomly as in the two-point
crossover operator. To get child 1, do the following for each
t = r to s in this order: if xt W= yt swap xt and yt in the
permutation x. To get child 2, carry out exactly the same
work on the permutation y instead of on x. It can be veri-
fied that both the children produced are permutations and
hence valid strings for the problem.

As an example, consider n = 6, and the parents

x = 4, 5, 6, 2, 1, 3
y = 1, 2, 6, 4, 3, 5

Suppose the crossover positions are 2 and 5 marked by bars
above. Then child 1 is obtained by swapping 5 and 2, 2 and
4, and then 1 and 3, in x. As we carry these operations in
this order x changes to 4, 2, 6, 5, 1, 3; then to 2, 4, 6, 5, 1,
3 and finally to p = 2, 4, 6, 5, 3, 1. Carrying out the same
operations on the permutation y we are lead to the second
child q = 3, 5, 6, 2, 1, 4. So, p, q are the children produced
when this crossover operator is carried out with the parental
pair x, y.

The crossover ratio (typically between 0.6 to 0.9) is the propor-
tion of the next generation produced by crossover. The operation
of mating pairs of randomly selected pairs of parents from the
present population is continued until enough children to make up
the next generation are produced.

Mutation Mutation makes random alterations, such as
changing one or more randomly chosen genes, or swapping
positions of two randomly selected bits, etc., on a randomly
selected chromosome. The probability of mutation is usu-
ally set to be quite low (e.g., 0.001). A small percentage
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of the next generation is produced by applying the muta-
tion operator on randomly selected chromosomes from the
current population.

The processes of crossover and mutation are collectively referred
to as recombination operations.

When all these operations are completed we have the new popula-
tion which constitutes the next generation, and the whole process
is repeated with it.

Stopping criterion The process of producing successive genera-
tions is usually continued until there is no improvement in the
best solution for several generations, or until a predetermined
number of generations have been simulated.

Usually one applies a local search heuristic beginning with the
best solution in the final population, to make any possible final
improvement. The solution obtained at the end of this process is
the output of the algorithm.

Discussion

When a GA works well, the population quality gradually improves
over the generations. After many generations, the best individual in the
population is likely to be close to a global optimum of the underlying
optimization problem.
As an example, we solved an instance of the task allocation prob-

lem discussed in Example 11.1.1 involving n = 20 tasks and T = 7
processors by the GA [A. Ben Hadj-Alouane, J. C. Bean, and K. G.
Murty, 1999]. The representation discussed above for the problem was
used. We maintained the population size at 50, with the initial popu-
lation consisting of randomly generated solutions. In each generation,
10% of the population was obtained by cloning the best solutions in
the previous population; 85% was obtained by mating using random
crossover; and 5% was obtained by mutation. All the chromosomes in
the initial population corresponded to infeasible solutions with infea-
sibility due to exceeding the throughput capacity on some processors,
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and due to allotting more than the number of tasks they can handle
on some others.

The positive values given to the penalty coefficients had an effect on
the performance of the algorithm. Starting small, their values were in-
creased until infeasible solutions which are at the top of the population
due to small penalty became highly penalized and are replaced with
feasible solutions reasonably rapidly. When the penalty coefficients are
large, and solutions at the top of the population are feasible, it turned
out to be advantageous to decrease their values. Best results were ob-
tained by adjusting the values of the penalty coefficients adaptively in
this manner.

After 10 generations, the population had chromosomes correspond-
ing to feasible solutions for the problem. After 110 generations the best
chromosome in the population gave a solution to the problem which
was considered to be very satisfactory. This solution was obtained
in a few minutes of cpu time on an IBM RS/6000-320H workstation.
The 0−1 IP formulation of this problem given in Example 11.1.1, has
about 2800 integer variables. We tried to solve this 0−1 IP using the
OSL software package based on B&B, on the same workstation. This
program did not terminate even after running for 3 days continuously,
when it was stopped. The best incumbent at that time was not better
than the solution that GA found for this problem in a few minutes of
cpu time.

In summary, the essential feature of GAs is that they search using
a whole population of solutions rather than a single solution as other
methods do. There are three essential requirements to apply a GA
on a problem. First, the problem must be represented in such a way
that every solution can be represented by a string of constant length.
Second, a fitness measure to evaluate potential solutions needs to be
developed. This measure is usually the sum of the objective function in
the problem and of penalty terms corresponding to the violation of any
of the constraints in the problem. Third, a suitable crossover operator
has to be developed. The success of GA depends critically on these
items, so they have to be developed very carefully.

The crossover operator can be designed in many different ways. In
some problems, standard crossover operations may produce children
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strings which are invalid, as was shown for the case of the TSP. In such
problems the crossover operation should be specialized and customized.
Without an appropriate representation and an effective crossover

operator, genetic search may be slow and unrewarding. But with the
appropriate representation and suitable genetic operators, it can pro-
duce high quality solutions very fast.

9.9 Heuristics for Graph Coloring

A graph G = (N ,A) is defined by a set N = {1, . . . , n} of nodes
(also called vertices), and a set A of lines called edges, where each
edge in A joins exactly a pair of nodes in N and has no orientation. If
an edge joins nodes i and j, it is denoted by (i; j). A pair of nodes in
N are said to be adjacent if there is an edge joining them in A. The
degree of a node is the number of edges containg it.
Every subset N ⊂ N of nodes defines a subgraph of G, that

subgraph is the graph (N,A) where A is the set of all edges in A that
have both their nodes in the set N . In Figure 9.7 we show a graph with
A = {(1; 2), (1; 5), (1; 4), (2; 4), (2; 3), (3; 4), (3; 5)} consisting of 7 edges
on the set of nodes N = {1, 2, 3, 4, 5} on the left, and its subgraph
defined by the subset of nodes N = {1, 2, 4} on the right. In the graph
on the left, nodes 1, 2, 3, 4 have degree 3; and node 5 has degree 2.

In Section 7.9 we modeled the problem of avoiding conflicts in
scheduling a set of meetings, as a graph coloring problem. The graph
coloring problem on G is to color the nodes in N subject to the con-
straint that the pair of nodes on every edge in A get different colors,
using the smallest number of colors. This problem finds many appli-
cations in scheduling, resource allocation, document classification and
clustering, and several other areas.
We will now discuss constructive heuristics known as sequential

coloring algorithms that are very popular for solving graph coloring
problems, and perform very well in practice. All these algorithms have
many features in common with the greedy approach. In these algo-
rithms, the colors used are numbered serially 1, 2, . . .. The steps in
these algorithms are:
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Figure 9.7:

Sequential Graph Coloring Algorithms

BEGIN

Step 1: Sequencing the vertices of the graph for coloring:
Arrange all the vertices of the graph in a sequence for coloring.

Step 2: Coloring: Color the vertices in the order of the sequence
selected in Step 1. To each vertex assign the minimum possible color
which has not been assigned to any previously colored adjacent vertex.
Terminate when all the vertices are colored.

END.

The various sequential coloring algorithms differ in the rules used
for sequencing the vertices in Step 1. We provide below the rules used
in the three most popular sequential coloring algorithms.

1. LF Algorithm (Largest First Vertex Ordering): In this
algorithm the vertices are ordered in nonincreasing order of their degree
in the graph. So, if the sequence of vertices is V1, V2, . . . , Vn, and their
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degrees are d1, . . . , dn respectively; then d1 ≥ d2 ≥ . . . ≥ dn.

2. SL Algorithm (Smallest Last Vertex Ordering): In this
algorithm the vertices are arranged in the order V1, . . . , Vn satisfying
the property: for each i, Vi has the smallest degree in the subgraph
induced by the subset of vertices {V1, . . . , Vi}.
This sequence is easily determined by applying the following proce-

dure to generate the vertices Vn, Vn−1, . . . , V1 in the reverse order (i.e.,
reverse order to the sequence to be used for coloring).

Procedure to generate the reverse order to the sequence
for coloring nodes in the SL algorithm: Start with the orginal
graph G as the “current graph”. Put the smallest degree vertex in it
as the first element Vn in the reverese order. Delete this vertex, and all
the edges containing it from the current graph. Make the remaining
graph the next “current graph” and go to the General Step.

General Step: Put the smallest degree vertex in the current graph
as the next element in the reverese order. Delete this vertex, and all
the edges containing it from the current graph. Make the remaining
graph the next “current graph” and repeat the General Step until all
the nodes are included in the reverese order.

3. DSATUR Algorithm (Degree Saturation Vertex Order-
ing): In this algorithm, the vertex ordering is dynamic, i.e., Steps 1
and 2 are combined into a single step, and each vertex in the sequence
for coloring is selected at the time of coloring.

The first vertex to be colored, V1, is one of maximum degree in G.
At any stage of the algorithm, the saturation degree of a vertex V
not yet colored is defined to be the number of different colors assigned
to vertices adjacent to V at that stage.

When vertices V1, . . . , Vi−1 have been colored; among the uncolored
vertices Vi is selected as the one with maximum saturation degree (if
there is a tie, among those tied choose Vi as the one having the maxi-
mum degree in the subgraph of uncolored vertices at that stage). The
selected vertex Vi is then given the minimum possible color which has
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not yet been given to any of its adjacent vertices. The algorithm con-
tinues the same way.

Example: We will color the vertices of the following 10 vertex
graph using the three different sequential coloring algorithms discussed
above.
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Figure 9.8: Each node is represented by a circle. The number in the
top of the circle in normal style is the node number, the number at the
bottom in bold style is the number of the color assigned to this node
by the LF algorithm using the LF vertex ordering.

The degrees of nodes 1 to 10 in serial order in this graph are
(3, 3, 3, 4, 4, 5, 4, 3, 3, 2). So a sequence for coloring nodes in this graph
by the LF vertex ordering is (6, 4, 7, 5, 1, 2, 3, 9, 8, 10). Coloring the
nodes in this sequence leads to the coloring shown in Figure 9.8 in bold
style numbers, obtained by the LF algorithm.

The smallest degree node in the graph in Figure 9.8 is 10 with
degree 2. After removing node 10 and the edges (10; 8), (10; 9) from
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this graph; node 9 is a node of smallest degree in the remaning graph.
Continuing this way, we find that the reverse order for coloring nodes by
the SL vertex ordering is (10, 9, 8, 7, 3, 6, 2, 5, 4, 1). So, the sequence for
coloring nodes in the SL algorithm is (1, 4, 5, 2, 6, 3, 7, 8, 9, 10). Coloring
the nodes in this sequence leads to the coloring shown in Figure 9.9 in
bold style numbers.
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Figure 9.9: Numbers inside nodes in bold style are the numbers of the
colors assigned to the nodes by the SL algorithm using the SL vertex
ordering given above.

The first node to color by the DSATUR algorithm is node 6 with the
highest degree, so it gets color 1. At that stage, its adjacent vertices 2,
3, 4, 7, 8 all have the highest saturation degree of 1. Among these, 7 is
the one with the highest degree in the subgraph of uncolored vertices
at this stage, so it is colored next. Continuing this way, we get the
coloring shown in Figure 9.10.
In this example, all three sequential algorithms use 3 colors, the

optimum number of colors for this graph. Computational experiments
have shown that on an average DATUR algorithm gives the best results
in general, followed by the LF algorithm, and then the SL algorithm.
See [Brélaz, 1979] and [Matula, Marble, and Isaacson, 1972]. The
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Figure 9.10: Numbers inside nodes in bold style are the numbers of the
colors assigned to the nodes by the DSATUR algorithm.

following table gives a summary from the final output of each algorithm,
of the average number of colors used to color the nodes in a 1000 node
random network generated randomly such that for each i W= j, the
probability of there being the edge (i; j) in the graph is 0.5; taken from
[Johri, Matula, 1982] .

Algorithm Avarage no. colors used
LF 122.7
SL 124.3

DSATUR 115.8
.

9.10 The Importance of Heuristics

A consummate skill in modeling problems is a great help to anyone
aspiring to be a practitioner of optimization methodology. Knowledge
of exact algorithms for well solved problems such as linear programs
and convex programming problems, and an understanding of how these
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algorithms work is of course very important. But in the increasingly
complex world of modern technology, skill in designing good heuris-
tic methods for problems for which no effective exact algorithms are
known, is an essential component in a successful optimization analyst’s
toolbox. The development of heuristic methods is being driven by the
ever increasing needs for them in many fields.

9.11 Exercises

9.1: In a textile firm there is a special loom for weaving extra-‘wide
fabrics of a special type. On the first day of a month the firm has 7 jobs
or orders which can be processed on this loom. For i = 1 to 7, pi, di, ri
are respectively the processing time in days, due date (day number),
and profit from, job i. This data is given below.

i 1 2 3 4 5 6 7
pi 9 10 12 5 11 8 13
di 4 13 15 8 20 30 30
ri 90 130 85 35 77 68 100

If job i is accepted, the material has to be delivered on the due date
di for that job (di is the day number counting from the first day of
the month). Jobs are independent, and the loom can process only one
job at a time. Formulate the problem of selecting the jobs to accept to
maximize the total profit subject to the constraint that all the accepted
jobs should be completed by their respective due dates. Develop a
heuristic method for obtaining a good solution to this problem.

9.2: Consider a company producing a single product to meet known
demand over a finite number of time periods. The cost function for
producing x units of the product in a period may be written

f(x) =

l
0 if x = 0
px+ g if x > 0
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where g is a fixed cost (or setup cost) that is incurred for producing a
positive quantity of the product, and p is the variable cost for producing
each unit of product once the setup cost is incurred.
Suppose the planning horizon consists of n time periods. For i =

1 to n we are given the following data: di = demand for the product
in period i (in units) that must be met, ki = production capacity in
period i (in units), gi = fixed (or setup) cost to be incurred to make
a positive quantity of the product in period i, pi = variable cost per
unit of making product in period i after the fixed charge is incurred,
ci = holding or storage cost per unit for storing product from period i
to period i+ 1.
All demand has to be met exactly in each period. Product made in

any period can be used to meet the demand in that period, or stored
to fulfill the demand in later periods.
Develop a heuristic method to obtain good production-storage plans

of minimal cost. Apply your method on the numerical problem in which
n = 4, ki = 100 for all i, (d1, d2, d3, d4) = (50, 40, 30, 50); and for all
i, gi = $100, pi = $10, ci = $1. ([T. E. Ramsay Jr., and R. R. Rardin,
Jan. 1983]).

9.3: A large percentage of world seaborne trade in high value gen-
eral cargo goods

Westbound values top half, Eastbound values bottom half
Max. cargo (TEU/week) Revenue ($100 units/TEU)
HFX NYC BLT POR HFX NYC BLT POR

HAV 100 200 50 50 13 10 12 11
BRH 60 100 150 100 12 9 12 12
GOT 60 200 60 60 12 12 12 12
LIV 150 300 80 60 9 11 11 10
ROT 80 300 200 200 11 8 11 10
HAV 80 150 40 40 8 12 8 7
BRH 60 50 50 100 9 12 9 8
GOT 60 300 70 70 10 10 10 10
LIV 80 80 120 80 9 11 10 10
ROT 60 100 180 270 8 11 8 7
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now moves in containers called TEU, because high port labor costs
make capital intensive container operations much more economic than
conventional methods. Purpose built, cellular container ships are used
for this purpose. Consider a shipping company operating in the North
Atlantic with container ships of capacity 1000 TEUs each. The ports
that this company operates in Europe are HAV (Le Havre), BRH (Bre-
merhaven), GOT (Gothenburg); and in North America are HFX (Hal-
ifax), NYC (New York), BLT (Baltimore), and POR (Portsmouth).
Assume that the travel time between any pair of ports in Europe is 10
hours, and between any pair of ports in North America is 8 hours; and
that the travel time between the coasts is 150 hours. Also assume that
the ships spend 24 hours at each port of call plus 6 hours of pilotage in
and out of the port. The tables above and below give the cargo market
data.

Critical time (hrs.), Westbound values left, Eastbound values right
HFX NYC BLT POR HFX NYC BLT POR

HAV 142 170 230 225 300 170 300 300
BRH 208 200 250 250 300 220 260 240
GOT 160 250 300 300 260 190 300 300
LIV 185 180 300 300 300 300 300 300
ROY 200 166 208 203 300 196 200 180

Assume that the demand for cargo on a ship’s route drops by ap-
proximately 10% of the figure quoted above for each 24 hours that the
transit time to destination exceeds the critical time given. Develop
a heuristic method that builds good 3 week roundtrip ship routes for
this company maximizing the revenue per roundtrip. The method can
begin with 2 port routes and successively add one port at a time until
the limit on roundtrip duration is reached. How many ships can the
company operate profitably? Develop routes for all these ships using
this heuristic method. ([T. B. Boffey, E, D, Edmond, A. I. Hinxman,
and C. J. Pursglove, May 1979]).

9.4: A trucking company has a depot at location 1 from where they
have to deliver a material to customers at locations 2, 3, 4, 5. Following
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table contains the data.

From Driving time (mts.) to location Units to
1 2 3 4 5 6 deliver

Location 1 30 20 10 10 20
2 10 20 40 50 100
3 10 30 40 10
4 20 30 20
5 10 100
6 170

Each truck can carry at most 200 units, and has a driving limit
of 100 minutes. Develop an effective heuristic to find good routes for
trucks in such a problem, and apply it on this numerical example. ([I.
M. Cheshire, A. M. Malleson, and P. F. Naccache, Jan. 1982]).

9.5: One-dimensional Cutting Stock Problem Material such
as lumber, pipe, or cable is supplied in master pieces of a standard
length C. Demands occur for pieces of the material of arbitrary lengths
not exceeding C. The problem is to use minimum number of standard
length master pieces to accommodate a given list of required pieces.
Develop a heuristic method for producing a good solution for this prob-
lem. Apply your heuristic on the numerical problem in which C = 100,
and one piece of length each 84, 63, 14, 33, 71, 94, 54, 39, 56, 41, 50
are required.

9.6: Single Machine Tardiness Sequencing There are n
jobs to be processed by a single machine. All the jobs are available
for processing at time point 0. For i = 1 to n, pi, di are the positive
processing time and due date of job i, and wi is a given positive weight.
The machine processes only one job at a time without interruption.
Given the order or sequence in which the jobs are to be processed

on the machine, the earliest completion time ci and tardiness ti =
max{ci− di, 0} of job i can be computed for all i. In the total weighted
tardiness problem, the aim is to find a processing order for the jobs
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that minimizes
�n
i=1witi. When all the job weights are equal, mini-

mizing
�n
i=1 ti is called the total tardiness problem. Develop effective

heuristics for solving both these problems. Apply your algorithm on
the numerical problem with n = 12 and the following data.

Job i pi di wi
1 33 35 2
2 17 110 1
3 6 43 3

4 89 119 1
5 5 23 3
6 13 36 4

7 21 74 1
8 15 69 2
9 63 210 3

10 34 184 4
11 12 39 1
12 9 51 2

([C. N. Potts and L. N. Van Wassenhove, Dec. 1991]).

9.7: Develop a heuristic method for obtaining a good solution to
the multidimensional 0−1 knapsack problem. Apply your method on
the following problem.

Maximize 4x1 +3x2 x3 +6x4 +5x5
subject to x1 +3x2 +4x3 +3x4 +2x5 ≤ 8

8x1 +x2 +9x3 +x5 ≤ 10
xj = 0 or 1 for all j

([A. Volgenant and J. A. Zoon, Oct. 1990]).

9.8: Graph Coloring Problem The nodes of a graph are to be
colored. The same color can be used to color any number of nodes, but
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if there is an edge joining any pair of nodes, those two nodes must have
different colors. It is required to find a node coloring satisfying this
constraint that uses the smallest number of colors. Color the nodes
of the graph in Figure 9.11 using the heuristic algorithms discussed in
Section 9.9, and compare these algorithms using the results obtained.
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Figure 9.11:

9.9: The Linear Placement Problem This exercise is con-
cerned with locating n facilities at n sites along a one dimensional line
where adjacent sites are a unit distance apart. For i W= j between 1
to n, tij is the total traffic between facilities i and j, all these tij are
given.
For i = 1 to n, if pi is the number of the facility located at site i,

then the distance between the facilities at sites i and j is |i − j| and
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the cost incurred between them is |i − j|tpipj . Hence the total cost of
the placement (p1, . . . , pn) is

�n
i=1

�n
j=i+1(j− i)tpipj . The problem is to

find a placement of facilities to sites that minimizes this total cost

This problem has many applications. An example is the assignment
of flights to gates in a horseshoe-shaped airport terminal. The traffic
between two flights F1 and F2 would be defined as the number of pas-
sengers scheduled to fly F2 following F1 plus the number scheduled to
fly F1 following F2. An optimum placement would minimize overall
passenger inconvenience.

Develop a good heuristic method for this problem. Apply your
heuristic method on the numerical problem in which the traffic data
(tij) is given below.

j = 1 2 3 4 5 6
i = 1 0 1 5 5 7 8

2 0 3 4 1 5
3 0 7 8 1
4 0 6 4
5 0 10

9.10: A TSP With Side Constraints We are given n cities,
in which 1 is the hometown. For i W= j = 1 to n, vi is the positive
valuation for city i, di is the positive entrance fees for visiting city i,
and cij is the positive airline fare to go from city i to city j. The
problem is to find a roundtrip (either a tour or a subtour covering a
subset of cities) starting and ending at the hometown that maximizes
the sum of valuations of the cities visited, while satisfying a budget
constraint that the total cost (total of airline fares plus the entrance
fees for the cities visited) has to be ≤ a specified budgeted amount b.
Among subtours or tours having identical total valuation, the one with
the least total cost is considered superior. Develop either an exact
or a good heuristic algorithm for solving this problem. Apply your
algorithm on the numerical problem with data n = 11, b = 3000, and
the rest of the data given in the following table.
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cij
j = 1 2 3 4 5 6 7 8 9 10 11
i = 1 0 320 220 250 330 220 600 310 150 420 550

2 270 0 290 410 460 230 780 310 360 580 620
3 190 250 0 230 260 100 640 130 240 380 450
4 220 490 270 0 200 330 400 250 150 250 430
5 390 550 300 230 0 370 290 240 300 190 340
6 190 200 120 280 310 0 600 170 270 440 490
7 500 320 270 340 250 510 0 290 430 140 270
8 260 370 140 290 210 200 340 0 290 340 370
9 170 430 280 170 350 310 520 340 0 410 630
10 490 690 450 300 220 520 150 410 350 0 360
11 660 750 530 520 280 590 320 440 530 310 0
dj 0 100 100 100 100 100 100 100 100 100 100
vj 6 10 16 8 6 10 20 6 6 6 6

([M. Padberg and G. Rinaldi, Nov. 89]).

9.11:

Product Demand in batches, in period
1 2 3 4 5 6 7 8 9 10

1 6.4 6.4 6.4 8.0 6.4 6.4 6.4 6.4 8.5 6.4
2 2.2 2.4 2.6 4.3 2.7 2.8 3.0 3.1 3.9 3.3
3 3.6 3.6 4.2 5.1 4.9 4.3 4.7 4.3 6.0 4.2
4 6.8 6.8 6.8 7.9 7.3 6.5 6.5 6.5 7.3 6.4
5 3.6 3.6 2.7 7.0 5.5 6.4 6.5 5.5 8.2 6.4
6 3.6 3.6 3.6 5.5 4.2 2.4 2.4 2.4 3.0 2.4
7 2.7 2.4 2.6 4.2 3.0 3.2 3.4 3.6 4.5 4.2
8 4.2 2.4 2.5 2.9 2.6 2.8 3.0 2.6 3.7 3.2
9 5.5 6.4 5.5 4.8 5.5 5.5 6.4 5.5 6.2 5.5
10 7.6 7.6 7.6 8.0 7.6 8.2 8.3 8.4 9.3 8.9
11 4.6 4.6 4.6 4.8 4.6 4.6 4.6 4.6 6.0 4.6
12 3.8 3.6 3.3 5.3 3.6 3.6 3.9 4.0 5.1 4.1
13 9.1 6.5 6.5 8.4 6.5 6.5 6.5 6.5 7.0 6.5
14 2.7 2.9 2.9 3.9 3.5 3.6 3.8 4.2 5.4 4.7
15 2.2 2.4 2.6 3.0 3.0 3.2 3.4 3.5 4.8 3.5

A chemicals company manufactures 15 different products using a
chemical reactor. This problem deals with planning the manufacture of



9.11: Exercises 507

these products over a 20-week planning horizon which is divided into 10
periods of two weeks each. On a three shift basis, 336 production hours
are available on the reactor in each period. Quantities of products are
measured in batches, the batch size being 60 tons for each product.
The demand and relevant production data is given in the tables above
and below.

i Switch-over time (in hours) from product i to product
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0.5 2.0 6.6 8.0 7.6 3.1 3.7 8.0 6.3 8.0 6.6 5.9 5.6 6.9 2.0
2 2.4 0.5 3.6 8.0 8.0 4.3 2.5 3.2 3.8 3.3 5.6 2.2 3.3 5.1 2.0
3 6.1 5.1 0.5 3.8 8.0 2.0 2.3 2.0 6.3 7.8 5.6 7.1 2.0 3.4 8.0
4 5.0 8.0 2.0 0.5 6.7 3.1 8.0 5.4 5.1 6.1 2.0 8.0 8.0 2.0 3.3
5 7.4 2.1 4.8 8.0 0.5 2.8 7.9 6.8 2.7 8.0 5.3 5.8 4.6 6.7 2.8
6 6.0 2.5 8.0 2.0 4.1 0.5 2.0 2.8 8.0 5.4 5.4 5.8 5.8 6.2 8.0
7 2.1 2.0 2.6 4.8 2.0 8.0 0.5 3.2 3.8 8.0 4.4 8.0 6.7 7.5 5.9
8 6.6 3.1 8.0 4.5 6.7 2.7 5.1 0.5 7.9 8.0 2.8 2.4 3.8 2.0 7.4
9 4.6 8.0 6.5 5.6 5.2 3.6 6.1 7.8 0.5 2.7 8.0 4.8 5.7 4.4 4.9
10 2.0 2.6 8.0 5.8 8.0 8.0 2.5 5.4 8.0 0.5 8.0 7.8 2.1 8.0 8.0
11 2.0 4.6 4.9 5.5 4.5 4.9 2.0 2.1 4.8 5.8 0.5 7.0 8.0 6.0 2.0
12 5.2 3.0 5.2 7.0 8.0 8.0 2.0 6.9 8.0 7.5 4.4 0.5 8.0 3.1 5.9
13 3.5 8.0 5.0 8.0 4.8 4.4 4.4 7.6 8.0 2.5 6.2 2.4 0.5 3.3 5.2
14 2.0 5.3 3.9 8.0 5.2 4.6 6.4 5.1 2.0 6.2 2.2 2.1 8.0 0.5 2.5
15 7.6 8.0 8.0 8.0 8.0 3.0 4.8 4.2 3.5 2.0 4.5 2.0 2.0 2.0 0.5

Relevant production data
i Ii ki pi i Ii ki pi i Ii ki pi
1 0 600 4 6 50 600 2.4 11 0 600 2
2 0 500 6 7 0 600 3.4 12 0 500 4
3 0 500 4 8 0 600 6 13 0 600 2
4 450 500 4 9 350 500 4 14 0 500 3.6
5 0 500 4 10 0 600 4 15 100 600 3.2

Ii = beginning inventory (tons), ki = tank capacity (tons),

pi = production time (hrs./batch), of product i

Inventory holding costs are $1,000 per batch per period for each
product. Opportunity cost for lost production on the reactor during
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time spent in switching over from one product to another is estimated
at $20,000/hour.

Develop a heuristic method that determines a good operational plan
(that determines which products are to be manufactured in each pe-
riod, the lot size for each, and the sequence in which these products
are manufactured in each period) to minimize the total cost (inventory
holding cost plus the opportunity costs due to setups between produc-
tion runs) while meeting the demands for all the products. ([W. J.
Selen and R. M. J. Heuts, Mar. 1990]).

Additional exercises for this chapter are available in Chap-
ter 13 at the end.
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