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INTRODUCTION

Can human morphological abilities be understood in terms of associative
processes, or is it necessary to postulate rule-based symbol processing
systems underlying these grammatical skills? This question has generated
considerable debate in the literature over the past decade, much of it
focusing on the behaviour of “regular” and “irregular” inflectional
morphology. There are broadly two contrasting accounts. Dual-processing
models (for example Marcus, Brinkmann, Clahsen, Wiese, & Pinker, 1995;
Pinker & Prince, 1988; Prasada, Pinker, & Snyder, 1990) take the differences
in behaviour of regular and irregular inflections to represent the separate
underlying processes by which they are produced: Regular inflections are
produced by rules (for example, for the past tense “add -ed to a Verb”),
while irregular inflections are listed in memory. Associative accounts,
whether connectionist (e.g. MacWhinney & Leinback, 1991; Plunkett &
Marchmann, 1993; Rumelhart & McClelland, 1986) or schema-network
(Bybee, 1995) models, assume that both regular and irregular inflections
arise from the same mechanism, a single distributed associative network,
with the differences in behaviour being due to statistical distributional
factors.

This debate often makes reference to one key behavioural difference
between regular and irregular inflections: When people are asked to
produce past tense forms, their latencies are affected by frequency of past
tense forms when generating irregular inflections, but not when generating
regular ones. Prasada et al. (1990) and Seidenberg and Bruck (1990) showed
that when fluent native English speakers see verb stems on a screen and are
required to produce the past tense form as quickly as possible, they take
significantly less time (16-29msec in three experiments) for irregular verbs
with high past tense frequencies (like went) than for irregular verbs with low
past tense frequencies (like slung), even when stem frequencies are equated.
However, there is no effect on latency of the past tense frequency of regular
verbs whose past tense is generated by adding -ed.

This lack of frequency effect on regular forms has been taken as evidence
that grammar cannot be understood solely in terms of associative
mechanisms. Pinker (1991) uses it in support of a hybrid account of
morphological inflection: Regular verbs (walk—walked) are computed by a
suffixation rule in a neurally based symbol manipulating syntactic system,
while irregular verbs (run—ran) are retrieved from an associative memory.
Briefly, his explanation is as follows: (1) Irregular inflected forms must be
memorised since they do not conform to a rule. A general property of
associative memory systems is that there are robust frequency effects:
Frequently encountered items are better remembered and faster accessed.
Thus, low frequency irregular forms take longer to access than high
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frequency ones. (2) Regular inflections are not stored in associative memory,
but are generated by a rule-based symbolic system, the time to produce the
inflected form simply reflecting (a) the time to access the lemma form, and
(b) the time to bind procedurally the regular inflectional affix. Thus, there
are no frequency effects on their production latencies. For example, walk
and afford are both quite common in their stem forms, but the past tense
form walked is much more common than is afforded. Nevertheless, a
rule-generated account predicts that afforded will be produced as quickly as
walked, since the stem forms, being equally frequent, are equally readily
accessed, and it takes a constant amount of time to add an -ed ending.

Beck (1995) reports similar regularity by frequency interactions in the
latencies of productions of non-native speakers, and thus broadens the
application of this account to second language learning. Indeed, the effect is
generally cited as key evidence for the existence of symbol-manipulating
rules in a specifically linguistic mental module underpinning both first and
second language acquisition (Eubank & Gregg, 1995; Pinker, 1991).

It is an elegant and attractive argument, and the latency of production
data are indeed consistent with such an account. But there are two problems.
The first is that there is a simpler, more parsimonious explanation. In this
article we will show that a basic principle of learning, the power law of
practice, also generates frequency by regularity interactions. Thus, these
behavioural dissociations between “regular” and “irregular” forms are
equally consistent with connectionist accounts of morphosyntax. The second
problem is that, although these theories are trying to explain both language
processing and language acquisition, these particular data come from highly
fluent language users. It is difficult to gain an understanding of learning and
development from observations of the final state, when we have no record of
the content of the learners’ years of exposure to language nor of the
developmental course of their proficiencies. If we want to understand
learning we must study it directly.

The present report therefore describes adult acquisition of second
language morphology using a miniature artificial language (MAL) where
frequency and regularity are factorially combined. The accuracy and latency
data demonstrate frequency effects for both regular and irregular forms
early on in the acquisition process. However, as learning progresses, so the
frequency effect for regular items diminishes, although it remains for
irregular items. The results thus converge on the end-point described by
Prasada et al. (1990). However, they also show how subjects reach this
endpoint, with the convergence of performance on high and low frequency
regular plurals indexing the rate of acquisition of the regular pattern. We
next describe a simple connectionist model which was exposed to the same
exemplars in the same order as the human subjects. The results of these
simulations closely parallel those of the human learners—there are initially
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frequency effects for both the regular and irregular forms, but with increased
exposure, so the frequency effect for regular forms is attenuated. Thus, a
connectionist system, which has no “rules”, can duplicate this “rule-like”
behaviour. Rather, as shown by Plaut, McClelland, Seidenberg, and
Patterson (1996) for the case of reading, the frequency by regularity
interaction is a natural and necessary result of associative learning processes.

HUMAN LEARNING

If we wish to investigate the effects of input and practice on the acquisition of
language structure then we need a proper record of learner input. Yet it is
virtually impossible to gather a complete corpus of learners’ exposure and
production of natural language. How can we ascertain how many types and
tokens of regular and irregular inflections have been processed by, for
example, learners of English or of German? At best, for natural language,
we can only guess by extrapolation of frequency counts from language
corpora and unverifiable assumptions about registers. Much of the dispute
about the implications of the regularity by frequency effect in morphosyntax
centres on such assumptions (Bybee, 1995; Marcus et al. 1995; Plunkett &
Marchman, 1991; Prasada & Pinker, 1993, Rumelhart & McClelland, 1986).
One way around this is to have people learn a miniature artificial language
(MAL) under laboratory conditions.

There is a rich tradition of using MALs to investigate processes of
acquisition of native language (Braine, Brody, Brooks, Sudhalter, Ross,
Catalano, & Fisch, 1990; Moeser & Bregman, 1972; Morgan, Meier, &
Newport, 1987; Morgan & Newport, 1981; Palermo & Howe, 1970; Winter &
Reber, 1994) and second- and foreign-languages (MacWhinney, 1983;
McLaughlin, 1980; Yang & Givon, 1997). The number of published studies is
at least in the hundreds, if not more. This is because MAL experiments have
many advantages. They allow: (a) a complete log of exposure to be recorded,
(b) accuracy to be monitored at each point, (c) factorial manipulation of the
potential independent variables of interest and the teasing apart of naturally
confounded effects, and (d) relatively rapid collection of data. But these
advantages are bought at the cost of reduced ecological validity: (1) MALs
are toy languages when compared to the true complexity of natural
language, (2) the period of study falls far short of lifespan practice, (3)
laboratory learning exposure conditions are far from naturalistic, and (4)
volunteer learners are often atypical in their motivations and demographics.
All of these very real problems of laboratory research stem from the
sacrifices made necessary by the goals of experimental control and
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microanalysis of learning in real time. This is the classic “experimenter’s
dilemma”: Naturalistic situations limit experimental control and thus the
internal logical validity of research; laboratory research limits ecological
validity (Jung, 1971).

In adopting MAL research, we are not denying naturalistic field studies.
We might caricature the first as providing valid descriptions of artificial
language learning and the latter as providing tentative descriptions of
natural language learning. However, the use of a MAL in this study avoids at
least three problems that have plagued similar experiments using natural
languages (Beck, 1995): (1) Uncertainty whether frequencies derived from
corpora accurately represent input to learners, (2) problems attributed to
interference from phonological similar items in regular and irregular sets
(e.g. lean: lend or fly: flow) or derived forms (e.g. head as a verb derived from
a noun), and (3) evidence from only an advanced stage of learning, forcing
reliance on logical argumentation rather than empirical evidence to describe
acquisition.

Subjects

Seven monolingual English volunteers for the School of Psychology
volunteer panel served as subjects. There were three males and four females.
They were aged between 18 and 40 years’ old. They were paid £2.50 per hour
for their involvement. They usually worked an hour a day at the experiment.

The Miniature Artificial Language

Moeser and Bregman (1972) criticised the generalisability of MAL
experiments which involved subjects listening to strings of words from
semantically empty languages, because some syntactic rules that were easily
acquired when the MAL referred to a stimulus world were not acquired
when it did not. The MAL in the present study therefore incorporated
reference. The subjects’ initial task was to learn MAL names for 20 picture
stimuli. They were told that they were learning vocabulary in a new
language. The pictures, drawn from Snodgrass and Vanderwart (1980), are
described in the Appendix, along with the stem form of their MAL names
and their corresponding plural forms. Like Braine et al. (1990), we chose
MAL names which were suggestive of English cognates in order to make
them readily learnable; thus, for example, the MAL words for umbrella and
fish are, respectively, “brol” and “pisc”. To the degree that the task only
involves ostensive definition and is not embedded in a larger goal-directed
setting, it is acknowledgedly limited as an analogue of natural language
vocabulary acquisition. However, it allows clean and precise experimental
control whilst providing a reasonable model of ostensive vocabulary



312 ELLIS AND SCHMIDT

learning that occurs to some considerable degree in L1 and even more so in
intentional foreign language learning.

Subjects learned the stem forms before studying the plural forms. In the
stem learning phase all items appeared equally often. In the subsequent
plural learning phase, in order to maximise the sensitivity of the reaction
time (RT) measure, plurality in the MAL was marked by a prefix. Half of the
items had a regular plural marker (“bu-”); the remaining 10 items had
idiosyncratic affixes, as shown in the Appendix. The use of a prefix
inflectional system afforded the additional advantage of minimising transfer
effects from the subjects’ first language since, although it is found in natural
languages like Ndebele, it is quite different from English plural formation.
Thus, the MAL was designed with English cognates in order to promote
positive transfer of learning of the stem forms, and a very different inflection
system in order to exclude any morphological transfer. Frequency was
factorially crossed with regularity, with half of each set being presented five
times more often. The high and low frequency irregular items were matched
for initial phoneme to control voice onset time.

Method

The experiment was controlled by a Macintosh LCIII computer
programmed with PsyScope (Cohen, MacWhinney, Flatt, & Provost, 1993).
Model pronunciations of the MAL lexis spoken by the first author were
recorded using MacRecorder. Subjects’ vocal reaction times were measured
using a voice key.

Stem Learning. Subjects first learned the stem forms of the MAL. This
phase consisted of blocks of 20 trials. In each block every picture appeared
once in a randomly chosen order—the subjects’ frequency of exposure to all
of the stem forms was the same. Each trial consisted of the following
sequence: (1) one of the pictures appeared mid-screen for 2sec, (2) if the
subject thought they knew the picture name, they spoke it into the
microphone as quickly as possible, (3) 2sec after picture onset, the computer
spoke the correct name for the picture, (4) the experimenter marked the
subject’s utterance as correct or not by pressing one of two keys. The
dependent variables were thus correctness and RT. These blocks of trials
were repeated until the subjects knew the MAL names for the pictures, and
could begin uttering them within 2sec of stimulus-onset, to a criterion of
100% correct on two successive blocks. At this point they graduated to the
plural learning phase.

Plural Learning. This phase used the same procedures except that each
block consisted of 80 trials presented in random order: (1) One presentation



FREQUENCY AND REGULARITY IN MORPHOSYNTAX ACQUISITION 313

of each of the 20 singular forms as in the preceding phase; (2) five
presentations of each of the five high frequency regular (HiFreqReg) plural
forms; (3) five presentations of each of the five high frequency irregular
(HiFreqlrreg) plural forms; (4) one presentation of each of the five low
frequency regular (LoFreqReg) forms; and (5) one presentation of each of
the five low frequency irregular (LoFreqlrreg) forms. On the singular trials,
just one picture appeared midscreen; on the plural trials, a pair of adjacent
identical pictures appeared. This phase continued for several (mean = 4.3,
range = 0 to 9) blocks beyond the point at which the learners had achieved
100% accuracy on all plural forms in order to monitor increasing fluency as
indexed by RT improvement.

Results

Stem Learning. The stem learning data will only be presented in
summary, since the major focus of the experiment lies with the plural forms.
Subjects took an average of 9.17 (SD 5.93) blocks to achieve the criterion of
correctness. Some stem forms were easier to learn than others (£(19, 2161)
= 2307, P < 0.001). Particularly easy words included “fant” (92% correct
over all trials), “pisc” (85%), and “lant” (78%). Particularly difficult words
included “prill” (32%), “charp” (43%), and “breen” (46%). However, for
purposes of control, it is important to note that the stem forms of the items
that were later allocated in the Plural Learning phase to regular/irregular
plural morphology or high/low frequency of exposure did not significantly
differ in difficulty of learning at this stage: Regularity [F(1, 16) = 0.703, ns);
Frequency [F(1, 16) = 0.569, ns); Regularity X Frequency (F(1, 16) = 0.029,
ns).

Plural Learning. Subjects partook of between 13 and 15 blocks of this
phase.

The key interest lies with the rate of acquisition of the plural forms. We
will first describe analyses of accuracy and then RT. These data are shown in
Fig. 1.

ANOV A was used to assess the effects of frequency, regularity, and block.
For the main effects of regularity and frequency and their interaction we
report additional analyses, which determine the robustness of these effects
when separately analysed by subjects and by words. There was a significant
effect of frequency on accuracy with the advantage going to the high
frequency items [overall analysis, F(1,5939) = 431.17, P < 0.001; by subjects,
F(1,6) = 56.31, P < 0.005; by words, F{(1, 16) = 172.00, P < 0.001]. There was
a significant effect of regularity, with the regular plurals being learned better
than the irregulars [overall analysis, F(1,5939) = 81.52, P < 0.001; by
subjects, F(1, 6) = 6.64, P < 0.05; by words, F(1, 16) = 30.50, P < 0.001].
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FIG. 1. Acquisition data for human learners of the MAL morphology. The four curves
illustrate the interactions of regularity and frequency. The left-hand panel shows accuracy
improving with practice. The right-hand panel shows vocal reaction time diminishing with
practice. In this graph, as in Figs. 2 and 3, the frequency effect for regular items is assessed by
comparing the two solid lines and the frequency effect for irregular items lies in the difference
between the two dotted lines.

There was significant improvement over blocks [F(14, 5939) = 132.00, P <
0.001]. The interaction of regularity by frequency was significant with the
frequency effect being larger for the irregular items [overall analysis, F(1,
5939) = 73.52, P < 0.001; by subjects, F(1,6) = 12.41, P< 0.02; by words, F{(1,
16) = 27.73, P < 0.001]. A significant interaction between regularity by
frequency by block [F(14, 5939) = 2.22, P < 0.005] shows that the larger
frequency effect for irregular items is maximal in the mid-order blocks—it is
a lesser effect at early and later stages of learning (Fig. 1).

These patterns are confirmed in the somewhat noisier RT data where the
following sources of variation were significant, at least in the overall analysis:
(a) frequency [overall analysis, F(1, 5123) = 650.74, P < 0.001; by subjects,
F(1, 6) = 63.08, P < 0.001; by words, F(1, 16) = 73.96, P < 0.001]; (b)
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regularity [overall analysis, F(1,5123) = 10.62, P < 0.001; by subjects, F(1, 6)
= 3.26, ns; by words, F(1, 16) < 1, ns]; (c) block [F(14, 5123) = 28.72, P <
0.001]; (d) regularity by frequency [overall analysis, F(1, 5123) = 20.92, P <
0.001; by subjects, F(1,6) = 10.15, P < 0.02; by words, F(1, 16) = 2.15, ns]; (e)
regularity by frequency by block [F(14, 5123) = 1.95, P < 0.05].

It is clear from both panels of Fig. 1 that there was much less regularity
effect for high frequency items than for low frequency items and, in
counterpart, that the frequency effect was less for regular items. In
particular, if the last four blocks of training are taken being typical of more
fluent performance, they demonstrate that ceiling effects on the accuracy
data allow no frequency effect for the regular items, whereas the effect of
frequency is maintained for the irregular ones. The RT curves in the
right-hand panel of Fig. 1 are clearly non-linear. In each case a power
function better fits the data than does a linear function, the R’s for the power
function fits being respectively: HiFreqReg 0.94, HiFreqlrreg 0.97,
LoFreqReg 0.74, LoFreqlrreg 0.76. Thus the frequency by regularity
interaction seems a natural result of asymptotic performance limits: for
correctness the 100% accuracy ceiling, for RT the latency “floor” governed
by the power law of practice. The curves in Fig. 1 give no hint of a sudden
step in performance whereafter all regular items are produced with similar
efficiency.

Discussion of Human Data

Like Prasada et al. (1990), these data show a regularity by frequency
interaction in the processing of morphology. However, contra Prasada et al.,
the present data, which concern the learning of morphology, demonstrate
(a) that there are frequency effects (both on accuracy and RT) for regular
items in the early stages of acquisition, (b) the sizes of these effects diminish
with learning (converging on a position at fluency as described by Prasada et
al.), and (c) the size of the frequency effect on irregular items similarly
diminishes with learning, but it does so more slowly.

These effects are readily explained by simple associative theories of
learning. It is not necessary to invoke hybrid systems separating rule-
governed regular morphosyntax from associatively stored irregulars. If
there is one ubiquitous quantitative law of human learning, it is the power
law of practice (Anderson, 1982). The critical feature in this relationship is
not just that performance, typically time, improves with practice, but that the
relationship involves the power law in which the amount of improvement
decreases as a function of increasing practice or frequency. Anderson (1982)
showed that this function applies to a variety of tasks, including for example,
cigar rolling, syllogistic reasoning, book writing, industrial production,
reading inverted text, and lexical decision. For the case of language
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acquisition, Kirsner (1994) has shown that lexical recognition processes
(both for speech perception and reading) and lexical production processes
(articulation and writing) are independently governed by the relationship
T=BN™ where T is some measure of latency of response and N the number
of trials of practice. DeKeyser (1997) shows that automatisation of
comprehension and production performance involving explicitly learned
second-language morphosyntax separately follow independent, skill-
specific power functions. Ellis (1996) describes the general implications of
the power law for second-language acquisition.

The human acquisition data in Fig. 1 clearly follow the power law of
learning. Thus, as performance approaches asymptote, so previously
separated functions tend to converge. High frequency items are closer to
asymptote. Therefore, whereas performance levels for regular and irregular
items are clearly distinguishable at low frequencies, they are much less
distinct at high frequencies. This comes as no surprise to us when we
consider the ceiling imposed by 100% accuracy. But the power law of
practice equally implies an asymptotic ceiling whatever our performance
measure.

The power law entails that the contribution of any potential independent
variable affecting performance will be more difficult to demonstrate with
high-frequency items in practised individuals. This is certainly the case in
reading: For example, while spelling and grapheme—phoneme regularity
have clear effects on low frequency items, they show little or no effects
among high frequency words (Seidenberg, Waters, Barnes, & Tanenhaus,
1984). Our learning data illustrate the same principle operating in the
acquisition of morphology. It is not the case that there is no regularity effect
on high frequency items (or, concomitantly, no frequency effect on regular
items); it is simply that such effects are much smaller closer to asymptote
and thus are likely to be swamped by random error. Indeed, high
frequency regular inflected forms do exhibit a small (but non-significant)
advantage over low frequency forms in naturally occurring errors,
and they can be shown to have a larger (significant) advantage in
a more controlled experimental task in which subjects produced the
past-tense forms of regular English verbs (Stemberger & MacWhinney,
1986).

We have shown that the interaction of frequency and regularity results
from developmental trends that are consistent with the ubiquitous
descriptive law of associative learning. In the next section we will
demonstrate how such data can be generated by a very general mechanism
of associative learning. When presented with the same materials at the same
relative frequencies of exposure, a standard three-layer feed-forward
connectionist model closely simulates our language-learners’ acquisition
curves.
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CONNECTIONIST SIMULATIONS

Connectionist models allow the assessment of just how much of language
acquisition can be done by extraction of probabilistic patterns of
grammatical and morphological regularities. Since the only relation in
connectionist models is strength of association between nodes, they are
excellent modelling media in which to investigate the formation of
associations (both between surface-form elements and between these and
emergent, more abstract, internal representations) as a result of exposure to
language. The advantages of connectionist models over traditional symbolic
models are that (a) they are neurally inspired, (b) they incorporate
distributed representation and control of information, (c) they are data-
driven with prototypical representations emerging as a natural outcome
of the learning process rather than being prespecified and innately given
by the modellers as in more nativist cognitive accounts, (d) they show
graceful degradation as do humans with language disorder, and (e)
they are in essence models of learning and acquisition rather than static
descriptions.

There have been a number of compelling PDP models of the acquisition of
morphology. The pioneers were Rumelhart and McClelland (1986), who
showed that a simple learning model reproduced, to a remarkable degree,
the characteristics of young children learning the morphology of the past
tense in English—the model generated the so-called U-shaped learning
curve for irregular forms; it exhibited a tendency to overgeneralise, and, in
the model as in children, different past-tense forms for the same word could
co-exist at the same time. Yet there was no “rule”—*“it is possible to imagine
that the system simply stores a set of rote-associations between base and
past-tense forms with novel responses generated by ‘on-line’ generalisations
from the stored exemplars” (Rumelhart & McClelland, 1986, p. 267). This
original past-tense model was very influential. It laid the foundations for the
connectionist approach to language research which this special issue attests;
it generated a large number of criticisms (Lachter & Bever, 1988; Pinker &
Prince, 1988), some of which are undeniably valid; and, in turn, it thus
spawned a number of revised and improved PDP models of different aspects
of the acquisition of the English past tense (e.g. Cottrell & Plunkett, 1994;
Daugherty & Seidenberg, 1994; MacWhinney & Leinbach, 1991;
Marchman, 1993; Plunkett & Marchman, 1991).

Of these newer models, only that of Daugherty and Seidenberg (1992,
1994) addressed the regularity by frequency interaction. Their model was a
three-layer feed-forward network mapping the input of phonological
structure of present tense encoded over 120 phonological units representing
a CCCVVCCC template for English monosyllables onto an output of
similarly coded phonological structure of past tense form. Simulation 1,
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where the model was trained on all present—past tense pairs with Francis and
Kucera frequencies >1 (309 verbs with regular past tenses, 104 verbs with
irregular past tenses), failed to generate any frequency by regularity
interaction in error score. However, when in simulation 2 the number of
irregular verbs in the training set was reduced to just 24, this resulted in there
being little effect of frequency on performance with the regular items,
whereas performance was better for high frequency irregular verbs than for
low frequency ones. This is an important demonstration that the frequency
by regularity interaction can be simulated by a connectionist system.
However, this model concerned mappings between present- and past-tense
forms, not direct access from semantics as in our human data. Furthermore,
it is unclear from these simulations how much the results are due to
regularity per se, how much to phonological factors (for example, in
simulation 1 the error scores for regulars in generalisation tests were inflated
by there being a high proportion of phonologically similar irregular past
tense false friends in the training corpus, 1994, p. 375), and, given the
contrasting results of simulations 1 and 2, how much to the particular choice
of training items and the relative proportions of regular and irregular items.

Indeed, much of the debate over the validity of all of these models has
concerned (a) the adequacy of the adopted low-level phonological
representations, whether these might serve as TRICS (The Representations
It Crucially Supposes) which cryptoembody rules within the connectionist
network (Lachter & Bever, 1988), (b) over-reliance on phonological cues in
models that used sound-to-sound conversions to link base forms with past
tense forms (Daugherty & Seidenberg, 1992; MacWhinney, 1994;
MacWhinney & Leinbach, 1991), and (c) the appropriateness of the training
sets that are used in exposing the models to the evidence of language, and
whether they properly reflect the types and tokens, in representative ratios
of regular and irregular forms, in a sequence that plausibly mirrors learner
language exposure at different stages of development (Daugherty &
Seidenberg, 1992; Plunkett & Marchman, 1991). The models are usually
concerned with child learner language exposure, yet here the extrapolation
is particularly tenuous since adult language frequency norms are typically
the only available reference database.

In our simple demonstration, with its intended focus on the frequency by
regularity interaction in the acquisition of morphology, we circumvented
these problems by the following means:

1. We eliminated TRICS from our input and output representations by
entirely ignoring the low level representations and, instead, simply having
one input unit for each picture and one output unit for each morpheme.
We make no pretence of plausibility of these models for low levels of
representation in either input or output processing, but we are presently
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neither concerned with low-level feature perception nor the details of
motor programming for pronunciation. Each input unit is supposed
broadly to correspond to activation of some picture detector or “imagen”
(Paivio, 1986), each output unit to some speech output “logogen”
(Morton, 1979). We acknowledge that these parts of the model are grossly
simplified and we believe that these aspects ultimately involve distributed
representations as well. However, there is one advantage to this
simplicity—where, as here, each input detector or output logogen is
represented by just one unit, with all units having the same form, there is
no scope for making some more similar than others, other, that is, than is
determined by the frequency of the input-output mappings. This
encoding scheme allows the most hygienic investigation of frequency and
regularity uncontaminated by other factors.

2. Like Cottrell and Plunkett (1994), we are modelling direct access from
semantics rather than generating past tense from stem form phonology.
Because there are no phonological representations in our model, there is
no chance of the results reflecting any confound with phonology. As usual,
costs accompany the benefits: Our simulations can have no bearing on
phonological aspects of inflection and thus, while they might generate
quantitatively clean data, unlike the elegant error analyses performed by,
for example Daugherty and Seidenberg (1994) and MacWhinney and
Leinbach (1991), the error responses in the present simulations will be
qualitatively uninteresting.

3.  We eliminated uncertainty about the detailed content of the complex
evidence which human learners are exposed to during their early years of
hearing natural language by modelling adult subjects’ learning of the
MAL that was reported in the preceding section. Because we determined
the exposure sequence of types and tokens of regular and irregular items
in this language learning task, we could train the models ensuring the
identical history of exposure.

The most common architecture of connectionist model has three layers,
the input layer of units, the output layer, and an intervening layer of hidden
units (HUs). The presence of HUs enables more difficult input/output
mappings to be learned than would be possible if the input units were
directly connected to the output units (Broeder & Plunkett, 1994;
Rumelhart & McClelland, 1986). The most common learning algorithm is
“back propagation” (Rumelhart, Hinton, & Williams, 1986), where, on each
learning trial, the network compares its output with the target output, and
any difference is propagated back to the hidden unit weights, and in turn to
the input weights, in a way that reduces the error. Our simulations adopted
this standard architecture. Thus, whatever the pattern of results, they are
generated by a very general learning system whose processes were not
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tweaked in any way to make it particular as a Language Acquisition Device.
So, what are the emergent patterns of language acquisition that result when
this general associative learning mechanism is applied to the particular
content of picture stimuli with their corresponding singular and plural lexical
responses as experienced at the same relative frequencies of exposure as our
human learners?

The Models

Architecture. Every model had 22 input (I-) units. Each of I-units 1-20
represented one of the pictures used in the training set of the Appendix.
I-unit 21 represented another picture (the generalisation test item, TesterP)
which was only ever presented for training to the model in the singular—
later it was presented as a plural test item to see which plural affix the model
would choose for this generalisation item (akin to asking you what is the
plural of a novel word like “wug”?). I-unit 22 coded plurality, that is,
whether a singular stimulus item or a pair were presented. Every model had
32 output (O-) units. O-units 1-20 represented the stem forms of the lexis
shown in the Appendix. O-unit 21 represented the stem form corresponding
to I-unit 21. O-units 22-31 represented each of the other 10 unique plural
affixes for irregular items. O-unit 32 represented the regular plural affix.
This numbering of I- and O-units is, of course, arbitrary and was random-
ised across models—what mattered and remained constant was that the
same O-unit was always reinforced whenever a particular I-unit was
activated.

We investigated four different classes of model, which differed in their
computational capacity or resources. The larger the number of HUs in a
model, the larger the number of connections in the network, and the greater
its capacity to learn new associations and abstractions. Thus, we compared
models with 3, 5, 8, and 15 HUs.

Stem Training. At the outset, the connection weights of the models were
randomised. Then, just like our human learners, the models were first
trained on the singular forms. Each epoch of training consisted of 21 trials.
Each trial consisted of presentation of a unique input pattern, one for each of
the input pictures. Thus, just one of I-units 1-21 would be “on” on any trial.
Throughout the singular training phase, I-unit 22 (representing single/plural
stimuli) was set to “off”. For each input pattern, the model responded with a
pattern of output over its 32 O-units. Initially this was the random result of
the random connection weights. But the model was also presented with the
correct pattern of output for that corresponding input pattern (e.g. if [-unit 1
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was on and all others off, O-unit 1 should have had value 1.0 and all others
zero). On each trial, the back-propagation algorithm calculated the
difference between the level of activity that was produced on each O-unit
and the “correct” level of activity, and a small adjustment was made to the
connection strength to that unit in such a way that when the same process
occurred again, a closer approximation to the correct pattern of output
activation would be achieved. The models were trained for 500 epochs of
singular experience. For each size of model we ran five examples starting
with different arbitrary unit allocation and different initial random
connection strengths. The data we produce for each model is the average
performance of these five examples.

Plural Training The model weights that resulted from this singular
training then served as the starting point for another 700 epochs of training
on plurals. The trials constituting each epoch were very similar in nature to
those used with the human learners: Each epoch consisted of 81 trials
presented in random order: (a) One presentation of each of the 21 singular
forms as in the preceding phase, (b) five presentations of each of the five high
frequency regular (HiFreqReg) plural forms, (c) five presentations of each
of the five high frequency irregular (HiFreqlrreg) plural forms, (d) one
presentation of each of the five low frequency regular (LoFreqReg) forms,
and (e) one presentation of each of the five low frequency irregular
(LoFreqlIrreg) forms. For training trials of type (a) just one of I-units 1-21
was activated, I-unit 22 was off, and just the corresponding one of O-units
1-21 was reinforced. For the other training types (b—e), one of I-units 1-20
was activated, I-unit 22 was on, and one of O-units 1-20 (the corresponding
stem form) along with one of O-units 22-32 (the corresponding plural affix)
were reinforced. The learning algorithm operated as it did in the stem
training phase. At regular intervals, we tested the state of learning of the
model by presenting it, without feedback, with test input patterns that
represented the plural cases of all 21 pictures. At these tests, for each
stimulus we measured the pattern of activation (between 0 [no activation],
and 1 [full on]) across O-units 22-32 and compared it against the target
plural activation for that input pattern.

Results

Regularity by Frequency. Figure 2 shows the Root Mean Square (RMS)
error calculated across the plural affix O-units (22-32) averaged over the five
items in each of the following classes: HiFreqReg, HiFreqlrreg, LoFreqReg,
LoFreqlrreg, at each point in testing of the model. These graphs illustrate
that learning in all of the models showed clear effects of frequency (high
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frequency items were learned faster than low frequency ones), regularity
(regular items were learned faster than irregular ones), and a frequency by
regularity interaction whereby there was much less regularity effect for high
frequency items than for low frequency items and, equally, that the
frequency effect was less for regular items than for irregular ones.

ANOVAs on these RMS data for each size of model demonstrated that
there was high consistency of response across items and example
simulations. For example, when the SHU model was analysed as a repeated
measures ANOVA across 15 roughly equally spaced blocks of training (to
parallel the human data analysis), the following significant effects were
observed: (a) Frequency [by simulations, F(1, 16) = 20.80, P < 0.0005; by
words, F(1,16) = 56.65, P < 0.0001], (b) regularity [by simulations, F(1, 16)
= 9.07, P < 0.01; by words, F(1, 16) = 39.57, P < 0.0001], (c) regularity by
frequency [by simulations, F(1, 16) = 4.85, P < 0.05; by words, F(1, 16) =
15.61, P < 0.005], (d) block [by simulations, F(14, 224) = 68.03, P < 0.0001;
by words, F(14, 224) = 149.14, P < 0.0001], (e) block by regularity [by
simulations, (14, 224) = 36.75, P < 0.0001; by words, F(14, 224) = 29.29, P
< 0.0001], (f) block by frequency [by simulations, F(14, 224) = 18.93, P <
0.0001; by words, F(14,224) = 11.84, P < 0.0001], and (g) block by regularity
by frequency [by simulations, F(14, 224) = 16.11, P < 0.0001; by words, F(14,
224) = 13.06, P < 0.0001].

Comparison of this pattern of ANOVA effects with that reported earlier
for the human data shows important similarities: in both cases there are
significant main effects of frequency, regularity and blocks, and there are
significant interactions involving regularity by frequency and regularity by
frequency by block. Thus, the connectionist models demonstrate effects
which broadly parallel those found in humans.

Comparison with Human Data. More detailed comparison is also
possible. Although RMS error is the usual measure of model performance
because it assesses how well the network learns to inhibit non-relevant units
as well as to excite relevant ones, we also extracted simple accuracy data for
the 8HU model. This accuracy score is the amount of activation (between 0
and 1) on the single O-unit which corresponds to the appropriate target affix
for that input pattern. Figure 3 shows the performance of the SHU model
using this metric. It is clear that accuracy scores generate a graph which is
effectively a reflection in a horizontal plane of the RMS data shown in the
third panel of Fig. 2. In fact, in the current simulations correct activation is
almost perfectly correlated with MSE (for example, » = —0.988 for the SHU
model). However, the activation metric has the advantage of more ready
interpretation and direct comparison with the human data.

When the SHU model and the human data are aligned as in Fig. 3 these
correspondences become clear. Pairwise comparison of individual points
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FIG. 3. A comparison of human accuracy performance and that of the eight hidden unit
connectionist simulation.

across these two graphs by correlation shows that the simulation predicts a
large proportion of the variance in the human data (R* = 0.78). There are
some differences in detail—as is clarified in Fig. 4 where performance is
averaged over blocks, the model performs somewhat better on the regular
items and worse on the irregular items, particularly the low frequency
irregular items, than do the humans. ANOVA (three factor [human/model,
regularity, and frequency] with 15 blocks as repeated measures, by words
analysis) comparing the human and 8HU model data confirms these
interactions: (a) human/model F(1, 32) = 1.36, ns, (b) human/model by
frequency F(1, 32) = 0.47, ns, (c) human/model by regularity F(1, 32) =
30.28, P < 0.0001, (d) human/model by regularity by frequency F(1, 32) =
5.01, P < 0.05.
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FIG.4. The regularity by frequency interaction averaged over blocks in humans and the eight
hidden unit model. Error bars reflect 95% confidence intervals.

Generalisation. So far we have described performance with trained
items. However, we also tested model output when the stimulus was the
pattern for generalisation item (TesterP) along with activation of the plural
marking I-unit 22, a state of input on which the models had never been
trained. Table 1 shows performance of the different models at the end of
training. It is clear that the larger models have abstracted the regular plural
pattern and tend to apply it by default to the generalisation test item: for the
15HU model, (a) average activation on the regular plural O-unit is 0.60, (b)
mean RMS error comparing observed activation across O-units 22-32 and
the target regular plural pattern (10000000000) is just 0.45, and (c) four out
of the five exemplar runs of this size of model chose the regular plural
pattern as being the closest to observed output as measured by minimum
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TABLE 1
Performance on the Target Regular Plural Pattern for the Four Sizes of Model When
Presented with the Generalisation Wug-test Item, TesterP, at End of Training

Model Size

Measure 3HU* SHU S8HU 15HU
RMS error’

M 0.81 0.79 0.53 0.45

SD 0.43 0.50 0.45 032
Activation weight*

M 0.20 028 0.57 0.60

SD 0.44 0.44 0.52 0.35
N. hits (/5)° 1 2 3 4

There were five examplars of each size of model. “HU = hidden units. "RMS error calculated
against the target activation pattern across O-units 22-32 for the regular plural affix. ‘Activation
weight on the regular plural affix O-Unit. “Number of exemplar models (/5) which chose the
regular plural affix pattern for TesterP as indexed by output weights on O-units 22-32 being
closest to the regular plural affix target pattern activation using a squared Euclidean distance
metric.

squared Euclidean distance. Thus, when the larger models are presented
with a plural stimulus which they have only ever previously experienced as a
single form, there is a tendency for them to generalise and apply the regular
plural morpheme (bu-) in the same way that humans might generalise that
the plural of “wug” is “wugs”.

Effects of Different Sizes of Model.  Figure 2 also illustrates the effects of
manipulating computational capacity of model: (1) Models with lower
computational power (= a smaller number of HUs) learn the high frequency
items quite well—almost as well as the largest model. (2) The most striking
effect of varying the computational power of the models lies in their abilities
to learn low frequency irregular items—this is by far the most sensitive index
of morphological learning ability. The 3HU model hardly manages to learn
these forms at all. The 15SHU model eventually learns them rather well. (3)
There is essentially no frequency effect for regular items in the higher
computational power models, but none the less the frequency effect for
irregular items remains strong. (4) The smaller models continue to show a
frequency effect for regular items at the end of training. Table | provides one
additional effect of model size: (5) The greater the computational power of
the models, the more they operate in “rule-like” way by abstracting a
“regular” plural form, which is applied by default to novel items. In sum,
while lower computational power models are reasonably good on high
frequency regular items, they show frequency effects for irregular and
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regular items, are relatively poor on “wug tests”, and have particular
difficulty on low frequency irregular items.

Discussion of Simulations

We believe that, at least for the issue of regularity and frequency effects in
morphosyntax, this is to date the most complete quantitative analysis of the
adequacy of fit of simulation to human data. We are not simply making
predictions about how an underspecified model might behave (the
Daugherty & Seidenberg, 1994 criticisms of the Pinker & Prince, 1988 and
Pinker, 1991 theories). We are not simply demonstrating that simulation and
human data alike exhibit first order interactions of frequency and regularity
(Daugherty & Seidenberg, 1994). Instead we are showing the parallel
patterns of significance of main effects, first, and second order interactions in
ANOVAs of simulation and human data, and we are showing that the
simulations explain close to 80% of the relevant human data. When we go as
far as actually comparing human and model performance in a multifactorial
ANOVA we find some differences of detail in the size of interactions that
are qualified by the human/model factor. But these differences of detail do
not detract from the general success of the models in simulating the human
pattern of development of the frequency by regularity interaction: In
humans and models alike, high frequency items were learned significantly
faster than low frequency ones; regular items were learned significantly
faster than irregular ones; there was a significant frequency by regularity
interaction where the frequency effect was less for regular items than for
irregular ones; and this is qualified as the higher level interaction with block
whereby there is a developmental trend—the frequency effect for regular
items attenuates faster than that for irregular items.

We have demonstrated that the models can generalise and produce the
default plural affix for a novel stimulus. Similar “wug test” performance by a
human learner would be taken as an operationalisation that they had
acquired the “regular” morphological systematicity.

Finally, we have shown how varying the computational capacity of the
models affects both the rate of acquisition of default case, the presence or
absence of frequency effects for regular items, and ability to acquire
irregular items. This is compatible with existing data for children with
specific language impairment (SLI). Oetting and Rice (1993) compared five-
year-old SLI children with age-matched controls on their ability to form
plurals. The SLI children were significantly worse at generating regular
plurals for nonce (=wug) items; they were worse at generating regular
plurals; and they showed an effect of frequency on the regular items which
the control children, because of ceiling effects, did not. Unfortunately,
Oetting and Rice (1993) do not provide clear data on the children’s ability to



328 ELLIS AND SCHMIDT

form irregular plurals. However, their pattern of differences between SLI
and control children’s performance on regular items is sufficiently close to
that between the present low-capacity and high-capacity simulations to
suggest that morphosyntactic impairments in individuals with SLI might be
explained by reduced language processing capacity in a general associative
memory network rather than by a hybrid account. The SLI children’s
showing frequency effects for regular items is particularly compelling in this
respect. However, further assessment of regularity by frequency effects and
default abstraction in individuals with SLI and with Williams syndrome
(whose ability on regular forms is said to outstrip their performance on
irregulars—Bellugi, Bihrle, Jernigan, Trauner, & Dougherty, 1990) is
necessary to test these parallels further (see Marchman, 1993 for other
simulations of different types of language dysfunction).

GENERAL DISCUSSION

Fluent language users have processed many millions of utterances involving
tens of thousands of types presented as innumerable tokens. It should come
as no surprise either that they demonstrate such effortless and complex skill
as a result of this mass of practice, or that researchers, lacking any true
record of the learners’ experience, are awed and confused by these
sophisticated grammatical abilities. While we have no wish to deny any of
the complexity of the final fluent state, we suspect that much of the mystery
of morphology can be clarified by focusing on the acquisition process rather
than the end-point. This has been our aim in this paper. Our MAL is a
travesty of natural language, but at least we know the types and tokens in the
learners’ language evidence, and there is no need to speculate or argue about
extrapolations from corpus data or assumptions about registers.

Human learning of this MAL inflectional morphology quickly culminates
in a state where, as with natural language, frequency and regularity have
interactive effects on performance. But, as we chart acquisition, it is clear
that this interaction need not imply complex dual-mechanisms of processing.
Rather, it simply reflects the asymptotes expected from the power law of
practice, a simple associative law of learning. Thus, we have shown that one
of the most frequently introduced arguments for the necessity of a
dual-mechanism approach, a frequency effect for irregulars and the absence
of such an effect for regulars, is not a good argument at all. Furthermore, we
have demonstrated that a simple connectionist model, as an implementation
of associative learning provided with the same language evidence,
accurately simulates the human acquisition data.

But how is the power law instantiated in human and connectionist
systems, and what is being associated in the acquisition of inflectional
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morphosyntax? The power law of learning in human performance has been
interpreted as resulting from basic associative mechanisms involving the
formation of new chunks, and the effects of frequency on the accessibility of
these representations (Newell, 1990, Newell & Rosenbloom, 1981).
Anderson and Schooler (1991) suggest that memory (both as its behavioural
expression in error rate and latency and as its neural expression in LTP)
displays properties such as the power law of learning because these
properties reflect an optimal response to the environment where the
probability of an item occurring at any particular time is a power function of
its past frequency of occurrence. Neural activation, which controls
behaviour, reflects the probability of an item occurring in the environment;
thus, the neural processes are designed to adapt behaviour to the statistical
properties of the environment (Anderson, 1993). Connectionist systems are
designed to do the same thing (Chater, 1995).

In our simplified account of inflectional morphology where phonological
factors are put to one side, the relevant units for chunking are the stem forms
and the plural affixes. From an associative perspective, regularity and
frequency are essentially the same factor under different names. The first
meaning of “regular” in the Pocket Oxford Dictionary involves “habitual,
constant” acts, a definition in terms of statistical frequencies, consistency,
and descriptive generalisation; the second stresses “conforming to a rule or
principle”. We need to disentangle these senses (see Sharwood-Smith, 1994
and Lima, Corrigan, & Iverson, 1994 for conceptual analysis of “rules of
language”). Whether regular morphology is generated according to arule or
not, it is certainly the case for English and the MAL under study here (and
generally it is the default, if not the universal case—we will return to this
matter later) that regular affixes are more habitual or frequent. And, as
demonstrated in Fig. 5, the power law of practice entails that an effect of a
constant increment of regularity (in its frequency sense) is much more
apparent at low than at high frequencies of practice.

Although it is a general principle, the degree to which it applies depends
on a range of factors, including: (a) the exponent of the power function, (b)
the particular level of experience attained, and thus the placement of
comparison points on the learning curve, and (c) the degree to which
frequency and regularity are additive or multiplicative. In the present
experiment, a fivefold increase in the frequency of the regular items results
in a (5§ X the number of regular items) increase in use of the regular affix; a
fivefold increase in the frequency of an irregular item results in merely a
fivefold increase in the use of the irregular affix. Thus, frequency and
regularity are interactive rather than additive. But even if we allow for
interaction, the function still results in greater regularity effects for low
frequency items—just as, for example, the power function
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asymptotes, so does any power function
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where n > 0; the shape remains the same, albeit stretched or condensed
along the horizontal axis. Thus all associative accounts of morphology,
whether they stress the importance of type or token frequency (Bybee, 1995)
in the determination of statistical regularity, imply a frequency by regularity
interaction in performance.

Plaut et al. (1996) analyse the operation of connectionist networks in the
particular quasi-regular domain of spelling—sound consistency in reading to
demonstrate how the frequency by regularity interaction is a direct
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consequence of the nonlinearity, adaptivity, and distributed representation
properties of learning and representation in PDP networks. In what follows,
we will minimally rephrase their analysis as it applies to the quasi-regular
domain of inflectional morphology. In a connectionist network, the weight
changes induced by an input/output pattern (I/OP) on any training epoch
serve to reduce the error on that I/OP. The frequency of the I/OP (and the
units it involves) is reflected in how often it is presented to the network. Thus
word frequency directly amplifies weight changes that are helpful to the
I/OP itself. Consistency of the morphological inflections of two stems is
reflected in the similarity of affix units that are co-activated in their I/OPs.
Furthermore, two inputs will induce similar weight changes to the extent
that they activate similar units. In our MAL, as an extreme case, consistent
forms all activate the same affix unit, irregular ones each activate a different
idiosyncratic affix. Given that the weight changes that are induced by each
I/OP are superimposed on the weight changes for all other I/OPs, an I/OP
will tend to be helped by the weight changes for I/OPs whose input/output
mappings are consistent with its own, and hindered by the weight changes
for inconsistent I/OPs. Thus, frequency and consistency sum because they
both arise from similar weight changes that are simply added together during
training. The weight changes result in corresponding increases in the
summed input to output units that should be active, and decreases to the
summed units that should be inactive. However, due to the non-linearity of
the input-output function of units, these changes do not produce directly
proportionate reduction of error. Rather, as the magnitude of the summed
input to output units increases, their states gradually asymptote towards
1.0—a given increase in the summed input to a unit yields progressively
smaller decrements in error over the course of training. Thus, although
frequency and regularity-as-consistency each contribute to the weights, and
hence to the summed input to units, their effect on error is subjected to a
gradual ceiling effect as unit states are driven towards extremal values.
Thus, a connectionist associative account of simple morphosyntax as it is
embodied in our MAL holds that learning involves associating input
patterns representing single or plural concepts with stem and affix lemmas
across a large distributed network. Frequency of experience increases the
strength of the appropriate I/O associations. Regularity effects stem from
consistency, the consistent items all involve pairings between plurality and
the regular lemma, and thus regularity is frequency by another name. The
network sums and abstracts these consistencies, but it does so using
non-linear unit input—output functions, thereby resulting in the frequency by
regularity interaction. Networks are not simple competitive chunking or
Markov chaining mechanisms working on surface form. Their massively
distributed nature allows the emergence of more abstract internal
representations. We have argued that this analysis accounts for the human
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acquisition data of simple MAL morphosyntax quite well. We believe that
the acquisition of natural language morphosyntax, where there are many
additional factors of different phonological consistencies (of the type, for
example, where the neighbours sink, drink, and stink are irregular in their
past tenses but all behave in the same -ank way), are equally conducive to the
principles of this type of account, although, as illustrated in grander
simulation enterprises (Cottrell & Plunkett, 1994; Daugherty & Seidenberg,
1994; MacWhinney & Leinbach, 1991; Marchman, 1993; Plunkett &
Marchman, 1993) the complexity of interaction of the factors that are there
in the language evidence leads to much more complex developmental
outcomes. Our role here has been to study human acquisition under
precisely known circumstances and to demonstrate just how well a
connectionist associative account can simulate these data.

A simple regularity=consistency account of this type will have difficulty if
the “regular” or “default” case is not the most frequent case in a natural
language. Although there is agreement for English past tense, and for
morphology more generally, that the default case is more frequent, there
may be exceptions. Marcus et al. (1995) argue that while the German particle
-t applies to a much smaller percentage of verbs than its English counterpart,
and the German plural -s applies only to a small percentage of nouns,
nevertheless these affixes behave as defaults in the language. These default
suffixations in German could thus pose a problem for statistical or
connectionist accounts of the acquisition of the more frequent patterns as
default since they may not be due to a large number of regular words
reinforcing a pattern in associative memory (Prasada & Pinker, 1993).
However, this is still a matter of some debate. Bybee (1995) suggests that a
more reasonable method of counting German particle type frequency does
show the default (or “productive”) process to have the highest type
frequency. She also argues that to a large extent the productivity patterns of
German plurals also reflect their type frequency. Nakisa and Hahn (1996)
and Plunkett and Nakisa (in press) show that generalisation to unseen or
novel forms in German and Arabic (where there have also been claims for a
minority default) is more accurately predicted by their phonological
similarity to existing forms in the language (properly represented for type
and token frequency), rather than by the operation of a default rule. Finally,
Hare, Elman, and Daugherty (1995) demonstrate that multilayered
networks can develop a default category even in the absence of superior type
frequency, as long as the non-default classes are well defined and narrowly
defined so that they serve as strong prototypes for analogising to novel
forms. In such cases the area outside these well-defined attractor basins can
constitute a potential default (see also, Plunkett & Marchman, 1991).

In the original hybrid model, irregulars were stored and accessed from
rote memory. Pinker and Prince (1994, p. 326) modified this part of the
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model, arguing that, since rote memory could not account (a) for similarities
between the morphological base and irregular forms (e.g. swing—swung), (b)
for similarity within sets of base forms undergoing similar processes (e.g.
sing-sang, ring-rang, spring-sprang), or (c) for the kind of semi-productivity
shown when children produce errors such as bring-brang or swing—swang,
the memory system underlying such productions must be associative and
dynamic, somewhat as connectionism portrays it. Yet to account for data
such as the frequency/regularity interaction, this revised hybrid model still
holds that regular forms are rule-governed. But a purely rule-based account
of regulars cannot explain false friends effects where regular inconsistent
items (e.g. bake-baked is similar in rhyme to neighbours make—made and
take—took, which have inconsistent past tenses) are produced more slowly
that entirely regular ones (Daugherty & Seidenberg, 1994; Seidenberg &
Bruck, 1990), or frequency effects on regular forms (Oetting & Rice, 1993;
Stemberger & MacWhinney, 1986). Unlike connectionist models, a rule-
based account of regulars cannot explain these aspects of the human data.
Nor is the regularity/frequency interaction any reason to reject connectionist
accounts of morphosyntax in favour of a hybrid model.
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APPENDIX
The Word-forms of the Artificial Language

Picture Stem Plural Form Frequency Regularity
car garth bugarth 5 R
bed pid bupid 1 R
lamp lant bulant 5 R
table tib butid 1 R
plane poon bupoon 5 R
ball prill buprill 1 R
train dram budram 5 R
house hize buhize 1 R
book bisk bubisk 5 R
broom breen bubreen 1 R
phone feem gofeem 5 1
umbrella brol gubrol 1 1
chair charp zecharp 5 1
horse naig zonaig 1 1
monkey chonk nuchonk 5 1
dog Woop niwoop 1 1
elephant fant vefant 5 1
scissors z0ze vuzoze 1 1
kite kag rekag 5 1
fish pisc ropisc 1 1




