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This paper considers how fluent language users are rational in their language

processing, their unconscious language representation systems optimally

prepared for comprehension and production, how language learners are

intuitive statisticians, and how acquisition can be understood as contingency

learning. But there are important aspects of second language acquisition that

do not appear to be rational, where input fails to become intake. The paper

describes the types of situation where cognition deviates from rationality and it

introduces how the apparent irrationalities of L2 acquisition result from

standard phenomena of associative learning as encapsulated in the models of

Rescorla and Wagner (1972) and Cheng and Holyoak (1995), which describe

how cue salience, outcome importance, and the history of learning from

multiple probabilistic cues affect the development of ‘learned selective attention’

and transfer.

This article considers how fluent language users are rational in their language

processing, rational in the sense that their unconscious language representa-

tion systems are optimally prepared for comprehension and production. In

this view, language learners are intuitive statisticians, weighing the likelihoods

of interpretations and predicting which constructions are likely in the current

context, and language acquisition is contingency learning, that is the gathering

of information about the relative frequencies of form–function mappings.

These arguments are well supported by the psycholinguistic evidence relating

to first language. But there are important aspects of second language

acquisition that do not appear to accord with this characterization, those

aspects where despite massive experience of naturalistic input and usage,

the system fails to become optimally tuned to represent the second language

forms, their functions, and their contextualized likelihoods of occurrence.

The article builds the framework for an explanation of the seeming irra-

tionalities of L2 acquisition in terms of standard phenomena of associative

learning involving ‘learned selective attention.’

In order to place L1 and L2 in the context of a rational analysis of language

learning, I first illustrate the problem by considering the design of word

processors of a more mechanical kind than is the ultimate goal of our

inquiry. Having thus set a concrete stage, I outline the process of the rational

analysis of learning and memory (Anderson 1989, 1991b; Anderson and

Milson 1989; Anderson and Schooler 2000). Next I describe some statistical



methods that abstract this type of information–contingency learning

according to the one-way dependency statistic and the Probability Contrast

Model (Cheng and Holyoak 1995), and the way that human associative

learning accords the predictions of these methods (Shanks 1995). When first

and second language acquisition are considered in these terms, L1 acquisition

seems much more obviously rational and contingency-sensitive than does

L2 acquisition. I lay the foundations for a companion article (Ellis 2006)

that describes the types of situation where associative learning deviates from

rationality and that argues that the apparent irrationalities of L2 acquisition

result from standard phenomena of associative learning: attentional shifting

in perceptual learning, latent inhibition, blocking, overshadowing, and other

effects of salience, transfer, and inhibition. I describe how ‘learned attention’

explains these apparently irrational effects, and how theories of animal and

human associative learning include selective attention as a key component.

The human learning mechanism optimizes its representations of first

language from the cumulative sample of first language input. But the initial

state for L2 is not a tabula rasa, it is a tabula repleta: the optimal solution

for L2 is not that for L1, and L2 acquisition suffers from various types of L1

interference. Thus the shortcomings of the L2 end-state are more rational

when seen through the lenses of the L1.

THE DESIGN OF AN OPTIMAL WORD PROCESSOR

Consider word processing programs you have known. You probably have

strong views. Remember the one that crashed at 2 a.m. losing your only

copy, the one that took ten minutes to search and replace, the one that

required perverse three-letter combination commands, and the one you have

now that replaces spellings, styles, and punctuations for you, whether you

like it or not, and you still cannot figure how to get it to stop? Besides the

obvious requirements for speed and reliability, an optimal word processing

program would really know what you wanted to do next, and would present

you with your next needed command, file, or figure, ready as a default but

awaiting your confirmation.

There are some technical developments in this direction. One relatively

new feature of several programs is that of ‘Open Recent.’ When a user goes

to open a document, the word-processor presents a list of recently opened

files to select from. If the sought after file is included in the list, the user is

spared the time and effort of searching through the file hierarchy. The

program is no mind-reader, it does not know the goals of the user. It simply

proffers alternatives using the heuristic that the more recently a file has been

opened, the more likely it is that it will be needed now. This simple rule does

a surprisingly good job of putting the appropriate files on the list.

Another recent feature is that of predictive text entry. When entering

options from a limited set, for example a journal name into a citation

management system, we appreciate it if the system suggests the most likely
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completion of our first few letters, and plumps for that choice when the

uniqueness point is reached. Whole text-entry systems are being developed

which work in this way (MacKay 2004; Ward and MacKay 2002). Predictive

text-entry systems try to anticipate our need and complete the word stem

we have begun typing, using the predictions of a statistical language model:

probable pieces of text are made quick and easy to select, improbable pieces

of text (low frequency words or text with spelling mistakes) are made harder

to choose. Their language model learns all the time: if you use a novel word

once, it is easier to write next time. These systems are the ergonomic

operationalizations of the cohort theory of perception which describes how

we recognize speech (Marslen-Wilson 1990). The common feature of such

mechanisms is that they tune the availability of selections on the basis of past

history of use: they make more likely used options more readily available.

Generally, these programs are reasonably successful. They work because

events in the world tend to happen like that. Things that were likely in the

past tend too to be likely in the same context today: (1) something that

has been frequently required in the past is likely to be required now;

(2) something that has been recently required is likely to be required now;

(3) something that has been often required in this particular context is likely

to be required now.

These principles of prediction have been formally analyzed for information

need: the ‘information retrieval problem,’ as it has been investigated for

borrowing books from libraries (Burrell 1980) or accessing files from

computers, can be addressed because the statistical structure of the environ-

ment enables an optimal estimation of the odds that a particular book or file

will be needed. Bayesian reasoning provides a method of reassessing

probabilities in the light of new relevant information, of updating likelihoods

as we gather more data. Bayes’ Theorem (e.g. Bayes 1763) describes what

makes an observation relevant to a particular hypothesis and it defines the

maximum amount of information that can be gotten out of a given piece of

evidence. Bayesian reasoning renders rationality; it binds reasoning into the

physical universe (Jaynes 1996; Yudkowsky 2003).

The probability that a particular piece of information will be relevant,

its ‘need probability,’ can thus be estimated using Bayesian evaluation

procedures whereby the odds ratio for that particular piece of information is

a product of its odds ratio given its particular history, that is its combined

frequency and recency of occurrence, and the current context (Anderson 1989).

Taking such factors into account, an optimal estimation of an item’s need

probability is possible. Using such a procedure for all items in the set, the

most likely ones can then be made more available in readiness, with a cost/

accuracy trade-off whereby the more items suggested, the greater the

chance of a hit, but also the more false positives and the longer the list

of items that have to be checked and discounted (an ‘Open Recent’ drop-

down of thousands of items might be more inclusive, but would have no

practical utility).
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Current word-processing programs typically use just recency of usage in

determining their suggestions. Information retrieval analysis suggests that it

would be advantageous to take frequency of prior usage into account too—

recently used items which also have an overall history of high frequency

of usage are more likely to be needed than those of infrequent overall usage.

The iTunes� music management program, besides providing a list of user-

specified libraries, gives as a default one window showing ‘Recently Played’

items ordered by recency, and another window listing the ‘Top 25’ pieces

that you have played most frequently overall. Context of use could also

prove a useful guide: knowing who the particular user is and factoring that

in provides a better estimate than averaging over all library or information

users, as clients of Amazon will attest. Similarly, knowing the user is working

on a particular report makes it more likely that they will need the files

pertaining to figures for that report, etc. (Schooler and Anderson 1997).

These are all ways of tuning a word processing package for optimal usage.

As we will see, they are ways in which we human word processors are tuned

for optimal operation too.

THE RATIONAL ANALYSIS OF LEARNING AND MEMORY

A major characteristic of the events and environments that are relevant to

human cognition is that they are fundamentally probabilistic: as William

James put it over a century ago, ‘Perception is of definite and probable

things’ (James 1890: 82). The more information we have about this

probabilistic world, then the less uncertain we are of it. The better we can

predict what is going to happen next, the greater our chances of survival.

Claude Shannon’s development of information theory was founded on the

definition that a signal conveys information to the extent that it reduces

the receiver’s uncertainty about the state of the world (Shannon 1948).

Possession of a large body of information is good, but then you have to know

how to use it in order to best predict the world. This insight has allowed,

over the last thirty years or so, a sea change in our understanding of human

cognition. It has stemmed in large part from researchers at Carnegie Mellon

University, most notably Herb Simon, Jay McClelland, John Anderson,

and Brian MacWhinney, and it concerns the ways that human cognition

responds to the statistical contingencies of the world.

Rational analysis (Anderson 1990) aims to answer why human cognition is

the way it is rather than to provide process models. Its guiding principle is

that the cognitive system optimizes the adaptation of the behavior of the

organism, that is that human psychological behavior can be understood in

terms of the operation of a mechanism that is ‘optimally adapted’ to its

environment in the sense that the behavior of the mechanism is as efficient

as it conceivably could be—given the structure of the problem space or

input–output mapping it must solve. This means that if we can find, describe,

and properly characterize the problem a cognitive system is trying to solve
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and find the optimal solution to this problem, then the rational analysis

makes the strong prediction that the behavior of the system will correspond

to this solution. And the research that has followed in testing this claim

suggests that human cognition is indeed rational in this sense.

For the case of memory, for example, the optimal estimation of an item’s

need probability is possible. The rational analysis of memory (Anderson

1989, 1990; Anderson and Milson 1989; Schooler and Anderson 1997)

considers the information need problem and the way that human memory

corresponds to this needs function. Their analyses concerned the relative

likelihoods of the occurrence of words in the world of discourse, and the

fluency of access and relative availability of items in the mental lexicons

of language users. With regard to recency, Schooler (1993), Schooler and

Anderson (1997), and Anderson and Schooler (2000) demonstrated that

there is a power (i.e. log-log linear) function relating probability of a word

occurring in the headline in the New York Times on day n to how long it has

been since the word previously occurred. Similarly, there are effects of

frequency—the probability of a word occurring in, say, speech to children

(from the CHILDES database), or the New York Times, or the electronic mail

a person receives, is predicted by its past probability of occurrence.

Human cognition is sensitive to these two factors and is functionally

related to them in the same way. Human memory is sensitive to recency: the

probability of recalling an item, like the speed of its processing or recognition,

is predicted by time since past occurrence. The power function relating

probability of recall (or recall latency) and retention interval is known as

the forgetting curve (Baddeley 1997; Ebbinghaus 1885). Indeed our rate of

forgetting perfectly reflects the decreasing power function of time with which

information becomes redundant in the environment (Wixted and Ebbesen

1991). The forgetting curve applies to linguistic constructions and other

contents of memory alike. Human learning is sensitive to frequency: the

more times a stimulus is encountered, the faster and more accurately it is

processed. The power function relating accuracy and prior occurrence

frequency is known as the power law of learning (Anderson 1982; DeKeyser

2001; Ellis and Schmidt 1998; Newell 1990; Newell and Rosenbloom 1981).

This describes the relationships between practice and performance in the

acquisition of a wide range of cognitive contents and skills, linguistic and

non-linguistic alike, whereby the effects of practice are greatest at early

stages of learning but they eventually reach asymptote, as is evident for

example in the practice gains that result from increasing frequency of

experience in reading accuracy and rate (Plaut et al. 1996), picture naming

(Oldfield and Wingfield 1965), typing, speaking, and signing (Kirsner 1994),

and morphological processing (DeKeyser 2001; Ellis and Schmidt 1998).

Human processing is sensitive to both these independent variables of

recency and frequency additively: processing accuracy (or fluency) follows

a joint power function of retention interval and frequency (Schooler and

Anderson 1997).
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So much for frequency and recency, but what of context ? Schooler

additionally showed that these effects are qualified by immediate context:

a particular word is more likely to occur when other words that have

co-occurred with it in the past are present. Schooler used the example that a

headline one day mentioned Qaddafi and Libya, and sure enough a headline

the next day that mentioned Qaddafi also mentioned Libya. I am sure you

could give a similar collocation pair from your experience of the news

this very week, given the ubiquity of collocations and the idiom principle

(Biber et al. 2004; Biber et al. 1998; Schmitt 2004). Schooler collected

likelihood ratio measures of association between various words in order

to assess the effect of this local context factor on memory and processing.

As already described, in both the child language and the New York Times

databases, a word was more likely to occur if it had occurred previously,

but additionally, a word was more likely to occur if a string associate of

it occurred, and these effects were additive in the way predicted by Bayesian

probability (Bayes 1763; Yudkowsky 2003). Such effects of context affect

human language processing too: Schooler showed that word fragment

completion was harder for words shown alone out of context (SEA____? or

FAC___?) than it was for the second word of a strong context collocation

(as in HERMETICALLY-SEA____? or LANGUAGE-FAC___?), a particular

example of the more general phenomenon of priming whereby lexical

recognition is faster when primed by an appropriate semantic or contextual

constraint (Hodgson 1991; Williams 1996). We process collocates faster and

we are more inclined therefore to identify them as a unit. These processing

effects are crucial in the interpretation of meaning—it is thus that an

idiomatic meaning can overtake a literal interpretation, and that familiar

constructions can be perceived as wholes. The effects are crucial in our

production of language, too (Bybee and Hopper 2001). Lexical cognition, our

learning, memory, and processing of words, is rationally tuned to the

likelihoods of occurrence of words as they behave in the world. What

a facility this ever-updated model of the world provides: as information is lost

in the world, so it is lost in our minds; as it becomes relevant in the world,

so our minds make it available to us.

But prediction is never 100 percent accurate; there is always some error,

a trade-off between false positives and misses. Could the costs of a wrong

prediction and subsequent backtracking not outweigh the computational

benefits of correct predictions? The considerable investment of the computer

industry over the last twenty years into ways of achieving normative

prediction in its processors (Lee and Smith 1984) suggests otherwise.

A significant design improvement of the Pentium-4 chip was ‘branch

prediction,’ a method that attempts to predict what will need to be fed to the

processor next. The processor calculates, and branch prediction attempts

to help, by guessing what the processor will need next. The predictive model

is updated online by a program for ‘advanced dynamic execution’ which

keeps track of what worked in the branch prediction and what did not,
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this helping overall to reduce branch mis-prediction by about 33 percent.

The Macintosh G5 processor continues development of the use of branch

prediction to the point where the algorithm anticipates which instruction will

occur next in a sequence, with speculative operation causing that instruction

to be executed. If the prediction is correct, the processor works more

efficiently, since the speculative operation has executed an instruction before

it is required. If the prediction is incorrect, the cost is that the processor must

clear the unneeded instruction and associated data, resulting in an empty

space called a pipeline bubble, a performance killer as the processor marks

time waiting for the next instruction to present itself. IBM and Apple claim

the G5 can predict branch processes with an accuracy of up to 95 percent.

So, while humankind still struggles to build rationality into the design of

our information processing machines, our computers, devices, and software

(Norman 1988, 1993), our minds themselves are richly endowed with implicit

optimal processing and memory. This is a neurobiological heritage. The wide

gamut of animal conditioning phenomena are explainable in terms of

information gain and rational analysis (Gallistel 2003), even the lowly

mollusk Hermissenda evidences contingency learning (Farley 1987). There is

a wonderful irony in the observation that current research into branch

prediction algorithms for computers is looking to neural network methods

based on simple perception models in order to improve performance

accuracy (Jiménez and Lin 2002).

In their classic review of human learning, Peterson and Beach (1967)

identified that human learning is to all intents and purposes perfectly

calibrated with normative statistical measures of contingency like r, �2 and

�P (which are explained in detail on pp. 10–12 in the ‘Statistical Learning

Methods’ section of this paper), and that probability theory and statistics

provided a firm basis for psychological models that integrate and account for

human performance in a wide range of inferential tasks. They entitled their

paper ‘Man as an intuitive statistician.’

PROBABILISTIC LANGUAGE PROCESSING

Fluent language processing, too, is exquisitely sensitive to frequency of

usage. In Ellis (2002a), I reviewed evidence that language performance is

tuned to input frequency at all sizes of grain: phonology and phonotactics,

reading, spelling, lexis, syntax and morphosyntax, grammaticality, formulaic

language, language comprehension, and sentence production. There is good

evidence that human implicit cognition, acquired over natural ecological

sampling as natural frequencies on an observation-by-observation basis,

is rational in this sense (Anderson 1990, 1991a, 1991b; Gigerenzer and

Hoffrage 1995; Sedlmeier and Betsc 2002; Sedlmeier and Gigerenzer 2001).

Psycholinguistics is the testament of rational language processing and the

usage model. The words that we are likely to hear next, their most

likely senses, the linguistic constructions we are most likely to utter next,
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the syllables we are likely to hear next, the graphemes we are likely to read

next, and the rest of what is coming next across all levels of language

representation, are made more readily available to us by our language

processing systems. Not only do we know the constructions that are most

likely to be of overall relevance (i.e. first-order probabilities of occurrence),

but we also predict the ones that are going to pertain in any particular

context (sequential dependencies), and the particular interpretations of cues

that are most likely to be correct (contingency statistics). These predictions

are usually rational and normative in that they accurately represent the

statistical covariation between events. In these ways, language learners

are intuitive statisticians; they acquire knowledge of the contingency

relationships of one-way dependencies and they combine information from

multiple cues.

Consider, for example, that while you are conscious of words in your

attentional focus, you certainly did not consciously label the word ‘focus’

just now as a noun; yet this sentence would be incomprehensible if your

unconscious language analyzers did not treat ‘focus’ as a noun rather than

as a verb or an adjective. Nor, on reading ‘focus,’ were you aware of its nine

alternative meanings or of their rankings in overall likelihood, or of their

rankings in this particular context, rather than in different sentences

where you would instantly bring a different meaning to mind. A wealth

of psycholinguistic evidence suggests that this information is available

unconsciously for a few tenths of a second before your brain plumps for the

most appropriate one in this context. Most words have multiple meanings,

but only one at a time becomes conscious. This is a fundamental fact about

consciousness (Baars 1988, 1997). In these ways, our unconscious language

mechanisms present up to consciousness the constructions that are most

likely to be relevant next. Their offerings are usually appropriate, but

consciousness can decline if it has reason to think better. In sum, there is

good reason to view the unconscious mechanisms of fluent language users

as operating as optimal word processors. They are adaptively probability-

tuned to predict the linguistic constructions that are most likely to be

relevant in the ongoing discourse context.

The evidence of rational language processing implies that language

learning too is an intuitive statistical learning problem, one that involves

the associative learning of representations that reflect the probabilities of

occurrence of form–function mappings. Learners have to FIGURE language

out: their task is, in essence, to learn the probability distribution

P(interpretation|cue, context), the probability of an interpretation given a

formal cue in a particular context, a mapping from form to meaning

conditioned by context (Manning 2003). In order to achieve optimal

processing, acquisition mechanisms must have gathered the normative

evidence that is the necessary foundation for rationality. To accurately

predict what is going to happen next, we require a representative sample

of experience of similar circumstances upon which to base our judgments,
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and the best sample we could possibly have is the totality of our linguistic

experience to date. Usage-based theories hold that an individual’s linguistic

competence emerges from the collaboration of the memories of all of the

utterances in their entire history of language input and use. The system-

aticities of language competence, at all levels of analysis from phonology,

through syntax, to discourse, emerge from learners’ lifetime analysis of the

distributional characteristics of the language input and their usage. It is these

ideas that underpin the last thirty years of investigations of cognition using

connectionist and statistical models (Christiansen and Chater 2001; Elman

et al. 1996; Rumelhart and McClelland 1986), the competition model

of language learning and processing (Bates and MacWhinney 1987;

MacWhinney 1987, 1997), usage-based models of acquisition (Barlow and

Kemmer 2000; Langacker 1987, 2000; Tomasello 1998, 2003), the recent

emphasis on frequency in language acquisition and processing (Bod et al.

2003; Bybee and Hopper 2001; Ellis 2002a, 2002b; Jurafsky 2002; Jurafsky

and Martin 2000) and in NLP (Jurafsky and Martin 2000; Manning and

Schuetze 1999), and proper empirical investigations of the structure of

language by means of corpus analysis (Biber et al. 1998; Biber et al. 1999;

Sampson 2001; Sinclair 1991).

The proposal, then, is that L1 acquisition and fluent processing are

as rational as other aspects of human learning and memory, and that they

can be understood according to standard principles of associative learning.

What are the learning mechanisms and mental algorithms that compute

these norms? In the next section, I review evidence that the appropriate

normative theory of the learning of these associations is contingency theory.

But your consideration of these associative learning accounts of first language

acquisition should reflect as well those aspects of second language acquisition

that do not appear to be rational—the fragile features of language that

L2 learners fail to acquire despite thousands of occurrences in their input,

the cases where input fails to become intake. Does this mean that L2

acquisition cannot be understood according to the general principles of

associative learning that underpin other aspects of human cognition, that

L2 acquisition is fundamentally irrational? Or, paradoxically, does associative

learning theory explain these limitations too?

STATISTICAL LEARNING METHODS

First order probability: tallying frequencies

We are more likely to perceive things that are more likely to occur.

The power law of learning describes how the resting levels of detectors for

words, letters, and other linguistic constructions are set according to their

overall frequency of usage so that less sensory evidence is needed for

the recognition of high frequency stimuli than for low frequency stimuli.

Each time we process a stimulus, there is a practice increment whereby the
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resting strength of its detector is incremented slightly, resulting in priming

and a slight reduction in processing time the next time this stimulus is

encountered. Ellis (2002a) summarizes evidence (1) that we have implicit

rank order information for the relative frequencies of letters, bigrams, words,

and the wide range of other linguistic constructions; (2) that neurobiological

learning processes underpin this tallying of occurrence, and (3) that the

strengthening function that relates frequency and resting state is not linear

but instead follows the power law of learning with the effects of practice

being greatest at early stages of learning but eventually reaching asymptote:

In these ways the perceptual and motor systems become tuned to the relative

frequencies of individual constructions (Sedlmeier and Betsc 2002).

Contingency: "P

Classical conditioning involves a cue (a to-be-conditioned stimulus, CS, for

example, a bell) being temporally paired with an outcome (an unconditioned

stimulus, US, for example, food), with, after several such pairings, the animal

emitting a conditioned response (CR, salivation) on encountering the cue

alone. The initial interpretation of this phenomenon was that it was the

temporal pairing of the CS and the US that was important for learning to

take place. However, Rescorla (1968) showed that if one removed the

contingency between the CS and the US, preserving the temporal pairing

between CS and US but adding additional trials where the US appeared

on its own, then animals did not develop a conditioned response to the CS.

This result was a milestone in the development of learning theory because it

implied that it was contingency, not temporal pairing, that generated

conditioned responding. It was as if in Rescorla’s experiment the rats were

acting as scientists, picking up on cues in the environment if they had value

in predicting what was going to happen next. The rats were behaving

rationally. Contingency, and its associated aspects of predictive value,

information gain, and statistical association, have been at the core of learning

theory ever since.

Every social scientist is used to the inferential statistical methods that are

used to test association between two variables. If the variables are continuous

we use correlational methods, like r or rho, to determine the degree to which

we can predict position on one dimension from knowledge of position on

the other. If the variables are categorical, then we lay the data out in

a contingency table such as Table 1, we count the number of observations

that fall into each of the cells, and we use nonparametric methods such

as �2, lambda, or one of the other possibilities offered by our stats package

following a crosstabulation analysis, to look for a contingency between the

rows and the columns.

But �2 is a measure of the two-way dependency between a pair of events.

The directional association between a cue and an outcome, as illustrated in
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Table 1, is better measured using the one-way dependency statistic �P

(Allan 1980):

�P ¼ PðOjCÞ � PðOj�CÞ

¼ a=ða þ bÞ � c=ðc þ dÞ

¼ ðad � bcÞ=½ða þ bÞðc þ dÞ�

�P is the probability of the outcome given the cue P(O|C) minus the

probability of the outcome in the absence of the cue P(O|–C). When these are

the same, when the outcome is just as likely when the cue is present as

when it is not, there is no covariation between the two events and �P¼ 0.

�P approaches 1.0 as the presence of the cue increases the likelihood of

the outcome and approaches –1.0 as the cue decreases the chance of the

outcome—a negative association.

The last thirty years have evidenced many psychological investigations

into human sensitivity to the contingency between cues and outcomes in

laboratory tasks involving estimation, for example, of the influence of

pressing a telegraph key on the chance of a light coming on, or the degree to

which a symptom is indicative of a disease in medical diagnosis. Many of

these experiments are assembled in chapter 2 of the excellent Shanks (1995).

Shanks’ conclusion is that humans’ associative judgments in such situations

are unbiased at asymptote and that, when given sufficient exposure to a

relationship, people’s judgments match quite closely the contingency

specified by normative �P theory. Biases may occur prior to asymptote,

with judgments only slowly regressing towards the predicted values, because

a reasonably large sample of events is required by associative learning

mechanisms such as the delta rule to compute the contingency, but at

asymptote the contingency judgments are, to all intents and purposes,

normative. For one example, consider the study of Wasserman et al. (1993)

who had participants judge the extent to which their pressing a telegraph

key caused a light to flash in twenty-five different problems crossing

every combination of settings of P(O|C) and P(O|�C) at 0.0, 0.25, 0.5, 0.75,

and 1.0. The participants’ judgments of contingency explained 96.7 percent

Table 1: A contingency table showing the four possible combinations of events
showing the presence or absence of a target Cue and an Outcome

Outcome No outcome

Cue a b

No cue c d

Notes. a, b, c, d represent frequencies, so, for example, a is the frequency of conjunctions

of the cue and the outcome, and c is the number of times the outcome occurred without

the cue.
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of the variance of the actual values—an impressive degree of sensitivity to

contingency.

It is this sensitivity that underpins our ability to rank order the frequencies

of occurrence of bigrams (Hasher and Chromiak 1977), to tune our

processing system to those other sequential dependencies of language,

and to recognize the interpretations (outcomes) that are most relevant to

particular formal constructions (cues), with no cue being totally unambig-

uous (Ellis 2002a, 2003). Learning language can thus be viewed as a

statistical process in that it requires the learner to acquire a set of likelihood-

weighted associations between constructions and their functional/semantic

interpretations.

These processes of rational learning over natural ecological sampling on an

observation-by-observation basis (Anderson 1990, 1991a, 1991b; Gigerenzer

and Hoffrage 1995; Sedlmeier and Betsc 2002; Sedlmeier and Gigerenzer

2001) have been intensively investigated in the last thirty years of work

within the Connectionist tradition. Connectionist models have been

successful in simulating a wide range of human inductive phenomena in

the perception and classification of linguistic and non-linguistic domains alike

(Christiansen and Chater 2001; Ellis 1998; Elman et al. 1996; Rumelhart

and McClelland 1986). These systems learn by being exposed to input cues,

by making a prediction of outcome, and on the realization of whether their

prediction was correct or not, adjusting the weights of the connections

between their processing units (their synaptic strengths) so that their

prediction of outcome would be more accurate if faced with the same

situation again. The standard and simplest connectionist learning algorithm

for the incremental tuning of weights using backpropagation of error is the

delta rule (Widrow and Hoff 1960). The delta rule can be shown to compute

�P at asymptote when other background cues are constant (Chapman and

Robbins 1990). Thus connectionist and human learners match quite closely

the contingencies specified by normative �P theory.

For the analysis of first and second language acquisition in these statistical

connectionist terms, for the measurement and simulation of these phenomena,

and for analysis of their effects in sentence processing, we can again

profitably look to Carnegie Mellon University: The Competition Model

is the most extensive single account of these statistical phenomena as

they underpin the emergence of language (Bates and MacWhinney 1987;

MacWhinney 1987, 1997, 2001a, 2001b).

Multiple cues to interpretation: the probabilistic
contrast model

Normative �P theory describes associative learning where learners have to

acquire the relationship between a cue and an outcome and where the cue

is the only obvious causal feature present. In such situations, contingency is

easy to specify and human learning is shown to be rational in that it accords
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with the normative �P rule. However, it is rarely, if ever, the case that

predictive cues appear in isolation, and most utterances, like most other

stimuli, present the learner with a set of cues which co-occur with one

another, with the learner’s task being to determine the ones that are truly

predictive. In such cases of multiple cues to interpretation, then, the

predictions of normative analysis using the �P rule are muddied by selection

effects: learners selectively choose between potential causal factors. Thus,

in some circumstances, the cue may be selected for association with an

interpretation whilst in other circumstances it may not, depending on the

presence and status of other cues.

Statisticians do not have an agreed procedure for specifying the

contingency between events C and O when the background varies. However,

the psychologists Cheng and Hoyoak (1995) and Cheng and Novick (1990)

have proposed an extended version of contingency theory, which they

termed the Probabilistic Contrast Model (PCM), as a descriptive account

of the use of statistical regularity in human causal induction. The model,

which applies to events describable by discrete variables, assumes that

potential causes are evaluated by contrasts computed over a ‘focal set.’

The focal set for a contrast is a contextually-determined set of events that

the reasoner selects to use as input to the computation of that contrast.

The focal set consists of all trials on which the target cue is present as well as

all those trials that are identical to the target present trials except for the

absence of the target. Thus it is often not the universal set of events, contrary

to what had been assumed by previous contingency theories in psychology,

and hence the results of this reasoning appear irrational when measured

unconditionally against the entire input across all learning trials. Yet despite

this, PCM theory does measure up well against the logic of classical scientific

method. Thus one implication of Cheng and Holyoak’s ‘Adaptive systems

as intuitive statisticians’ paper is that people are ‘intuitive scientists,’

a sentiment expressed earlier in classic attribution theory by Kelley (1967)

and in personal construct theory by George Kelly: ‘For Kelly, all men can be

said to be ‘‘scientists’’ in the sense that they have theories about their universe

(not as systematic or sophisticated as the theories of professional scientists

but theories nevertheless) and on the basis of these theories they have

particular hypotheses (expectations) which are fulfilled or not fulfilled, and

in the light of the outcome of their ‘‘experiments’’ their views are modified.

Thus the model man of Personal Construct Theory is ‘‘man the scientist’’’

(Bannister and Fransella 1986: 362).

So what are the algorithms and outcomes of PCM that lead to this claim

that people are intuitively scientific, both in their methods and in their

optimality?

First the algorithm. In order to determine whether C is a valid cue of O,

the PCM procedure is to calculate P(O|C) for the target cue C across trials on

which C occurs, and to calculate P(O|–C) across trials that are identical to the

C trials with the exception that C is absent. Thus �P is calculated not across
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all trials, but across a subset of trials (the focal set) in which the background

effects are kept constant. Consider, for an example of this in language

learning, sentence processing where comprehenders must assign nouns

to linguistic roles such as actor, patient, and recipient, the appropriate

assignments being predicted by various cues of varying reliability. These cues

include word order, noun animacy, and case inflection. As in the example

sentence the dog chased him, the actor usually precedes the patient, the actor

is usually animate, and case inflection can differentiate between actor (he)

and patient (him). These cues may or may not be present in every sentence,

and cues may at times conflict or ‘compete’ with each other, as in the

example the television smashed the dog (MacWhinney et al. 1984). As we will

see in the next section, learners do not assess the predictive power of these

cues over all of the sentences they are exposed to, many of them including

several such cues, for example the ball was chased by the cat, the televisions

smash the dogs, etc. Instead, they may try to determine the success of

outcomes of assignments based on one cue at a time, using relevant focal

sets where the other cues are kept constant, for example the dog chased the

cat vs. the cat chased the dog. The parallel with the experimental method is

clear: classically, the only difference between the experimental and control

conditions is the independent variable of concern, with all other potential

independent variables being held constant. By these means, each experiment

usually focuses upon just one potential cue at a time while the rest go

ignored and unconsidered (Ellis, in press).

Secondly, the outcomes. Cheng and Holyoak (1995) argued not only that

the PCM is the appropriate normative theory for causal or associative

relationships when the background is variable, but also that human behavior

is closely matched to it. They and Shanks (1995: ch. 2) provide a range of

results of video-game and medical-diagnosis-based multiple cue contingency

judgment tasks which appear irrational when measured against �P theory

applied to the whole learning set, but which are much better accommodated

by the PCM extension.

In contrast to my prior claim about the rationality of human implicit

cognition acquired over natural ecological sampling as natural frequencies

on an observation-by-observation basis (Anderson 1990, 1991a, 1991b;

Gigerenzer and Hoffrage 1995; Sedlmeier and Betsc 2002; Sedlmeier and

Gigerenzer 2001), there are various demonstrations from Kahneman and

Tversky (1972) onwards that human conscious inference deviates from

Bayesian inference. The way that human everyday statistical/scientific

reasoning is not rational is that it tends to neglect the base rates, the prior

research findings. When people approach a problem where there is some

evidence X indicating that hypothesis A might hold true, they tend to judge

A’s likelihood solely by how well the current evidence X seems to match A,

without taking into account the prior frequency or probability of A (Tversky

and Kahneman 1982).
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So humans intuitively make their judgments of contingency between

potential cues and outcomes according to the probability contrast model

which approximates the scientific method. And like scientists, they too see

the world with focal vision, through lenses of selective attention: ‘Man tries

to make for himself in the fashion that suits him best a simplified and

intelligible picture of the world: he then tries to some extent to substitute

this cosmos of his for the world of experience, and thus to overcome it.

This is what the painter, the poet, the speculative philosopher and the

natural scientist do each in his own fashion’ (Albert Einstein address

delivered to the Physical Society of Berlin in 1918).

PCM and language learning

Is the sequence of cue acquisition in language learning also as the PCM

would predict? It appears so. Experiments using miniature artificial languages

have shown that, in the initial stages of acquisition, learners tend to focus

on only one cue at a time (Blackwell 1995; MacWhinney and Bates 1989;

Matessa and Anderson 2000; McDonald 1986; McDonald and MacWhinney

1991). For example, when cues for determining the agent in sentences

include word order, noun animacy and agreement of noun and verb,

learners typically decide to focus attention on only one of these as the

predictor of interpretation. MacWhinney et al. (1985) demonstrated that

the cue that children first focus upon is that which has the highest overall

validity as measured by its availability (its frequency or probability of

occurrence) times its reliability (its probability of correctly indicating the

interpretation, broadly equivalent to its �P). The effect is that a cue with

high availability but low reliability may initially be used over a cue that is

of lower availability, even though it is in fact more reliable. Learners focus

on one cue alone to begin with. Later on, after having tracked the use of

this first cue, they will add a second cue to the mix and begin to use the two

in combination, and, as development proceeds, so additional cues may be

added if they significantly help reduce errors of understanding, as measured

by the statistic ‘conflict validity’ which relates to how the cue affords

extra predictive accuracy when its interpretation conflicts with that of

a co-occurring cue. This variable-by-variable incremental sequence is as

predicted by the probability contrast model.

ASSOCIATIVE LEARNING AND ATTENTION

What at first sight was temporal association proved to be contingency

learning. And what at first sight was mere tallying, with the learner weighing

all cues equally, proved to be subject to selection effects. The driving

forces of language learning, then, are frequency, conditioned by contingency,

conditioned by selection. But there is still more. There are effects of

attention beyond those of selection for scrutiny in the PCM account
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of the assessment of contingencies. These are effects of salience,

and overshadowing, and learned attention, and not for the first time,

these notions have a long and distinguished history in associative learning

theory.

Selective attention is not the preserve of scientists, nor of creative people,

nor even of every human body else; it is a key aspect of the behavior of

all organisms. Reynolds (1961) trained two pigeons to peck the red key with

a white triangle for food reward. Pecking the green key with the white

circle did not yield reward. When he tested each of the four stimulus

components in isolation, he found that both birds were strongly conditioned,

but to different aspects of their identical training experience: one bird was

conditioned to the white triangle, while the other was conditioned to the red

background. Each bird responded to one of the two elements composing

the positive stimulus to the exclusion of the other element. It was this

that led Reynolds to introduce the notion of selective attention into the

learning literature and it has remained a core component of conditioning

theory ever since.

Experimental investigations of selective attention between multiple cues

illustrate the robust phenomenon of overshadowing. In such experiments,

two cues, C1 and C2, are always presented together during training and

they jointly predict an outcome. In the test-phase, the strength of con-

ditioning to C1 and C2 presented individually are measured. The typical

outcome is that the strength of conditioning to each cue depends on their

relative intensity. If C1 is a dim light and C2 a bright light then, after

conditioning to the C1–C2 combination, the learned response to the bright

light is very strong while the dim light alone produces little or no reaction

(Kamin 1969). Wagner et al. (1968) showed that when one cue is more

reliably informative of outcome like this, it is the only one to which

the conditioned response develops. It does not develop to the other less

reliably informative CSs, even though they are frequently paired with

the US. There are two important aspects of these overshadowing

results. The first relates to the salience that causes the learned cue to be

learned. The second relates to expectancy, habituation, and surprise in the

overshadowing process.

The general perceived strength of stimuli is commonly referred to as their

salience. Although it might in part be related to the physically measurable

intensity of stimuli, salience refers to the intensity of the subjective

experience of stimuli, not of the objective intensity of the stimuli themselves.

Salience, as subjective experience, varies between individuals, and, more

importantly, between species. Kamin (1969) interpreted the phenomenon of

overshadowing as implying that in such situations the animal ‘expected’ the

outcome because of the cue provided by the more salient CS, that is, it was

not ‘surprised’ by it, and thus pairing it with an additional cue did not

produce a conditioned response. Rescorla and Wagner (1972) presented
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a formal model of conditioning which expresses the capacity any cue

(CS) has to become associated with an outcome (US) at any given time.

This associative strength of the US to the CS is referred to by the letter V and

the change in this strength which occurs on each trial of conditioning is

called dV. The more a CS is associated with a US, the less additional

association the US can induce. This informal explanation of the role of US

surprise and of CS (and US) salience in the process of conditioning can be

stated as follows:

dV ¼ abðL � VÞ

where a is the salience of the US, b is the salience of the CS, and L is the

amount of processing given to a completely unpredicted US. So the salience

of the cue and the importance of the outcome are essential factors in

any associative learning. The Rescorla–Wagner model pulled together the

findings of hundreds of experiments each designed with an empirical rigour

unsurpassed outside animal learning research. Its generality of relevance

makes it arguably the most influential formula in the history of conditioning

theory.

It might come as a surprise to see such terms as selective attention, salience,

expectation, and surprise being bandied about as explanations of animal

learning. But the experimental findings simply could not be explained

without these concepts, and even though researchers like Kamin (1968),

coming from a behaviorist background which eschewed such anthropo-

morphic concepts along with all other speculations of what went on inside

the black box, felt obliged to keep scare quotes around these terms, such

notions rapidly became key elements of associative learning theory

(Mackintosh 1975; Pearce and Bouton 2000), and their investigation

became standard fare in undergraduate animal practical classes: indeed

you yourself could further explore these phenomena now on your PC if you

wished, using ‘Sniffy the Virtual Rat’ (Krames et al. 1997).

However, I know associative learning theory is not the usual fare of Applied

Linguistics. Pigeons’ lack of pidgin, and Sniffy’s apparent inability at any form

of language, might well have you turning your nose up at all this animal

work. ‘Too much learning, too little language,’ you may well be thinking,

however illustrative these animal experiments are of the generality of these

associative learning phenomena. But bear with me, for herein, I believe,

lie important insights into first and second language acquisition both, not

only for the difficulties and ordering of acquisition of different grammatical

constructions in L1, but also perhaps for the biggest conundrum of all,

the apparent irrationality of the shortcomings of L2 acquisition and of

fossilization. In drawing a close on this first article, I will summarize the

problem and briefly gather the components that have been introduced here

that will, I believe, provide some solutions when applied in more detail in

the companion piece to follow.
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APPARENT DEVIATIONS FROM RATIONALITY
IN L2 ACQUISITION

A founding observation, from the very beginnings of applied linguistics,

is that although learners are surrounded by language, not all of it ‘goes in’:

this is Corder’s distinction between input, the available target language,

and intake, that subset of input that actually gets in and which the learner

utilizes in some way (Corder 1967). What are the fragile aspects of language

to which second language learners commonly prove impervious, where input

fails to become intake?

Schumann (1978), on the basis of his analysis of the ESL of Alberto,

a 33-year-old Costa Rican polisher, likened the second language acquisition

process to one of pidginization. Alberto’s spontaneous conversations and

elicited language over a ten month period evidenced the lack of a variety of

grammatical constructions including negative placement, question inversion,

suppliance of grammatical morphemes such as possessive ‘-s’ forms, regular

past tense, and progressive ‘-ing,’ and most auxiliaries apart from ‘can.’

He concluded that ‘In general Alberto can be characterized as using

a reduced and simplified form of English’ (Schumann 1978: 65), resembling

pidgins. Indeed, Schumann’s analysis showed that the more that pidgin

speakers ‘use each morpheme, the higher the percentage of correct use for

Alberto’ (Schumann 1978: 187). In pidgins, there is usually only a minimal

pronoun system without gender or case, there is an absence of agreement

markers for number or negation, there is no inflectional morphology; only

the bare essentials necessary for communication are present.

Schmidt’s (1984) case study of naturalistic language learner, Wes, showed

him to be very fluent, with high levels of strategic competence, but low

levels of grammatical accuracy: ‘using 90 percent correct in obligatory

contexts as the criterion for acquisition, none of the grammatical morphemes

counted has changed from unacquired to acquired status over a five year

period’ (Schmidt 1984: 5). At a recent AAAL conference where I quoted

that figure, Schmidt affirmed that the same could still be said of Wes’

interlanguage over what is now a twenty-five year period.

Larger and more representative samples can be found in the ESF cross-

linguistic and longitudinal research project (Perdue 1993) which examined

how 40 adult learners picked up the language of their social environment by

everyday communication. Analysis of the interlanguage of these L2 learners

resulted in its being described as the ‘Basic Variety.’ All learners, independent

of source language and target language, developed and used it, with about

one-third of them fossilizing at this level in that although they learned

more words, they did not further complexify their utterances in respects

of morphology or syntax. In this Basic Variety, most lexical items stem

from the target language, but they are uninflected. ‘There is no functional

morphology. By far most lexical items correspond to nouns, verbs and

adverbs; closed-class items, in particular determiners, subordinating elements,
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and prepositions, are rare, if present at all. . .. Note that there is no functional

inflection whatsoever: no tense, no aspect, no mood, no agreement,

no casemarking, no gender assignment; nor are there, for example, any

expletive elements’ (Klein 1998: 544–5).

These morphemes abound in the input, but they are simply not picked up

by learners. What are the factors, then, that modulate the effects of simple

availability?

SOME SYNTHESIS AND A PROMISSORY NOTE

In general, the linguistic forms that L2 learners fail to adopt and to use

routinely thereafter in their second language processing are those which,

however available as a result of frequency, recency, or context, fall short

of intake because of one of the associative learning factors that have been

described here:

1 They are unreliable predictors of outcome, with contingency statistics

such as �P falling far short of 1.0 (Bates and MacWhinney 1987;

MacWhinney 1987, 2001a).

2 They fail to be attended in the PCM selection process because of low cue

salience (Andersen 1984, 1990).

3 They fail to be attended in the PCM selection process because of low

importance of functional outcome in the overall interpretation of the

message.

4 They fail to be attended because they are redundant in the immediate

understanding of an utterance, being overshadowed or blocked by higher

salience cues which have previously been selected. As summarized in

Rescorla-Wagner, the more a cue is associated with an interpretation, the

less additional association that cue can induce, and obversely, the more

predicted the interpretation from context and other cues, the less the

additional association from an associated cue on this trial.

5 They are ignored because the multitude of form $ meaning contin-

gencies acquired from input and usage conspire to tune the ways in

which we selectively attend in our processing of language. What emerges,

as detailed in my companion article in the next issue, is that L1

experience of form ! meaning contingencies affects the cues and

dimensions that an L2 learner’s language input systems can best

distinguish (perceptual learning), and L1 experience of meaning !

form contingencies affects the way an L2 learner routinely expresses their

meanings in language (‘thinking for speaking,’ (Slobin 1996)).

Factors such as �P, and salience, and outcome importance are going to affect

L1 acquisition too, and so play a role in L1 acquisition and L2 acquisition,

although, if learning/computational resources in older brains are generally

reduced, they may result in more pronounced effects in older learners of
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a second language. But redundancy, blocking, overshadowing, L1 content

interference, and L1 perceptual tuning could all have a differential, more

marked role on L2 acquisition, thus helping to provide non age-invoked

biological explanations for why L2 acquisition stops short while first language

acquisition does not.

Factors 2–5 all concern attention, in one way or another. Schmidt opens

the recent collection on ‘Cognition and Second Language Instruction’

(Robinson 2001) with the essential claim that ‘the concept of attention is

necessary in order to understand virtually every aspect of second language

acquisition (L2 acquisition), including the development of interlanguages

over time, variation within IL at particular points in time, the development

of L2 fluency, the role of individual differences such as motivation, aptitude,

and learning strategies in L2 learning, and the ways in which interaction,

negotiation for meaning, and all forms of instruction contribute to language

learning’ (Schmidt 2001: 3). In my companion article (Ellis 2006) to appear

in the next issue of this journal, I take Schmidt’s lead concerning the role of

attention in IL development, illuminating the language acquisition

phenomena and explaining in more detail how attention becomes tuned

by the psychological learning processes outlined above. In a third paper

(Ellis 2005), I consider the implications of this theory for instruction and

why the shortcomings of L2 acquisition are best remedied using techniques

of attentional refocus and explicit learning.

Final version received May 2005
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Jiménez, D.A. andC. Lin. 2002. ‘Neural methods

for dynamic branch prediction,’ACMTransactions

on Computer Systems 20: 369–97.

Jurafsky, D. 2002. ‘Probabilistic modeling in

psycholinguistics: linguistic comprehension and

production’ in R. Bod, J. Hay, and S. Jannedy

(eds): Probabilistic Linguistics. Harvard, MA: MIT

Press, pp. 39–96.

Jurafsky, D. and J. H. Martin. 2000. Speech and

Language Processing: An Introduction to Natural

Language Processing, Speech Recognition, and

Computational Linguistics. Englewood Cliffs, NJ:

Prentice-Hall.

Kahneman,D. andA.Tversky. 1972. ‘Subjective

probability: A judgment of representativeness,’

Cognitive Psychology 3: 430–54.

Kamin, L. J. 1968. ‘ ‘‘Attention-like’’ processes in

classical conditioning’ in M. R. Jones (ed.):Miami

Symposium on the Prediction of Behavior: Aversive

Stimulation. Miami, FL: University of Miami

Press, pp. 9–31.

Kamin, L. J. 1969. ‘Predictability, surprise, atten-

tion, and conditioning’ in B. A. Campbell and

R. M. Church (eds): Punishment and Aversive

Behavior. New York: Appleton-Century-Crofts,

pp. 276–96.

Kelley, H. H. 1967. ‘Attribution theory in social

psychology’ in D. Levin (ed.): Nebraska Sympo-

sium of Motivation Vol. 15. Lincoln: University of

Nebraska Press.

Kirsner, K. 1994. ‘Implicit processes in second

language learning’ in N. C. Ellis (ed.): Implicit

and Explicit Learning of Languages. San Diego, CA:

Academic Press, pp. 283–312.

Klein, W. 1998. ‘The contribution of second lan-

guage acquisition research,’ Language Learning

48: 527–50.

Krames, L., J. Graham, and T. Alloway. 1997.

Sniffy: The virtual rat 4.5 for Windows. Portland,

OR: Brooks/Cole.

Langacker, R. W. 1987. Foundations of Cognitive

Grammar: Vol. 1. Theoretical Prerequisites. Stanford,

CA: Stanford University Press.

Langacker, R. W. 2000. ‘A dynamic usage-based

model’ in M. Barlow and S. Kemmer (eds):Usage-

based Models of Language. Stanford, CA: CSLI

Publications, pp. 1–63.

Lee, J. K. F. and A. J. Smith. 1984. ‘Branch

prediction strategies and branch target buffer

design,’ IEEE Computer 17: 6–22.

MacKay, D. 2004. The Dasher project, from http://

www.inference.phy.cam.ac.uk/dasher/.

Mackintosh, N. J. 1975. ‘A theory of attention:

Variations in the associability of stimuli with

reinforcement,’ Psychological Review 82: 276–98.

MacWhinney, B. 1987. ‘The competition model’

in B. MacWhinney (ed.): Mechanisms of Language

Acquisition. pp. 249–308.

MacWhinney, B. 1997. ‘Second language

acquisition and the Competition Model’ in

A. M. B. De Groot and J. F. Kroll (eds): Tutorials

in Bilingualism: Psycholinguistic Perspectives.

pp. 113–42.

MacWhinney, B. 2001a. ‘The competition model:

The input, the context, and the brain’ in

P. Robinson (ed.): Cognition and Second Language

Instruction. New York: Cambridge University

Press, pp. 69–90.

MacWhinney, B. 2001b. ‘Emergentist approaches

to language’ in J. Bybee and P. Hopper (eds):

Frequency and the Emergence of Linguistic

22 LANGUAGE ACQUISITION AS RATIONAL CONTINGENCY LEARNING

http://bayes.wustl.edu/etj/science.pdf.html
http://www.inference.phy.cam.ac.uk/dasher/


Structure. Amsterdam, Netherlands: Benjamins,

pp. 449–70.

MacWhinney, B. and E. Bates. 1989. The Cross-

linguistic Study of Sentence Processing. Cambridge:

Cambridge University Press.

MacWhinney, B., E. Bates, and R. Kliegl. 1984.

‘Cue validity and sentence interpretation in

English, German, and Italian,’ Journal of Verbal

Learning & Verbal Behavior 23/2: 127–50.

MacWhinney, B., C. Pleh, and E. Bates. 1985.

‘The development of sentence interpretation in

Hungarian,’ Cognitive Psychology 17/2: 178–209.

McDonald, J. L. 1986. ‘The development of

sentence comprehension strategies in English

and Dutch,’ Journal of Experimental Child

Psychology 41: 317–35.

McDonald, J. L. and B. MacWhinney. 1991.

‘Levels of learning: A comparison of concept

formation and language acquisition,’ Journal

of Memory & Language 30/4: 407–30.

Manning, C. D. 2003. ‘Probabilistic syntax’ in

R. Bod, J. Hay, and S. Jannedy (eds): Probabilistic

Linguistics. Cambridge, MA: MIT Press,

pp. 289–341.

Manning, C. D. and H. Schuetze. 1999. Founda-

tions of Statistical Natural Language Processing.

Cambridge, MA: The MIT Press.

Marslen-Wilson, W. 1990. ‘Activation, competi-

tion, and frequency in lexical access’ in

G. T. M. Altmann (ed.): Cognitive Models of

Speech Processing. Cambridge, MA: ACL-MIT

Press, pp. 148–172.

Matessa,M. andJ.R.Anderson.2000. ‘Modeling

focused learning in role assignment,’ Language &

Cognitive Processes 15/3: 263–92.

Newell, A. 1990. Unified Theories of Cognition.

Cambridge, MA: Harvard University Press.

Newell, A. and P. Rosenbloom. 1981. ‘Mecha-

nisms of skill acquisition and the law of practice’

in J. Anderson (ed.): Cognitive Skills and Their

Acquisition. Hillsdale, NJ: Lawrence Erlbaum

Associates, pp. 1–55.

Norman,D. 1988. The Psychology of Everyday Things.

New York: Basic Books (Perseus).

Norman, D. 1993. Things That Make Us Smart:

Defending Human Attributes in the Age of the

Machine. Cambridge, MA: Perseus Publishing.

Oldfield, R. and A. Wingfield. 1965. ‘Response

latencies in naming objects,’ Quarterly Journal

of Experimental Psychology A 17/4: 273–81.

Pearce, J. M. and M. E. Bouton. 2000. ‘Theories

of associative learning in animals,’Annual Review

of Psychology 52: 111–39.

Perdue, C. (ed.). 1993. Adult Language Acquisition:

Crosslinguistic perspectives. Cambridge: Cambridge

University Press.

Peterson, C. R. and L. R. Beach. 1967. ‘Man as

an intuitive statistician,’ Psychological Bulletin

68: 29–46.

Plaut,D. C., J. L.McClelland,M. S. Seidenberg,

andK.Patterson.1996. ‘Understanding normal

and impaired word reading: Computational

principles in quasi-regular domains,’Psychological

Review 94: 523–68.

Rescorla, R. A. 1968. ‘Probability of shock in the

presence and absence of CS in fear conditioning,’

Journal of Comparative and Physiological Psychology

66: 1–5.

Rescorla,R.A. andA.R.Wagner.1972. ‘A theory

of Pavlovian conditioning: Variations in the

effectiveness of reinforcement and nonrein-

forcement’ in A. H. Black and W. F. Prokasy

(eds): Classical Conditioning II: Current Theory and

Research. New York: Appleton-Century-Crofts,

pp. 64–99.

Reynolds, G. S. 1961. ‘Attention in the pigeon,’

Journal of the Experimental Analysis of Behavior

4: 203–8.

Robinson, P. (ed.). 2001. Cognition and Second

Language Instruction. Cambridge: Cambridge

University Press.

Rumelhart, D. E. and J. L. McClelland. (eds).

1986. Parallel Distributed Processing: Explorations in

theMicrostructure of CognitionVol. 2: Psychological

and biological models. Cambridge, MA: MIT

Press.

Sampson, G. 2001. Empirical Linguistics. London:

Continuum.

Schmidt, R. 1984. ‘The strengths and limitations

of acquisition: A case study of an untutored

language learner,’ Language, Learning, and

Communication 3: 1–16.

Schmidt, R. 2001. ‘Attention’ in P. Robinson

(ed.): Cognition and Second Language Instruction.

Cambridge: Cambridge University Press,

pp. 3–32.

Schmitt, N. (ed.). 2004. Formulaic Sequences:

Acquisition, Processing and Use. Amsterdam: John

Benjamins.

Schooler, L. J. 1993. Memory and the Statistical

Structure of the Environment. Carnegie Mellon

University, Pittsburgh, PA.

Schooler, L. J. and Anderson, J. R. 1997.

‘The role of process in the rational

analysis of memory,’ Cognitive Psychology 32/3:

219–50.

NICK C. ELLIS 23



Schumann, J. H. 1978. The Pidginisation Process:

A Model for Second Language Acquisition. Rowley,

MA: Newbury House.

Sedlmeier, P. and T. Betsc. 2002. Etc.—Frequency

Processing and Cognition. Oxford: Oxford

University Press.

Sedlmeier, P. andG.Gigerenzer.2001. ‘Teaching

Bayesian reasoning in less than two hours,’

Journal of Experimental Psychology: General 130:

380–400.

Shanks, D. R. 1995. The Psychology of Associative

Learning. New York: Cambridge University Press.

Shannon, C. E. 1948. ‘A mathematical theory

of communication,’ Bell Systems Technological

Journal 27: 623–56.

Sinclair, J. 1991. Corpus, Concordance, Collocation.

Oxford: Oxford University Press.

Slobin, D. I. 1996. ‘From ‘‘thought and language’’

to ‘‘thinking for speaking’’ ’ in J. J. Gumperz and

S. C. Levinson (eds): Rethinking Linguistic Relativ-

ity. Cambridge: Cambridge University Press.

Tomasello, M. (ed.). 1998. The New Psychology of

Language: Cognitive and Functional Approaches to

Language Structure. Mahwah, NJ: Erlbaum.

Tomasello, M. 2003. Constructing a Language.

Boston, MA: Harvard University Press.

Tversky, A. and D.Kahneman. 1982. ‘Evidential

impact of base rates’ in D. Kahneman, P. Slovic,

and A. Tversky (eds): Judgment under Uncertainty:

Heuristics and Biases. Cambridge: Cambridge

University Press, pp. 153–160.

Wagner, A. R., F. A. Logan, K. Haberlandt, and

T. Price. 1968. ‘Stimulus selection in animal

discrimination learning,’ Journal of Experimental

Psychology 76: 171–80.

Ward, D. J. and D. J. C. MacKay. 2002. ‘Fast

hands-free writing by gaze direction,’ Nature

418: 838.

Wasserman, E. A., S. M. Elek, D. L. Chatlosh,

and A. G. Baker. 1993. ‘Rating causal relations:

The role of probability in judgments of response-

outcome contingency,’ Journal of Experimental

Psychology: Learning, Memory, & Cognition 19:

174–98.

Widrow, B. and M. E. Hoff. 1960. ‘Adaptive

switching circuits,’ 1960 IRE WESCON Convention

Record (Pt. 4): 96–104.

Williams, J. N. 1996. ‘Is automatic priming

semantic?’ European Journal of Cognitive

Psychology 22: 139–51.

Wixted, J. T. and E. Ebbesen. 1991. ‘On

the form of forgetting,’ Psychological Science 2:

409–15.

Yudkowsky, E. 2003. ‘An Intuitive Explanation of

Bayesian Reasoning’ from http://yudkowsky.

net/bayes/bayes.html.

24 LANGUAGE ACQUISITION AS RATIONAL CONTINGENCY LEARNING

http://yudkowsky

