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Abstract. Phenological events, such as the timing of flowering or insect emergence, are
influenced by a complex combination of climatic and non-climatic factors. Although
temperature is generally considered most important, other weather events such as frosts and
precipitation events can also influence many species’ phenology. Non-climatic variables such
as photoperiod and site-specific habitat characteristics can also have important effects on
phenology. Forecasting phenological shifts due to climate change requires understanding and
quantifying how these multiple factors combine to affect phenology. However, current
approaches to analyzing phenological data have a limited ability for quantifying multiple
drivers simultaneously. Here, we use a novel statistical approach to estimate the combined
effects of multiple variables, including local weather events, on the phenology of several taxa
(a tree, an insect, and a fungus). We found that thermal forcing had a significant positive effect
on each species, frost events delayed the phenology of the tree and butterfly, and precipitation
had a positive effect on fungal fruiting. Using data from sites across latitudinal gradients, we
found that these effects are remarkably consistent across sites once latitude and other site
effects are accounted for. This consistency suggests an underlying biological response to these
variables that is not commonly estimated using data from field observations. This approach’s
flexibility will be useful for forecasting ongoing phenological responses to changes in climate
variability in addition to seasonal trends.
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INTRODUCTION

The timing of species’ life history events, such as

flowering or insect emergence, has important ecological

consequences. These phenological events influence

individuals’ demographic performance (Miller-Rushing

et al. 2010), competition among individuals (Yang and

Rudolf 2010), trophic interactions (Hegland et al. 2009),

and ecosystem processes such as carbon cycling (Leino-

nen and Kramer 2002). These ecological consequences

have made understanding and quantifying phenological

responses to climate an important effort in global

change biology. However, doing so is complicated by

the large geographic, temporal, and taxonomic variation

in phenology arising from the complex set of factors that

influence phenology (Cleland et al. 2007). Although

thermal forcing (commonly quantified as degree days) is

understood to be a primary driver of many phenological

events, additional weather events such as frosts and

precipitation may also have important effects on

phenology, but are less often considered (Jentsch et al.

2009). Non-climatic variables, such as photoperiod,

competition with neighbors, resource availability, and

other site-specific conditions, can further affect phenol-

ogy and may alter perceived relationships with climate.

The relative importance of these different factors will

depend on species’ evolutionary histories, but may also

vary spatially due to environmental heterogeneity and

genetic variability.

Despite broad acknowledgement of these multiple

possible effects on phenology, the mechanistic and

statistical approaches typically used to model phenology

are unable to quantify their combined effects. The

‘‘mechanistic’’ or ‘‘process-based’’ approaches to mod-

eling phenology typically use daily temperature data to

parameterize primarily deterministic models describing

how both winter chilling and spring forcing trigger

phenology (Chuine 2000). The mechanistic description

of temperature effects on phenology can be useful for

select species when detailed experiments are used to
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determine responses to temperature (Harrington et al.

2010) but the physiological response data needed to

parameterize these models are unavailable for most

species. These models also cannot readily accommodate

additional variables (e.g., frosts, precipitation, site

effects) nor quantify uncertainty in a manner that is

useful for forecasting.

In contrast to these process-based models, statistical

approaches can use widely available data from natural

populations or common gardens to correlate phenolog-

ical dates with monthly or seasonal climate (Primack et

al. 2009). This approach is able to provide a probabi-

listic summary of the uncertainty surrounding pheno-

logical responses to climate, and can readily incorporate

both seasonal climate and other site-specific effects

(Ibáñez et al. 2010). However, this approach assumes

that monthly or seasonal climate variables are useful

proxies for the underlying mechanisms that affect

phenology. For example, mean spring temperatures are

often able to explain much of the variation in spring

events such as bud burst because they are highly

correlated with the thermal accumulation thought to

be a key mechanistic trigger. The utility of such proxies

is likely to vary depending on the climate variable and

the organism, and may degrade in the future if patterns

of climate means and variability change (Jackson et al.

2009). There is also limited ability to tease apart the

relative importance of local weather events such as

precipitation or frost events that may serve as proximate

mechanisms for triggering phenology.

In this study, we use a novel statistical approach to

quantify how multiple proximate mechanisms combine

to trigger phenology. The approach is based on survival

analysis, a broad class of statistical models used

extensively in medical research. Developed to explain

which factors influence the amount of time elapsing

until an event (e.g., medical applications such as how

treatments influence the time until death), these models

are well-suited but underutilized for analyzing pheno-

logical events (Gienapp et al. 2005, Fieberg and

Delgiudice 2008). We extend these previous efforts to

analyze phenology using survival analysis by develop-

ing models to quantify how local weather events (e.g.,

recent precipitation and frost events) influence the

phenology of several different taxa (a tree, an insect,

and a fungus). Furthermore, we use hierarchical

models to test whether observed phenological variabil-

ity among sites arises from different responses to

climate or other site-specific characteristics. Using data

from multiple sites across latitudinal gradients, we test

the hypothesis that species’ sensitivities to local weather

vary across latitudes. By quantifying in a statistical

framework how a combination of daily weather,

seasonal climate and non-climatic variables combine

to affect phenology, this approach offers unique

insights on the biology of phenology and abilities to

forecast responses to future climate change.

METHODS

Species and weather data

Three study species were chosen in order to explore

how models may be adapted to species with very different

life histories. We analyzed the following phenological

events: (1) first appearance of an insect, Pieris rapae

(small white cabbage moth); (2) bud burst of a tree,

Morus bombycis (mulberry); (3) fruiting dates of an

ascomycete fungus, Helvella macropus. Species are

referred to hereafter by their genus. Data for Pieris and

Morus came from the Japanese Meteorological Agency

(JMA), which has been monitoring phenology of dozens

of taxa at a network of meteorological stations since

1953. These stations are distributed across a latitudinal

and environmental gradient, with sites being generally

cooler and drier in northern Japan and ranging to

subtropical in the most southern islands (JMA 1985).

Plant species were planted in or nearby the meteorolog-

ical stations in order to monitor their phenology, while

natural populations of the animal species were monitored

in the vicinity of the station. For this study, we used data

from 20 stations distributed across 288–408 N latitude.

For Pieris and for Morus, 44 years of data were used.

The data on fruiting times of Helvella (a summer- and

fall-fruiting ascomycete commonly known as an ‘‘Elfin

saddle’’) came from herbarium collections at the

University of Michigan. These data were collected in

nine counties in Michigan, spanning 428–478 N, from 32

years between 1926 and 1977. Because fruiting bodies

are relatively ephemeral and collections are made when

specimens are in good condition, collection dates can be

used as a reasonable measure of fruiting time (Gange et

al. 2007). We used historical climate data (daily

temperature and precipitation) from the nearest weather

stations in the U.S. historical climate network

(USHCN). We return below to further discuss which

climatic variables were used to predict the phenology of

each species.

Statistical analyses

Survival analysis encompasses a broad class of

statistical analyses focused on modeling the time until

an event occurs. These models are commonly used in

medical research to understand how different treatments

influence life span, and have been used in ecology for

telemetry data (Fieberg and DelGiudice 2009) and

questions about survival rates (Johnson et al. 2004).

Despite the natural fit to predicting phenological events,

survival analysis has been rarely used for analyzing

phenological responses to climate (Gienapp et al. 2005,

Fieberg and Delgiudice 2008). As previously used, these

methods suffer from the same limitations as standard

regression approaches when trying to understand how

short-term weather events affect phenology. Namely,

when the response variable is the date of an event,

defining predictor variables based on that phenological

date (e.g., asking whether precipitation events in the
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week preceding an event affect phenology) creates an

invalid circularity. One approach to using daily weather

data to predict phenology is by using penalized signal

regression (PSR), which works through a technique to

smooth regression coefficients over time (Roberts 2012).

Here, we adapted a particular type of daily survival

analysis that can estimate how time-dependent covari-

ates (quantities such as precipitation that vary over time)

influence the probability of an event occurring. In this

case the covariates vary daily, although a similar

approach could be useful for covariates that vary over

other time scales (e.g., weekly). This type of survival

model with time-dependent covariates has also been

used in the medical sciences (Sen et al. 2010). Recently,

similar daily survival models were used to estimate the

effects of forcing and chilling on cherry tree phenology

(Terres et al. 2013, Allen et al. 2014). These studies show

that, when critical parameters of mechanistic models are

known or assumed (in particular, the threshold amount

of chilling and the date of transition from chilling to

forcing), survival models may offer a useful bridge

between mechanistic and statistical models. We further

extend previous approaches by using hierarchical

models to estimate spatially varying effects of climate

and other (typically unknown) site-specific effects.

In order to include time-dependent covariates togeth-

er with time-independent variables, we specifically use a

‘‘counting process’’ formulation for survival analyses

(Andersen and Gill 1982). Specifically, we assume a

Poisson process to describe the event history. This

amounts to assuming a Poisson distribution for the

number of events in a given time interval with a mean

that is a function of time and a risk function that

depends on the covariates thought to be important for

each phenology event. The cumulative mean function

py,d at the dth day in year y can be written generically as

py;d ¼ SFdebRy;d

where SFd is the time-varying baseline (SF referring to

seasonal forcing) and b is a vector of regression

coefficients describing the effects of the risks, R. Thus,

to predict the timing of an event, thought to depend on

degree days (DD), precipitation, frost events, and winter

temperatures, this function becomes:

py;d ¼ SFdeb1DDy;dþb2precipy;dþb3frosty;dþb4winterTempy;d :

Note that, in this formulation, all covariates are time

varying. There is flexibility to tailor this model to the

biology of the species of interest. Different covariates

can be selected depending on the biology of the

organism and regional ecological constraints (e.g.,

precipitation may be important in arid regions but not

mesic ones). Also, variables such as precipitation and

frosts can be calculated over different sized moving

windows depending on the biology of the organisms.

For the insect, Pieris, prior work suggests that a

combination of degree days, precipitation, and photo-

period may be important determinants of the timing of

emergence in the spring. Pieris lays eggs on host plants,

progress through five larval instars, and the last instars

leave the plant to pupate (Renwick and Radke 1988). In

many insects, post-diapause development is controlled

by a complex of factors, including temperature, mois-

ture, day length, and biological factors (Tauber and

Tauber 1976). Logistic functions have been used to

describe insect emergence as a function of degree days

(Broatch et al. 2006), but sufficient moisture is also

likely to be important (Delahaut 2003). Based on these

prior studies, we included cumulative degree days

starting 1 January, precipitation in the previous seven

days, and the number of frost events in the previous

seven days as covariates.

Little is known about the controls of bud burst in

Morus bombycis, a deciduous tree native to Japan, so we

based our choice of models on the broader literature on

tree bud burst. In general for temperate trees, a

combination of degree days, winter chilling, frost events,

precipitation, and photoperiod are thought to be

important for bud burst (Hanninen and Tanino 2011).

Similarly, relatively little is known about the proximate

triggers of fruiting of fungi in nature. However the basic

natural history and few previous studies suggest that

water availability is quite important for constructing

mushroom tissue (Ogaya and Penuelas 2005, Pinna et al.

2010). As a result, for Helvella we included cumulative

temperature, the amount of precipitation in the previous

10 days, and used a logistic baseline hazard that varied

by county, the finest resolution of spatial information

associated with the herbarium records. Counties were

expected to vary in fruiting timing due to latitude and

land use differences.

The form of the baseline function, SF, may also be

adjusted according to the biology of the target organism

or ecosystem. Here, we modeled the baseline hazard as

an increasing function of time that starts at the

beginning of the year and ends on the event day each

year. This form captures what we refer to as seasonal

forcing, which is the increase in probability of the event

over time due to changing photoperiod and other

unmeasured variables that change over the season. This

may be thought of as analogous to an intercept term in a

regression that accounts for unexplained differences

among sites. Here, because there are many unmeasured

variables that may be changing over time at each site, we

chose a site-specific baseline function that increases over

time. We used a logistic function consisting of three

parameters:

SFd ¼
p1

1þ eð2:2=p3Þðp2�dÞ

where p1 is the value at which the function asymptotes,

p2 is the day at which seasonal forcing is halfway to its

maximum (the curve’s point of inflection), and p3 is a

measure of how quickly seasonal forcing increases

(specifically, p3 is the number of days it takes for SF
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to increase from 0.1 to 0.5 of its maximum). This

equation has been used for other saturating functions in
ecology (Dixon 1976) and has the advantage that
parameters have biological interpretations. The exis-

tence of the asymptote entails that the event of interest
may not be realized for a very long time with a positive

probability. The parametric form of SF is in contrast to
a common application of the semiparametric version

where the form SF is left unspecified. We use the
parametric form instead, which is driven by the biology

of the process.
These equations describe the basic model for estimat-

ing the effects of daily climate on phenology at a given

site using observations from different years. An impor-
tant extension to this model is to allow for spatial

variability in phenological responses that results from a
combination of environmental and genetic variation. We

achieve this by using a hierarchical model structure that
allows sites to have unique parameter values, but these

values for different sites are drawn from common
species-level distributions (Clark 2007). This hierarchi-
cal structure is useful for allowing spatial variability in

phenological responses and for forecasting likely re-
sponses in new areas or under novel conditions (Ibáñez

et al. 2010). With this hierarchical structure, incorpo-
rating variation among sites, s, the model becomes

ps;y;d ¼ SFs;deb1sDDs;y;dþb2sprecips;y;dþb3sfrosts;y;dþb4swinterTemps;y;d

where

SFs;d ¼
p1s

1þ eð2:2=p3sÞðp2s�dÞ :

Here, responses to climate and weather variables for
each site (parameters b1s b2s, b3s, b4s) and parameters
of the seasonal forcing function (parameters p1s, p2s,

p3s) are allowed to vary among sites while also
estimating a species’ overall responses. Linked through

hyper-parameters, estimates for one site were informed
by data from other sites. For example, b1s ; Nor-

mal(b1sp, r2
sp), where b1sp is a species-level hyper-

parameter representing the mean response for the
species to forcing, and r2

sp is the estimated variance

among sites in these responses. These species-level
parameters were given diffuse prior distributions: b1sp
; Normal(0, 1000). Similarly, the p parameters were
given lognormal distributions: ps ; LogNormal( psp,

r2
sp), with psp assigned normal distributions estimated by

the data. This hierarchical structure is critical for
making inferences at locations for which we have little

or no data and under future climate scenarios. In studies
with data from more sites, where spatial autocorrelation

of responses and predictors is expected, this approach
could be extended to explicitly model the site effects as a

spatial process (Latimer et al. 2006, Finley et al. 2009).
Models were fit in a Bayesian framework in order to

easily accommodate the hierarchical structure and to
facilitate forecasting while still accounting for the
different sources of uncertainty, i.e., data, process, and

parameters. Because we lacked prior information about

what these values should be, we used diffuse prior

distributions for all parameters. Models were fit and

posterior densities of each parameter were obtained

using OpenBUGS 1.4 (Thomas et al. 2006), called using

the R2OpenBUGS package (Sturtz et al. 2005) in R

version 2.14 (R Development Core Team 2008). BUGS

code is provided in the Supplement. Models were run for

approximately 50 000 iterations and thinned by 10 in

order to reduce autocorrelation of parameter samples.

Convergence was assessed visually and by calculating

the Gelman-Rubin statistic from three independent

chains. Ten thousand pre-convergence burn-in iterations

were discarded. Results from these models are inferred

from the posterior distributions of model parameters.

Two groups of parameters are of particular ecological

interest: (1) the baseline functions and (2) the relation-

ships with climate and weather. These two sets of

parameters could be used together to build predicted

probabilities of the phenological event for a given site

and set of climatic conditions. The statistical significance

of the covariates was assessed using the posterior

distributions of the regression coefficients. Instead of

an arbitrary confidence interval, the probability that the

posterior density of each site-specific regression coeffi-

cient (b’s in the models described in Methods) were

calculated and probabilities greater than 95% were

deemed highly likely to be different from zero, greater

than 90% were deemed very likely to be different from

zero, and greater than 85% were deemed likely to be

different from zero.

RESULTS AND DISCUSSION

Although thermal forcing is generally considered the

dominant driver of most phenological events, many

other factors can influence phenology. The highly

variable amount of forcing leading up to events indicates

that there are other factors helping to control timing

(Fig. 1). Controlled experiments have shown that

localized weather events and community context can

strongly influence phenology (Jentsch et al. 2009), but

measuring these effects from observational field data has

not been previously possible, due in part to the

complexity of weather preceding events (Fig. 1). The

daily survival models used here can help estimate these

more proximate effects of weather, while also allowing

for spatial variation due to different ecological contexts

and/or local adaptation.

Effects of weather on phenology

Relationships between phenology and weather varied

among species. For Morus, we found positive effects of

daily forcing on the probability of bud burst (Fig. 2A),

consistent with previous studies showing that bud burst

responds to forcing. We also found that frost events

decreased the probability of Morus budburst at all sites

(Fig. 2B). Although it is not well studied, frosts may

retard the plant development, thereby slowing endoge-
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nous pathways leading to bud burst and leaf develop-

ment. This effect of frost is consistent with field

observations of delayed foliation in temperate trees

following frost events (Augspurger 2009). The effect of

recent precipitation events on the probability of Morus’

bud burst was not significant (Fig. 2C). While it is

perhaps not surprising that precipitation was a not a

major determinant of bud burst in temperate, mesic

Japan, we would expect a stronger role of precipitation

for plants in more arid ecosystems (Crimmins et al.

2011, Diez et al. 2012).

For Pieris, daily forcing tended to have a positive

effect on the probability of emergence, but was not

statistically significant (Fig. 2D). By contrast, frost

events and recent precipitation had negative effects on

emergence probability (Fig. 2E, F). These results are

consistent with previous findings of the importance of

degree days (Jyoti et al. 2003, Broatch et al. 2006), and

moisture (Delahaut 2003) for Pieris development, and

suggests that frost events may also slow down early

spring development. Previous studies of Pieris phenol-

ogy have found earlier appearance with higher mean

FIG. 1. Climatic and phenological variability at a single site in (A) a warm year and (B) a cool year. The green arrows at the
tops of these graphs mark the timing of bud burst of Morus bombycis in the example years and the gray arrows mark the timing of
bud burst in all other years. The red lines are the cumulative degree days for the example years and gray lines are the degree days in
other years. Light blue lines show a moving window of the number of frost events in the previous week, and dark blue lines are
precipitation totals in the previous week. For a picture of the within- and among-site variability in the data, (C) all analyzedMorus
bud burst dates are plotted vs. latitude, (D) the cumulative forcing is plotted vs. latitude, and (E) the relationship between dates of
events and forcing is plotted. Colors range from cooler, high-latitude sites (blue) to warmer, lower-latitude sites (red).
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spring temperatures in Spain, and in dry areas, perhaps

related to latitude (Gordo et al. 2010). Primack et al.

(2009) found that Pieris appeared earlier in years with

higher mean winter temperature.

The probability of Helvella fruiting was positively

affected by daily forcing and precipitation in the

preceding 10-day period (Fig. 2G, H). Very little is

known about the proximate controls of mushroom

production in nature, but these results are consistent

with natural history and documented patterns of the

importance of water availability for mushroom produc-

tion (Ogaya and Penuelas 2005, Pinna et al. 2010).

FIG. 2. Effects of climate variables on (A–C) Morus bombycis bud burst, (D–F) Pieris rapae appearance, and (G, H) Helvella
macropus fruiting. The posterior densities of site-specific regression coefficients (b in the models described in Methods) are plotted
as a function of site latitude. Darker portions of these densities represent more likely values of the regression coefficient, and
asterisks show three different thresholds of probabilities that the coefficient is different from zero. A single o indicates .85%
probability for the effect to be different from zero, oo indicates .90% probability, and ooo indicates .95% probability. There is no
frost effect estimated for Helvella because it fruits in the late summer.
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Temperature may affect fungi directly through meta-

bolic activity or indirectly through plant activity, and

the phenology of many fungi is likely to be linked to the

phenology of associated plants (Dickie et al. 2010).
Although the mycorrhizal status of Helvella macropus is

uncertain, its response to plant phenology may play a

role either way. Mycorrhizal species of fungi are likely to

be influenced by the seasonal flow of carbon through
plant roots, while saprotrophic species may be influ-

enced by litter inputs to the soil or other substrate

characteristics. When these additional time-dependent

variables can be quantified, they may be added to these

models to test their importance relative to precipitation
and temperature.

The weather variables tested here are certainly not an

exhaustive list of what controls phenology in these

organisms, and these daily models could readily

incorporate additional climate and weather variables
when they are known to affect phenology. However, the

mechanisms underlying most phenological events are

still not well understood. Studies of a few model

organisms suggest that a variety of pathways may be

involved in triggering phenological events. For example,
detailed study of Arabidopsis flowering has uncovered a

complex set of environmental signaling pathways

affected by temperature and photoperiod, but also

endogenous pathways linked to developmental status
(Simpson and Dean 2002, Amasino 2010). The interac-

tions between these pathways and the external condi-

tions that affect them are not understood, but it appears

likely that any climatic event that affects plant

development could influence phenology. The relative
importance of different mechanisms is also likely to

depend on species’ life histories (e.g., early vs. late

successional trees; Körner and Basler 2010) and the

ecological context (e.g., soils, biotic community, etc.).
Distinguishing among potential mechanisms may be

best approached through a combination of statistical

modeling of observational data and use of controlled

experiments. Although statistical models are critical for

testing ideas within the complexity of natural systems,
they face the difficulty that many variables can co-vary

over time and models may become non-identifiable. This

problem can be minimized by limiting analysis to a

handful of key variables with known biological rele-

vance, as in our study, checking that models converge,
and when possible through the use of controlled

experiments to determine cause and effect.

Spatial patterns

Spatial variability in phenology complicates predic-

tions of responses to future climate change (Bennie et al.

2009), but also offers opportunities to dissect the
mechanisms underlying phenology. These survival anal-

yses explored spatial variability in two ways: first by

asking whether species’ sensitivities to climatic variables

changed across a latitudinal gradient, and second by

asking how the site-specific seasonal forcing varied

across latitudes. For all species, the effects of covariates

showed no significant variation across latitudes (Fig. 2).

Despite the high variability of forcing recorded among

years and sites (Fig. 1D; and typical of other studies,

e.g., Wesołowski and Rowiński [2006]) we found that

forcing had a consistent effect for each species across

latitudes (Fig. 2). There are mixed expectations for how

phenological sensitivity to climate should change across

latitudes (Doi and Takahashi 2008). Spring phenology

in the temperate zone is thought to be an evolutionary

balance between the benefits of longer growing seasons

allowed by earlier events, and the risk of being damaged

by frosts (Lockhart 1983, Leinonen and Hänninen

2002). Organisms at higher latitudes, with shorter

growing seasons, may undergo strong selection to

maximize growing season length by responding to

photoperiod, but the costs associated with mistimed

events should favor high sensitivities to climate.

Previous studies reflect these opposing ideas, as Root

et al. (2003) found stronger responses to temperature at

higher latitudes, while Menzel et al. (2006) found greater

responsiveness in warmer countries in Europe. Our

findings suggest a different scenario in which species’

underlying sensitivities to temperature are comparable

across latitudes, with other site-specific variables driving

observed differences in phenology among sites (Diez et

al. 2012).

In contrast to the consistent climate sensitivities

across latitudes, the seasonal forcing curves for each

species varied considerably among sites (Fig. 3A),

suggesting that there were additional factors underlying

site-to-site variation in phenology. Some of this vari-

ability could be explained by the parameters describing

the seasonal forcing. For Morus and Pieris, the p2

parameter, corresponding to the day of the inflection

point, was significantly higher at higher latitudes,

suggesting that this function is capturing variation

among sites due to photoperiod or other latitudinal

trends (Fig. 3C). The parameter p3, inversely propor-

tional to the ‘‘steepness’’ of the baseline probability, also

tended to be smaller at higher latitudes for Morus and

Pieris. This pattern suggests more rapidly increasing

probabilities at higher latitudes, possibly reflecting a

smaller window of possible event dates. The asymptote

of the baseline hazard, described by the third parameter,

p1, did not appear to be related to latitude but varied

among sites for unknown reasons. The lack of latitudi-

nal patterns for Helvella likely reflects the more narrow

geographic range of data for this species.

Overall, these models allow a useful dissection of

spatial variability in contrast to existing deterministic

‘‘process models.’’ Mechanistic process models, such as

thermal sum models, assume that the underlying process

is constant across space, i.e., spatial stationarity (Pau et

al. 2011), which is not helpful for understanding how

mechanisms may vary spatially and problematic for

making predictions across regions. By allowing for spatial

variability, hierarchical daily models could also help
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FIG. 3. Seasonal forcing (or ‘‘baseline function’’) curves for (A) Morus bombycis, (B) Pieris rapae, and (C) Helvella macropus.
Seasonal forcing curves were estimated for different sites (corresponding to SF in the model described in Methods). Colors vary
from blue to red reflecting high to low latitudes, respectively. Parameters describing the shape and position of these seasonal forcing
curves were related to latitude (on right). Linear regressions are represented with solid lines for significant relationships (P , 0.05)
and dashed line for nonsignificant relationships.
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quantify how phenological responses to climate depend

on interactions with other species in the community, as

seen in experimental studies (Jentsch et al. 2009).

Conclusions: Why daily models?

Climate trains the boxer, but weather throws the

punches.

—Derek Arndt, climatologist, NOAA

Organisms do not respond to mean seasonal climate,

but rather daily weather conditions and extreme events

(Gutschick and BasssiriRad 2003). When seasonal

climate variables serve as effective proxies for the

weather that influences phenology, they can be useful

for explaining phenological variation. For example,

mean spring temperatures can often explain significant

variation in spring phenology (e.g., Primack et al. 2009)

because they are highly correlated with the accumulated

daily forcing that helps trigger many plants’ spring

phenology. Nonetheless, there are several reasons to

develop daily models as a complementary approach to

existing mechanistic and statistical methods. First, the

correlations between seasonal variables and proximate

mechanisms may change over time or across regions,

which will cause problems for seasonal analyses.

Because both the mean and variance of climate variables

are expected to shift with climate change, the correla-

tions between mean climate and extreme values may also

change (Jackson et al. 2009).

Second, not all proximate mechanisms have effective

seasonal climatic proxies. For example, seasonal precip-

itation may often be less relevant to organisms’

phenology than the specific timing of rainfall events.

The fruiting of a fungal species in this study is a good

example. Although there is a general seasonality and

recurring order to when different species produce

fruiting bodies, the specific timing of fruiting may

depend in large measure on the specific timing of rain

events, rather than whether the season has been wet or

dry on average. Therefore, although a summer that is

wetter overall is more likely to have earlier rain events

and therefore earlier phenology, this is not necessarily

the case. Similar dynamics are likely to occur in plant

communities that are driven by the timing of rains

(Crimmins et al. 2011, Levine et al. 2011).

Third, as downscaled climate projections offering

daily climate scenarios become increasingly available, it

is important to have a statistically robust framework for

estimating and forecasting multiple proximate effects on

phenology. By combining the baselines and climate-

related risks, daily predictions of events could be made

for a given site under predicted weather patterns.

Finally, daily models can offer insights on the basic

biology of how organisms respond to their environment

that seasonal models cannot. Here, we have quantified

for the first time how frosts and precipitation may

combine with forcing to influence phenology of different

organisms. Controlled experiments will remain invalu-

able way to isolate mechanisms, but daily statistical
models can offer complementary insights and make

better use of historical data sets and the growing

contemporary data sets resulting from citizen science
programs and data collection networks.
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