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No jacket required – new fungal lineage
defies dress code

Recently described zoosporic fungi lack a cell wall during trophic phase

Timothy Y. James1)� and Mary L. Berbee2)�

Analyses of environmental DNAs have provided tantalizing evidence for

‘‘rozellida’’ or ‘‘cryptomycota’’, a clade of mostly undescribed and deeply

diverging aquatic fungi. Here, we put cryptomycota into perspective through

consideration of Rozella, the only clade member growing in culture. This is

timely on account of the publication in Nature of the first images of uncul-

tured cryptomycota from environmental filtrates, where molecular probes

revealed non-motile cyst-like structures and motile spores, all lacking typical

fungal chitinous cell walls. Current studies of Rozella can complement these

fragmentary observations from environmental samples. Rozella has a fungal-

specific chitin synthase and its resting sporangia have walls that appear to

contain chitin. Cryptomycota, including Rozella, lack a cell wall when absorb-

ing food but like some other fungi, they may have lost their ‘‘dinner jacket’’

through convergence. Rather than evolutionary intermediates, the cryptomy-

cota may be strange, divergent fungi that evolved from an ancestor with a

nearly complete suite of classical fungal-specific characters.
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Introduction

Fungi lead hidden lives

Fungi lead cryptic lives by growing inside
their food source, and if they emerge it is
only to reproduce as mushrooms, cups,
or other spore-producing structures.
Although the reproductive structures

form the traditional basis for detection
and classification, they appear only
briefly in the life of a fungus. Add to this
that many groups of fungi are difficult or
impossible to obtain in pure culture [1, 2],
and the result is that by most estimates
less than 10% of all fungi have been
observed and formally described (100
thousand out of an estimated 1.5 million

species). Ranging from unicellular organ-
isms to some of the largest andmost long-
lived of all organisms [3, 4], the remain-
ing fungi are hiding all around us and
modern approaches to studying diversity
and communities are beginning to reveal
the true phylogenetic diversity of the
group. After a full decade of progress in
understanding fungal diversity using
environmental DNA community studies,
we now realize that most of the fungi in
the environment do not actually match
those specimens from herbarium cabi-
nets and culture collections that were
used to build the fungal tree of life [2, 5].

Most fungal sequences from environ-
mental DNA studies can be assigned to a
described class or even genus [6–8], but
some represent unknown taxa on deeply
diverging branches [9–12]. When line-
ages known exclusively from environ-
mental DNA sequences cannot be
assigned to a phylum, they challenge
our understanding of the biodiversity
and phylogeny (breadth and depth),
and even characteristics of fungi. A
recent breakthrough by Jones et al. [13]
on the diversity and characteristics of
one such enigmatic lineage, named
‘‘cryptomycota’’, raised the possibility
that the lines dividing fungus from the
protozoan soup from which they evolved
[14] may be fuzzier than appreciated.
Specifically, Jones et al. concluded that
the widespread group cryptomycota
were intermediate between fungi and
ancestral protists. In their words:

‘‘Co-staining with cell wall markers dem-
onstrates that representatives from the
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clade do not produce a chitin-rich cell
wall during any of the life cycle stages
observed and therefore do not conform to
the standard fungal body plan’’ [13].

Our objectives here are to review the
current state of knowledge of cryptomy-
cota with a focus on its culturable
species in Rozella. We provide evidence
showing that, although the cryptomy-
cota may have diverged early from other
fungi, they have the capacity to make
chitin-rich walls. While the cryptomy-
cota do not conform to the ‘‘standard
fungal body plan’’, derived adaptation
to intracellular parasitism should be
considered as an alternative expla-
nation to retention of ancient, inter-
mediate characters.

Cryptomycota: Unicellular
bodies linked to
environmental lineages

Cryptomycota were first detected as
DNA sequences occurring in mesocosms
of non-sterile water from Lake
Ketelmeer, the Netherlands [15]. The
cloned sequences were loosely related
to fungi, but showed only a distant
match to any of the known sequences
at the time and the group was named
after one of the clones, LKM11. After this
discovery, the following decade of
environmental DNA surveys uncovered
sequences related to LKM11 numerous
times. The sequences have variously
been called ‘‘fungi’’, a ‘‘novel clade’’,

or they have been inaccurately assigned
to other phyla. LKM11-related sequences
were recovered in essentially all
environmental DNA surveys of fresh-
water aquatic ecosystems, such as the
pH 2.0 Rio Tinto in Spain [16], anoxic
sediments in lakes [17], and among
picoeukaryotes (<5 mM) in lake water
[18]. The LKM11 sequences were also
described from terrestrial and marine
systems, including the rhizosphere sur-
rounding aspen roots [19], anoxic
coastal sediments [20], and deep-sea
sediments [21] (Fig. 1). These obser-
vations suggested that LKM11, like fungi
in Chytridiomycota (chytrids), repro-
duce with motile spores and thus thrive
in freshwater as well as in soil and
marine ecosystems. By 2010 over 30 cul-
ture-independent environmental DNA
studies documented the presence of
LKM11 either as an early-diverging fun-
gal clade or as a close relative to the
fungi [21]. Because no member had ever
been seen, the group remained an
enigma.

The first breakthrough on the place-
ment of the LKM11 clade was the demon-
stration of a relationship to the aquatic
genus Rozella with robust phylogenetic
support [22]. Rozella is an internal para-
site, primarily of water molds [23], that
was once classified in the order
Spizellomycetales (Chytridiomycota)
[24] (Box 1, Fig. 2). However, James
et al. [25] demonstrated clearly (with
statistical support) that the older classi-
fication was wrong and Rozella diverged

to form the primary (basal-most) branch
on the fungal tree. Lara et al. [22] coined
the name ‘‘rozellida’’ for the clade.
Because the trophic phase of Rozella
lacks a cell wall and may have retained
the ability to phagocytose host cyto-
plasm, Lara et al. suggested that rozel-
lida might be parasites positioned on
the most deeply diverging branch of
Kingdom Fungi that retained ancestral
protistan characteristics.

Jones et al. [13] opened the door to a
broader view of the environmental clade
by adapting state-of-the-art cytological
and nucleic acid probing techniques to
directly observe cells [36]. They coined
the name cryptomycota for the group, to
highlight its cryptic nature and its char-
acters, which they, like Lara et al., inter-
preted as intermediate between fungi
and ancestral protists (Box 2). Jones
et al. used tyramide signal amplifica-
tion-fluorescent in situ hybridization
[36] (TSA-FISH) to identify cells of cryp-
tomycota in filtrates from multiple sour-
ces, including pond water from the
campus of University of Exeter. The
cryptomycota cells took three forms.
Most stained with antibodies to a-tubu-
lin, appearing similar to the uniflagel-
lated zoospores of chytrids. Some lacked
flagella, having either encysted or lost
their flagellum during preparation. The
third cell type appeared to be attached
to other cells, sometimes to diatoms,
and Jones et al. hypothesized that this
was a parasitic or saprotrophic associ-
ation. A key conclusion of the paper was
that none of the many cryptomycota
cells could be stained for the presence
of chitin or cellulose with calcofluor
white or wheat germ agglutinin. The
wall-less cryptomycota and the genus
Rozella, having drawn their origin from
the primary node on the fungal tree of
life, have prompted us to critically con-
sider the characteristics that both define
fungi and led to their dramatic success
as dominant terrestrial forms.

Cryptomycota and the
evolutionary origins of a
chitinous wall

The cell wall of most fungi consists of b-
1,3 glucans, chitin, mannans, and gly-
coproteins, with chitin microfibrils play-
ing a major role in tensile strength and

freshwater
    (35)%

freshwater
sediment
   (28%)

rhizosphere, soil or rock (17%)

marine sediment
   (15%)

sea water
    (4%)

Figure 1. Proportion of habitats from 43 environmental DNA studies in which cryptomycota
have been detected. Data from Table 1 of the supporting information of Jones et al. [13].
These data do not reflect the frequency of surveys reporting cryptomycota in the various
habitat types, because cryptomycota are absent from many marine environmental DNA stud-
ies but are very common in freshwater studies.
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structural integrity [39]. Chitin syn-
thases are widely distributed among
opisthokonts. Several of the divergent
opisthokont protists with recently
sequenced genomes from the ‘‘Origins
of Multicellularity’’ project [40] have
chitin synthases (Fig. 3, Table 1).
Insects have two chitin synthases
(Table 1) [41]. Even humans have hya-
luronan synthases that produce hyalur-
onic acid but are homologs to chitin
synthases (Table 1) [42]. Like chitin, hya-
luronic acid is secreted to the outside of
cells, but it becomes a component of
vitreous humor in the eye and synovial
fluid in joints [43]. The wide phyloge-
netic distribution of chitin synthases
together with evidence (Fig. 2J) of a wall
in Rozella’s young spores suggest that
cryptomycota, or their recent ancestors,
have or had a chitinous wall at some life
history stage.

Compared with walls from most other
organisms, walls of fungi are distinctive
in three ways. Their synthesis involves
the combined action of an exceptionally
large number of chitin synthases; they
are continuously remodeled to permit
active growth; and they surround fungal
cells that are actively taking up
nutrients [44–46]. Possibly related to
the complexity and distinctive charac-
teristics of the fungal wall, the gene
duplications that gave rise to the oldest
of the fungal chitin synthases are more
ancient than the divergences of the
fungi themselves [44] (Fig. 3).

While chitin alone cannot define
fungi, the presence of division 2 chitin
synthases, and especially chitin syn-
thases with a myosin domain (Fig. 3),
along with transport of chitosomes
along the cytoskeleton, may be unifying
characters for most of Kingdom Fungi.

Most fungal genomes (except
Schizosaccharomyces) encode at least
one chitin synthase from each of two
deeply diverging divisions (Table 1,
Fig. 3). Further, the newly sequenced
genomes of early diverging fungal phyla
have twice the number of chitin
synthases as the better-known
Ascomycota (Table 1). In the fungal
model systems in Ascomycota, where
chitin synthases are best characterized,
paralogous proteins differ in timing and
location of activity [47]. Among the chi-
tin synthases, the division 2 genes form
a monophyletic group known only from
fungi and microsporidia [48]. Class IV
enzymes from division 2 have usually
been found to synthesize the bulk
of the chitin in walls [45, 47].
Microsporidia have only one chitin syn-
thase, a division 2, class IV chitin syn-
thase for spore wall production that is

Box 1

What are the Rozella parasites?

As Rozella is the only member of the cryptomycota for
which themorphology and life cycle have been described,
we briefly review what is known about the genus. Rozella
consists of obligately biotrophic endoparasites that can
only be grown in dual culture with their hosts [23]. Hosts
include aquatic molds in the Oomycota and Fungi. One
species, R. coleochaetis, has been reported from the
green alga Coleochaete [26]. Experimental inoculations
have suggested that the host range of each species
is limited, with most evidence pointing to either
species- or genus-level host specificity [27–29]. The
best-known species is R. allomycis, a parasite of the
common ‘‘model’’ water mold genus Allomyces
(Blastocladiomycota). R. allomycis is also relatively com-
mon, occurring on 2 of the 43 Allomyces isolates reported
by Wolf [30]. The infection begins with posteriorly unifla-
gellate, wall-less zoospores of the parasite swimming to
an uninfected host (Fig. 2A). The spores attach to the host,
retract their flagellum, and form a cyst on the surface of
the host cell (Fig. 2B). The cysts begin to develop a cell
wall and form a penetration tube. A vacuole forms at the
posterior end of the cyst (2C and D), and the parasite
cytoplasm is injected into the host through a wall that is
apparently weakened by the parasite [31]. Once inside the
host, R. allomycis then grows as a wall-less form that
feeds on the host cytoplasm [32]. A naked thallus may
have the advantage of being able to proliferate through
the host mycelium, allowing the parasite to squeeze
through the occasional partial septa. The naked thallus
may also facilitate phagocytosis of the host’s cytoplasm,
as suggested for R. polyphagi in which the host’s mito-

chondria were inside a parasitic vacuole [33]. During
reproduction of the parasite, the host displays hypertro-
phy and its transcriptome or proteome is somehow co-
opted into making the septa/cell walls that the parasite
uses to produce zoosporangia (Fig. 2E). The septa are
required to develop the pressure needed for forcible dis-
charge of zoospores [23]. Thewalled segments of the host
may also be converted into the parasite’s pigmented and
thick-walled resting sporangia (Fig. 2F).

The source and the chemical composition of the para-
site’s resting sporangial wall are unknown. We stained a
culture of R. allomycis using methods similar to those
used by Jones et al. [13]. As expected [34], calcofluor
white stained the cell walls of Allomyces, the host, provid-
ing evidence for chitin (Fig. 2H). Mature resting spores of
Rozella did not stain, indicating that the outer ornamen-
tation lacked these polysaccharides (Fig. 2J). However,
the immature, unpigmented resting spore walls in Rozella
did contain chitin or cellulose judging from their strong
staining with calcofluor white (Fig. 2J). In combination with
the detection of a chitin synthase homolog in the
R. allomycis genome, these data suggest that the parasite
can make its own chitinous resting sporangium. Some
parallels can be drawn between the injection of naked
protoplasts of Rozella into the host through enlargement
of a vacuole, and themechanism bywhich the protoplasm
of a microsporidian spore is rapidly ejected into a host cell
through expansion of a posterior vacuole [35]. This mode
of infection may reflect an evolutionarily conserved mech-
anism, determinable perhaps if the phylogenetic relation-
ship between microsporidia and Rozella, demonstrated in
at least one phylogenetic study [25], can be rigorously
tested.
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recognizable even though the highly
reduced genomes of microsporidia
evolved very quickly, erasing most
traces of ancestral relationships [48]
(Fig. 3). We predict that, at the least, a
recognizable ortholog to the division 2
class IV fungal gene will be detected by
sequencing a genome of Rozella or other
cryptomycota. Preliminary results from
draft genome sequencing of R. allomycis
indeed have revealed a division 2 syn-
thase (GenBank accession number

JN646249), confirming that the parasite
is capable of producing a chitinous wall
at some stage of its life cycle.

A fungus-specific solution to
targeting chitin synthesis to sites
of active growth

Remaining to be determined is whether
the Rozella genome has the distinctive
fungal-specific chitin synthases with an
N-terminal myosin head domain that

are important in polar growth in other
fungi [49–51]. Chitin synthases must be
correctly targeted to the plasma mem-
brane [52]. In filamentous fungi, chitin
synthases, packed in vesicles called chi-
tosomes, are transported along a cyto-
skeletal highway to the hyphal tip. In
Ustilago, an analysis of mutants and of
localization of fluorescently tagged
proteins showed that the myosin
domain is essential for exocytosis of
its chitin synthase, and possibly also
for its short range transport along the
actin cytoskeleton to the hyphal tip [51].
The earliest diverging fungi are mostly
like Rozella, with the main body grow-
ing isotropically to form a rounded
globule, rather than elongating at a
narrow hyphal tip. Surprisingly, even
Chytridiomycota with globular bodies
have several paralogs of chitin syn-
thases with myosin domains (Fig. 3,
Table 1). Like the Chytridiomycota,
Rozella may require polar wall depo-
sition for spatial orientation at specific
life history stages, for example, when
producing specialized apical exit papil-

Figure 2. Life cycle of Rozella allomycis, a parasite of Allomyces. Photos are of strain CSF55
isolated from Hattiesburg, MS, USA. A: Posteriorly uniflagellate zoospores. Note the refractive
lipid sac and slipper shape. B: Aggregation on host hyphae. C: Posterior vacuole observed
at end of cyst as contents are injected into host cell. D: Empty cysts (c) on host hypha; note
germ tube visible on one cyst and injected young amoeboid thallus appearing inside the host
near cysts. E: Early stages of zoosporangium formation; note septa (s) produced by the host
that separate the parasite’s zoosporangia (z). Five zoosporangia are shown, and the terminal
one displays a discharge papillum (p). F: Developing parasite resting sporangia delimited by
host septa. Immature resting sporangia lack brown pigment. G: Mature, thick-walled resting
sporangia. H: Resting sporangia in G stained with calcofluor white (marker for chitin and
cellulose). Host hyphae and cross walls, but not parasite resting sporangia, stain. I: Resting
sporangia removed from host cells; an immature and mature sporangium is shown. J:
Immature wall of resting sporangium (from I) stains with calcofluor white, but the pigmented
mature wall does not, possibly because final wall layers mask the inner polysaccharides.
Scale bar ¼ 5 mm in A and B; 10 mm in C, D, I, and J; 20 mm in E–H.
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lae for zoospore escape, or when form-
ing germ tubes to penetrate host cells
(Fig. 2D).

A strikingly different mechanism
of localization of chitin synthases
evolved in Saprolegnia, an oomycete
(Straminopila). Superficially similar to
Fungi, Saprolegnia is related instead to
diatoms and brown algae (Fig. 3) and
cellulose, not chitin, is the main con-
stituent of its walls. Along with
other Straminopila including diatoms,
Saprolegnia nonetheless has genes
sharing sequence motifs with fungal
division 1 chitin synthases (Table 1).
However, the lack of chitosomes in
Saprolegnia suggests that it evolved
an alternative way to shuttle chitin syn-
thases to the hyphal tip [53]. Two of its
six chitin synthase paralogs have
microtubule interacting and sorting
domains, which are not present in chi-
tin synthases of any true fungus [54].
While the origin of chitin synthases is
ancient, the mechanisms for subcellu-
lar localization appear to have evolved
independently.

Evolution of fungus-specific
chitin synthases: Loss is easy,
gain was rare

The cryptomycota lack cell walls in some
stages. Unlikemost fungi, Rozella species
lack walls when taking up nutrients
and may use phagotrophy rather than
absorptive nutrition across a cell wall.
The lack of a wall during feeding may
be a primitive character retained by
the common ancestor of all fungi, but

could also represent secondary loss of a
wall, an adaptation to intracellular para-
sitism. Other pathogenic fungi in clades
that normally produce chitinous walls
can also grow inside a host cell as a
wall-less trophic form. Wall-less trophic
forms are found in Blastocladiomycota
[55], Entomophthoromycotina [56],
microsporidia [57], and Beauvaria
(Ascomycota [58]). Chitin triggers a
strong innate immune response from
animals and plants [52], and its absence
during intracellular parasitism suggests
convergent adaptation to avoid host
detection. These examples set the expec-
tation that stage-specific suppression of
chitin synthases is relatively easy.

How much of the
cryptomycota life cycle
and ecology do we know

The life cycle stages detected in uncul-
tured cryptomycota are also found in
Rozella but the converse is not true.
Zoosporangial and resting stages are
known only from Rozella. An open
question is whether Jones et al. cap-
tured a trophic phase among the
motile, unattached cysts, or among
the attached cells that they filtered
from pond water. The unattached cysts
may be able to phagocytose cells such
as bacteria or picoplankton, or they
may be a transitional, amoeboid crawl-
ing phase, as observed in members
of Ichthyosporea (Mesomycetozoea)
[59, 60]. Whether or not the attached

cysts are parasitic requires further
investigation, but if they are, they
may – as in Rozella – inject their pro-
toplasm into a host cell.

If they originated from the basal
node of the Fungi, cryptomycota have
had ample time for diversification.
How successful have cryptomycota
been over this time period, and are
they as common as fungi in their pre-
ferred environments? Using an argu-
ment based on phylogenetic branch
lengths, Jones et al. suggest that cryp-
tomycota radiated to become nearly as
diverse as all other fungi, although this
estimate could be biased if the crypto-
mycota, like some other intracellular
parasites, have unusually rapid rates
of substitution [61]. The cryptomycota
are primarily aquatic and are largely
absent in studies of airborne fungal
particles [62–64]. Phylogenetic
analyses suggest that other fungal
phyla originated on land or in fresh-
water [65]. Finding cryptomycota in a
cold methane seep [66] and deep-sea
sediments [21] justifies raising the
possibility that they first diversified
in the sea, like many animals and pro-
tists, but unlike most other fungi. In
general though, most extant cryptomy-
cota prefer freshwater habitats; they
decreased in abundance along a sal-
inity gradient in a salt marsh in
Rhode Island [67], their frequency is
low in the open oceans [13], and they
are absent from some deep-sea surveys
[68, 69]. Environmental DNA studies of
picoeukaryote communities in lakes
have documented �2:1 to 3:1 (fungi:
cryptomycota) [18, 70, 71]. However,
in at least one study that utilized
TSA-FISH rather than PCR-generated
clone libraries to survey eukaryotic
groups in French lakes, cryptomycota
were found to be more abundant [72].

Such studies of fungi and cryptomy-
cota in filtered water may be the aquatic
analog of the many studies that have
sampled airborne propagules of fungi
[73]. These studies may provide a
skewed picture of the community as
number of propagules produced may
reflect reproductive strategies and
phenology more than population cen-
sus size [63]. Resolution of the complete
life cycle of cryptomycota should come
from additional studies utilizing frac-
tionation of environmental samples or
direct sampling of each of the many

Box 2

What should we call the clade?

This essay revolves around a possible new fungal phylum that as yet lacks a
formal name. It was first tagged as LKM11, the code name for a DNA sequence
clone. Not intending formal naming, Jones et al. [13] proposed cryptomycota
and Lara et al. [22] proposed rozellida as provisional names for the group. Here
we use ‘‘cryptomycota’’ to emphasize that the clade is fungal but its diversity
is largely cryptic. We could equally well have adopted the name rozellida to
emphasize the connection with Rozella. In the spirit of rationalizing nomen-
clature, new higher level names for fungal taxa are, where possible, based on
and typified by their first described genus. Newly rationalized names receive
wide support [37] appearing in GenBank and in standard references such as
the Dictionary of Fungi [38]. As a formal name, Cryptomycota would be
unacceptable because Cryptomyces is already used for a genus in
Ascomycota. So, if established as a new phylum, the group could be called
‘‘Rozellomycota.’’
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Table 1. All sequenced fungal genomes have numerous paralogous genes with motifs characteristic of chitin synthases, and copies
of the deeply diverging division 1 and division 2 genes are present in all fungal phyla

Gene and source
(phylum or higher group, genus,
accession numbera of example)

No. of
paralogs

Any paralogs
with motifs
related to
transport?b

Presumed functional motifsc

Substrate
binding

Substrate
binding

Catalytic
base Processivity Processivity

Chitin synthase division 1 consensus T(MY)NE DXGT LAEDRIL QRRRW (S/T)WG

Ascomycota, Aspergillus,
ANID_04367

4 No TYYNE DAGT LAEDRIL QRRRW SWG

Blastocladiomycota, Allomyces,
AAMAG 10750.1

10 No TMYNE DVGT LAEDRIL QRRRW SWG

Chytridiomycota, Batrachochytrium
BDEG 08256.1

3 No TMYNE DVGT LAEDRIL QRRRW SWG

Chytridiomycota, Spizellomyces
SPPG 04845.2

6 No TMYNE DVGT LAEDRIL QRRRW SWG

Zygomycota, Rhizopus
RO3G_16230.3

6 No TMYNE DVGT LAEDRIL QRRRW SWG

Microsporidia, Encephalitozoon None No

Straminopila (not Fungi), Saprolegnia
SPRG_02074.2

6 Yes; 30 microtubule
interacting and sorting
domain MIT PF04212

TMYNE DVGT LAEDRIL QRRRW SWG

Chitin synthase division 2 consensus (T/P)(A/C)
Y(S/T)E

DADT LGEDR(YFE)L Q(R/G)RRW (S/T)WG

Ascomycota, Aspergillus,
ANID_06318.1

3 Yes PAYTE DADT LGEDRYL QRRRW SWG

Blastocladiomycota, Allomyces,
AMAG_07719.1

25 Yes; 50 myosin
cd00124; also
note 50 oligopeptide
transporter protein
in AMAG_15310.1

PCYTE DSDT LGEDRYL QRRRW SWG

Chytridiomycota Batrachochytrium,
BDEG_03361.1

11 Yes; 50 myosin
cd00124

PCYTE DADT LGEDRYL QRRRW SWG

Chytridiomycota Spizellomyces
SPPG 03441.2

11 Yes; 50 myosin
cd00124

PCYTE DADT LGEDRFL QRRRW SWG

‘‘Cryptomycota’’ Rozella GenBank
JN646249

na Unknown TCYSE DADT LGEDRYL QRRRW SWG

Zygomycota Rhizopus
RO3G_17187.3

20 Yes; 50 myosin
cd00124

PCYTE DADT LGEDRYL QRRRW SWG

Microsporidia, Encephalitozoon
GenBank XP_965977

1 No TCYSE DADT LGEDRYL QRRRW SWG

Straminopila (not Fungi), Saprolegnia None No

Outgroups

Choanoflagellata (unicellular
opisthokont) Salpingoeca PTSG
01414.1

1 No PCYNE DCGT LAEDRFL QRRRW TWG

Choanoflagellata Salpingoeca PTSG
01542.1

1 30 SAM domain TMYNE DADI MGEDRWL QRRRW SWG

Filasporea (unicellular opisthokont)
Capsaspora CAOG 03353.2

1 No ADFDN DGDV LGEVP-L QRRRW RWG

Apusozoa (unicellular) Thecomonas
AMSG_12058.2

1 No PNVTL DGDT MGEDRWL QRKRW SWG

Arthropoda, Drosophila, GenBank
NP_730928

2 Yes; 30 transmembrane
amino acid transporter
domain, pfam03845

TMWHE DGDI QGEDRWL QRRRW SWG

Chordata, Homo, hyaluronan
synthase, GenBank AAH35837

4 No SAYQE DSDT FGDDRHL QQTRW GWG

a Sequences are from the Broad Institute http://www.broadinstitute.org/ unless otherwise noted.
b From comparisons with the Conserved Domain Database [79].
c Division-specific sequence motifs are from Choquer et al. [80]. We found fungal-specific chitin synthases with BLAST
searches using as our queries the conserved amino acid domains from division 1 Chs2p gene (DVGTRL...HDVSWG, GenBank
NP_009594.1) from Saccharomyces cerevisiae and division 2 class V gene from Aspergillus nidulans (HHHIRN...DDFSWG,
GenBank AAB05797.1), with e-30 as a cutoff for fungi, e-9 for outgroup organisms. To find the motifs, we aligned sequences
using MUSCLE [81]. Outside of fungi and animals, gene function is unknown and homology with the first substrate binding
domain is uncertain.
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possible hosts that lurk in the sediments
in which cryptomycota have been found
using the developed nucleic acid probes
[13, 72, 74].

Beware of error and
uncertainty

Up until this point, we have accepted –
based only on the ribosomal DNA locus

– that the cryptomycota originated from
the first divergence in the fungal tree of
life. But is this phylogenetic position
correct? The earlier analyses of James
et al. [25] with the two available protein
coding loci in addition to ribosomal
DNA showed the position of Rozella to
be generally consistent with Jones et al.
[13]. However, tree topology tests did
not rule out alternative positions of
Rozella among the fungi [75]. This,
along with the clustering of Rozellawith

the notoriously unstable microsporidia
[25] raises the possibility that the basal
position of the entire cryptomycota
clade may be an artifact. Phylogenetic
error can result from violations of stand-
ardmolecular evolutionmodels, such as
heterotachy (variation in site-specific
DNA substitution rates over time) [76].
A multilocus phylogeny using sequen-
ces from complete genomes of Rozella,
and ideally other cryptomycota, would
help to place these key taxa. No
matter what its position, cryptomycota
will undoubtedly remain a highly diver-
gent group of fungi with characters that
help illuminate early fungal evolution.
However, the jury is still out about
how early these fungi diverged from
all others.

Conclusions

The unveiling of cryptomycota over the
last decade has revealed a prominent
branch of ubiquitous and diverse organ-
isms that straddle the divide between
fungi and the opisthokont protozoa
from which they evolved. Studies of
these organisms from environmental
samples will continue to be important
in illuminating habitat and host
relationships, while cultured isolates
of Rozella serve as cryptomycota’s most
tractable representatives for experimen-
tal and genomic analysis. Our detection
of the chitinous wall of Rozella required
staining of immature resistant sporan-
gia that have yet to be detected among
environmental samples hybridizing to
cryptomycota probes. Showing that
Rozella produced one of the fungal-
specific chitin synthases required
genomic analysis, as will the reconstruc-
tion of its full suite of chitin synthases,
now a work in progress. We predict that
future analyses of environmental
genomes will also reveal chitin syn-
thases from other cryptomycota. The
explosion of diversity of true fungi on
land coincided with the evolution of
polar tip growth facilitated by a semi-
rigid cell wall. However, the semi-rigid
wall predated terrestrial fungi and is a
shared character of the cryptomycota
and all other fungi.

Keeping in mind that their phyloge-
netic diversity rivals that of the rest of
the fungi, the varied characteristics and
ecological capabilities of the cryptomy-
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Figure 3. Diagrammatic tree of fungi showing that the evolutionary divergence of many chitin
synthase paralogs predates all phyla of fungi, except, perhaps, the cryptomycota. We
hypothesize that the ancestor of cryptomycota was able to make a chitinous cell wall
because many animals and all other fungi have chitin, calcofluor white stains Rozella’s resting
spores (Fig. 2J), and the genome of Rozella has at least one chitin synthase. This tree places
taxa mentioned in this review in a commonly accepted phylogenetic context. We coded taxa
for gene presence based on comparisons of genes from sequenced genomes (Table 1), and
then predicted that taxa lacking sequenced genomes would share the chitin synthases of
their closest relatives.
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cota will offer surprises. Major additions
to the tree of life are far from unique to
mycology, and the vastness of protistan
diversity is only recently becoming
widely appreciated [77]. New lineages
are sprouting across the tree, such as
the uncultured rappemond algae [78],
demonstrating that our understanding
of global biodiversity has been skewed
towards organisms that can be cultured
or that are macroscopic. Because
these are the early days of research into
uncultured cryptomycota, Lara et al. [22]
and Jones et al. [13] are extrapolating
from fragmentary evidence. However,
by opening a window on uncultured
cryptomycota, their work is leading
to stimulating new hypotheses that
challenge classical concepts of fungal
life cycles, ecological niches, and evol-
utionary trajectories.
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