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Statistical measures for usage-based linguistics 

 

1. Usage-based approaches: psycholinguistics and corpus analysis 

 

Usage-based approaches see language as a large repertoire of symbolic constructions. 

These are form-meaning mappings which relate particular patterns of lexical, 

morphological, syntactic and/or prosodic form with particular semantic, pragmatic, and 

discourse functions (Bates & MacWhinney, 1989; Goldberg, 2006; Robinson & Ellis, 

2008; Tomasello, 2003; Trousdale & Hoffmann, 2013). These allow communication 

because they are conventionalized in the speech community. People learn them from 

engaging in communication, the “interpersonal communicative and cognitive processes 

that everywhere and always shape language” (Slobin, 1997). Repeated experience results 

in their becoming entrenched as language knowledge in the learner’s mind. 

 Constructionist accounts thus investigate processes of language acquisition that 

involve the distributional analysis of the language stream and the parallel analysis of 

contingent cognitive and perceptual activity, with abstract constructions being learned 

from the conspiracy of concrete exemplars of usage following statistical learning 

mechanisms relating input and learner cognition (Rebuschat & Williams, 2012). 

Psychological analyses of these learning mechanisms are informed by the literature on the 

associative learning of cue-outcome contingencies, where the usual determinants include: 

factors relating to the form such as frequency and salience; factors relating to the functional 

interpretation such as significance in the comprehension of the overall utterance, 

prototypicality, generality, and redundancy; factors relating to the contingency of form and 

function; and factors relating to learner attention, such as automaticity, transfer, 

overshadowing, and blocking (Ellis, 2002, 2003, 2006, 2008). These various 

psycholinguistic factors conspire in the acquisition and use of any linguistic construction. 

Research into language and language acquisition therefore requires the measurement of 

these factors. 

 From its very beginnings, psychological research has recognized three major 

experiential factors that affect cognition: frequency, recency, and context of usage (e.g., 

Anderson, 2000; Bartlett, [1932] 1967; Ebbinghaus, 1885). “Learners FIGURE language 

out: their task is, in essence, to learn the probability distribution P(interpretation|cue, 

context), the probability of an interpretation given a formal cue in a particular context, a 

mapping from form to meaning conditioned by context” (Ellis, 2006, p. 8). But assessing 

these probabilities is non-trivial, because constructions are nested and overlap at various 

levels (morphology within lexis within grammar); because sequential elements are 

memorized as wholes at (and sometimes crossing) different levels; because there are 

parallel, associated, symbiotic, thought-sound strands that are being chunked – language 

form, perceptual representations, motoric representations, …, the whole gamut of cognition 

– and because there is no one direction of growth – there is continuing interplay between 

top-down and bottom-up processes and between memorized structures and more open 

constructions: “Language, as a complex, hierarchical, behavioral structure with a lengthy 

course of development … is rich in sequential dependencies: syllables and formulaic 

phrases before phonemes and features …, holophrases before words, words before simple 

sentences, simple sentences before lexical categories, lexical categories before complex 

sentences, and so on” (Studdert-Kennedy, 1991, p. 10). Constructions develop 
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hierarchically by repeated cycles of differentiation and integration. Recent developments 

in corpus and cognitive linguistics are addressing these issues of operationalization and 

measurement with increasing sophistication (Baayen, 2008, 2010; Gries, 2009, 2013b; 

Gries & Divjak, 2012). This paper summarizes relevant factors and how these can be 

operationalized and explored on the basis of corpus data. 

 

 

2. Psycholinguistic desiderata and corpus-linguistic responses 

 

2.1 Frequency 

The most fundamental factor that drives learning is the frequency of repetition in usage. 

This determines whether learners are likely to experience a construction, and, if so, how 

strongly it is entrenched, accessible, and its processing is automatized. 

 

2.1.1 Sampling 

Language learners are more likely to experience more frequent usage events. They have 

limited exposure to the target language but are posed with the task of estimating how 

linguistic constructions work from an input sample that is incomplete, uncertain, and noisy. 

Native-like fluency, idiomaticity, and selection presents another level of difficulty again. 

For a good fit, every utterance has to be chosen, from a wide range of possible expressions, 

to be appropriate for that idea, for that speaker and register, for that place/context, and for 

that time. And again, learners can only estimate this from their finite experience. Like other 

estimation problems, successful determination of the population characteristics is a matter 

of statistical sampling, description, and inference. 

 

2.1.2 Entrenchment 

Learning, memory, and perception are all affected by frequency of usage: the more times 

we experience something, the stronger our memory for it, and the more fluently it is 

accessed. The power law of learning (Anderson, 1982; Ellis & Schmidt, 1998; Newell, 

1990) describes the relationships between practice and performance in the acquisition of a 

wide range of cognitive skills – the greater the practice, the greater the performance, 

although effects of practice are largest at early stages of learning, thereafter diminishing 

and eventually reaching asymptote. The more recently we have experienced something, the 

stronger our memory for it, and the more fluently it is accessed. The more times we 

experience conjunctions of features, the more they become associated in our minds, the 

more these subsequently affect perception and categorization in the sense that we perceive 

and process them as a chunk; so a stimulus becomes associated to a context and we become 

more likely to perceive it in that context. 

 Fifty years of psycholinguistic research has demonstrated language processing to 

be exquisitely sensitive to usage frequency at all levels of language representation: 

phonology and phonotactics, reading, spelling, lexis, morphosyntax, formulaic language, 

language comprehension, grammaticality, sentence production, and syntax (Ellis, 2002). 

Language knowledge involves statistical knowledge, so humans learn more easily and 

process more fluently high frequency forms and ‘regular’ patterns which are exemplified 

by many types and which have few competitors. Psycholinguistic perspectives thus hold 

that language learning is the associative learning of representations that reflect the 
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probabilities of occurrence of form-function mappings. Frequency is a key determinant of 

this kind of acquisition because ‘rules’ of language, at all levels of analysis from phonology, 

through syntax, to discourse, are structural regularities which emerge from learners’ 

lifetime analysis of the distributional characteristics of the language input. 

 

2.1.3 Counting frequencies in corpora 

Frequencies of occurrence and frequencies of co-occurrence constitute the most basic 

corpus-linguistic data. In fact, one somewhat reductionist view of corpus data would be 

that corpora typically have actually nothing more to offer than frequencies of 

(co-)occurrence of character strings and that anything else (usage-based) linguists are 

interested in – morphemes, words, constructions, meaning, information structure, function 

– needs to be operationalized in terms of frequencies of (co-)occurrence (e.g., how much 

of the use of a construction is observed with a particular meaning, how much is the use of 

different forms of a lemma correlated with different senses of that lemma, etc.? Thus, 

linguistic data from corpora can be ranked in terms of how (in)directly a particular object 

of interest is reflected by corpus-based frequencies. On such a scale, frequency per se and 

the way it contributes to, or more carefully ‘is correlated with’, entrenchment is the 

simplest corpus-based information and is typically provided in the form of tabular 

frequency lists of word forms, lemmas, n-grams (interrupted or contiguous sequences of 

words) etc. While seemingly straightforward, it is worth noting that even this simplest of 

corpus-linguistic methods can require careful consideration of at least two kinds of aspects. 

 First, counting tokens such as words requires an (often implicit) process of 

tokenization, i.e. decisions as to how the units to be counted are delimited. In some 

languages, whitespace is a useful delimiter, but some languages do not use whitespace to 

delimit, say, words (Mandarin Chinese is a case in point) so a tokenizer is needed to break 

up sequences of Chinese characters into words and different tokenizers can yield different 

results. Even in languages that do use whitespace (e.g., English), there may be strings one 

would want to consider words even though they contain whitespace; examples include 

proper names and titles (e.g., Barack Obama and Attorney General), compounds (corpus 

linguistics), and multi-word units (e.g., according to, in spite of, or on the one hand). In 

addition, tokenization can be complicated by other characters (how many words are 1960 

or Peter’s dog?) or spelling inconsistencies (e.g., armchair linguist vs. armchair-linguist). 

Practically, this means that it is often a good idea to explore an inventory of all characters 

that are attested in a corpus before deciding on how to tokenize a corpus. 

 Second, aggregate token frequencies for a complete corpus can be very misleading 

since they may obscure the fact that tokens may exhibit very uneven distributions in a 

corpus, a distributional characteristic called dispersion, which is important both 

psycholinguistically and corpus-linguistically/statistically. 

 

2.2 Dispersion 

While frequency provides an overall estimate of whether learner are likely to experience a 

construction, there is another dimension relevant to learning: dispersion, i.e. how regularly 

they experience a construction: Some constructions are equally distributed throughout 

language and will thus be experienced somewhat regularly, others are found aggregated or 

clumped in particular contexts or in bursts of time and may, therefore, only be encountered 

rarely, but then frequently in these contexts. In other words, frequency answers the question 
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“how often does x happen?” whereas dispersion asks “in how many contexts will you 

encounter x at all?” 

 

2.2.1 Sampling discourse contexts 

Language users are more likely to experience constructions that are widely and or evenly 

distributed in time or place. When they do so, contextual dispersion indicates that a 

construction is broadly conventionalized, temporal dispersion shares out recency effects. 

 

2.2.2 Sampling linguistic contexts: Type and Token Frequency 

Token frequency counts how often a particular form appears in the input. Type frequency, 

on the other hand, refers to the number of distinct lexical items that can be substituted in a 

given slot in a construction, whether it is a word-level construction for inflection or a 

syntactic construction specifying the relation among words. For example, the regular 

English past tense -ed has a very high type frequency because it applies to thousands of 

different types of verbs, whereas the vowel change exemplified in swam and rang has much 

lower type frequency; thus, in a sense, type frequency is a kind of dispersion. The 

productivity of phonological, morphological, and syntactic patterns is a function of type 

rather than token frequency (Bybee & Hopper, 2001). This is because: (a) the more lexical 

items that are heard in a certain position in a construction, the less likely it is that the 

construction is associated with a particular lexical item and the more likely it is that a 

general category is formed over the items that occur in that position; (b) the more items the 

category must cover, the more general are its criterial features and the more likely it is to 

extend to new items; and (c) high type frequency ensures that a construction is used 

frequently and widely, thus strengthening its representational schema and making it more 

accessible for further use with new items (Bybee & Thompson, 2000). In contrast, high 

token frequency promotes the entrenchment or conservation of irregular forms and idioms; 

irregular forms only survive because they are high frequency. 

 The overall frequency of a construction compounds type and token frequencies, 

whereas it is type frequency (dispersion over different linguistic contexts) that is most 

potent in fluency and productivity of processing (Baayen, 2010). These factors are central 

to theoretical debates on linguistic processing and the nature of abstraction in language 

regarding exemplar-based vs. abstract prototype representations, phraseology and the 

idiom principle vs. open rule-driven construction, and the richness of exemplar memories 

and their associations vs. more abstract connectionist learning mechanisms which tune the 

feature regularities but lose exemplar detail (Pierrehumbert, 2006). Metrics of dispersion 

over different linguistic contexts are therefore key to these inquiries. 

 

2.2.3 Measuring dispersion and type frequency in corpora 

Since virtually all corpus-linguistic data are based on frequencies, the fact that very similar 

or even identical frequencies of tokens can come with very different degrees of dispersion 

in a corpus makes the exploration of dispersion information virtually indispensable. This 

fact is exemplified in Figure 1. Both panels represent the frequency of words (logged to 

the base of 10) on the x-axis and the dispersion metric DP (cf. Gries 2008) on the y-axis. 

DP is very straightforward to compute: (i) for each part of the relevant corpus, compute its 

size si in percent of the whole corpus; (ii) also, for each part of the corpus, compute how 

much of a token it contains in percent of all instances of the token ti, and (iii) compute and 
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sum up the absolute pairwise differences |si-ti|, and divide the sum by 2. Thus, DP falls 

between 0 and approximately 1 and low and high values reflect equal and unequal 

dispersion respectively. While there is the expected overall negative correlation between 

token frequency and dispersion (indicated by the solid-line smoother) – infrequent tokens 

cannot be highly dispersed, frequent ones are likely to be highly dispersed – there is a large 

amount of diverse dispersion results for intermediately frequent words. The left panel 

shows, for example, that especially in the frequency range of 2-3.5, words with very similar 

frequencies can vary enormously with regard to their dispersion; in the right panel, this is 

exemplified more concretely: words such as hardly and diamond, for instance, have nearly 

the exact same frequency but are distributed very differently. 

 

  
 

Figure 1: The relation between (logged) frequency (on the x-axes) and DP (on the y-

axes): all words in the BNC sampler with a frequency ≥10 (left panel), 68 

words from different frequency bins (right panel). 

 

 Since especially in psycholinguistics word frequency is often used as a predictor or 

a control variable, results like these show that considering dispersion is just as important, 

or even more important for such purposes (cf. Gries 2010 for how dispersion measures can 

be better correlated with reaction time data than the usual frequency data). 

 As for type frequency, this is a statistic that is usually computed from frequency 

lists (as when one determines all verbs beginning with under-), but probably more often 

from concordance displays which show the linguistic element in question in its immediate 

context. As discussed, in the case of morphemes or constructions, the type frequency of an 

element is the number of different types that the element co-occurs with, e.g., the number 

of different nouns to which a particular suffix attaches or the number of different verbs that 

occur in a slot of a particular construction. While this statistic is easy to obtain, it is again 

not necessarily informative enough because the type frequency per se does not also reflect 

the frequency distribution of the types. For instance, two constructions A and B may have 

identical token frequencies in a corpus (e.g. 1229) and identical type frequency of verbs 

entering into them, say, 5, but these may still be distributed very differently, as is 

exemplified in Figure 2. 
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Figure 2: Type-token frequency distributions for constructions A and B in a 

hypothetical data set. 

 

 A measure to quantify the very different frequency distributions is relative entropy 

Hrel, a measure of uncertainty that approximates 1 as distributions become more even (as 

in the left panel) and that approximates 0 as distributions become more uneven and, thus, 

more predictable (as in the right panel). The Zipfian distributions that are so omnipresent 

in corpus-linguistic data typically give rise to small entropy values; cf. also below. In sum, 

both dispersion and (relative) entropy are useful but as yet underutilized corpus statistics 

that should be considered more often in corpus-linguistic approaches to both 

cognitive/usage-based linguistics as well as psycholinguistics (see Section 2.4 for more 

discussion of information-theoretic measures related to entropy). 

 

2.3 Contingency 

2.3.1 Form-function contingency 

Psychological research into associative learning has long recognized that while frequency 

of form is important, so too is contingency of mapping (Shanks, 1995). Cues with multiple 

interpretations are ambiguous and so hard to resolve; cue-outcome associations of high 

contingency are reliable and readily processed. Consider how, in the learning of the 

category of birds, while eyes and wings are equally frequently experienced features in the 

exemplars, it is wings which are distinctive in differentiating birds from other animals. 

Wings are important features to learning the category of birds because they are reliably 

associated with class membership while being absent from outsiders. Raw frequency of 

occurrence is therefore less important than the contingency between cue and interpretation. 

Reliability of form-function mapping is a driving force of all associative learning, to the 

degree that the field of its study has become known as ‘contingency learning’. These factors 

are central to the Competition Model (MacWhinney, 1987, 1997, 2001) and to other 

models of construction learning as the rational learning of form-function contingencies 

(Ellis, 2006; Xu & Tennenbaum, 2007). 

 

2.3.2 Context and Form-form contingency 

Associative learning over the language stream allows language users to “find structure in 
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time” (Elman, 1990) and thus to make predictions. The words that they are likely to hear 

next, the most likely senses of these words, the linguistic constructions they are most likely 

to utter next, the syllables they are likely to hear next, the graphemes they are likely to read 

next, the interpretations that are most relevant, and the rest of what’s coming (next) across 

all levels of language representation, are made readily available to them by their language 

processing systems. Their unconscious language representation systems are adaptively 

tuned to predict the linguistic constructions that are most likely to be relevant in the 

ongoing discourse context, optimally preparing them for comprehension and production. 

As a field of research, the rational analysis of cognition is guided by the principle that 

human psychology can be understood in terms of the operation of a mechanism that is 

optimally adapted to its environment in the sense that the behavior of the mechanism is as 

efficient as it conceivably could be, given the structure of the problem space and the cue–

interpretation mappings it must solve (Anderson, 1989). These factors are at the core of 

language processing, small and large, from collocations (Gries, 2013), to collostructions 

(Gries & Stefanowitsch, 2004; see below) to formulas (Ellis, 2012), parsing sentences 

(Hale, 2011), understanding sentences (MacDonald & Seidenberg, 2006), and reading 

passages of texts (Demberg & Keller, 2008). 

 

2.3.3 Measuring contingency in corpus linguistics 

Quantifying contingency has a long tradition in corpus linguistics. The perhaps most 

fundamental assumption underlying nearly all corpus-linguistic research is that similarity 

in distribution, of which co-occurrence is the most frequent kind in corpus research, reflects 

similarity of meaning or function. Thus, over the last decades a large variety of measures 

of contingency – so-called association measures – have been developed (cf. Pecina 2010 

for a recent overview). The vast majority of these measures are all based on a 2×2 co-

occurrence table of the kind exemplified in Table 1. In this kind of table, the two linguistic 

elements x and y whose mutual (dis)preference for co-occurrence is quantified – these can 

be words, constructions, other patterns, … – are listed in the rows and columns respectively 

and the four cells of the table list frequencies of co-occurrence in the corpus in question; 

the central frequency is a, which is the co-occurrence frequency of x and y. 

 

Table 1: Schematic co-occurrence table of token frequencies for association 

measures 

 
Observed frequencies Element y Other elements Totals 

Element x a b a+b 

Other elements c d c+d 

Totals a+c b+d a+b+c+d=N 

 

 Most association measures require that one computes the expected frequencies a, b, 

c, and d that would result from x and y co-occurring together as often as would be expected 

from their marginal totals (a+b and a+c) as well as the corpus size N. The following 

measures are among the most widely used ones: 

 

(1) a. pointwise MI = ����
�

�����	
��
 

 b. z = 
�������	
��


�����	
��
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 c. t = 
�������	
��

��
 

 d. G2 = 2 ∙ � ��� ∙ ��� ���
���

�
�  

 e. -log10 pFisher-Yates exact test 

 

 Arguably, (1) is among the most useful measures because it is based on the 

hypergeometric distribution, which means (i) quantifying the association between x and y 

is treated as a sampling-from-an-urn-(the corpus)-with-replacement problem and (ii) the 

measure is not computed on the basis of any distributional assumptions such as normality. 

Precisely because of the fact that (1) involves an exact test, which could involve the 

computations of theoretically hundreds of thousands of probabilities for just one pair of 

elements x and y, the log-likelihood statistic in (1) is often used as a reasonable 

approximation. In addition, since some measures have well-known statistical 

characteristics – MI is known to inflate with low expected frequencies (i.e. rare 

combinations) and t is known to prefer frequent co-occurrences – researchers sometimes 

compute more than one association measure. 

 Applications of association measures are numerous but, for a long time, they were 

nearly exclusively applied to collocations, that is, co-occurrences where both elements x 

and y are words. For example, researchers would use association measures to identify the 

words y1-m that are most strongly attracted to a word x; a particularly frequent application 

involves determining the collocates that distinguish best between each member x1-n of a set 

of n near synonyms. For example, Gries (2003) showed how this approach helps 

distinguish notoriously difficult synonyms such as alphabetic/alphabetical or 

botanic/botanical by virtue of the nouns each word of a pair prefers to co-occur with. 

 In the last 10 years, a family of methods called collostructional analysis – a blend 

of collocation and constructional – has become quite popular. This approach is based on 

the assumption – independently arrived at in cognitive/usage-based linguistics and corpus 

linguistics – that there is no real qualitative difference between lexical items and 

grammatical patterns, from which it follows that one can simply replace, say, word x in 

Table 1 by a grammatical pattern and then quantify which words y1-n ‘like to co-occur’ 

with/in that grammatical pattern. In one of the first studies, Stefanowitsch & Gries (2003) 

showed how the verbs that are most strongly attracted to constructions are precisely those 

that convey the central senses of the (often polysemous) constructions. For example, the 

verbs in (2) and (3) are those that are most strongly attracted to the ditransitive V NPREC 

NPPAT construction and the into-causative V NPPAT into V-ing construction respectively; 

manual analysis as well as computationally more advanced methods (see below) reveal that 

these verbs involve concrete and metaphorical transfer scenarios as well as trickery/force 

respectively. 

 

(2) give, tell, send, offer, show, cost, teach, award, allow, lend, … 

(3) trick, fool, coerce, force, mislead, bully, deceive, con, pressurize, provoke, … 

 

 Additional members of the family of collostructional analysis have been developed 

to, for instance, compare two or more constructions in terms of the words that are attracted 

to them most (cf. Gries & Stefanowitsch 2004), which can be useful to study many of the 

syntactic alternations that have been studied in linguistics such as the dative alternation 
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(John gave Mary the book vs. John gave the book to Mary), particle placement (John picked 

up the book vs. John picked the book up), will-future vs. going-to future vs. shall, etc. 

 If, as we argued above, contingency information was really more relevant than mere 

frequency of occurrence, then it should be possible to show this by comparing predictions 

made on the basis of frequency to predictions made on the basis of contingency/association 

strength. Gries, Hampe, & Schönefeld (2005, 2010) study the as-predicative exemplified 

in (4) using collostructional analysis and then test whether subjects’ behavior in a sentence-

completion task and a self-paced reading task is better predicted by frequency of co-

occurrence (conditional probability) or association strength (-log10 pFisher-Yates exact test). 

 

(4) a. V NPDO as XP 

 b. John regards Mary as a good friend. 

 c. John saw Mary as intruding on his turf. 

 

 In both experiments, they find that the effect of association strength is significant 

(in one-tailed tests) and much stronger than that of frequency: Subjects are more likely to 

complete a sentence fragment with an as-predicative when the verb in the prompt was not 

just frequent in the as-predicative but actually attracted to it; similarly, subjects were faster 

to read the words following as when the verb in the sentence was predictive for the as-

predicative. Similarly encouraging results were obtained by Ellis & Ferreira-Junior (2009), 

who show that measures of association strength such as pFYE (and others, see below) are 

highly correlated with learner uptake of verb use in constructions and more so than 

frequency measures alone. 

 In spite of the many studies that have used association measures to quantify 

contingency, there have been few attempts to improve how contingency is quantified. Two 

problems are particularly pressing. First, nearly all association measures neither include 

the type frequencies of x and y in their computation nor the type-token distributions (or 

(relative) entropies, see above) because the type frequencies are just conflated in the two 

token frequencies b and c. Thus, no association measure at this point can distinguish the 

two hypothetical scenarios represented in Figure 3, in which one may be interested in 

quantifying the association of construction A and verb h. In both cases, A is attested 1229 

times with 5 different verb types, of which the verb of interest, h, accounts for 500. All 

existing association measures would return the same value for the association of A and h 

although a linguist appreciating the notion of contingency/predictiveness may prefer a 

measure that can also indicate that, in the left panel, another verb may be more strongly 

attracted to A than in the right panel, where h is highly predictive of A. There is one measure 

that has been devised to at least take type frequency into consideration – Daudaravičius & 

Marcinkevičienė’s (2004) lexical gravity G – but even this one would not be able to 

differentiate the two panels in Figure 3 since they involve the same type frequency (5) and 

‘only’ differ in their entropy. 

 In the absence of easily recoverable frequency distributions of, say, constructions 

from parsed corpora, this kind of improvement will of course be very hard to come by; 

studies like Roland et al. (2007) provide important first steps towards this goal. 
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Figure 3: Type-token frequency distributions for five verbs and construction A in a 

hypothetical data set. 

 

 A second problem of nearly all association measures is their bidirectionality: they 

quantify the mutual association of two elements even though, from the perspective of 

psycholinguistics or the psychology of learning, associations need not be mutual, or equally 

strong in both directions (just like perceptions of similarity are often not symmetric; cf. 

Tversky 1977). While there have been some attempts at introducing directional association 

measures based on ranked collocational strengths (cf. Michelbacher et al. 2011), the results 

have been mixed (in terms of how well they correlate with behavioral data, how well they 

can separate some very strongly attracted collocations, and in terms of the computational 

effort the proposed measures require). The currently most promising approach is the 

measure ∆P from the associative learning literature as introduced into corpus linguistics 

by Ellis (2007). ∆P is a measure that can be straightforwardly computed from a table such 

as Table 1 as shown in (5), i.e. as simple differences of proportions: 

 

(5) a. ∆��|� =
�
�!�

− #
#!$

 

 b. ∆��|� =
�
�!#

− �
�!$

 

 

 When applied to two-word units in the spoken component of the British National 

Corpus (cf. Gries 2013b), this measure is very successful at identifying the directional 

association of two-word units that traditional measures flag as mutually associated. For 

instance, (6) lists two-word units in which the first word is much more predictive of the 

second one than vice versa, and (6) exemplifies the opposite kind of cases. 

 

(6) a. upside down, according to, volte face, ipso facto, instead of, insomuch as 

 b. of course, for example, per annum, de facto, at least, in situ 

 In sum, the field of corpus-linguistic research on contingency/association is a lively 

one. Unfortunately, its two most pressing problems – type-token distributions and 

directionality – are currently only addressed with methods that can handle only one of these 

at the same time; it remains to be hoped that newly developed tools will soon address both 
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problems at the same time in a way that jibes well with behavioral data. 

 

2.4 Surprisal 

Language learners do not consciously tally any of the above-mentioned corpus-based 

statistics. The frequency tuning under consideration here is ‘computed’ by the learner’s 

system automatically during language usage. The statistics are implicitly learned and 

implicitly stored (Ellis, 2002); learners do not have conscious access to them. Nevertheless, 

every moment of language cognition is informed by these data, as language learners use 

their model of usage to understand the actual usage of the moment as well as to update 

their model and to predict where it’s going next. 

 There is considerable psychological research on human cognition and its 

dissociable, complementary systems for implicit and explicit learning and memory (Ellis, 

2007, in press; Rebuschat, in press). Implicit learning is acquisition of knowledge about 

the underlying structure of a complex stimulus environment by a process which takes place 

naturally, simply and without conscious operations. Explicit learning is a more conscious 

operation where the individual makes and tests hypotheses in a search for structure. Much 

of the time, language processing, like walking, runs successfully using automatized, 

implicit processes. We only think about walking when it goes wrong, when we stumble, 

and conscious processes are called in to deal with the unexpected. We might learn from 

that episode where the uneven patch of sidewalk is, so that we don’t fall again. Similarly, 

when language processing falters and we don’t understand, we call the multi-modal 

resources of consciousness to help deal with the novelty. Processing becomes deliberate 

and slow as we ‘think things through.’ This one-off act of conscious processing too can 

seed the acquisition of novel explicit form-meaning associations (Ellis, 2005). It allows us 

to consolidate new constructions as episodic ‘fast-mapped’ cross-modal associations 

(Carey & Bartlett, 1978). These representations are then also available as units of implicit 

learning in subsequent processing. Broadly, it is not until a representation has been noticed 

and consolidated that the strength of that representation can thereafter be tuned implicitly 

during subsequent processing (Ellis, 2006a, 2006b). Thus the role of noticing and 

consciousness in language learning (Ellis, 1994; Schmidt, 1994). 

 Contemporary learning theory holds that learning is driven by prediction errors: 

that we learn more from the surprise that comes when our predictions are incorrect than 

when our predictions are confirmed (Clark, 2013; Rescorla & Wagner, 1972; Rumelhart, 

Hinton, & Williams, 1986; Wills, 2009), and there is increasing evidence for surprisal-

driven language processing and acquisition (Dell & Chang, in press; Demberg & Keller, 

2008; Jaeger & Snider, 2013; Pickering & Garrod, 2013; Smith & Levy, 2013). For 

example, Demberg & Keller (2008) analyze a large corpus of eye-movements recorded 

while people read text to demonstrate that measures of surprisal account for the costs in 

reading time that result when the current word is not predicted by the preceding context. 

Surprisal can be seen as an information-theoretic interpretation of probability, which is 

therefore related to the notion of entropy discussed above. It is computed as shown in (7). 

 

(7) surprisal = –log2 p 

 

 The probability in question can be unconditional or conditional probabilities of 

occurrence of different kinds of linguistic elements of any degree of complexity. The 
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simplest possible case would be the unconditional probability (i.e., relative frequency) of, 

say, a word in a corpus. A slightly more complex example would be a simple forward 

transitional probability such as the probability of the word y directly following the word x, 

or a conditional probability such as the probability of a particular verb given a construction. 

More complex applications include the conditional probability of a word given several 

previous words in the same sentence or, to include a syntactic example, the conditional 

probability of a particular parse tree given all previous words in a sentence (as in, say, 

Demberg & Keller, 2008). 

 Whatever the exact nature of the (conditional) probability, equation (7) shows that 

surprisal derives from conditional probabilities, which means it, too, can in fact be 

computed from Table 1, namely as -log2
a/a+b or -log2

a/a+c, and, as Figure 4 clearly shows, 

surprisal is therefore inversely related to probability and thus also very strongly correlated 

with ∆P. 

 

 
 

Figure 4: The relationship between probability (on the x-axis) and surprisal (on the y-

axis) 

 

 In usage-based linguistics, surprisal has been studied in particular in studies of 

structural priming, e.g., when Jaeger & Snider (2008) show that surprising structures – e.g., 

when a verb that is strongly attracted to the ditransitive is used in the prepositional dative 

– prime more strongly than non-surprising structures. Whichever way surprisal is 

computed, it is a useful addition to the corpus-linguistic tool kit and may ultimately also 

be viewed as a good operationalization of the notoriously tricky notion of salience. 

 The complementary psychological systems of implicit, expectation-driven, 

automatic cognition as opposed to explicit, conscious processing are paralleled in these 

complementary corpus statistics measuring predictability in context vs. surprisal. 

Contemporary corpus pattern analysis also focusses upon their tension. Hanks (2011:2) 

talks of norms and exploitations as the Linguistic Double Helix: 

 

Much of both the power and the flexibility of natural language is derived 

from the interaction between two systems of rules for using words: a 
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primary system that governs normal, conventional usage and a secondary 

system that governs the exploitation of normal usage. 

 

 The Theory of Norms and Exploitations (TNE, Hanks, 2013) is a lexically based, 

corpus-driven theoretical approach to how words go together in collocational patterns and 

constructions to make meanings. He emphasizes that the approach rests on the availability 

of new forms of evidence (corpora, the Internet) and the development of new methods of 

statistical analysis and inferencing. Partington (2011), in his analysis of the role of surprisal 

in irony, demonstrates that the reversal of customary collocational patterns (e.g., tidings of 

great joy, overwhelmed) drives phrasal irony (tidings of great horror, underwhelmed). 

Similarly, Suslov (1992) shows how humor and jokes are based on surprisal that is 

pleasurable: we enjoy being led down the garden path of a predictable parse path, and then 

have it violated by the joke-teller. 

 

2.5 Zipf’s law and construction learning 

Zipf’s law states that in human language, the frequency of words decreases as a power 

function of their rank in the frequency table. If pf is the proportion of words whose 

frequency in a given language sample is f, then % ≈ '(��/�*+,-ℎ*� ≈ 1 . Zipf (1949) 

showed this scaling relation holds across a wide variety of language samples. Subsequent 

research has shown that many language events (e.g., frequencies of phoneme and letter 

strings, of words, of grammatical constructs, of formulaic phrases, etc.) across scales of 

analysis follow this law (Ferrer i Cancho & Solé, 2001, 2003). 

 Research by Goldberg (2006), Ellis & Ferreira-Junior (2009), Ellis and O'Donnell 

(2012); Ellis, O'Donnell, and Römer (2012) shows that verb argument constructions are 

(1) Zipfian in their verb type-token constituency in usage, (2) selective in their verb form 

occupancy, and (3) coherent in their semantics, with a network structure involving 

prototypical nodes of high betweenness centrality and a degree distribution which is also 

Zipfian. Psychological theory relating to the statistical learning of categories suggests that 

learning is promoted, as here, when one or a few lead types at the semantic center of the 

construction account for a large proportion of the tokens. These robust patterns of usage 

might therefore facilitate processes of syntactic and semantic bootstrapping. 

 Zipfian distributions are also characterized by a low entropy because of how the 

most frequent elements in a distribution reduce the uncertainty, and increase the 

predictability, of the distribution. In a learning experiment of Goldberg, Casenhiser, & 

Sethuraman’s (2004), subjects heard the same number of novel verbs (type frequency: 5), 

but with two different distributions of 16 tokens, a balanced condition of 4-4-4-2-2 (with a 

relative entropy of Hrel=0.97) and a skewed lower-variance condition of 8-2-2-2-2 

(Hrel=0.86). The distribution that was learned significantly better was the one that was more 

Zipfian and had the lower entropy, providing further evidence for the psycholinguistic 

relevance of Zipfian distribution and the notion of entropy. 

 

2.6 Semantic Network Analysis 

Constructions map linguistic forms to meanings. One of the greatest challenges in usage-

based research is how to quantify relevant aspects of meaning, for example, for verb-

argument constructions (VAC): 
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− prototypicality: for each verb type occupying a VAC, how prototypical is it of the 

VAC? 

− semantic cohesion: for each VAC, how semantically cohesive are its verb 

exemplars? 

− polysemy: how many meaning groups associated with a VAC form, and (how) can 

we identify these semantic communities? 

 

 Analysis of construction meanings typically rests on human classification, as 

illustrated so well in the ground-breaking corpus linguistic work on the meanings of 

English Verb Pattern Grammar (Francis, Hunston, & Manning, 1996). But we can go some 

way towards quantifying these analyses, and this will become increasingly important as we 

pursue replicable research to scale in large corpora. O'Donnell and Ellis applied methods 

of network science to these goals (O'Donnell, Ellis, Corden, Considine, & Römer, under 

submission; Römer, O’Donnell, & Ellis, 2014). 

 Consider again the into-causative VAC (as in He tricked me into employing him) 

described in Section 2.3.3. Wulff, Stefanowitsch, and Gries (2007) present a comparison 

of the verbs that occupy this construction in corpora of American and British English using 

distinctive collexeme analysis. They take the verbs that are statistically associated with this 

VAC in the two corpora, qualitatively group them into meaning groups, and show a 

predominance of verbal persuasion verbs in the cause predicate slot of the American 

English data as opposed to the predominance of physical force verbs in the cause predicate 

slot of the British English data. Their qualitative methods for identifying the semantic 

classes were clearly described: 

 

First, the three authors classified the distinctive collexemes separately. The 

resulting three classifications and semantic classes were then checked for 

consistency. Verbs and classes which had not been used by all three authors 

were finally re-classified on the condition that finally a maximum number 

of distinctive collexemes be captured by a minimum number of semantic 

classes. The resulting classes are verbs denoting communication (e.g. talk), 

negative emotion (e.g. terrify), physical force (e.g. push), stimulation (e.g. 

prompt), threatening (e.g. blackmail), and trickery (e.g. bamboozle). (p. 

273). 

 

 This pattern was discussed on the Corpora list (www.hit.uib.no/corpora/ November 

20, 2013) and Kilgarriff (Kilgarriff, Rychly, Smrz, & Tugwel, 2004) posted the types of 

verb that occupy the pattern in 113,436 hits in the enTenTen12 corpus (a 12 billion word 

corpus of web crawled English texts collected in 2012, http://www.sketchengine.co.uk). 

Following the methods described in O'Donnell et al. (under submission), we took these 

verb types and built a semantic network using WordNet, a distribution-free semantic 

database based upon psycholinguistic theory (Miller, 2009). WordNet places verbs into a 

hierarchical network organized into 559 distinct root synonym sets (‘synsets’ such as 

move1 expressing translational movement, move2 movement without displacement, etc.) 

which then split into over 13,700 verb synsets. Verbs are linked in the hierarchy according 

to relations such as hypernym [verb Y is a hypernym of the verb X if the activity X is a 

(kind of) Y (to perceive is an hypernym of to listen], and hyponym [verb Y is a hyponym 
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of the verb X if the activity Y is doing X in some manner (to lisp is a hyponym of to talk)]. 

Algorithms to determine the semantic similarity between WordNet synsets have been 

developed which consider the distance between the conceptual categories of words and 

their hierarchical structure in WordNet (Pedersen, Patwardhan, & Michelizzi, 2004). We 

compared the verbs types occupying the into-causative pairwise on the WordNet Path 

Similarity measure as implemented in the Natural Language Tool Kit (NLTK, Bird, Loper, 

& Klein, 2009), which ranges from 0 (no similarity) to 1 (items in the same synset). We 

then built a semantic network in which the nodes represent verb types and the edges strong 

semantic similarity. Standard measures of network density, average clustering, degree 

centrality, transitivity, etc. were then used to assess the cohesion of the semantic network 

(de Nooy, Mrvar, & Batagelj, 2010). We also applied the Louvain algorithm for the 

detection of communities within the network representing different semantic sets (Blondel, 

Guillaume, Lambiotte, & Lefebvre, 2008). 

 Figure 5 shows the semantic network for verb occupying the into-causative VAC 

built using these methods, with 7 differently colored communities identified using the 

Louvain algorithm. In these networks, related concepts are closer together. The more 

connected nodes at the center of the network, like make, stimulate, force, and persuade, are 

depicted larger to reflect their higher degree. For each node we have measures of degree, 

betweenness centrality, etc. There are 57 nodes connected in the network by 130 edges. 

The cohesion metrics for the network as a whole include network density 0.081, average 

clustering of 0.451, a degree assortativity of 0.068, transitivity 0.364, degree centrality 

0.212, and betweenness centrality 0.228, and a modularity score, which reflects the degree 

to which there are emergent communities, of 0.491. We have colored the communities 

following the same scheme we used above when describing the qualitative results of Wulff, 

Stefanowitsch, & Gries (2007). There are clear parallels, and community membership 

seems to make sense. For example, the [deceive] community [deceive, fool, delude, dupe, 

kid, trick, hoodwink] is clearly separate from the [force] community [force, push, coerce, 

incorporate, integrate, pressure]. The [persuade] community is separated again [persuade, 

tease, badger, convert, convince, brainwash, coax, manipulate], and [speak, and talk] drift 

off into space on their own. Relating back to Kilgarriff's list of hits, the [deceive] 

community accounts for 44% of the total tokens, [speak], 17%, [make] 12%, [throw] 8%, 

[stimulate] 8%, [force] 6%, and [persuade] 4.0%. 

 These network science methods allow a variety of relevant metrics for semantics: 

 

− prototypicality: The prototype as an idealized central description is the best 

example of the category, appropriately summarizing its most representative 

attributes. In network analysis, there are many available measures of centrality: 

degree centrality, closeness centrality, betweenness centrality, PageRank, etc., each 

with its advantages and disadvantages (Newman, 2010). Historically first and 

conceptually simplest is degree centrality, or degree, which is simply its 

connectivity in terms of the number of links incident upon a node. An alternative is 

betweenness centrality which was developed to quantify the control of a human on 

the communication between other humans in a social network (Freeman, 1977). It 

is defined as the number of shortest paths from all nodes to all others that pass 

through that node. It is a more useful measure than degree of both the load and 

global importance of a node. 
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− semantic cohesion: In category learning, coherent categories, where exemplars are 

close to the prototype, are acquired faster than categories comprised of diverse 

exemplars. Graph theory also offers a number of alternatives for measuring network 

connectivity. The simplest is density, the number of edges in the network as a 

proportion of the number of possible edges linking those nodes. Other measures 

include average clustering, degree assortativity, transitivity, degree centrality, 

betweenness centraility, and closeness centrality (de Nooy et al., 2010; Newman, 

2010). 

− polysemy and community detection: A community within a graph or network is a 

group of nodes with dense connections to the other nodes in the group and sparser 

connections to other nodes that belong to a different community. Identification of 

communities has proven highly useful across a broad range of spheres to which 

network modeling can be applied, such as, social networks, neural and gene 

networks. Analyses like those in Figure 5 suggest they might provide some traction 

in analyzing issues relating to issues of construction polysemy and homonymy. 

Nevertheless, there is a long way to go in properly analyzing the "hard problem" of 

construction semantics, which is just as hard as the hard problem of consciousness 

(Chalmers, 1995) in that we wish to understand how language prompts phenomenal 

experiences. 

 

 New developments like these network-/graph-based methods (see Ellis, O’Donnell, 

& Römer, in press) for an application) provide promising new avenues for exploring the 

functional side or pole of constructions – so far done largely manually or with simpler 

exploratory statistics such as cluster analyses – on the basis of the distributions of the 

formal side or pole of constructions. Given the scalability of these approaches, these are 

bound to take corpus-based studies in usage-based linguistics to new levels. 

 

 

3. Conclusion 

 

As we have argued above, speakers keep track of a wide array of co-occurrence information 

of both their language comprehension and production. It is becoming more and more 

obvious that this unconscious tracking of co-occurrence statistics happens extremely early 

– in utero, in fact (cf. Moon, Lagercrantz, & Kuhl 2012) – and also extremely fast. The 

latter has been demonstrated both in specific learning experiments with both children and 

adults but also in experiments that were not concerned with learning at all but in which 

within-experiment learning had to be statistically controlled (cf. Gries & Wulff, 2009 for 

an example in L2 learning or Doğruöz & Gries, 2012 for an example in language contact 

situations). It is therefore imperative that both experimental and observational studies 

consider the speed and ubiquity of these learning processes alike – the unconscious pattern 

matcher in all of us hardly ever sleeps. 
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Figure 5: The semantic network for verbs occupying the into-causative VAC 

 

The processes and associations we describe here are all involved in every episode 

of language usage. Language processing is conditioned upon them all. So, for example, 

Ellis, O'Donnell and Römer (2014) used free association and verbal fluency tasks to 

investigate verb-argument constructions (VACs) and the ways in which their processing is 

sensitive to these statistical patterns of usage (verb type-token frequency distribution, 

VAC-verb contingency, verb-VAC semantic prototypicality). In experiment one, 285 

native speakers of English generated the first word that came to mind to fill the V slot in 

40 sparse VAC frames such as ‘he __ across the …’, ‘it __ off the …’, etc. In experiment 

two, 40 English speakers generated as many verbs that fit each frame as they could think 

of in a minute. For each VAC, they compared the results from the experiments with the 

corpus analyses of usage. For both experiments, multiple regression analyses predicting 

the frequencies of verb types generated for each VAC showed independent contributions 
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of (i) verb frequency in the VAC, (ii) VAC-verb contingency, and (iii) verb prototypicality 

in terms of centrality within the VAC semantic network. 

Future priorities concern both the range of corpus resources and statistical tools: 

 

− we need more corpora, and more corpora representing diverse registers and with 

diverse layers of annotation – not just part-of-speech tagging, but syntactic parses, 

semantic as well as discourse annotation, etc. 

− we need more studies of the precise conditions when learning happens best and 

fastest, e.g., how many high-frequency types in the Zipfian token distribution are 

best – 1, 2, a few? – and what are the ideal distribution/dispersion conditions in 

which learning happens? 

− we need more multivariate tools that include all the corpus statistics we can obtain 

– frequencies, dispersions, entropies, associations, etc. – but also new ones (such 

as the graph-based methods) that help us see the patterns in the structured but noisy 

mess that are corpora. 

 

 We hope that this agenda will lead to a stronger collaboration between usage-based 

theory on the one hand and corpus-linguistic practice on the other. 
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