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1. Introductory Overview 

 One of the key mysteries of language development is that each of us as learners 

has had different language experiences and yet somehow we have converged on broadly 

the same language system. From diverse, noisy samples, we end up with similar 

competence. How so? Some views hold that there are constraints in the learner’s 

estimation of how language works, as expectations of linguistic universals pre-

programmed in some innate language acquisition device. Others hold that the constraints 

are in the dynamics of language itself – that language form, language meaning, and 

language usage come together to promote robust induction by means of statistical 

learning over limited samples. The research described here explores this question with 

regard English verbs,!their grammatical form, semantics, and patterns of usage. 

 As a child, you engaged your parents and friends talking about things of shared 

interest using words and phrases that came to mind, and all the while you learned 

language. We were privy to none of this. Yet somehow we have converged upon a 

similar-enough ‘English’ to be able to communicate here. Our experience allows us 

similar interpretations of novel utterances like “the ball mandoolz across the ground” or 

“the teacher spugged the boy the book.” You know that mandool is a verb of motion and 

have some idea of how mandooling works – its action semantics. You know that 

spugging involves some sort of transfer, that the teacher is the donor, the boy the 

recipient, and that the book is the transferred object. How is this possible, given that you 
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have never heard these verbs before? Each word of the construction contributes 

individual meaning, and the verb meanings in these Verb-Argument Constructions 

(VACs) is usually at the core. But the larger configuration of words has come to carry 

meaning as a whole too. The VAC as a category has inherited its schematic meaning 

from all of the examples you have heard. Mandool inherits its interpretation from the 

echoes of the verbs that occupy this VAC – words like come, walk, move, ..., scud, skitter 

and flit - in just the same way that you can conjure up an idea of the first author’s dog 

Phoebe, who you have never met either, from the conspiracy of your memories of dogs.  

 Knowledge of language is based on these types of inference, and verbs are the 

cornerstone of the syntax-semantics interface. To appreciate your idea of Phoebe, we 

would need a record of your relevant evidence (all of the dogs you have experienced, in 

their various forms and frequencies) and an understanding of the cognitive mechanisms 

that underpin categorization and abstraction. In the same way, if we want a scientific 

understanding of language knowledge, we need to know the evidence upon which such 

psycholinguistic inferences are based, and the relevant psychology of learning. These are 

the goals of our research. To describe the evidence, we take here a sample of VACs based 

upon English form, function, and usage distribution. The relevant psychology of learning, 

as we will explain, suggests that learnability will be optimized for constructions that are 

(1) Zipfian in their type-token distributions in usage (the most frequent word occurring 

approximately twice as often as the second most frequent word, which occurs twice as 

often as the fourth most frequent word, etc.), (2) selective in their verb form occupancy, 

and (3) coherent in their semantics. We assess whether these factors hold for our sample 

of VACs.  

 In summary, our methods are as follows; we will return to explain each step in 

detail. We search a tagged and dependency-parsed version of the British National Corpus 

(BNC 2007), a representative 100-million word corpus of English,  for 23 example VACs 

previously identified in the Grammar Patterns volumes (Francis, Hunston, and Manning 

1996; Hunston and Francis 1996) resulting from the COBUILD corpus-based dictionary 

project (Sinclair 1987). For each VAC, such as the pattern V(erb) across N(oun phrase), 

we generate (1) a list of verb types that occupy each construction (e.g. walk, move, 

skitter). We tally the frequencies of these verbs to produce (2) a frequency ranked type-
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token profile for these verbs, and we determine the degree to which this is Zipfian (e.g. 

come 474 ... spread 146 … throw 17 … stagger 5; see Fig. 1 below). Because some verbs 

are faithful to one construction while others are more promiscuous, we next produce (3) a 

contingency-weighted list which reflects their statistical association (e.g. scud, skitter, 

sprawl, flit have the strongest association with V across N). Because verbs are highly 

polysemous, we apply word sense disambiguation algorithms to assign (4) senses to these 

verbs in the sentences where they are present, according to WordNet (Miller 2009). We 

use techniques for identifying clustering and degrees of separation in networks to 

determine (5) the degree to which there is semantic cohesion of the verbs occupying each 

construction (e.g., semantic fields TRAVEL and MOVE are most frequent for V across N), 

and whether they follow a prototype/radial category structure. In order to gauge the 

degree to which each VAC is more coherent than expected by chance in terms of the 

association of its grammatical form and semantics we generate a distributionally-yoked 

control (a ‘control ersatz construction’, CEC), matched for type-token distribution but 

otherwise randomly selected to be grammatically and semantically uninformed. Through 

the comparison of VACs and CECS of these various measures, and following what is 

known of the psychology of learning, we assess the consequences for acquisition. 

 This work is a preliminary interdisciplinary test, across significantly large 

language usage and learning corpora, of the generalizability of construction grammar 

theories of language learning informed by cognitive linguistics, learning theory, 

categorization, statistical learning, usage-based child language acquisition, and complex 

systems theory.  

2. Construction Grammar and Usage 

 Constructions are form-meaning mappings, conventionalized in the speech 

community, and entrenched as language knowledge in the learner’s mind. They are the 

symbolic units of language relating the defining properties of their morphological, 

lexical, and syntactic form with particular semantic, pragmatic, and discourse functions 

(Goldberg 2006, 1995). Verbs are central in this: their semantic behavior is strongly 

intertwined with the syntagmatic constraints governing their distributions. Construction 

Grammar argues that all grammatical phenomena can be understood as learned pairings 
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of form (from morphemes, words, idioms, to partially lexically filled and fully general 

phrasal patterns) and their associated semantic or discourse functions: “the network of 

constructions captures our grammatical knowledge in toto, i.e. it’s constructions all the 

way down” (Goldberg, 2006, p. 18). Such beliefs, increasingly influential in the study of 

child language acquisition, emphasize data-driven, emergent accounts of linguistic 

systematicities (e.g., Tomasello 2003; Clark and Kelly 2006). 

 Frequency, learning, and language come together in usage-based approaches 

which hold that we learn linguistic constructions while engaging in communication 

(Bybee 2010). The last 50 years of psycholinguistic research provides the evidence of 

usage-based acquisition in its demonstrations that language processing is exquisitely 

sensitive to usage frequency at all levels of language representation from phonology, 

through lexis and syntax, to sentence processing (Ellis 2002). That language users are 

sensitive to the input frequencies of these patterns entails that they must have registered 

their occurrence in processing. These frequency effects are thus compelling evidence for 

usage-based models of language acquisition which emphasize the role of input. Language 

knowledge involves statistical knowledge, so humans learn more easily and process more 

fluently high frequency forms and ‘regular’ patterns which are exemplified by many 

types and which have few competitors (e.g., MacWhinney 2001). Psycholinguistic 

perspectives thus hold that language learning is the associative learning of representations 

that reflect the probabilities of occurrence of form-function mappings.  

! If constructions as form-function mappings are the units of language, then 

language acquisition involves inducing these associations from experience of language 

usage. Constructionist accounts of language acquisition thus involve the distributional 

analysis of the language stream and the parallel analysis of contingent perceptuo-motor 

activity, with abstract constructions being learned as categories from the conspiracy of 

concrete exemplars of usage following statistical learning mechanisms (Christiansen and 

Chater 2001; Jurafsky and Martin 2000; Bybee and Hopper 2001; Bod, Hay, and Jannedy 

2003; Ellis 2002; Perruchet and Pacton 2006) relating input and learner cognition.  

3. Determinants of Construction Learning 

 Psychological analyses of the learning of constructions as form-meaning pairs is 
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informed by the literature on the associative learning of cue-outcome contingencies 

where the usual determinants include: (1) input frequency (type-token frequency, Zipfian 

distribution), (2) form (salience and perception), (3) function (prototypicality of 

meaning), and (4) interactions between these (contingency of form-function mapping) 

(Ellis and Cadierno 2009). We will briefly consider each in turn, along with studies 

demonstrating their applicability: 

3.1  Input Frequency  

 3.1.1. Construction Frequency 

 Frequency of exposure promotes learning and entrenchment (e.g., Anderson 2000; 

Ebbinghaus 1885; Bartlett [1932] 1967). Learning, memory and perception are all 

affected by frequency of usage: the more times we experience something, the stronger 

our memory for it, and the more fluently it is accessed. The more recently we have 

experienced something, the stronger our memory for it, and the more fluently it is 

accessed [hence your reading this sentence more fluently than the preceding one]. The 

more times we experience conjunctions of features, the more they become associated in 

our minds and the more these subsequently affect perception and categorization; so a 

stimulus becomes associated to a context and we become more likely to perceive it in that 

context.  

! Frequency of exposure also underpins statistical learning of categories (Mintz 

2002; Hunt and Aslin 2010; Lakoff 1987; Taylor 1998; Harnad 1987). Human 

categorization ability provides the most persuasive testament to our incessant 

unconscious figuring or ‘tallying’. We know that natural categories are fuzzy rather than 

monothetic. Wittgenstein’s (1953) consideration of the concept game showed that no set 

of features that we can list covers all the things that we call games, ranging as the 

exemplars variously do from soccer, through chess, bridge, and poker, to solitaire. 

Instead, what organizes these exemplars into the game category is a set of family 

resemblances among these members -- son may be like mother, and mother like sister, 

but in a very different way. And we learn about these families, like our own, from 

experience. Exemplars are similar if they have many features in common and few 

distinctive attributes (features belonging to one but not the other); the more similar are 
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two objects on these quantitative grounds, the faster are people at judging them to be 

similar (Tversky 1977). The greater the token frequency of an exemplar, the more it 

contributes to defining the category, and the greater the likelihood it will be considered 

the prototype. The operationalization of this criterion predicts the speed of human 

categorization performance -- people more quickly classify as dogs Labradors (or other 

typically sized, typically colored, typically tailed, typically featured specimens) than they 

do dogs with less common features or feature combinations like Shar Peis or Neapolitan 

Mastiffs. Prototypes are judged faster and more accurately, even if they themselves have 

never been seen before -- someone who has never seen a Labrador, yet who has 

experienced the rest of the run of the canine mill, will still be fast and accurate in judging 

it to be a dog (Posner and Keele 1970). Such effects make it very clear that although 

people don’t go around consciously counting features, they nevertheless have very 

accurate knowledge of the underlying frequency distributions and their central 

tendencies.  

 3.1.2. Type and Token Frequency 

 Token frequency counts how often a particular form appears in the input. Type 

frequency, on the other hand, refers to the number of distinct lexical items that can be 

substituted in a given slot in a construction, whether it is a word-level construction for 

inflection or a syntactic construction specifying the relation among words. For example, 

the “regular” English past tense -ed has a very high type frequency because it applies to 

thousands of different types of verbs, whereas the vowel change exemplified in swam and 

rang has much lower type frequency. The productivity of phonological, morphological, 

and syntactic patterns is a function of type rather than token frequency (Bybee and 

Hopper 2001). This is because: (a) the more lexical items that are heard in a certain 

position in a construction, the less likely it is that the construction is associated with a 

particular lexical item and the more likely it is that a general category is formed over the 

items that occur in that position; (b) the more items the category must cover, the more 

general are its criterial features and the more likely it is to extend to new items; and (c) 

high type frequency ensures that a construction is used frequently, thus strengthening its 

representational schema and making it more accessible for further use with new items 
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(Bybee and Thompson 2000). In contrast, high token frequency promotes the 

entrenchment or conservation of irregular forms and idioms; the irregular forms only 

survive because they are high frequency. There is related evidence for type-token matters 

in statistical learning research (Gómez 2002; Onnis et al. 2004). These findings support 

language’s place at the center of cognitive research into human categorization, which also 

emphasizes the importance of type frequency in classification. 

3.1.3. Zipfian Distribution 

 In natural language, Zipf’s law (Zipf 1935) describes how the highest frequency 

words account for the most linguistic tokens. Zipf’s law states that the frequency of 

words decreases as a power function of their rank in the frequency table. If pf is the 

proportion of words whose frequency in a given language sample is f, then pf ~ f 
-!

, with ! 

! 1. Zipf showed this scaling law holds across a wide variety of language samples. 

Subsequent research provides support for this law as a linguistic universal. Many 

language events across scales of analysis follow his power law: phoneme and letter 

strings (Kello and Beltz 2009), words (Evert 2005), grammatical constructs (Ninio 2006; 

O’Donnell and Ellis 2010), formulaic phrases (O'Donnell and Ellis 2009) etc. Scale-free 

laws also pervade language structures, such as scale-free networks in collocation (Solé et 

al. 2005; Bannard and Lieven 2009), in morphosyntactic productivity (Baayen 2008), in 

grammatical dependencies (Ferrer i Cancho & Solé, 2001, 2003; Ferrer i Cancho, Solé, & 

Köhler, 2004), and in networks of speakers, and language dynamics such as in speech 

perception and production, in language processing, in language acquisition, and in 

language change (Ninio 2006; Ellis 2008). Zipfian covering, where, as concepts need to 

be refined for clear communication, they are split, then split again hierarchically, 

determines basic categorization, the structure of semantic classes, and the language form-

semantic structure interface (Steyvers and Tennenbaum 2005; Manin 2008). Scale-free 

laws pervade both language structure and usage. And not just language structure and use. 

Power law behavior like this has since been shown to apply to a wide variety of 

structures, networks, and dynamic processes in physical, biological, technological, social, 

cognitive, and psychological systems of various kinds (e.g. magnitudes of earthquakes, 

sizes of meteor craters, populations of cities, citations of scientific papers, number of hits 
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received by web sites, perceptual psychophysics, memory, categorization, etc.) (Newman 

2005; Kello et al. 2010). It has become a hallmark of Complex Systems theory. Zipfian 

scale-free laws are universal. Complexity theorists suspect them to be fundamental, and 

are beginning to investigate how they might underlie language processing, learnability, 

acquisition, usage and change (Beckner, et al., 2009; Ellis & Larsen-Freeman, 2009b; 

Ferrer i Cancho & Solé, 2001, 2003; Ferrer i Cancho, et al., 2004; Solé, et al., 2005) 

Various usage-based / functionalist / cognitive linguists (e.g., Boyd & Goldberg, 2009; 

Bybee, 2008, 2010; Ellis, 2008a; Goldberg, 2006; Goldberg, Casenhiser, & Sethuraman, 

2004; Lieven & Tomasello, 2008; Ninio, 1999, 2006) argue that it is the coming together 

of these distributions across linguistic form and linguistic function that makes language 

robustly learnable despite learners’ idiosyncratic experience and the ‘poverty of the 

stimulus’. 

 In first language acquisition, Goldberg, Casenhiser & Sethuraman (2004) 

demonstrated that there is a strong tendency for VACs to be occupied by one single verb 

with very high frequency in comparison to other verbs used, a profile which closely 

mirrors that of the mothers’ speech to these children. They argue that this promotes 

language acquisition: In the early stages of learning categories from exemplars, 

acquisition is optimized by the introduction of an initial, low-variance sample centered 

upon prototypical exemplars. This low variance sample allows learners to get a fix on 

what will account for most of the category members, with the bounds of the category 

being defined later by experience of the full breadth of exemplar types. 

 In naturalistic second language (L2) acquisition, Ellis and Ferreira-Junior (2009) 

investigated type/token distributions in the items comprising the linguistic form of 

English VACs (VL verb locative, VOL verb object locative, VOO ditransitive) and 

showed that VAC verb type/token distribution in the input is Zipfian and that learners 

first acquire the most frequent, prototypical and generic exemplar (e.g. put in VOL, give 

in VOO, etc.).  

3.2  Function (Prototypicality of Meaning) 

 Categories have graded structure, with some members being better exemplars 

than others. In the prototype theory of concepts (Rosch and Mervis 1975; Rosch et al. 
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1976), the prototype as an idealized central description is the best example of the 

category, appropriately summarizing the most representative attributes of a category. As 

the typical instance of a category, it serves as the benchmark against which surrounding, 

less representative instances are classified.  

 Ellis & Ferreira-Junior (2009) show that the verbs that L2 learners first used in 

particular VACs are prototypical and generic in function (go for VL, put for VOL, and 

give for VOO). The same has been shown for child language acquisition, where a small 

group of semantically general verbs, often referred to as light verbs (e.g., go, do, make, 

come) are learned early (Clark 1978; Ninio 1999; Pinker 1989). Ninio (1999) argues that, 

because most of their semantics consist of some schematic notion of transitivity with the 

addition of a minimum specific element, they are semantically suitable, salient, and 

frequent; hence, learners start transitive word combinations with these generic verbs. 

Thereafter, as Clark describes, “many uses of these verbs are replaced, as children get 

older, by more specific terms. . . . General purpose verbs, of course, continue to be used 

but become proportionately less frequent as children acquire more words for specific 

categories of actions” (p. 53).  

3.3.  Interactions between these (Contingency of Form-Function Mapping) 

 Psychological research into associative learning has long recognized that while 

frequency of form is important, so too is contingency of mapping (Shanks 1995). 

Consider how, in the learning of the category of birds, while eyes and wings are equally 

frequently experienced features in the exemplars, it is wings which are distinctive in 

differentiating birds from other animals. Wings are important features to learning the 

category of birds because they are reliably associated with class membership, eyes are 

neither. Raw frequency of occurrence is less important than the contingency between cue 

and interpretation. Distinctiveness or reliability of form-function mapping is a driving 

force of all associative learning, to the degree that the field of its study has been known as 

‘contingency learning’ since Rescorla (1968) showed that for classical conditioning, if 

one removed the contingency between the conditioned stimulus (CS) and the 

unconditioned (US), preserving the temporal pairing between CS and US but adding 

additional trials where the US appeared on its own, then animals did not develop a 
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conditioned response to the CS. This result was a milestone in the development of 

learning theory because it implied that it was contingency, not temporal pairing, that 

generated conditioned responding. Contingency, and its associated aspects of predictive 

value, information gain, and statistical association, have been at the core of learning 

theory ever since. It is central in psycholinguistic theories of language acquisition too 

(Ellis 2008; MacWhinney 1987; Ellis 2006, 2006; Gries and Wulff 2005), with the most 

developed account for L2 acquisition being that of the Competition model (MacWhinney 

1987, 1997, 2001).  

 Ellis and Ferreira-Junior (2009) use a variety of metrics to show that VAC 

acquisition is determined by their contingency of form-function mapping. They show that 

the one-way dependency statistic "P (Allan 1980) that is commonly used in the 

associative learning literature (Shanks 1995), as well as collostructional analysis 

measures current in corpus linguistics (Gries and Stefanowitsch 2004; Stefanowitsch and 

Gries 2003) predict effects of form-function contingency upon L2 VAC acquisition. 

Other researchers use conditional probabilities to investigate contingency effects in VAC 

acquisition. This is still an active area of inquiry, and more research is required before we 

know which statistical measures of form-function contingency are more predictive of 

acquisition and processing. 

! Ellis and Larsen-Freeman (2009) provided computational (Emergent 

connectionist) serial-recurrent network simulations of these various factors as they play 

out in the emergence of constructions as generalized linguistic schema from their 

frequency distributions in the input. This fundamental claim that Zipfian distributional 

properties of language usage helps to make language learnable has thus begun to be 

explored for these three VACs, at least. But three VACs is a pitifully small sample of 

English grammar. It remains an important research agenda to explore its generality across 

the wide range of the verb constructicon. 

 The primary motivation of construction grammar is that we must bring together 

linguistic form, learner cognition, and usage. An important consequence is that 

constructions cannot be defined purely on the basis of linguistic form, or semantics, or 

frequency of usage alone. All three factors are necessary in their operationalization and 

measurement. Psychology theory relating to the statistical learning of categories suggests 
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that constructions are robustly learnable when they are (1) Zipfian in their type-token 

distributions in usage, (2) selective in their verb form occupancy, and (3) coherent in their 

semantics. Our research aims to assess this for a sample of the verbal grammar of 

English, analyzing the way VACs map form and meaning, and providing an inventory of 

the verbs that exemplify these constructions and their frequency.  

4. Method 

 As a starting point, we considered several of the major theories and datasets of 

construction grammar such as FrameNet (Fillmore, Johnson, and Petruck 2003). 

However, because our research aims to empirically determine the semantic associations 

of particular linguistic forms, it is important that such forms are initially defined by 

bottom-up means that are semantics-free. There is no one in corpus linguistics who ‘trusts 

the text’ more than Sinclair (2004) in his operationalizations of linguistic constructions 

on the basis of repeated patterns of words in collocation, colligation, and phrases. 

Therefore we chose the definitions of VACs presented in the Verb Grammar Patterns 

(Hunston and Francis 1996) that arose out of the COBUILD project (Sinclair 1987) for 

our first analyses. We focus on a convenience sample of 23 constructions for our initial 

explorations here. Most of these follow the verb – preposition – noun phrase structure, 

such as V into N, V after N, V as N (Goldberg 2006), but we also include other classic 

examples such as the ditransitive, and the way construction (Jackendoff 1997).!!

!"#$#!Step 1 Construction Inventory: COBUILD Verb Patterns 

 The form-based patterns described in the COBUILD Verb Patterns volume 

(Francis, Hunston, and Manning 1996) take the form of word class and lexis 

combinations, such as V across N, V into N and V N N. For each of these patterns the 

resource provides information as to the structural configurations and meaning groups 

found around these patterns through detailed concordance analysis of the Bank of English 

corpus during the construction of the COBUILD dictionary. For instance, the following is 

provided for the V across N pattern (Francis, Hunston, and Manning 1996): 

The verb is followed by a prepositional phrase which consists of across and 
a noun group.  

This pattern has one structure: 
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* Verb with Adjunct. 
 I cut across the field. 

 Further example sentences drawn from the corpus are provided and a list of verbs found 

in the pattern and that are semantically typical are given. For the V across N pattern these 

are: brush, cut, fall, flicker, flit, plane, skim, sweep. No indication is given as to how 

frequent each of these types are or how comprehensive the list of types is. Further 

structural (syntactical) characteristics of the pattern are sometimes provided, such as the 

fact that for V across N the prepositional phrase is an adjunct and that the verb is never 

passive. There are over 700 patterns of varying complexity in the Grammar Patterns 

volume. In subsequent work we hope to analyze them all in the same ways we describe 

here for our sample of 23. 

4.2. Step 2 Corpus: BNC XML Parsed Corpora 

 To get a representative sample of usage, the analysis of verb type-token 

distribution in the kinds of construction patterns described in Step 1 should be done 

across corpora in the magnitude of the tens or hundreds of millions of words. Searching 

for the pattern as specified requires that the corpora be part-of-speech tagged, and some 

kind of partial parsing and chunking is necessary to apply the necessary structural 

constraints (see Mason and Hunston 2004 for exploratory methodology). For this initial 

work, we chose to use the 100 million word BNC (2007) on account of its size, the 

breadth of text types it contains and the consistent lemmatization and part-of-speech 

tagging. Andersen et al. (2008) parsed the XML version of the BNC using the RASP 

parser (Briscoe, Carroll, and Watson 2006). RASP is a statistical feature-based parser that 

produces a probabilistically ordered set of parse trees for a given sentence and 

additionally a set of grammatical relations that capture “those aspects of predicate-

argument structure that the system is able to recover and is the most stable and grammar 

independent representation available” (Briscoe, Carroll, and Watson 2006). For each 

VAC, we translate the formal specifications from the COBUILD patterns into queries to 

retrieve instances of the pattern from the parsed corpus.  

4.3. Step 3  Searching Construction Patterns 
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 Using a combination of part-of-speech, lemma and dependency constraints we 

construct queries for each of the construction patterns. For example, the V across N 

pattern is identified by looking for sentences that have a verb form within 3 words of an 

instance of across as a preposition, where there is an indirect object relation holding 

between across and the verb and the verb does not have any other object or complement 

relations to following words in the sentence. Table 1 shows our 23 constructions, the 

number of verb types that occupy them, the total number of tokens found, and the type-

token ratio. 

Table 1 about here 

 We have still to carry out a systematic precision-recall analysis, but the strict 

constraints using the dependency relations provides us with a good precision and the size 

of the corpus results in a reasonable number of tokens to carry out distributional analysis. 

In future, we plan to use a number of different parsers [e.g. Stanford (Klein and Manning 

2003), Pro3Gres (Schneider, Rinaldi, and Dowdall 2004), MALT (Nivre, Hall, and 

Nilsson 2004), and Link (Grinberg, Lafferty, and Sleator 1995)] over the same corpora 

and use a consensus-based selection method where sentences will be counted if two or 

more parsers agree (according to queries particular to their parsing output) that it is an 

instance of a particular construction pattern. Further we will select samples of certain 

VAC distributions for manual evaluation. 

 

4.4. Step 4 A Frequency Ranked Type-Token VAC Profile 

! The sentences extracted using this procedure outlined for each of the construction 

patterns are stored in a document database. This database can then be queried to produce 

verb type distributions such as those in Table 2 for the V across N VAC pattern. These 

distributions appear to be Zipfian, exhibiting the characteristic long-tailed distribution in 

a plot of rank against frequency. We have developed scripts in R (R Development Core 

Team 2008) to generate logarithmic plots and linear regression to examine the extent of 

this trend. Dorogovstev & Mendes (2003) outline the use of logarithmic binning of 

frequency against log cumulative frequency methods for measuring distributions of this 

type. Linear regression can be applied to the resulting plots and goodness of fit (R2) and 
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the slope (!) recorded. Figure 1 shows such a plot for verb type frequency of the V across 

N construction pattern extracted from the BNC grouping types into 20 logarithmic bins 

according to their frequency. Each point represents one bin and a verb from each group is 

randomly selected to label the point with its token frequency in parentheses. For example, 

the type look occurs 102 times in the V across N pattern and is placed into the 15th bin 

with the types go, lie and lean. Points towards the lower right of the plot indicate high-

frequency low-type groupings and those towards the top left low-frequency high-type 

groupings, that is the fat- or long-tail of the distribution.  

Figure 1 about here 

 Figure 2 shows such the same type of plot for verb type frequency of the 

ditransitive V N N construction pattern extracted and binned in the same way. Both 

distributions produce a good fit (R2>0.99) with a straight regression line, indicating a 

Zipfian type-token frequency distributions for these constructions. Inspection of the 

construction verb types, from most frequent down, also demonstrates that, as in prior 

research (Ellis & Ferreira-Junior, 2009b; Goldberg, et al., 2004; Ninio, 1999, 2006), the 

lead member is prototypical of the construction and generic in its action semantics.  

Figure 2 about here 

 If Zipf’s law applies across language, then any sample of language will be 

Zipfian-distributed, rendering such findings potentially trivial (we elaborate on this in 

Step 7). But they become much more interesting if the company of verb forms occupying 

a construction is selective, i.e. if the frequencies of the particular VAC verb members 

cannot be predicted from their frequencies in language as a whole. We measure the 

degree to which VACs are selective like this using a variety of measures including a chi-

square goodness-of-fit test, and the statistic ‘1-tau’ where Kendall’s tau measures the 

correlation between the rank verb frequencies in the construction and in language as a 

whole. Higher scores on both of these metrics indicate greater VAC selectivity. Another 

useful measure is Shannon entropy for the distribution. Entropy is a measure of the 

uncertainty associated with a random variable – it is affected by the number of types in 

the system and the distribution of the tokens of the types. If there is just one type, then the 

system is far from random, and entropy is low. If there are ten types of equal probability, 

the system is quite random, but if 99% of the tokens are of just one type, it is far less 
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random, and so on. The lower the entropy the more coherent the VAC verb family. 

Construction scores on all these measures are given later in Table 4. 

4.5. Step 5 Determining the Contingency between Verbs and VACs 

! Some verbs are closely tied to a particular construction (for example, give is 

highly indicative of the ditransitive construction, whereas leave, although it can form a 

ditransitive, is more often associated with other constructions such as the simple 

transitive or intransitive). As we described above, the more reliable the contingency 

between a cue and an outcome, the more readily an association between them can be 

learned (Shanks 1995), so constructions with more faithful verb members are more 

transparent and thus should be more readily acquired (Ellis 2006). The measures of 

contingency that we adopt here are (1) faithfulness – the proportion of tokens of total 

verb usage that appear this particular construction (e.g., the faithfulness of give to the 

ditransitive is approximately 0.40; that of leave is 0.01, (2) directional one-way 

associations, contingency ("P Construction ! Word: give 0.314, leave 0.003) and ("P 

Word ! Construction: give 0.025, leave 0.001) (e.g. Ellis & Ferreira-Junior, 2009), and 

(3) directional mutual information (MI Word ! Construction: give 16.26, leave 11.73 

and MI Construction ! Word: give 12.61 leave 9.11), an information science statistic 

that has been shown to predict language processing fluency (e.g., Ellis, Simpson-Vlach, 

and Maynard 2008; Jurafsky 2002). Table 2 lists some of these contingency measures for 

the verbs occupying the V across N VAC pattern.  

Table 2 about here 

 It is instructive to reorder the distribution according to these measures and 

consider the top items in terms of how characteristic of the VAC semantics they are (this 

is a standard option for each VAC listed on the website we are developing to allow open-

access to our analyses). For the V across N VAC pattern, more generic movement verbs 

come, walk, cut, run, spread and move top the list ordered by token frequency. But when 

ordered according to verb to construction faithfulness, the items are much more specific 

in their meaning, though of low frequency: scud, skitter, sprawl, flit, emblazon and slant. 

The average faithfulness, MI and "P scores across the members of the construction are 



Statistical construction learning p. 16 

also important metrics, illustrating the degree to which VACs are selective in their 

membership. We show examples later in Table 4. 

4.6. Step 6  Identifying the Meaning of Verb Types Occupying the Constructions 

 We are investigating several ways of analyzing verb semantics. Because our 

research aims to empirically determine the semantic associations of particular linguistic 

forms, ideally the semantic classes we employ should be defined in a way that is free of 

linguistic distributional information, otherwise we would be building in circularity. 

Therefore distributional semantic methods such as Latent Semantic Analysis (LSA, 

Landauer et al. 2007) are not our first choice here. Instead, here we utilize WordNet, a 

distribution-free semantic database based upon psycholinguistic theory which has been in 

development since 1985 (Miller 2009). WordNet places words into a hierarchical 

network. At the top level, the hierarchy of verbs is organized into 559 distinct root 

synonym sets (‘synsets’ such as move1 expressing translational movement, move2 

movement without displacement, etc.) which then split into over 13,700 verb synsets. 

Verbs are linked in the hierarchy according to relations such as hypernym [verb Y is a 

hypernym of the verb X if the activity X is a (kind of) Y (to perceive is an hypernym of 

to listen], and hyponym [verb Y is a hyponym of the verb X if the activity Y is doing X 

in some manner (to lisp is a hyponym of to talk)]. Various algorithms to determine the 

semantic similarity between WordNet synsets have been developed which consider the 

distance between the conceptual categories of words, as well as considering the 

hierarchical structure of the WordNet (Pedersen, Patwardhan, and Michelizzi 2004).  

 Polysemy is a significant issue of working with lexical resources such as 

WordNet, particularly when analyzing verb semantics. For example, in WordNet the 

lemma forms move, run and give used as verbs are found in 16, 41 and 44 different 

synsets respectively. To address this we have applied word sense disambiguation tools 

specifically designed to work with WordNet (Pedersen and Kolhatkar 2009) to the 

sentences retrieved at Step 3.  

4.7. Step 7 Generating Distributionally-Matched, Control Ersatz Constructions 

(CECs) 
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 Miller (1965) in his preface to the MIT Press edition of Zipf’s (1935) 

Psychobiology of Language claimed that Zipfian type-token frequency distributions are 

essentially uninteresting artifacts of language in use rather than important factors in 

acquisition. His “monkey at the typewriter” (1957) word generation model produces 

random words of arbitrary average length as follows: With a probability s, a word 

separator is generated at each step, with probability (1-s)/N, a letter from an alphabet of 

size N is generated, each letter having the same probability. That the monkey at the 

typewriter model produces gibberish that is Zipfian well-distributed thence rendered 

Zipf’s law uninteresting for linguistics for several decades (see also Manning and Schütze 

1999). Li (1992) reawakened the issue with further demonstrations that random texts 

exhibit Zipf's law-like word frequency distributions. Ferrer-i-Cancho and Solé (2002) 

responded by showing that random texts lose the Zipfian shape in the frequency versus 

rank plot when words are restricted to a certain length, which is not the case in real texts. 

As they conclude: “By assuming that Zipf ’s law is a trivial statistical regularity, some 

authors have declined to include it as part of the features of language origin. Instead, it 

has been used as a given statistical fact with no need for explanation. Our observations do 

not give support to this view.” Nevertheless Yang (2010) claims that item/usage-based 

approaches to language acquisition, which typically make use of the notion of 

constructions, have failed to amass sufficient empirical evidence and to apply the 

necessary statistical analysis to support their conclusions. He asserts that it is the Zipfian 

nature of language itself (‘the sparse data problem’) that gives rise to apparent item-

specific patterns. In response to these possibilities, for every VAC we analyze, we 

generate a distributionally-yoked control which is matched for type-token distribution but 

otherwise randomly selected to be grammatically and semantically uninformed. We refer 

to these distributions as ‘control ersatz constructions’ (CECs). We then assess, using 

paired-sample tests, the degree to which VACs are more coherent than expected by 

chance in terms of the association of their grammatical form and semantics. We show 

such comparisons for illustration VACs and their yoked CECs later in Tables 4, 5 and 6. 

 The goal in generating CECs is to produce a distribution with the same number of 

types and tokens as the VAC. To do this we use the following method. For each type in a 

distribution derived from a VAC pattern (e.g. walk in V across N occurs 203 times), 
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ascertain its corpus frequency (walk occurs 17820 times in the BNC) and randomly select 

a replacement type from the list of all verb types in the corpus found within the same 

frequency band (e.g. from learn, increase, explain, watch, stay, etc. which occur with 

similar frequencies to give in the BNC). This results in a matching number of types that 

reflect the same general frequency profile as those from the VAC. Then, using this list of 

replacement types, sample the same number of tokens (along with their sentence 

contexts) as in the VAC distribution (e.g. 4889 for V across N) following the probability 

distribution of the replacement types in the whole corpus (e.g. walk, with a corpus 

frequency of 17820, will be sampled roughly twice as often as extend, which occurs 9290 

times). The resulting distribution has an identical number of types and tokens its 

matching VAC, although, if the VAC does attract particular verbs, the lead members of 

the CEC distribution will have a token frequency somewhat lower than those in the VAC. 

4.8. Step 8 Evaluating Semantic Cohesion in the VAC Distributions 

 We have suggested that an intuitive reading of VAC type-token lists such as in 

Table 2 shows that the tokens list captures the most general and prototypical senses 

(come, walk, move etc. for V across N and give, make, tell, offer for V N N), while the list 

ordered by faithfulness highlights some quite construction specific (and low frequency) 

items, such as scud, flit and flicker for V across N. Using the structure of the verb 

component of the WordNet dictionary, where each synset can be traced back to a root or 

top-level synset, we are able to compare the semantic cohesion of the top 20 verbs, using 

their disambiguated WordNet senses, from a given VAC to its matching CEC. So for 

each verb in a VAC or CEC we query the database for the disambiguated WordNet 

senses for the verb in the instance sentences. For example, in V across N, the verb type 

move occurs 114 times across 5 synsets: move.v.1 (86x), move.v.2 (18x), move.v.3 (5x), 

move.v.7 (1x) and move.v.8 (4x). Each of these synsets can be traced back to a top or 

root level synset or may itself be that synset: move.v.1 ! travel.v.1, move.v.2 ! 

move.v.2, move.v.3 ! move.v.3, move.v.7 ! change.v.3, move.v.8 ! act.v.1. Table 3 

shows this for the V across N VAC pattern, where the synsets come.v.1, walk.v.1, 

run.v.1, move.v.1, go.v.1, fall.v.2, pass.v.1, travel.v.1, stride.v.1, stride.v.2 account for 

744 of the 4889 (15%) tokens, and share the top level hypernym synset travel.v.01. In 
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comparison, the most frequent root synset for the matching CEC, pronounce.v.1, 

accounts for just 4% of the tokens. The VAC has a much more compact semantic 

distribution, in that 5 top level synsets account for a third of the tokens compared to the 

21 required to account for the same proportion for the CEC  

Table 3 about here 

 We have explored two methods of evaluating the differences between the semantic 

sense distributions, such as the one in Table 3, for each VAC-CEC pair. First, we can 

measure the amount of variation in the distribution (i.e. its compactness) using Shannon 

entropy as we did in Step 4. For these semantic distributions this can be done according 

to (1) number of sense types per root (V across N VAC: 2.75 CEC: 3.37) (so ignoring the 

token frequency column in Table 3) and (2) the token frequency per root (V across N 

VAC: 2.08 CEC: 3.08), the lower the entropy the more coherent the VAC verb semantics. 

These figures are calculated for all 23 VACs and CECs and shown in Tables 4 and 5 as 

(1) Type entropy per root synset and (2) Token entropy per root synset. Secondly, we can 

develop the observation for the distribution in Table 3 that the top three root synsets, in 

the VAC account for 25% (1236) of the tokens compared to 11% (530) for the CEC. 

Third, we quantify the semantic coherence or ‘clumpiness’ of the disambiguated senses 

for the top 20 verb forms in the VAC and CEC distributions using measures of semantic 

similarity from WordNet and Roget’s. Pedersen et al (2004) outline six measures in their 

Perl WordNet::Similarity package, three (path, lch and wup) based on the path length 

between concepts in WordNet Synsets and three (res, jcn and lin) that incorporate a 

measure called ‘information content’ related to concept specificity. For instance, using 

the res similarity measure (Resnik 1995) the top 20 verbs in V across N VAC distribution 

have a mean similarity score of 0.353 compared to 0.174 for the matching CEC. 

5. Results 

  Our core research questions concern the degree to which VAC form, function, and 

usage promote robust learning. As we explained in the theoretical background, the 

psychology of learning as it relates to these psycholinguistic matters suggests, in essence, 

that learnability will be optimized for constructions that are (1) Zipfian in their type-

token distributions in usage, (2) selective in their verb form occupancy, (3) coherent in 
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their semantics. Their values on the metrics we have described so far are illustrated for 

the 23 VACs in Table 4 along with those for their yoked CECs in Table 5.  

Tables 4 and 5 about here 

 Table 6 contrasts between the VACs and the CECs on these measures as the results of 

paired-sample t-tests.  

Table 6 about here 

 The results demonstrate: 

5.1. Type-token Usage Distributions  

 All of the VACs are Zipfian in their type-token distributions in usage (VACs: M " 

= -1.00, M R2 = 0.98). So too are their matched CECs (M ! = -1.12, M R2 = 0.96). The fit 

is slightly better for the VACs than the CECs because the yoked-matching algorithm 

tends to make the topmost types of the CEC somewhat less extreme in frequency than is 

found in the real VACs (because particular verbs are attracted to particular VACs), and 

so the fit line is not pulled out into so extreme a tail. Inspection of the graphs for each of 

the 23 VACs shows that the highest frequency items take the lion’s share of the 

distribution and, as in prior research (Ellis & Ferreira-Junior, 2009b; Goldberg, et al., 

2004; Ninio, 1999, 2006), the lead member is prototypical of the construction and generic 

in its action semantics (see the rightmost column in Table 1). 

5.2.  Family Membership and Type Occupancy  

 VACs are selective in their verb form family occupancy. There is much less 

entropy in the VACs than the CECs, with fewer forms of a less evenly-distributed nature 

(M distribution Entropy VAC 4.97, CEC 5.54, p < . 0001). The distribution deviation 

from verb frequency in the language as a whole is much greater in the VACs than the 

CECs (M #2 VAC 69411, CEC 698, p < . 0001). The lack of overall correlation between 

VAC verb frequency and overall verb frequency in the language is much greater in the 

VACs (M 1-" VAC 0.76, CEC 0.21, p < .002).  

 Individual verbs select particular constructions (M MIw-c VAC 14.16, CEC 12.80, 

p < .01) and particular constructions select particular words (M $Pc-w VAC 0.006, CEC 
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0.004, p < . 0001). Overall then, there is greater contingency between verb types and 

constructions. 

5.3.  Semantic Coherence  

 VACS are coherent in their semantics with lower type (M VAC 3.10, CEC 3.51, p 

< . 0001) and token (M VAC 2.41, CEC 3.08, p < . 0001) sense entropy. Figure 3 shows 

distributions of the root synsets for the top 20 types of each of the VAC-CEC pairs 

through plots of logarithmic token frequency against rank – in each pair, fewer senses 

cover more of the VAC uses than the CEC. Figure 3 also shows the proportion of tokens 

accounted for by the top three root synsets (e.g. for V across N: VAC 0.25 CEC 0.11). 

The proportion of the total tokens covered by their three most frequent WordNet roots is 

much higher in the VACs (M VAC 0.26, CEC 0.11, p < . 0001). Finally, the VAC 

distributions are higher on the Pedersen semantic similarity measures (M lch VAC 0.13, 

CEC 0.09, p < .0002) (M res VAC 0.24, CEC 0.22, p < . 0001). 

Figure 3 about here 

 

6. Discussion 

  Twenty-three constructions is a better sample of constructions than three, and the 

16,141,058 tokens of verb usage analyzed here is a lot more representative than the 14, 

474 analyzed in Ellis & Ferreira-Junior (2009a,b). Nevertheless, the conclusions from 

those earlier studies seem to generalize. We have shown: 

• The frequency distribution for the types occupying the verb island of each 

VAC are Zipfian. 

• The most frequent verb for each VAC is much more frequent than the 

other members, taking the lion’s share of the distribution. 

• The most frequent verb in each VAC is prototypical of that construction’s 

functional interpretation, albeit generic in its action semantics. 

• VACs are selective in their verb form family occupancy: 

o Individual verbs select particular constructions. 

o Particular constructions select particular verbs. 
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o There is greater contingency between verb types and constructions. 

• VACS are coherent in their semantics. 

 

 Psychology theory relating to the statistical learning of categories suggests that 

these are the factors which make concepts robustly learnable. We suggest, therefore, that 

these are the mechanisms which make linguistic constructions robustly learnable too, and 

that they are learned by similar means. 

7. Future Work 

7.1. An Exhaustive Inventory of English VACs 

 This is still a small sample from which to generalize. In subsequent work we 

intend to analyze the 700+ patterns of Verb Pattern Grammar volume as found in the 100 

million words of the BNC. Other theories of construction grammar start from different 

motivations, some more semantic [e.g. Framenet (Fillmore, Johnson, and Petruck 2003) 

and VerbNet (Kipper et al. 2008; Palmer 2010; Levin 1993)], some alternatively syntactic 

[e.g. the Erlangen Valency Patternbank (Herbst and Uhrig 2010; Herbst et al. 2004)], and 

so present different, complementary descriptions of English verb grammar. Given time, 

we hope to analyze usage patterns from these descriptions too. We are particularly 

interested in whether these inventories represent optimal partitioning of verb semantics, 

starting with basic categories of action semantics and proceeding to greater specificity via 

Zipfian mapping. 

7.2. Learner Language 

 We are also interested in extending these approaches to learner language to 

investigate whether first and L2 learners’ acquisition follows the same construction 

distributional profiles. We have done some initial pilot work to test the viability of our 

methods by extracting 18 of the same VAC patterns from American English and British 

English child language acquisition corpora in CHILDES (MacWhinney 2000, 2000) 

transcripts. Child directed speech (CDS, over 6.8 million words) was separated from the 

speech of the target child (over 3.6 million words) for the UK and USA components of 
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the database where dependency parsing of each utterance is available (Sagae et al. 2007). 

The same analysis steps described here are equally viable with learner language. In our 

initial explorations (O'Donnell and Ellis submitted) we build on the types of analysis 

carried out in Goldberg, Casenhiser & Sethuraman (2004) that demonstrate how the 

frequency profiles of CDS are reproduced in child language. For example, for the V 

across N VAC pattern go is the most frequent type in both CDS and child speech. 

Likewise, for V over N we found go and jump as the first types in both samples. For V 

with N the top 4 types, play, go, do, come, are shared, as they are for V under N: go, look, 

get, hide and the top two for V like N: look and go. The nature of CDS with respect to 

more general English can also be examined. Applying the various contingency and 

semantic measures discussed above we found the 10 most faithful types to the VAC 

pattern V like N were: 1) from the BNC: glitter, behave, gleam, bulge, shape, flutter, 

glow, shine, sound, sway (with a wup similarity score of 0.3559) and 2) for CDS: sound, 

act, shape, smell, taste, look, yell, feel, talk, fit (wup 0.4564). This initial analysis points 

both to the more frequent use of generic verbs (e.g. go and do) in CDS and a tighter 

semantic coherence in the items most associated with specific VACs. These steps need 

next to be done for the complete inventory of VACs so that a comparison can be made of 

general usage (BNC), CDS, and child language acquisition at different stages. 

7.3. Determinants of Learning  

  Once we have these parallel datasets of sufficient scale, we can undertake a 

principled empirical analysis of the degree to which the psychological factors outlined 

really do determine acquisition. For each VAC in the input we will have the data relating 

to frequency, distributional, contingency, and semantic factors which learning theory 

considers important in acquisition. With the staged child language acquisition analyzed in 

the same way, we can test out these predictions and explore how the different factors 

conspire in the emergence of language. 

7.4. Modeling Acquisition 

  As we have argued in an upcoming review of statistical corpus linguistics and 

language cognition (Ellis in press), the field as a whole needs to work on how to combine 

the various corpus metrics that contribute to learnability into a model of acquisition rather 
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than a series of piecemeal univariate snapshots. We have developed some connectionist 

methods for looking at this and trialed them with just the three VACs VL, VOL, and 

VOO (Ellis and Larsen-Freeman 2009), but that enterprise and the current one are of 

hugely different scales. We need models of acquisition that relate such VAC measures as 

applied to the BNC and CDS to longitudinal patterns of child language and L2 

acquisition. 

8. Conclusion 

 This research shows some promise towards an English verb grammar 

operationalized as an inventory of VACs, their verb membership and their type-token 

frequency distributions, their contingency of mapping, and their semantic motivations. 

Our initial analyses show that constructions are (1) Zipfian in their type-token 

distributions in usage, (2) selective in their verb form occupancy, and (3) coherent in their 

semantics. Psychology theory relating to the statistical learning of categories suggests 

that these are the factors which make concepts robustly learnable. We suggest therefore, 

that these are the mechanisms which make linguistic constructions robustly learnable too, 

and that they are learned by similar means. 

9. Epilogue 

 Phoebe was a black and brindle collie-cross (Figure 4). She was 12 years old 

when we brought her to (VOLto) the US. It was Michigan, February, blue skies over 12” 

of snow. We collected her, dehydrated, from (VOLfrom) DTW, left the airport, and pulled 

onto (VLonto) the nearest safe verge to let her out (VOLout) of her travel-kennel. It had 

been a long flight and we were somewhat concerned, but after a typically warm reunion, 

she looked at (VLat) the strange whiteness, and then, like a wolf pouncing on (VLon) a 

mouse, she ponked into (VLinto) the snow. 

 

Figure 4, passport photo size, about here 
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Table 1. Type-Token data for 23 VACs drawn from COBUILD Verb Patterns retrieved from the 

BNC 

Construction Types Tokens TTR Lead verb type 

V about N 365 3519 10.37 talk 

V across N 799 4889 16.34 come 

V after N 1168 7528 15.52 look 

V among pl-N 417 1228 33.96 find 

V around N 761 3801 20.02 look 

V as adj 235 1012 23.22 know 

V as N 1702 34383 4.95 know 

V at N 1302 9700 13.42 look 

V between pl-N 669 3572 18.73 distinguish 

V for N 2779 79894 3.48 look 

V in N 2671 37766 7.07 find 

V into N 1873 46488 4.03 go 

V like N 548 1972 27.79 look 

V N N  663 9183 7.22 give 

V off N 299 1032 28.97 take 

V of N 1222 25155 4.86 think 

V over N 1312 9269 14.15 go 

V through N 842 4936 17.06 go 

V to N 707 7823 9.04 go 

V towards N 190 732 25.96 move 

V under N 1243 8514 14.6 come 

V way prep 365 2896 12.6 make 

V with N 1942 24932 7.79 deal 
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Verb Constr.  

Freq.  

Corpus  

Freq.  

Faith.  Token* 

Faith  

MI 

word! 

constr  

MI 

constr! 

word  

$P 

word! 

constr  

$P 

constr! 

word 

come 474 122107 0.0039 1.840 15.369 10.726 0.004 0.089 

walk 203 17820 0.0114 2.313 16.922 15.056 0.011 0.040 

cut 197 16200 0.0122 2.396 17.016 15.288 0.012 0.039 

run 175 36163 0.0048 0.847 15.687 12.800 0.005 0.034 

spread 146 5503 0.0265 3.874 18.142 17.971 0.026 0.030 

move 114 34774 0.0033 0.374 15.125 12.295 0.003 0.021 

look 102 93727 0.0011 0.111 13.534 9.273 0.001 0.015 

go 93 175298 0.0005 0.049 12.498 7.333 0.000 0.008 

lie 80 18468 0.0043 0.347 15.527 13.610 0.004 0.015 

lean 75 4320 0.0174 1.302 17.530 17.708 0.017 0.015 

stretch 62 4307 0.0144 0.893 17.260 17.442 0.014 0.012 

fall 57 24656 0.0023 0.132 14.621 12.287 0.002 0.010 

get 52 146096 0.0004 0.019 11.922 7.020 0.000 0.002 

pass 42 18592 0.0023 0.095 14.588 12.661 0.002 0.007 

reach 40 21645 0.0018 0.074 14.298 12.152 0.002 0.007 

travel 39 8176 0.0048 0.186 15.666 14.924 0.004 0.007 

fly 38 8250 0.0046 0.175 15.616 14.861 0.004 0.007 

stride 38 1022 0.0372 1.413 18.629 20.887 0.037 0.008 

scatter 35 1499 0.0233 0.817 17.957 19.663 0.023 0.007 

sweep 34 2883 0.0118 0.401 16.972 17.734 0.011 0.007 

 

Table 2. Top 20 verbs found in the V across N construction pattern in the BNC 
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Actual V across N VAC distribution Random V across N CEC distribution 

Root verb 

synset 

Specific WordNet senses Freq. Cum. 

%  

Root verb 

synset 

Specific WordNet 

senses  

Freq. Cum. 

% 

travel.v.01 come.v.1, walk.v.1, 

run.v.1, move.v.1, go.v.1, 

fall.v.2, pass.v.1, travel.v.1, 

stride.v.1, stride.v.2 

744 15 pronounce.v.01 say.v.6 193 04 

be.v.03 come.v.9, run.v.3, go.v.7, 

lie.v.1, stretch.v.1, 

pass.v.6, reach.v.6, 

sweep.v.5, sweep.v.8 

259 21 be.v.01 make.v.31, go.v.10, 

go.v.6, take.v.38, 

come.v.14, look.v.2, 

need.v.2, work.v.14, 

seem.v.1 

183 08 

be.v.01 come.v.12, come.v.14, 

cut.v.25, run.v.12, look.v.2, 

lie.v.4, lean.v.3, fall.v.16, 

fall.v.4, get.v.33 

233 25 travel.v.01 go.v.1, come.v.1 154 11 

move.v.02 cut.v.1, run.v.26, move.v.2, 

lean.v.2, fly.v.4 

210 30 make.v.03 make.v.3, make.v.5, 

see.v.4, give.v.13, 

think.v.5, work.v.11 

123 13 

change.v.02 come.v.4, cut.v.39, 

run.v.38, run.v.39, 

spread.v.4, go.v.4, lean.v.1, 

stretch.v.3, stretch.v.9, 

fall.v.26, fall.v.3, get.v.12, 

get.v.2, pass.v.18, fly.v.7 

198 34 think.v.03 see.v.5, know.v.6, 

give.v.10, think.v.1, 

think.v.2, think.v.3, 

try.v.2 

100 15 

spread.v.01 spread.v.1, scatter.v.3 172 37 move.v.02 say.v.5, set.v.1, put.v.1 84 17 

move.v.03 cut.v.14, run.v.6, 

spread.v.2, move.v.3, 

stretch.v.11, reach.v.3, 

sweep.v.2 

106 39 transfer.v.05 give.v.17, give.v.3 84 19 

get.v.01 run.v.36, get.v.1 41 40 understand.v.01 see.v.24, take.v.6, 

work.v.24 

83 21 

touch.v.01 fly.v.3 30 41 know.v.01 know.v.1 73 22 

reach.v.01 reach.v.1 26 41 use.v.01 give.v.18, use.v.1, 

work.v.23, put.v.4 

73 24 

guide.v.05 sweep.v.3 14 42 remove.v.01 take.v.17 72 25 

happen.v.01 come.v.19, come.v.3, 

pass.v.8 

14 42 change.v.02 make.v.30, go.v.17, 

go.v.30, go.v.4, 

see.v.21, see.v.3, 

know.v.5, take.v.5, 

come.v.4, give.v.26, 

find.v.12, leave.v.8 

67 26 

 

Table 3. Disambiguated WordNet senses for the top 20 verbs found in the V across N VAC and 

yoked CEC distributions from the BNC and the root verb synsets to which they belong (Top 12 

root synsets shown for VAC and CEC).
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VAC Pattern R
2
 ! Entropy "2

 1-# Mean 

MIw-c 

Mean  

$Pc-w 

Type entropy  

per root  

synset 

Token 

entropy  

per root  

synset 

Proportion 

of tokens 

covered by 

top 3 synsets 

lch res 

V about N 0.98 -0.80 3.79 29919 0.74 15.55 0.011 3.17 2.42 0.45 0.162 0.271 

V across N 0.99 -1.08 5.30 23324 0.77 15.49 0.003 2.75 2.08 0.25 0.194 0.353 

V after N 0.99 -1.04 5.04 48065 0.69 12.87 0.002 3.33 2.12 0.31 0.103 0.184 

V among pl-N 0.99 -1.43 5.36 9196 0.77 17.51 0.009 2.93 2.79 0.11 0.096 0.174 

V around N 0.97 -1.17 5.51 40241 0.77 15.96 0.004 2.80 2.43 0.19 0.155 0.284 

V as adj 0.96 -0.98 4.05 8993 0.76 17.88 0.020 3.20 2.48 0.34 0.078 0.141 

V as N 0.99 -0.80 4.84 184085 0.87 10.36 0.003 3.55 2.56 0.25 0.079 0.146 

V at N 0.97 -1.02 4.94 66633 0.79 12.51 0.003 3.23 1.72 0.36 0.099 0.185 

V between pl-N 0.98 -1.08 5.17 47503 0.80 15.18 0.005 3.11 2.61 0.21 0.078 0.149 

V for N 0.97 -0.79 5.58 212342 0.73 9.54 0.002 3.38 2.70 0.16 0.117 0.198 

V in N 0.96 -0.96 6.22 61215 0.72 10.48 0.002 3.56 2.90 0.10 0.079 0.138 

V into N 0.98 -0.82 5.22 82396 0.71 11.44 0.003 3.21 2.39 0.26 0.168 0.289 

V like N 0.98 -1.08 4.80 12141 0.66 15.84 0.009 2.99 1.92 0.34 0.121 0.216 

V N N  0.99 -0.84 3.79 51652 0.66 11.52 0.004 3.21 2.38 0.41 0.139 0.236 

V off N 0.98 -1.29 4.89 10101 0.60 17.84 0.011 2.64 2.46 0.21 0.198 0.358 

V of N 0.97 -0.76 4.26 319284 0.88 11.15 0.003 3.31 2.56 0.33 0.11 0.189 

V over N 0.98 -1.08 5.95 77407 0.87 13.72 0.002 2.87 2.33 0.17 0.237 0.404 

V through N 0.99 -1.11 5.37 29525 0.83 14.84 0.003 3.05 2.10 0.26 0.147 0.266 

V to N 0.95 -0.92 5.02 25729 0.72 13.50 0.003 2.88 2.59 0.19 0.189 0.325 

V towards N 0.98 -1.16 4.36 15127 0.78 19.59 0.017 2.68 2.35 0.31 0.149 0.274 

V under N 0.97 -1.10 5.74 19244 0.70 13.13 0.002 3.07 2.54 0.16 0.14 0.248 

V way prep 0.99 -0.83 3.61 29827 0.81 17.26 0.013 3.27 2.46 0.39 0.105 0.194 

V with N 0.98 -0.96 5.59 192521 0.81 12.56 0.003 3.16 2.50 0.18 0.136 0.231 

Mean 0.98 -1.00 4.97 69412 0.76 14.16 0.006 3.10 2.41 0.26 0.134 0.237 

Table 4. Values for our 23 Verb Argument Constructions on metrics of Zipfian distribution, verb form selectivity, and semantic 

coherence. 
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CEC Pattern R
2
 ! Entropy "2

 1-# Mean 

MIw-c 

Mean  

$Pc-w 

Type entropy  

per root  

synset 

Token 

entropy  

per root  

synset 

Proportion 

of tokens 

covered by 

top 3 synsets 

lch res 

V about N 0.94 -1.04 4.80 441 0.17 14.02 0.004 3.52 3.07 0.15 0.084 0.152 

V across N 0.96 -1.14 5.55 232 0.19 13.29 0.003 3.37 3.08 0.11 0.098 0.174 

V after N 0.97 -1.21 5.95 222 0.22 12.05 0.002 3.65 3.11 0.09 0.083 0.146 

V among pl-N 0.99 -1.45 5.39 867 0.35 15.25 0.006 3.42 3.10 0.10 0.068 0.123 

V around N 0.96 -1.17 5.57 366 0.22 13.71 0.003 3.51 3.14 0.10 0.093 0.16 

V as adj 0.96 -1.26 4.74 1232 0.31 15.97 0.010 2.90 2.84 0.16 0.165 0.286 

V as N 0.94 -0.99 5.98 203 0.14 15.97 0.010 3.64 3.07 0.09 0.088 0.154 

V at N 0.96 -1.18 6.01 248 0.21 11.67 0.002 3.53 3.11 0.08 0.083 0.151 

V between pl-N 0.97 -1.19 5.46 329 0.26 13.52 0.003 3.33 3.04 0.11 0.092 0.149 

V for N 0.93 -0.94 6.22 205 0.10 8.42 0.001 3.83 3.12 0.08 0.075 0.198 

V in N 0.96 -1.05 6.33 228 0.15 9.47 0.001 3.70 3.07 0.09 0.082 0.138 

V into N 0.94 -0.86 5.81 225 0.11 9.62 0.002 3.71 3.12 0.10 0.088 0.289 

V like N 0.95 -1.32 5.46 678 0.24 14.57 0.004 3.38 3.10 0.12 0.083 0.216 

V N N  0.94 -1.05 5.48 226 0.20 11.98 0.002 3.53 3.10 0.10 0.093 0.236 

V off N 0.96 -1.23 4.89 3853 0.28 16.22 0.010 3.42 3.20 0.13 0.072 0.358 

V of N 0.93 -0.97 5.70 193 0.13 10.38 0.002 3.72 3.08 0.10 0.078 0.189 

V over N 0.97 -1.18 5.99 264 0.22 11.79 0.002 3.60 3.07 0.09 0.081 0.404 

V through N 0.97 -1.19 5.66 293 0.24 12.98 0.002 3.51 3.21 0.09 0.099 0.266 

V to N 0.93 -1.05 5.46 253 0.18 12.48 0.003 3.52 3.11 0.10 0.091 0.325 

V towards N 0.98 -1.14 4.52 3414 0.25 17.08 0.015 3.15 2.84 0.20 0.085 0.274 

V under N 0.97 -1.18 5.99 237 0.24 11.82 0.002 3.59 3.22 0.08 0.14 0.248 

V way prep 0.95 -0.90 4.32 1628 0.21 11.82 0.002 3.57 2.96 0.22 0.105 0.194 

V with N 0.95 -1.05 6.07 220 0.16 10.22 0.002 3.57 3.13 0.09 0.136 0.231 

Mean 0.96 -1.12 5.54 698 0.21 12.80 0.004 3.51 3.08 0.11 0.094 0.22 

Table 5. Values for our 23 Control Ersatz Constructions on metrics of Zipfian distribution, verb form selectivity, and semantic 

coherence. 
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 Pattern R
2
 ! Entropy "2

 1-# Mean 

MIw-c 

Mean  

!Pc-w 

Type 

entropy  

per root  

synset 

Token 

entropy  

per root  

synset 

Proportion 

of tokens 

covered by 

top 3 synsets 

lch res 

Mean 

VACs 
0.98 -1.00 4.97 69412 0.76 14.16 0.006 3.10 2.41 0.26 0.134 0.237 

Mean 

CECs 
0.96 -1.12 5.54 698 0.21 12.80 0.004 3.51 3.08 0.11 0.094 0.22 

p value for  

paired t-test 

(d.f. 22) 

1.6 

e-06 

*** 

4.4 

e-06 

*** 

4.89 

e-04 

*** 

5.5 

e-18 

*** 

1.9 

e-03 

*** 

1.1 

e-02 

*** 

5.1 

e-05 

*** 

1.7 

e-08 

*** 

1.2 

e-10 

*** 

3.2  

e-08 

*** 

2.0 

e-04 

*** 

1.6 

e-06 

*** 

 

Table 6. Comparisons of values for our 23 VACs and CECs on metrics of Zipfian distribution, verb form selectivity, and semantic 

coherence. 
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Figure captions 

 

 

Figure 1. Verb type distribution for V across N 

Figure 2. Verb type distribution for V N N 

Figure 3. Distribution of WordNet root verb synsets for VACs and CECs 

Figure 4. Phoebe. One particular dog. How was your estimate? 

!
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