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Competition between genotypes is likely to be a key driver of pathogen evol-

ution, particularly following a geographical invasion by distant strains.

Theory predicts that competition between disease strains will result in the

most virulent strain persisting. Despite its evolutionary implications, the

role of strain competition in shaping populations remains untested for most

pathogens. We experimentally investigated the in vivo competitive differences

between two divergent lineages of the amphibian-killing chytrid fungus

(Batrachochytrium dendrobatidis, Bd). These Bd lineages are hypothesized to

have diverged in allopatry but been recently brought back into secondary

contact by human introduction. Prior studies indicate that a panzootically-

distributed, global lineage of Bd was recently introduced into southern

Brazil, and is competitively excluding enzootic lineages in the southern Atlan-

tic Forest. To test for differences in competitive ability between invasive and

enzootic Brazilian Bd isolates, we coinfected a model host frog system which

we developed for this study (Hymenochirus curtipes). We tracked isolate-

specific zoospore production over the course of the coinfection experiment

with chip-based digital PCR (dPCR). The globally invasive panzootic lineage

had a competitive advantage in spore production especially during the first

one to four weeks of infection, and on frogs that eventually succumbed to

Bd infection. Our study provides new evidence that competitive pressure

resulting from the human movement of pathogen strains can rapidly alter

the genetics, community dynamics and spatial epidemiology of pathogens

in the wild.
1. Introduction
Competition is a key factor structuring ecological communities [1–3]. Over

time, competition and competitive exclusion contribute to the selection pressure

shaping organismal evolution [4]. The competitive exclusion principle predicts

that two species (or lineages) should not be able to occupy the same ecological

niche indefinitely [5,6]. While this principle is well supported in numerous

plant and animal systems, its ecological implications for pathogens remain

unclear [7]. Some authors suggest that strain competition will result in patho-

gen coexistence through host partitioning [8], while others argue that

competing strains will be selected for faster growth and higher virulence lead-

ing to the exclusion of all but the most virulent lineages [9,10]. Theoretical

models support the idea that competing pathogen strains will be under selec-

tion for growth rate and virulence, despite an accompanying trade-off in

increased host mortality [11,12]. This ‘shortsighted evolution’ scenario predicts
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the competitive exclusion of all but the most virulent disease

strains [13]; however, the prediction remains untested for

most diseases (a notable exception being in malaria coinfec-

tions) [9]. Here, we examined the outcomes of strain

coinfection, and its implications on the disease ecology of a

recently emerged fungal pathogen.

Chytridiomycosis is the emerging fungal disease impli-

cated in population declines and extinctions of amphibians

worldwide [14–16]. Caused by the chytridiomycete fungus

Batrachochytrium dendrobatidis (Bd) [17], this disease has

emerged as one of the most significant contemporary threats

to global amphibian biodiversity [18]. In many regions of the

globe Bd is newly arrived and actively spreading [19–21].

In other regions Bd appears to be enzootic and in stable

equilibrium with its associated hosts [22]. This is the case in

the Atlantic Forest of southeastern Brazil where two deeply

divergent lineages of Bd co-occur in a number of contact

zones [23,24]. In the Atlantic Forest region, the globally

distributed, panzootic clone of Bd (termed Bd-GPL—Global
Panzootic Lineage) [25] and a regional enzootic lineage

(Bd-Brazil, also known as Bd-Asia-2/Brazil) [23,26] occupy

overlapping ranges.

In addition to Bd-GPL and Bd-Brazil, two additional

lineages of Bd have now been recognized from southern

Africa (Bd-Cape) and east Asia (Bd-Asia-1; which includes

Bd-CH) [25–27]. We now know that differences in virulence

exist among these lineages [25,26,28,29]. We also know that

multi-lineage coinfections by diverse Bd genotypes occur in

natural populations (e.g. the Bd-GPL isolate CLFT024/0

and hybrid isolate CLFT024/2 were both collected from the

same Hylodes cardosoi tadpole host) [23,30]. Coinfections in

nature provide opportunities for competition which can

occur directly or indirectly. In the case of direct competition,

individuals directly exclude one another from a limited

resource. Alternatively, competition may be indirect, where

competitive interactions are mediated through the antagon-

istic response of a resource species, or host immune

response in the case of pathogens. Indirect competition is

well documented in fungi [31,32], and in pathogen species

in general [33]; and both modes of competition can result in

the exclusion of a weaker competitor [34,35]. The possibilities

for diverse Bd coinfections to occur are growing continually

as disease lineages are increasingly transported away from

their native ranges by anthropogenic activity [26,36]. Despite

the potential for competitive dynamics to shape disease

genotypes present in a pathogen population over time, little

work to date has explored the nature of competition between

any of the divergent Bd lineages or considered the

population-level outcomes of genotype competition.

Our study was motivated in-part by the striking

geographical distribution of enzootic Bd-Brazil we observed

in the field. Despite ample surrounding habitat predicted to

be highly suitable for Bd growth in the southern Atlantic

Forest [37], Bd-Brazil is found only from a small handful of

sampling sites. The population structure of the two Bd
lineages in the Brazilian Atlantic Forest suggests that

Bd-GPL has been rapidly expanding [24], and excluding

Bd-Brazil from its former range. To evaluate whether com-

petitive differences are shaping the genetic structure of this

expanding pathogen population, we conducted a coinfection

experiment using a novel amphibian host model. The specific

goals of this study were to quantify the relative performance

of Bd-GPL and Bd-Brazil strains when inoculated onto the
same host resource, and to develop a model Bd host system suit-

able for standardizing future laboratory-based virulence and

transmission studies. Our results support strain competition

as an ecological force capable of shifting pathogen genotype

frequencies in mixed populations and have wide-ranging

implications for understanding the evolution of pathogenicity

traits following human-mediated pathogen introductions.
2. Material and methods
(a) Experimental design
To investigate if fitness differences exist among Bd strains, we

tracked the temporal population genetics of Bd-GPL � Bd-Brazil

coinfections in experimental amphibian populations. We

measured differences in zoospore production at four time points

over the course of a 10-week experiment, and used chip-based digi-

tal PCR (dPCR) to quantify a mitochondrial SNP (Bdmt26360)

that distinguishes Bd-GPL from Bd-Brazil in a mixed sample.

We used the aquatic, western dwarf clawed frog (Hymeno-
chirus curtipes, Pipidae) as the host for this study. Hymenochirus
curtipes is tolerant to Bd infection at low levels but may succumb

to disease at high pathogen loads [38,39]. Hymenochirus curtipes is

also available from commercial suppliers in the aquarium trade,

allowing for the iteration of this study by separate research

groups. This species is completely aquatic and is amenable to

housing in groups [40], which allowed our study to simulate

the dynamics of active strain transmission within a host popu-

lation. Finally, H. curtipes is native to the Congo basin of

central Africa. Having been recently collected from Brazil, these

Bd isolates will not have encountered the H. curtipes host

environment in their recent ecological histories. This common

garden design provides a competitive landscape distinct from

the host diversity available to either strain within their current

ranges in the Atlantic Forest.

We selected two Bd-GPL isolates and two Bd-Brazil isolates

to coinfect in the four possible combinations between the rep-

resented lineages (figure 1a). This design addressed competitive

differences between Bd-GPL and Bd-Brazil while accounting for

possible isolate-to-isolate differences within each lineage. The

study isolates were all recently collected from the lineage contact

zones in the Brazilian Atlantic (figure 1b). We passaged the exper-

imental isolates minimally in culture (table 1) to prevent major

genetic or phenotypic changes under laboratory conditions

[41,42]. Our experimental units consisted of 20 aquarium tanks

(35 l of water) housing small populations (n ¼ 5) of western

dwarf clawed frogs. Each experimental population was randomly

assigned to one of the four infection treatments, and each treat-

ment was replicated in five experimental tanks (n ¼ 100 animals

total) (electronic supplementary material, table S1). Full details

of our animal care procedures and Bd culture methods are

available in the electronic supplementary material.

For the coinfections, our goal was not to induce or measure

mortality as an effect, but rather to inoculate hosts with a dose

of Bd that would result in the maintenance of infection over

the study period. Each host population (n ¼ 5) was exposed

to a 20 ml zoospore bath containing 107 infective zoospores

from each of two competing isolates (combined inoculum

concentration ¼ 106 zoospores ml21; total exposure with both

isolates ¼ 2 � 107 zoospores). The exposure baths were incubated

at 198C to 208C for 6 h. After the exposures, all animals were

released back to their respective tanks along with the inoculation

bath and monitored daily for mortality or signs of morbidity.

(b) Data collection
We monitored infection progress for 70 days (10 weeks) after

inoculation by swabbing the animals weekly with sterile skin
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Figure 1. Experimental design of the pairwise strain competition experiment. (a) Two Bd-GPL and two Bd-Brazil strains were coinfected in all four possible GPL �
Brazil treatment combinations. We repeated each treatment five times for a total of 20 tanks. (b) Collection localities, dates and isolate codes for the strains
examined in this study.

Table 1. Bd isolates used for this experiment.

designation isolate year passages host locality

GPL-A CLFT073 2013 9 Aplastodiscus sp. Serra dos Órgãos National Park, Rio de Janeiro

Brazil-A CLFT070 2013 9 Hylodes japi Serra do Japi, Jundiai, São Paulo

GPL-B CLFT137 2014 6 Hylodes cardosoi Serra da Graciosa, Morretes, Paraná

Brazil-B CLFT150 2014 6 Hylodes cardosoi Serra da Graciosa, Morretes, Paraná
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swabs (MW 113, Medical Wire and Equipment Co.). We

swabbed the interdigital webbing of each limb five times and

both lateral surfaces of the abdomen five times (30 passes

total). We employed the same procedure to swab any dead or

moribund individuals (n ¼ 38) encountered during daily health

checks. We extracted genomic DNA from skin swabs with

50 ml of PrepMan Ultra sample preparation reagent (Thermo

Fisher Inc.). For routine monitoring of Bd infection through

the course of the experiment, we performed qPCR assays on

the weekly skin swabs [43]. Reaction conditions and cycling

parameters are presented in electronic supplementary material,

table S2.

To assess the outcome of coinfection, we chose four equally

spaced, temporal samples (weeks 1, 4, 7, and 10) for isolate

identification and quantification with the chip-based, QuantStu-

dio 3D digital PCR system (Thermo Fisher Inc.) following the

manufacturer’s protocols. Chip-based dPCR is ideal for detecting

rare allelic variation in mixed samples [44,45]. The dPCR system

partitions a duplexed, lineage-specific TaqMan assay into a PCR

reaction chip composed of 20 000 nanowells. We used qPCR-

estimated quantification of total DNA to adjust each sample

dilution so that some wells received target DNA, while others

did not. Any well that received a target sequence which was
successfully amplified in the PCR step released a specific fluor-

escent signal. Probe sequences, dPCR reaction conditions and

cycling parameters are presented in electronic supplementary

material, table S3. Post-dPCR, we used the QuantStudio 3D digi-

tal PCR chip reader to detect the fluorescence signal of reporter

dyes from each nanowell (from either the VIC-tagged Bd-GPL

probe or the FAM-tagged Bd-Brazil probe), and used the dPCR

measured zoospore density (GE ml21) of each isolate as our

indicator of competitive ability.

At week 7 we euthanized a sample of five individuals from the

coinfection experiment to isolate Bd cultures. We microscopically

scanned interdigital tissue for evidence of infection, and isolated

cultures following Longcore et al. [46]. These re-isolations

provided one additional way to assess the genotypic winners

of competitive coinfections. We obtained five isolates and

determined their genotypes using two multilocus sequence type

markers known to differentiate the major Bd lineages (see

electronic supplementary material, Supplementary methods).

(c) Data analyses
Even closely related isolates of Bd can vary significantly in

molecular marker copy number [47,48]. We addressed this by



Bd-
Braz

il

Bd-
GPL

Bd-
Braz

il

Bd-
GPL

Bd-
Braz

il

Bd-
GPL

Bd-
Braz

il

Bd-
GPL

week 1 week 4 week 7 week 10

0

1

2

zo
os

po
re

 e
qu

iv
al

en
ts

 (
G

E
) 

pe
r 

µl
 (

lo
g 10

)
Kruskal–Wallis c2 = 213.84, d.f. = 7, p < 0.001

significance at adjusted p < 0.001 (***)
3

4

***

***

Bd-GPL

Bd-Brazil

Figure 2. Zoospore production by Bd-GPL is more robust than Bd-Brazil. Bd-GPL produces significantly more spores in the early stages of the 10-week coinfection
experiment. Box plots show the median and interquartile zoospore densities (log (GE ml21 þ 1)) for Bd-GPL (red) and Bd-Brazil (blue) at four sampled time points.
Whiskers show the range for all observations.

4

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

285:20181894
first determining the degree of copy number variation among

isolates for the mitochondrial assay marker. We made isolate-

specific 106 zoospore standards for each of the experimental

isolates by counting zoospores with a haemocytometer as

before. We performed the same dPCR assays on a serial dilution

of each isolate-specific standard (103, 104, 105 and 106). We con-

structed standard curves, and calculated the slope of the linear

relationship between marker concentrations (copies ml21). For

each isolate, we multiplied the slope of its dPCR standard

curve by observed copy concentrations to determine zoospore

density (GE ml21). To improve the variance homogeneity in

zoospore density across partitions (by lineage, by isolate, by

time point), we log transformed (log10 (x þ 1)) observed zoo-

spore densities before the analyses. Because of the non-normal

distributions of these data, we used non-parametric methods

for statistical hypothesis testing, which were performed in

R v. 3.4.2 [49].
3. Results
(a) Bd infection over 10 weeks
From week 1 to week 6 post-inoculation, mean infection loads

in all tanks (assessed by qPCR) plateaued at 996–5770 GE per

swab. After the sixth week, infection loads dropped rapidly,

continuing to the end of the experiment (mean: 891–50 GE

per swab; electronic supplementary material, figure S3). Infec-

tion loads dropped by an overall rate of 311.5 GE per week

(linear regression: slope ¼ 2311.5, r2 ¼ 0.557, p ¼ 0.008).

Many of the H. curtipes hosts suppressed (or fully recovered

from) Bd infection over the 10-week period; however, individ-

ual host outcomes ranged widely. Of the 100 starting animals,

21% of individuals tested negative for Bd infection by the end

of 10 weeks, while 38% of individuals died or were euthanized

because of disease signs. The time to death of succumbing
individuals was not associated with any of the four treatments

(Kruskal–Wallis rank-sum test x2 ¼ 0.63, d.f. ¼ 3, p ¼ 0.889).
(b) Competitive effects between Bd-GPL and Bd-Brazil
We partitioned the weekly zoospore densities by lineage to

test for differences in spore production. Bd-GPL produced

higher spore densities than Bd-Brazil at all time points

(figure 2). We observed differences in zoospore density

between lineages as a function of time (Kruskal–Wallis

rank-sum test x2 ¼ 213.84, d.f. ¼ 7, p , 0.001). We assessed

pairwise differences between these lineage partitions post hoc
using Dunn’s test of multiple comparisons with a Bonferroni

correction. Our Dunn’s test comparisons showed that

Bd-GPL produced more spores than Bd-Brazil early in the

infection, during week 1 (corrected p , 0.001) and week 4 (cor-

rected p , 0.001). By week 7, Bd-GPL spore densities were

reduced from previous weeks, whereas mean Bd-Brazil spore

density increased from the previous time point. Bd-GPL still

produced more spores on average than Bd-Brazil, but the

differences in density were statistically indistinguishable

(corrected p ¼ 0.080). Finally, by week 10, spore densities

continued to drop for both strains. Again, by week 10 mean

Bd-GPL spore densities were greater than those of Bd-Brazil,

but not significantly so (corrected p ¼ 0.370). Based on DNA

sequences of two population-informative markers, the five

cultures we isolated at seven weeks post-inoculation were

all Bd-GPL.
(c) Differences in competitive fitness among isolates
We partitioned spore density data to test for fitness differences

between our four individual Bd isolates. Within each lineage,

we observed significantly superior and inferior competitor iso-

lates (figure 3). Both GPL-B and Brazil-B were significantly
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better spore producers than their co-lineage counterparts

GPL-A and Brazil-A (Kruskal–Wallis rank-sum test x2¼ 283.2,

d.f. ¼ 15, p , 0.001). We again assessed differences post hoc
between isolate partitions using Dunn’s test. In week 1, both

Bd-GPL isolates and the competitively superior Brazil-B isolate

produced higher zoospore densities than the inferior Brazil-A.

In week 4, the competitively inferior GPL-A produced a lower

density of spores than GPL-B, but this difference was not

significant (corrected p . 0.999).

The average increase in Bd-Brazil spore density at week 7

was driven entirely by the competitively superior Brazil-B

isolate. It was at week 7 that the competitive differences

among isolates were most pronounced. For both lineages,

the competitively superior isolates (GPL-B and Brazil-B) pro-

duced higher zoospore densities than their competitively

inferior counterparts in the same lineage (GPL-A and

Brazil-A). However, the competitively superior GPL-B isolate

still produced higher average spore densities than the

competitively superior Brazil-B (although not significantly;

corrected p . 0.999). By week 10, the most competitive of

the four isolates (GPL-B) produced higher median spore

densities than the other isolates; however, this trend was

only significant compared to the least competitive of the

isolates (Brazil-A; corrected p ¼ 0.011).
(d) Competitive outcomes differed by treatment tank
To visualize the magnitude of competitive differences at

the level of individual tanks, we plotted the difference be-

tween Bd-GPL and Bd-Brazil spore densities (D ¼ (Bd-GPL

GE ml21) 2 (Bd-Brazil GE ml21)) taken from each host

animal (figure 4). A positive delta indicated a greater density
of Bd-GPL spores, while negative deltas indicated greater

densities of Bd-Brazil spores. Overall, mean deltas through

the experiment were positive (mean week 1 D ¼ 69.98 GE

ml21, mean week 4 D ¼ 93.65 GEml21, mean week 7 D ¼

7.87 GEml21, mean week 10 D ¼ 11.84 GEml21).

We observed that competitive differences were greatest

in the first part of the infection experiment (week 1 and 4)

and grew weaker as the infection was cleared (week 7

and 10). The variation in competitive outcomes was largely

shared across individuals in a tank. For example, all living

individuals in Tank R during week 4 had strong negative

Ds, showing that Brazil-B was the dominant isolate across

host individuals at that time point. In the less common

case where the Bd-Brazil strain had the advantage at the

end of the experiment (figure 4; tanks Q and R, week 10),

treatments were inoculated with a GPL-B � Brazil-B pairing

(electronic supplementary material, table S1). This pairing,

however, did not always yield a Bd-Brazil advantage

(figure 4; tanks S and T, week 10). Brazil-B was also outper-

formed by GPL-A in all replicates (figure 4; tanks K

through O), underscoring the complex nature of strain

hierarchy.
(e) Zoospore densities at host death
The zoospore densities from post-mortem skin swabs

ranged an order of magnitude greater than those from live

animals (spore densities from surviving animals: approxi-

mately 0.0–103 GE ml21; post death: approximately 0.0–

2.0 � 104 GE ml21). Because of this discrepancy in range, we

analysed zoospore densities from the post-mortem swabs

separately from the data presented above. Bd-GPL zoospore
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densities were higher than Bd-Brazil spore densities on dead

individuals (Wilcoxon rank-sum test W ¼ 1309, p , 0.001;

figure 5). As with spore densities on live individuals, we

observed differences in average spore density between the
more and less competitive isolates, but the differences were

not significant at a ¼ 0.05. A linear regression showed a

slight decrease (slope ¼ 20.184) in post-mortem Bd-GPL

zoospore densities over the course of 10 weeks (r2 ¼ 0.140,
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p ¼ 0.016) and no temporal trend in post-mortem Bd-Brazil

spore densities (r2 ¼ 0.001, p ¼ 0.854).

4. Discussion
Our results demonstrate that Bd genotypes differ in reproduc-

tive ability when coinfecting the same hosts. We found

differences in competitive fitness between major lineages of

Bd (Bd-GPL and Bd-Brazil) and a hierarchical relationship

of competitive ability within the lineages. We suggest that

strain to strain competition can result in the eventual replace-

ment of existing pathogen diversity resulting in populations

of the most reproductively competitive genotypes. Given

that the international amphibian trade is closely associated

with the long-distance transport of major Bd lineages

[23,25,26], we predict a future escalation of pathogen transmis-

sibility though the competitive dynamics we describe here.

The implications of our results grow in urgency as diverse

Bd strains are increasingly transported between continents,

which expands opportunities for secondary contact between

divergent genotypes. The rapid genetic turnover of pathogen

populations though competition holds the potential to alter

disease outcomes at regional scales—potentially presenting a

conservation risk where an earlier, enzootic strain did not [50].

Our study showed significant differences in relative

fitness between Bd-GPL and Bd-Brazil at the critical phase

of infection for successful transmission—the peak of zoospore

production and host mortality in the first one to four weeks

after inoculation [51,52]. It is clear that the ecological and

evolutionary consequences of strain competition depend

crucially on whether competitive dynamics affect trans-

mission to new hosts [53]. Our measure of competitive

success in this study—zoospore production—is directly tied

to the mode of transmission for Bd, making the competitive

advantage we observed in the laboratory likely to translate

to increased transmission success in the field.
Under coinfection, each Bd strain is also in conflict with

the host’s immune system. Most (62%) of our H. curtipes
hosts in this experiment either suppressed or completely

cleared Bd infections after 10 weeks. In an open, natural

system with an available pool of new, susceptible individ-

uals, we expect that the probability of propagating infection

through a host community will favour strains with the ability

to persist and produce greater spore densities than their

conspecific competitors. Based on our data, we predict that

a Bd-GPL epizootic is more likely to spread in a susceptible

population owing to differences in propagule output over

the infection cycle. Because the host immunological

landscape in our experiment is ecologically novel to the iso-

lates collected in southeastern Brazil, the patterns of

competitive survivorship we observed may be relevant to

inferring outcomes of Bd strain coinfection generally as

Bd lineages invade news habitats—a scenario repeated in

diverse habitats worldwide through anthropogenic pathogen

transport [26].

The precise connection between increased spore pro-

duction and its implications for virulence evolution in Bd
remains an open area of research. Prior studies have shown

that Bd phenotypes with greater rates of spore production

cause increased host mortality [41]. This suggested a simple

relationship between virulence (host tissue damage) and

the production of reproductive propagules. Though not the

main focus of our coinfection study, our pilot experiments

on single isolate virulence preliminarily suggest that the

most reproductively successful Bd-GPL isolates were not

necessarily the most lethal. Zoospore production in our

single isolate infections did not directly relate to host mortality

(electronic supplementary material, figure S2, host survival

versus spore production), nor did host mortality in single iso-

late inoculations coincide with reproductive success under

coinfection (figure 3 versus electronic supplementary material,

figure S2). While this pilot study should be repeated with a
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larger sample size, the initial results suggest that Bd isolates

may vary in traits that interact in yet unknown ways with

the host immune system. Our results point to the evolutionary

links between isolate virulence and spore transmission as an

intriguing area of future investigation in Bd.

At present, the evolutionary ecology of genetically diverse

pathogen populations remains poorly understood. This is

especially true for eukaryotic pathogens such as fungi [54].

For many bacterial and viral pathogens, a theoretical con-

straint on virulence is imposed by the inherent trade-offs

between host exploitation and transmission [7]. Does this

constraint hold true for emerging mycoses with broad host

ranges such as Bd? Our understanding of the link between

transmission and virulence in fungal pathogens—and in

eukaryotic pathogens more broadly—still must be inferred

from the few eukaryotic systems studied thus far.

Among the few well-studied examples in the eukaryotes,

Plasmodium chabaudi (Apicomplexa; causing rodent malaria)

is constrained by the reproduction/transmission trade-off

[55]. In this example, the dominance of a specific clone in a

mixed infection did not translate to increased transmission

success of that clone to new hosts. Like this example, our

results showed that the better spore producer was not

the deadliest. These observations provide support for the

hypothesis that extreme Bd virulence may come at a cost to

transmissibility. Ultimately, the primary trait allowing

Bd-GPL to rise to global prominence may in fact be its trans-

missibility through reproductive characteristics rather than

virulence. In previous studies [28], the virulence of Bd-GPL

isolates were not always greater than those of Bd-Brazil as

measured by host survival. Therefore, strain competition

between divergent lineages may be one situation where the

virulence/transmission trade-off becomes more critical to

determining disease outcomes.

In addition to the differences in zoospore production we

observed between Bd lineages, we also found that zoospore

production by specific isolates varied within each lineage.

These results agree with previous studies showing phenoty-

pic variation among closely related genetic isolates of Bd
[28,56,57]. Although genomic changes and virulence attenu-

ation can occur in Bd isolates serially passaged over long

periods of time [41,42,58], we do not believe that laboratory

passage was a contributing factor in the results we observed.

Prior studies documenting in vitro changes were based on

cultures passaged over 30 times in the span of 6 years.

When our inoculations took place, all experimental isolates

had been passaged either six or nine times. We also con-

trolled for passage history by selecting paired Bd-GPL and

Bd-Brazil isolates collected contemporaneously and passaged

an equal number of times in culture. Our results showed that

the Bd-GPL isolate with nine passages significantly outper-

formed its Bd-Brazil counterpart with nine passages. The

same pattern held for the Bd-GPL and Bd-Brazil pair with

six passages.

Along with the ecological and evolutionary implications

of these results, our study serves as a proof of concept for

two new tools to improve our understanding of amphibian

chytrid ecology and evolution. First, dPCR is a viable tool

for the detection of rare genotypes in mixed pathogen popu-

lations. The ability to simultaneously quantify and genotype

samples with high accuracy makes this tool extensible to a

range of studies of mixed infections within a pathogen
population. For example, the dPCR probes could be readily

adapted to distinguish between Bd and its congeneric sister

taxon Batrachochytrium salamandrivorans [59]. The ability to

detect one variant copy in 1–5 ml of sample outperforms

traditional duplexed qPCR, which is prone to allele drop

out at these template concentrations [60]. We also describe

a potential model host in which to test Bd phenotype

across a standardized host species, Hymenochirus curtipes.

At present, virulence studies are typically conducted on

haphazard assemblages of locally available species [61],

which makes the replication and comparison of experiments

across research groups difficult. Hymenochirus curtipes has a

number of traits that make it a practical model host to explore

virulence phenotype across Bd lineages. It is susceptible to

chytridiomycosis, unlike Xenopus laevis, and its fully aquatic

nature and small body size simplifies husbandry while

allowing for facile disease transmission. Hymenochirus
curtipes is also commercially available and easy to breed

[40]. Finally, the ability to expose animals to a prolonged

308C incubation period in order to clear incoming chytridio-

mycosis is a major advantage not present in many amphibian

species.

The experimental system we describe here provides a

base upon which to test more complex questions about the

ecology of pathogen communities. For example, our current

study only explored the outcomes of simultaneous coinfec-

tion. Priority effects are known to play a large role in

ecological structuring [62], especially within the fungi

[63,64]. An immediate next area of research is to explore the

effects of sequentially inoculated strains and address the

roles of priority and contingency on the competitive structur-

ing of microbial populations. Another potential elaboration

on this system could be introducing new susceptible hosts

at various time points in the experiment to better understand

transmission dynamics over longer experimental time

scales. Together, these types of studies will allow a better

understanding of how pathogen populations assemble, and

provide empirical parameters to tailor disease dynamic

predictions to emerging fungal pathogens.
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