Noah Luntzlara, University of Michigan

nluntzla@umich.edu

Collaborators: Hung Chu, Madeleine Farris, Ben Logsdon, Steven J. Miller, Mengxi Wang, and Hunter Wieman

http://www-personal.umich.edu/~nluntzla/research.html

INTEGERS Conference, Augusta GA,
October 5, 2018

Outline

- Introduction to Zeckendorf Decompositions
- Framework: Graph-Restricted Decompositions
- Results on Decomposition Behavior
- Distributions of Number of Summands
- Questions for Future Research

•000

The Zeckendorf Decomposition

Definition (Zeckendorf Decomposition)

A **Zeckendorf Decomposition** is a way of writing a natural number as a sum of distinct Fibonacci numbers which are not adjacent.

The Zeckendorf Decomposition

Definition (Zeckendorf Decomposition)

A **Zeckendorf Decomposition** is a way of writing a natural number as a sum of distinct Fibonacci numbers which are not adjacent.

- **Example**: 108 = 89 + 13 + 5 + 1
- Example: 2018 = 1597 + 377 + 34 + 8 + 2

Future/Thanks

Zeckendorf's Theorem

Introduction

Theorem (Zeckendorf's Theorem)

Every natural number has a unique Zeckendorf decomposition.

Future/Thanks

Zeckendorf's Theorem

Introduction

Theorem (Zeckendorf's Theorem)

Every natural number has a unique Zeckendorf decomposition.

Proof Sketch

Zeckendorf's Theorem

Introduction

Theorem (Zeckendorf's Theorem)

Every natural number has a unique Zeckendorf decomposition.

Proof Sketch

Zeckendorf's Theorem

Theorem (Zeckendorf's Theorem)

Every natural number has a unique Zeckendorf decomposition.

Proof Sketch

Fibonacci numbers for reference: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

Greedy Algorithm:

Theorem (Zeckendorf's Theorem)

Every natural number has a unique Zeckendorf decomposition.

Proof Sketch

Fibonacci numbers for reference: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

• Greedy Algorithm: take out the largest $F_k < n$

Theorem (Zeckendorf's Theorem)

Every natural number has a unique Zeckendorf decomposition.

Proof Sketch

Fibonacci numbers for reference: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

• Greedy Algorithm: take out the largest $F_k < n$ E.g. 108

Theorem (Zeckendorf's Theorem)

Every natural number has a unique Zeckendorf decomposition.

Proof Sketch

Fibonacci numbers for reference: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

• Greedy Algorithm: take out the largest $F_k < n$ E.g. 108 = 89 + 19

Theorem (Zeckendorf's Theorem)

Every natural number has a unique Zeckendorf decomposition.

Proof Sketch

Fibonacci numbers for reference: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

• Greedy Algorithm: take out the largest $F_k < n$ E.g. 108 = 89 + 19 = 89 + 13 + 6

Zeckendorf's Theorem

Theorem (Zeckendorf's Theorem)

Every natural number has a unique Zeckendorf decomposition.

Proof Sketch

Fibonacci numbers for reference: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

• Greedy Algorithm: take out the largest $F_k \le n$ E.g. 108 = 89 + 19 = 89 + 13 + 6 = 89 + 13 + 5 + 1

Theorem (Zeckendorf's Theorem)

Every natural number has a unique Zeckendorf decomposition.

Proof Sketch

- Greedy Algorithm: take out the largest $F_k < n$ E.g. 108 = 89 + 19 = 89 + 13 + 6 = 89 + 13 + 5 + 1
- If at any stage we use two adjacent Fibonacci numbers F_k , F_{k-1} , we could have used F_{k+1} instead.

Zeckendorf's Theorem

Theorem (Zeckendorf's Theorem)

Every natural number has a unique Zeckendorf decomposition.

Proof Sketch

- Greedy Algorithm: take out the largest $F_k \le n$ E.g. 108 = 89 + 19 = 89 + 13 + 6 = 89 + 13 + 5 + 1
- If at any stage we use two adjacent Fibonacci numbers F_k , F_{k-1} , we could have used F_{k+1} instead.
- Uniqueness holds because the largest number we can decompose using $\{F_1, \dots, F_{k-1}\}$ is less than F_k ;

Zeckendorf's Theorem

Theorem (Zeckendorf's Theorem)

Every natural number has a unique Zeckendorf decomposition.

Proof Sketch

- Greedy Algorithm: take out the largest $F_k \le n$ E.g. 108 = 89 + 19 = 89 + 13 + 6 = 89 + 13 + 5 + 1
- If at any stage we use two adjacent Fibonacci numbers F_k , F_{k-1} , we could have used F_{k+1} instead.
- Uniqueness holds because the largest number we can decompose using $\{F_1, \ldots, F_{k-1}\}$ is less than F_k ; hence any decomposition of $n > F_k$ must use F_k .

Interestingly, a version of the converse is true!

Converse to Zeckendorf's Theorem

Interestingly, a version of the converse is true!

Proposition

The Fibonacci numbers form the unique sequence such that every natural number has a **unique** decomposition using distinct, nonadjacent terms.

Converse to Zeckendorf's Theorem

Interestingly, a version of the converse is true!

Proposition

The Fibonacci numbers form the unique sequence such that every natural number has a **unique** decomposition using distinct, nonadjacent terms.

Remark: This only works if we start the Fibonaccis

$$1, 2, 3, 5, 8, \dots$$

(Starting 1, 1, or 0, 1, would lose unique decomposition!)

Framework: Graph-Restricted **Decompositions**

The *G*-decomposition

Let G be a graph on nodes indexed by \mathbb{N} , connected by edges.

Let G be a graph on nodes indexed by \mathbb{N} , connected by edges.

Definition (*G*-decomposition)

Given a sequence of integers $\{a_k\}$, we call

$$a_{k_1} + a_{k_2} + \cdots + a_{k_d}$$

a legal *G*-decomposition provided that no pair of indices (k_i, k_i) share an edge in G.

The G-decomposition

Let G be a graph on nodes indexed by \mathbb{N} , connected by edges.

Definition (*G*-decomposition)

Given a sequence of integers $\{a_k\}$, we call

$$a_{k_1} + a_{k_2} + \cdots + a_{k_d}$$

a legal *G*-decomposition provided that no pair of indices (k_i, k_i) share an edge in G.

For example, the Zeckendorf decomposition rule corresponds to the graph G where adjacent vertices are connected.

The *G*-decomposition

Introduction

Question: Does there always exist a good choice of sequence in which to *G*-decompose numbers?

The G-sequence

Definition (*G***-sequence)**

Given a graph G, the G-sequence is the sequence $\{a_k^G\}$ that satisfies

The G-sequence

Definition (*G***-sequence)**

Given a graph G, the G-sequence is the sequence $\{a_k^G\}$ that satisfies

•
$$a_1^G = 1$$

Definition (*G*-sequence)

Given a graph G, the G-sequence is the sequence $\{a_k^G\}$ that satisfies

- $a_1^G = 1$
- a_{k}^{G} is the smallest natural number that does not yet have a G-decomposition

The G-sequence

Definition (*G*-sequence)

Given a graph G, the G-sequence is the sequence $\{a_k^G\}$ that satisfies

- $a_1^G = 1$
- a_k^G is the smallest natural number that does not yet have a G-decomposition

Example:

The G-sequence of this graph is the Fibonacci numbers

The G-sequence of the Zeckendorf graph

2: (1)-(2)-(-)-(-)--

3: (1)-(2)-(3)-(-)-(-)---

- 1: 1

- 4: 1 2 3 - -

- 2: 1-2-----
- 3: 1-2-3----
- 4: 1-2-3-----
- 5: (1)-(2)-(3)-(5)-(-)----

The G-sequence of the Zeckendorf graph

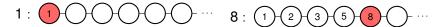
3: (1)-(2)-(3)-(-)-----

5: 1-2-3-5----

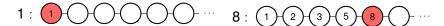
6: 1 2 3 5

The G-sequence of the Zeckendorf graph

5: (1)-(2)-(3)-(5)-(-)----



- 3: (1)-(2)-(3)-(-)-----
- 5: (1)-(2)-(3)-(5)-(-)----
- 6: 1-2-3-5-----
- 7: 1 2 3 5 ...



2: 1 2 3 5 8 ...

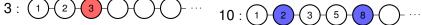
4: 1 2 3 - - - -

5: (1)-(2)-(3)-(5)-(-)----

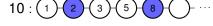
6: 1 2 3 5 ...

7: 1 2 3 5 - - -





- 6: 1 2 3 5
 - 7: 1 2 3 5 ...



3: 1-2-3------

10: 1 2 3 5 8 ----

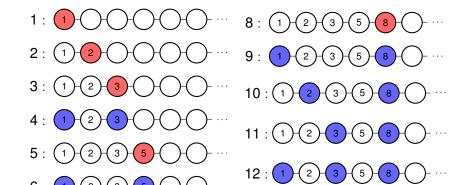
4: (1) (2) (3) (-) (-) (-)

11: 1 2 3 5 8 ...

12: 1 2 3 5 8 ...

7: 1-2-3-5---

41



Proposition

Introduction

- Every $n \in \mathbb{N}$ has a *G*-decomposition in a_k^G
- This G-decomposition is not always unique

G-decompositions in the G-sequence

Proposition

- **①** Every $n \in \mathbb{N}$ has a G-decomposition in a_k^G
- This G-decomposition is not always unique

Part 1

G-decompositions in the G-sequence

Proposition

- **①** Every $n \in \mathbb{N}$ has a G-decomposition in a_k^G
- This G-decomposition is not always unique

Part 1 is clear, since constructing the *G*-sequence always adds the smallest number which has no decomposition.

G-decompositions in the G-sequence

Proposition

- **①** Every $n \in \mathbb{N}$ has a G-decomposition in a_k^G
- This G-decomposition is not always unique

Part 1 is clear, since constructing the *G*-sequence always adds the smallest number which has no decomposition.

Part 2

Future/Thanks

G-decompositions in the G-sequence

Proposition

Introduction

- Every $n \in \mathbb{N}$ has a G-decomposition in a_k^G
- This G-decomposition is not always unique

Part 1 is clear, since constructing the *G*-sequence always adds the smallest number which has no decomposition.

Part 2

5: (1)(2)(3)(4)(7)(11)...

Fix a graph *G*.

Introduction

The *G*-sequence is Canonical

Fix a graph G.

Theorem (Special-ness of the G-sequence)

If there exists a sequence $\{a_k\}$ such that the *G*-decomposition of *n* in $\{a_k\}$ is unique for all $n \in \mathbb{N}$, then it is the G-sequence.

The *G*-sequence is Canonical

Fix a graph G.

Theorem (Special-ness of the G-sequence)

If there exists a sequence $\{a_k\}$ such that the G-decomposition of n in $\{a_k\}$ is unique for all $n \in \mathbb{N}$, then it is the G-sequence.

In other words, the *G*-sequence is the only hope of having unique decomposition.

The *G*-sequence is Canonical

Fix a graph G.

Theorem (Special-ness of the G-sequence)

If there exists a sequence $\{a_k\}$ such that the G-decomposition of n in $\{a_k\}$ is unique for all $n \in \mathbb{N}$, then it is the G-sequence.

In other words, the *G*-sequence is the only hope of having unique decomposition.

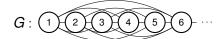
From now on, when we say G-decomposition, we mean G-decomposition in the G-sequence.

Naturals

Examples

Introduction

Naturals



Powers of 2

Introduction

Naturals

- Powers of 2
 - G: (1)(2)(4)(8)(16)(32)
- Fibonacci
 - $G: (1) (2) (3) (5) (8) (13) \cdots$

- f-decompositions more on these later (Demontigny et al., 2013)
- Kentucky sequence (Catral et al., 2014)
- Quilt sequence (Catral et al., 2016)
- The Zeckendorf lattice (Chen et al., 2018)

Introduction

Demontigny et al. introduced *f*-decompositions.

Demontigny et al. introduced *f*-decompositions.

Definition (Demontigny et al., 2013)

Given a function $f: \mathbb{N}_0 \to \mathbb{N}_0$ we say that if a_n is in an f-decomposition, the decomposition cannot contain the f(n) terms immediately before a_n in the sequence.

Demontigny et al. introduced *f*-decompositions.

Definition (Demontigny et al., 2013)

Given a function $f: \mathbb{N}_0 \to \mathbb{N}_0$ we say that if a_n is in an f-decomposition, the decomposition cannot contain the f(n) terms immediately before a_n in the sequence.

f-decompositions come from graphs:

Demontigny et al. introduced *f*-decompositions.

Definition (Demontigny et al., 2013)

Given a function $f: \mathbb{N}_0 \to \mathbb{N}_0$ we say that if a_n is in an f-decomposition, the decomposition cannot contain the f(n) terms immediately before a_n in the sequence.

f-decompositions come from graphs:

an f-decomposition is the G-decomposition resulting from the graph G whose nth vertex is connected to the f(n) vertices immediately before it.

New behavior

...Our framework will also help us see new behavior!

Introduction

Uniqueness of Decomposition

Introduction

By uniqueness of decomposition, we mean that every $n \in \mathbb{N}$ has exactly one legal G-decomposition.

Uniqueness of Decomposition

By **uniqueness of decomposition**, we mean that every $n \in \mathbb{N}$ has exactly one legal *G*-decomposition.

We produce a sufficient condition for uniqueness.

Uniformity

Introduction

Recall that $\{a_k^G\}$ denotes the *G*-sequence.

Introduction

Recall that $\{a_k^G\}$ denotes the *G*-sequence. Let $\{A_k^G\}$ be the sequence of sets

 $A_k^G = \{n \in \mathbb{N} \text{ with a } G\text{-decomp using only } a_1^G, \ldots, a_k^G\}.$

Uniformity

Introduction

Recall that $\{a_k^G\}$ denotes the *G*-sequence. Let $\{A_k^G\}$ be the sequence of sets

$$A_k^G = \{n \in \mathbb{N} \text{ with a } G\text{-decomp using only } a_1^G, \dots, a_k^G\}.$$

(Note A^G_{ν} are strictly nested and $\bigcup A^G_{\nu} = \mathbb{N}$.)

Introduction

Recall that $\{a_k^G\}$ denotes the *G*-sequence.

Let $\{A_k^G\}$ be the sequence of sets

$$A_k^G = \{n \in \mathbb{N} \text{ with a } G\text{-decomp using only } a_1^G, \dots, a_k^G\}.$$

(Note A_k^G are strictly nested and $\bigcup A_k^G = \mathbb{N}$.)

Definition (Uniform graph)

We say *G* is **uniform** provided that for all $k \in \mathbb{N}$,

$$A_k^G = \{1, 2, \dots, a_{k+1}^G - 1\}$$

67

Introduction

Recall that $\{a_k^G\}$ denotes the *G*-sequence. Let $\{A_k^G\}$ be the sequence of sets

$$A_k^G = \{n \in \mathbb{N} \text{ with a } G\text{-decomp using only } a_1^G, \dots, a_k^G\}.$$

(Note A_k^G are strictly nested and $\bigcup A_k^G = \mathbb{N}$.)

Definition (Uniform graph)

We say *G* is **uniform** provided that for all $k \in \mathbb{N}$,

$$A_k^G = \{1, 2, \dots, a_{k+1}^G - 1\}$$

Non-example: $5 \in A_3^G$ but $5 > a_4^G = 4$

Structure of Uniform Graphs

Introduction

We can completely characterize uniform graphs.

We can completely characterize uniform graphs.

Theorem

Introduction

The following are equivalent:

- G is uniform
- For each $k \in \mathbb{N}$ the set of indices less than k which are connected to k by an edge is of the form $\{j : f(k) \le j < k\}$

We can completely characterize uniform graphs.

Theorem

Introduction

The following are equivalent:

- G is uniform
- For each $k \in \mathbb{N}$ the set of indices less than k which are connected to k by an edge is of the form $\{j : f(k) < j < k\}$

This theorem shows that our uniformity condition is equivalent to the f-decompositions introduced by Demontigny, et al.

We can completely characterize uniform graphs.

Theorem

Introduction

The following are equivalent:

- G is uniform
- For each $k \in \mathbb{N}$ the set of indices less than k which are connected to k by an edge is of the form $\{j : f(k) < j < k\}$

This theorem shows that our uniformity condition is equivalent to the f-decompositions introduced by Demontigny, et al.

(Our framework has helped justify their definition, and gives a new perspective from which to ask questions.)

Uniformity implies Uniqueness

As promised, uniformity is a sufficient condition for uniqueness of decomposition.

Uniformity implies Uniqueness

As promised, uniformity is a sufficient condition for uniqueness of decomposition.

Corollary

If *G* is uniform, then *G*-decompositions are unique.

Theorem

Introduction

If G is uniform, then a_k^G is given by the recurrence

$$a_{k+1}^G = a_k^G + a_{f(k)}^G$$
 for $k \in \mathbb{N}$

Nice Properties of Uniform Graphs

Theorem

If G is uniform, then a_{k}^{G} is given by the recurrence

$$a_{k+1}^G = a_k^G + a_{f(k)}^G$$
 for $k \in \mathbb{N}$

Corollary

If G, H are uniform graphs and H is a subgraph^a of G then for all $k \in \mathbb{N}$, $a_{\nu}^{H} > a_{\nu}^{G}$.

^afewer edges, same vertices

Future/Thanks

Uniqueness Without Uniformity

Introduction

Although uniformity is *sufficient* for unique decomposition, it is not necessary.

Uniqueness Without Uniformity

Introduction

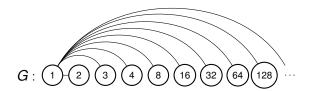
Although uniformity is *sufficient* for unique decomposition, it is not necessary.

The following graph gives unique decomposition and is not uniform:

Uniqueness Without Uniformity

Although uniformity is *sufficient* for unique decomposition, it is not necessary.

The following graph gives unique decomposition and is not uniform:



We are interested in the *number of summands*.

We are interested in the *number of summands*.

Example: The Zeckendorf decomposition of 19

19: 1 2 3 5 8 13 ...

...uses three summmands

We are interested in the *number of summands*.

Example: The Zeckendorf decomposition of 19

...uses three summmands

Lekkerker's Theorem (1952)

The average number of summands in the Zeckendorf decomposition for integers in $[F_n, F_{n+1})$ tends to

$$\frac{n}{\varphi^2+1} \approx .276n$$
, where $\varphi = \frac{1+\sqrt{5}}{2}$ is the golden mean.

We are interested in the *number of summands*.

Example: The Zeckendorf decomposition of 19

...uses three summmands

Lekkerkerker's Theorem (1952)

The average number of summands in the Zeckendorf decomposition for integers in $[F_n, F_{n+1})$ tends to $\frac{n}{\omega^2+1} \approx .276n$, where $\varphi = \frac{1+\sqrt{5}}{2}$ is the golden mean.

We would also like to know what the distribution of the number of summands looks like.

Past Results

Introduction

Theorem (KKMW 2010)

As $n \to \infty$, the distribution of numbers of summands in Zeckendorf decompositions $[F_n, F_{n+1})$ is Gaussian.

Past Results

Introduction

Theorem (KKMW 2010)

As $n \to \infty$, the distribution of numbers of summands in Zeckendorf decompositions $[F_n, F_{n+1})$ is Gaussian.

Theorem (DDKMMV 2013)

As $n \to \infty$, the distribution of numbers of summands in Factorial Number System Representations is Gaussian.

Past Results

Theorem (KKMW 2010)

As $n \to \infty$, the distribution of numbers of summands in Zeckendorf decompositions $[F_n, F_{n+1})$ is Gaussian.

Theorem (DDKMMV 2013)

As $n \to \infty$, the distribution of numbers of summands in Factorial Number System Representations is Gaussian.

Theorem (GCKMSSWY 2018)

As $n \to \infty$, the distribution of numbers of summands in a large class of mixed-radix decompositions is Gaussian.

New Results

Introduction

Theorem

If *G* is a subgraph of the Zeckendorf graph, then it produces a Gaussian summand distribution.

New Results

Theorem

If *G* is a subgraph of the Zeckendorf graph, then it produces a Gaussian summand distribution.

Example: a subgraph of the Zeckendorf Graph

 $G: (1)(2)(3)(6)(9)(15)(30)(45)(90)(135)(225) \cdots$

Gaussianity

Introduction

Based on past results, we expect Gaussianity to be the default behavior in many situations.

Gaussianity

Based on past results, we expect Gaussianity to be the default behavior in many situations.

Our perspective (*G*-decompositions) gives a language to talk about how general this behavior is, and what structures we expect to produce it.

Gaussianity

Based on past results, we expect Gaussianity to be the default behavior in many situations.

Our perspective (*G*-decompositions) gives a language to talk about how general this behavior is, and what structures we expect to produce it.

Open Question: which graphs *G* do we expect to produce Gaussian distributions of summands?

Non-Gaussianity

Theorem

There exists a *uniform* graph with non-Gaussian summand distribution.

Non-Gaussianity

Theorem

There exists a *uniform* graph with non-Gaussian summand distribution.

We construct it as follows.

• The nodes indexed $(4^k - 1)/3 + k$ are connected to nothing before,

Non-Gaussianity

Theorem

There exists a *uniform* graph with non-Gaussian summand distribution.

We construct it as follows.

- The nodes indexed $(4^k 1)/3 + k$ are connected to nothing before,
- All other nodes are connected to everything before.

Theorem

There exists a uniform graph with non-Gaussian summand distribution.

We construct it as follows.

- The nodes indexed $(4^k 1)/3 + k$ are connected to nothing before.
- All other nodes are connected to everything before.

This generates the sequence

1, **2**,

Theorem

There exists a *uniform* graph with non-Gaussian summand distribution.

We construct it as follows.

- The nodes indexed $(4^k 1)/3 + k$ are connected to nothing before,
- All other nodes are connected to everything before.

This generates the sequence

1, **2**, 4, 5, 6, 7, **8**,

Theorem

There exists a *uniform* graph with non-Gaussian summand distribution.

We construct it as follows.

- The nodes indexed $(4^k 1)/3 + k$ are connected to nothing before,
- All other nodes are connected to everything before.

This generates the sequence

1, **2**, 4, 5, 6, 7, **8**, 16, 17, . . . , **32**

Theorem

There exists a *uniform* graph with non-Gaussian summand distribution.

We construct it as follows.

- The nodes indexed $(4^k 1)/3 + k$ are connected to nothing before,
- All other nodes are connected to everything before.

This generates the sequence

1, **2**, 4, 5, 6, 7, **8**, 16, 17, ..., **32**, 64, 65, ..., **128**, ...

Theorem

There exists a *uniform* graph with non-Gaussian summand distribution.

We construct it as follows.

- The nodes indexed $(4^k 1)/3 + k$ are connected to nothing before,
- All other nodes are connected to everything before.

This generates the sequence

which doubles after it reaches $4^k/2$, and otherwise increases by 1.

1, **2**, 4, 5, 6, 7, **8**, 16, 17, ..., **32**, 64, 65, ..., **128**, ...

Decompositions

This produces a non-Gaussian distribution because it switches between arithmetic and geometric behavior, so a positive proportion of numbers require 1 summand, a smaller positive proportion require 2, and so on.

This produces a non-Gaussian distribution because it switches between arithmetic and geometric behavior, so a positive proportion of numbers require 1 summand, a smaller positive proportion require 2, and so on.

It has a geometric distribution of number of summands:

This produces a non-Gaussian distribution because it switches between arithmetic and geometric behavior, so a positive proportion of numbers require 1 summand, a smaller positive proportion require 2, and so on.

It has a geometric distribution of number of summands:

 $\left(\frac{2}{3}\right)^n$ of integers use *n* summands.

Connection to Growth Rate?

Introduction

The previous example of non-Gaussian behavior have linear asymptotic growth rate, while most examples of Gaussianity exhibit exponential or near-exponential growth.

Connection to Growth Rate?

The previous example of non-Gaussian behavior have linear asymptotic growth rate, while most examples of Gaussianity exhibit exponential or near-exponential growth.

Conjecture

If a uniform graph gives a sequence with exponential growth rate, then it produces a summand distribution which is Gaussian.

Questions for Future Research

Questions for Future Research

Introduction

Sequences to Graphs

Introduction

Sequences to Graphs

 How can you tell if a sequence is the G-sequence for some graph?

Introduction

Sequences to Graphs

- How can you tell if a sequence is the G-sequence for some graph?
- Is there an algorithm which takes in a sequence and spits out a graph G which generates it, if one exists?

Sequences to Graphs

- How can you tell if a sequence is the G-sequence for some graph?
- Is there an algorithm which takes in a sequence and spits out a graph G which generates it, if one exists?
- For which sequences is there a unique graph which generates them?

Growth Rates

Introduction

Growth Rates

Introduction

• What growth rates can *G*-sequences have?

Growth Rates

- What growth rates can G-sequences have?
- Can we relate growth rate to edge density (or a different measure of how connected G is)?

Future/Thanks

0000000

Questions for Future Research

Gaussianity

Introduction

Gaussianity

Introduction

 Which graphs G give Gaussian distributions of summands?

Gaussianity

- Which graphs G give Gaussian distributions of summands?
- Is their a critical growth rate which ensures Gaussianity?

Gaussianity

Introduction

- Which graphs G give Gaussian distributions of summands?
- Is their a critical growth rate which ensures Gaussianity?
- Can we find a non-Gaussian distribution whose mean goes to infinity?

Acknowledgements

This work was made possible by generous funding from:

- NSF Grants DMS1561945 and DMS1659037
- The Finnerty Fund
- The University of Michigan
- Washington and Lee
- Williams College

Many thanks also to

- The Integers Conference
- Other contributors: Hung Chu, Madeleine Farris, Benjamin Logsdon, Steven J. Miller, Mengxi Wang, and Hunter Wieman

References

Introduction

References

 Demontigny, Do, Kulkarni, Miller, Moon, and Varma: Generalizing Zeckendorf's Theorem to f-decompositions, Journal of Number Theory 141 (2014), 136-158

https://arxiv.org/pdf/1309.5599

 Kologlu, Kopp, Miller and Wang: On the number of summands in Zeckendorf decompositions, Fibonacci Quarterly 49 (2011), no. 2, 116–130.

https://arxiv.org/pdf/1008.3204

 C. G. Lekkerkerker, Voorstelling van natuurlyke getallen door een som van getallen van Fibonacci, Simon Stevin 29 (1951-1952), 190-195

000000

Thank you!