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Solid Angle Calculation for a Circular Disk 

F, PAXTON 
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(Received April 14, 1958; and in final form, December 31,1958) 

A general expression for the solid angle subtended by a circular disk is derived in terms of complete elliptic 
integrals of the first and third kind. The elliptic integral of the third kind is reduced in terms of Heuman's lambda 
function, which has been tabulated. By transformation of the double integral rl= J J sinIJdOdf) into a single line 
integral, the solid angle can be conveniently determined. Since the solution involves only tabulated functions, it 
is well suited for desk calculation. 

I. INTRODUCTION 

SEVERAL papersl-3 have been published in which 
expressions for the solid angle sub tended by a circular 

disk were formulated in terms of an infinite series of 
azimuthally independent spherical harmonics. The method 
described here provides an exact solution in terms of 
elliptic integrals. Beginning with the fundametal equation 
for the solid angle, namely, rl=f(n· ds)/R2 the familiar 
space polar coordinate form rl= f f sinOdOd{3 is obtained. 
After performing a first integral over 0, we are left with a 
more difficult line integral. To evaluate this integral, the 
variables Os and {3 are written in terms of a new variable, 
'Y (see Figs. 1 and 2). The resulting integrals turn out to 
be the complete elliptic integrals of the first and third 
kinds. Finally, by writing the elliptic integral of the third 
kind in terms of Heuman's lambda function AO,4 the de­
sired expression for the solid angle is obtained. 
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FIG. 1. Solid angle subtended at points over the interior or 
over the periphery of disk (ro ::S;rm). 

1 M. W. Garret, Rev. Sci. lnstr. 25, 1208 (1954). 
2 A. H. Jaffey, Rev. Sci. lnstr. 25, 349 (1954). 
3 E. L. Secrest, Solid Angle Calculations (Convair, Fort Worth, 

Texas, April 28, 1955). 
4 Carl Heuman, J. Math. and Phys. 20 (1941). 
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II. DERIVATION OF SOLID ANGLE 

The basic equation for the solid angle may be written 
as follows: 

[
n.ds 

rl= --
• R2' 

(1) 

where n· ds is the area of the projection of ds onto the 
plane perpendicular to R. Referring to Fig. 1 (or Fig. 2), 
we note that n· ds is equal to ds cosO. Since ds= pd{3dp, (1) 
becomes 

(2) 

Making use of the fact that p= L tanO, we obtain for pdp 

pdp= (L tanO) ( LdO ) 
cos20 

sinO 
=L2_-dO. 

cos30 

Inserting the expression for pdp into (2) we have 

JJ( L)2 sinO 
rl= - -dOd{3. 

R cos20 

Noting that (L/R)=cosO, (3) becomes 

n = f f sinOdOd{3 

(3) 

(4) 

which is the desired expression for rl in space polar co­
ordinates. The task henceforth will be to evaluate (4). It 
will be convenient to compute the solid angle for one side 
of the circular disk and then double the final answer. This 
is permitted since the visible boundary is symmetrical 
with respect to each half-plane and point P. To clarify 
the derivation it will be desirable to separate the solutions 
according to whether point P is directly above or over 
periphery (ro:S;rm), or is at a point outside disk boundary 
(ro>rm), with rm=disk radius. 
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Case I: To:::; Tm (see Fig. 1) 

Starting with (4) we can write 

rl/2= f J sinfJdfJd{3 (5) 

n,. 

where c' is the half-boundary as shown in Figs. 1 and 2. 
Putting in the limits for fJ and {3 and performing the fJ 
integration we obtain 

j
Ilrnaxj8, 

rl/2= sinfJdfJd{3 
o 0 

(6) 

where fJ.= L OPD, and {3max=7I" for ro<rm and 71"/2 for 
ro=rm as can be seen by inspection of Fig. 1. The integral 
in (6) can be evaluated by writing cosfJ. and d{3 as a func­
tion of IPs. To begin, we write cosOs as follows: 

L L 
coSO.=-=----

PD [V+Ps2Jl 
'(7) 

where 

(7a) 

In the figure ps and IP. are equal to OD and LOAD, re­
spectively. The differential angle d{3 can be written as a 

FIG. 2. Solid angle subtended at points outside disk 
boundary (ro>rm). 

function of IPs if we note that 

tan{3 

Taking the derivative of tan{3, we obtain 

cos2{3 
d{3= (rOrm cOS'Ps-rm2)d'Ps' 

(ro-rm COS'Ps)2 

Since ps cos{3=ro-rm cOS'Ps, (8) becomes 

1 (ro2+rm2-p/ 
d{3=-

Ps2 2 

ro2- rm2 d'Ps d'Ps 

2 2 

(8) 

(9) 

(10) 

In (10) the 'Ps integration is taken in the clockwise direc­
tion, i.e., from 71" down towards zero. To put the integrals 
in standard form we introduce a new variable /" where 
/'= (71"/2)- ('Ps/2). It will be convenient at this point to 
write the terms p/ and V+Ps2 in a somewhat different 
form. Since 

cos'Ps= -cos2/, 

=2 sin2')'-1 
we have from Eq. (7a), 

and 

Ps2= ro2+rm2- 2rorm(2 sin2/,-l) 

= (ro+rm)2-4rorm sin2/, 

= h+rm)2(1-a2 sin2/,) 

V+ Ps2=V+ (ro+rm)2-4rorm sin2/, 

= (V+ (ro+rm)2) (1-k2 sin2/,) 

=Rmax2(1-k2 sin2/,). 

The constants a2
, k2, Rmax2 equal the following: 

4rorm R12 
k2= 1---

V+ (ro+rm)2 Rmax2 

Rmax2=V+(ro+rm)2 

R 12=V+(ro-rm)2. 

(11) 

(12) 

Downloaded 12 Nov 2012 to 141.213.236.110. Redistribution subject to AIP license or copyright; see http://rsi.aip.org/about/rights_and_permissions



256 F. PAXTON 

Inserting (11) and (12) into (to), and making use of the 
fact that d<p8= - 2d,,/, there is obtained 

The integrals are Legendre's form of the complete elliptic 
integrals of the first and third kind, designated by K(k) 
and IJ(a2,k), respectively. Therefore, (13) becomes 

L L YO-Ym 
fJ/2={3max--K (k)+---IJ(a2,k) 

Rmax Rmax YO+Ym 
or 

2L 2L YO-Ym 
fJ=2{3max--K(k)+-~(a2,k). (14) 

Rmax Rmax YO+Ym 

The solid angle can be written down directly from (14) 
for point P at Yo=Ym • We have 

2L 
fJ = 2f3max - -K (k) 

Rmax 

2L 
=7r--K(k). 

Rmax 
(15) 

Equation (14) can be simplified by writing IJ(a2,K) in 
terms of Heuman's lambda function, Ao. From page 228 
of Byrd and Friedman,· we find that IJ(a2,k) can be written 
as follows: 

where 
2 

Ao(~,k) =-[E(k)Fa,k')+ K(k)E(~,k') - K(k)F(~,k') ] 
7r 

k' = (l-k2)t 

k2::;a2< 1. 

(16) 

(17) 

Substituting the expressions for a 2 and k2 into (16) and 
(17) we have 

L L 
(18) 

~ = arc sin- = arc tan . 
Rl Iro-Yml 

6 P. F. Byrd and M. C. Friedman, Handbook of Elliptic Integrals 
for Engineers and Physicists (Springer~Vetlag, Berlin, 1954). 

In applying (18), since I YO-Ym I must be used, a (+) sign 
is used for YO>Ym and a (-) sign for Yo<Ym • Inserting (18) 
into (14), and remembering that (3max=7r, we obtain, 
for Yo<Ym , 

2L 
fJ=27r--K(k)-7rAoa,k) 

Rmax 
(19) 

which is the desired expression. For the special case Yo=O, 
k=O, andAoa,O)= (L/R1) = (L/Rmax),K(O)= (7r/2). There­
fore, from (19), the solid angle is 

2L 
fJ=27r--K(0)-7rAo(~,0) 

Rmax 

7rL 7rL 
= 27r-----­

Rmax Rmax 

=27r(1-~) 
Rmax 

which is the familiar expression for a point over the center 
of a circle. 

Case II: To >Tm 

Rewriting Eq. (5) for convenience we have 

fJ/2= J J sinOd8d{3. 

Ilc' 

By inspection of Fig. 2, it will become evident that the 
limits of 0 and {3 are Om= LOPE, 08 = LOPD, and 
0::;{3::; arc sinYm/Yo. Therefore, (5) becomes 

fJ/2 = arc sfinrmlro t 8 sinOdOd{3 

o JOm 

arc sinrm/ro 

arc sinrm/ro arc sinrm/YO 

cOs{}8d{3. 

Analogous to Case I, cosOm can be written as follows 

COs{}m 

(20) 

(21) 

where Pm=OE. The term cosO. is again given by Eq. (7), 
and as previously p.=OD. Inserting (21) and (7) into (20) 
there is obtained 

arc sinrm/ro arc sinrm/ro 
d{3 

(22) 
d{3 

L fJ/2=L 

Downloaded 12 Nov 2012 to 141.213.236.110. Redistribution subject to AIP license or copyright; see http://rsi.aip.org/about/rights_and_permissions



SOLID ANGLE CALCULATION 257 

TABLE 1. Values of the solid angle for various values of rO/rm and L/rm. 

L/rm =0.5 L/rm=! 
ro/rm a ao a a· 

0 3.4732594 1.8403024 
0.2 3.4184435 3.41844 1.8070933 1.80709 
0.4 3.2435434 3.24354 1.7089486 1.70895 
0.6 2.9185178 2.91852 1.5517370 1.55174 
0.8 2.4122535 2.41225 1.3488367 1.34883 
1 1.7687239 1.76872 1.1226876 1.12269 
1.2 1.1661307 1.16614 0.9003572 0.900369 
1.4 0.7428889 0.742893 0.7039130 0.703917 
1.6 0.4841273 0.484130 0.5436956 0.543705 
1.8 0.3287007 0.328702 0.4195415 0.419543 
2 0.2324189 0.232420 0.3257993 0.325801 

a See reference 6. 

Referring to Fig. 2, it is evident that Pm2 bears the same 
relationship to 'Ps as Ps2, and is therefore equal to (7a), 
the difference being that the limits of 'Ps are different for 
each. In this case 'Ps is double valued having the values 
L GAD and L GAE, respectively, as {3 goes from zero to 
arc sinrm/ro. Since Pm2, Ps2, and d{3 are functions of 'Ps only 
(for fixed L, ro, rm) as can be seen from Eqs. (7a) and (9), 
and since pm and Ps are the same function of ¢>., (22) can 
be written as follows 

(23) 

where 'PT is the value of 'Ps at the tangent point and is 
equal to arc cosrm/ro. In (23) f('P.)d'Ps has been set equal 
to the following: 

Ld{3 Ld{3 
f( 'Ps)d'P. =, (24) 

(D+Pm2)t (D+Ps2)t 

Equation (23) as it stands does not lend itself readily to 
solution. A more tractable equation can be obtained as 
follows. Noting that 

and 

(23) becomes 

f
o 'l'T 

n/2= - f('P.)d'P8-f f('P.)d'P8 
'l'T " 

(25) 

Using (24), (9), and (7a), Eq. (25) takes the following 

L/rm =1.5 L/rm =2 
a a· a a· 

1.0552591 0.6633335 
1.0405177 1.04052 0.6566352 0.656633 
0.9975504 0.997549 0.6370508 0.637049 
0.9301028 0.930101 0.6060694 0.606068 
0.8441578 0.844152 0.5659755 0.565969 
0.7472299 0.747229 0.5195359 0.519535 
0.6472056 0.647217 0.4696858 0.469697 
0.5509617 0.550965 0.4191714 0.419175 
0.4632819 0.463285 0.3702014 0.370204 
0.3866757 0.386678 0.3243908 0.324392 
0.3217142 0.321716 0.282707 0.282709 

form: 

The integrals in (26) are the same as those in (10), and 
have therefore been evaluated. Comparing (10) and (14), 
(26) becomes 

L L ro-rm 

n/2= --K(k)+- --I1(a2,k) 
Rmax Rmax ro+rm 

or 
2L 2L ro-rm 

n= --K(k)+- --I1(a2,k). (27) 
Rmax Rmax ro+rm 

Writing I1(a2,k) in terms of Heuman's lambda function, 
we have 

2L 
n= --K(k)+7rAo(~,k). 

Rmax 

(28) 

IV. SUMMARY OF RESULTS 

To summarize, the following equations have been derived. 

2L 
n=27r--K(k)-7rAo(tk) ro<rm 

Rmax 

2L 
=7r--K(k) 

Rmax 

2L 
= --K(k)+7rAo(~,k) 

Rmax 

ro=r", 

Using the foregoing equations, Table I was prepared in 
which the solid angle is given for several values of ro/r", 
and L/rm • Values of the solid angle taken from Masket etal. s 

are included for comparison. 

6 Masket, Macklin, and Schmitt, "Tables of solid angles and 
activations," ORNL-2170 (Oak Ridge National Laboratory Oak 
Ridge, Tennessee, November, 1956). ' 
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In determining the solid angle sub tended at an arbi­
trary point, one must determine the functions K(k) and 
Ao(~,k). Usually this involves computing arc sink, and for 
Ao, the additional parameter ~. The tables7 in reference 4 
give values of K(k) and Ao(~,k) for a one degree difference 
in arc sink and ~ between 0 and 7r/2. For fractions of a 
degree, interpolation to obtain Aoa,k) is more involved 
than for K(k) since there are two parameters to consider; 
however, the calculation is straightforward. 

7 A short table of Ao(~,k) is also given in reference 5. 

TIlE REVIEW OF SCIENTIFIC INSTRUMENTS 

The method which has been described for obtaining the 
solid angle appears to have some advantages over the 
series method mentioned in the introduction since with 
the availability of the tables, one essentially has to find 

the desired K(k) and Ao(~,k) which usually is not difficult 
within the limits of engineering accuracy. Also, in the 

series expansion, the series will converge more or less 

rapidly depending on the values of a2 and k2; therefore, 
the calculation might become tedious. 
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Vacuum-Type Gas-Flow Calibrator* 

WILLIAM A, STRAUSS AND RUDOLPH EDSE 

Department of Aeronautical Engineering, The Ohio State University, Columbus 10, Ohio 

(Received October 9,1958; and in final form, January 12, 1959) 

A vacuum-type gas-flow calibrator was designed and constructed for making accurate calibrations of flowmeters 
needed for the investigation of high-pressure flames. This calibrator operates by automatically measuring the time 
required to pressurize a known volume from a near vacuum to 1 atmosphere pressure. The gas volume flow rate is 
obtained by dividing the calibration volume by the pressurization time and applying corrections from PVT data. 
This apparatus has been successfully used to calibrate flowmeters for use with hydrogen, oxygen, nitrogen, air, 
methane, nitric oxide, carbon monoxide, and various homogeneous nonexplosive gas mixtures. 

INTRODUCTION 

T HE basic principle of operation of the vacuum 
calibration unit is to measure the time required to 

pressurize a container of known volume from a near 
vacuum to 1 atmosphere with a constant flow of gas from 
a flowmeter (see appendix). The volume flow per unit 
time (v) may then be computed by simply dividing the 
volume of the reservoir (V) by the time required to raise 
the pressure in the containers to one atmosphere (t), or 

v 
v=-. 

t 

The volume flow may then be corrected to standard tem­
perature and pressure conditions (vo) by the equation of 
state relationship. Hence, 

v t.p To 
vo=---, 

t po T 

where po=standard pressure (760 mm Hg), t.p=pressure 
rise (mm Hg), To=standard temperature (273°K), T=gas 
temperature (OK). It is understood that this approach 
yields reliable results only when the perfect gas assumption 
is justified. Otherwise PVT corrections must be applied. 

* The flame-study work was supported by Wright Air Develop­
ment Center Aeronautical Research Laboratory under Contract 
AF 33(616)-5439. 

The calibration of gas flowmeters by the vacuum calibra­
tion method has the advantage over the water displace­
ment method that no water vapor corrections are needed 
and that no errors are introduced due to absorption of the 
calibrated gas by the water. 

APPARATUS 

Figure 1 is a flow diagram of the vacuum calibration unit 
apparatus. It consists basically of 4 reservoirs of known 
volumes, a back-pressure regulator, a U-tube mercury 
manometer, a series of plug valves to control the direction 
of the gas flow and 4 solenoid actuated valves. Gas from 
the flowmeter being calibrated is introduced into the 
vacuum calibrator through a 3-way solenoid valve (valve 
D) only when the valve is actuated. Otherwise, the con­
stant flow of gas is exhausted to the atmosphere. Valve A 
is a safety valve which is acuated by a pressure switch to 
prevent accidental over-pressurization of the calibration 
unit reservoirs. The back-pressure regulator is located 
immediately upstream from the vacuum calibration unit 
solenoid valve D. It maintains a constant pressure of 
approximately 10 psig on the downstream side of the 
throttle valve and prevents flow variations due to varying 
pressure drop across the throttle valve. The electrical 
circuitry of the solenoid valves B, C, and D, is such that 
when one is energized, it is not possible to actuate either 
of the other two until the first has been de-energized. 
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