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Introduction
Why study the motion of falling objects?

• A problem of great practical importance:
Atmospheric science/meteorology:

Fall and growth of snowflakes, hailstones, & raindrops; 
balloon wind sensors

Chemical Engineering:
Centrifuges, dust collectors, pneumatic conveyors, fiber 
suspensions, catalytic reactors, etc.

Biological Sciences
Spread of seeds from trees as they fall; “Experiments on 
the settling, overturning and entrainment of bivalve shells 
and related models”

Sedimentology:
Sedimentation of silt in river banks

• An interesting historical perspective
Problem dates back to Newton; studied by Maxwell, 
Kelvin, Stokes, Eiffel, Reynolds...

• An interesting everyday phenomenon 
• Falling leaves & paper
• Coins in fountains
• Snowflakes
• Bar tricks...



Isaac Newton, Principia, (1726)
“Exper. 7  ... I procured a square wooden vessel, whose breadth on the 
inside was 9 inches English measure, and its depth 9 1/2 feet; this I filled 
with rain water; and having provided globes made up of wax, and lead 
included therein, I noted the times of the descents of these globes...”

“the globes ... oscillated about their centers; that side which chanced to 
be the heavier descending first, and producing an oscillating motion.”

“... the globe always recedes from that side of itself which is descending 
in the oscillation, and by so receding comes nearer to the sides of the 
vessel, so as even to strike them sometimes.

“Exper. 14. In the year 1719 ... Dr. Desaguliers made some experiments 
of this kind again, by forming hog’s bladders into spherical orbs...These 
were let fall from the lantern on the top of the cupola of the same church 
[St. Paul’s in London]... But the bladders did not always fall straight 
down, but sometimes fluttered a little in the air, and waved to and fro as 
they were descending.”

Maxwell (1853)
“Every one must have noticed that when a slip of paper falls through the 
air, its motion, although undecided and wavering at first, sometimes 
becomes regular.”

Historical Notes
After Viets and Lee, AIAAJ. 9, 2038 (1971)

Many workers over the centuries have been
fascinated by the dynamics of falling objects.

Many of their descriptions include references to
wavering and unpredictable motion.



G. Eiffel (1912)
Dropped spheres off the Eiffel tower to obtain drag coefficients.

L. F. Richardson (1923)
Fired cannon balls vertically from a cannon.

R. G. Lunnon (1926)
Dropped spheres in mine shafts of Tynesdale, England, coal 
district.  Also dropped spheres in water: “...the falls were not 
straight.  There was always some swerving in the path of falling 
spheres.”

W. W. Willmarth et al. (1963)
G. E. Stringham et al., (1969)
Dropped spheres, cylinders, disks, spheroids in liquids.  Found 
steady-falling, periodic oscillating, continuous tumbling, and 
“glide-tumbling” behaviors.

For this last type of motion, a disk would tumble several times “in 
an apparently random manner,” and when the disks finally hit the 
bottom, “their ultimate location...could never be predicted.”

All these statements were made before the 
development of the ideas of deterministic 
chaos, and yet they may contain at least the 
seeds of these ideas.



Full Navier-Stokes Approach
• Computationally very expensive
• Difficult to probe a wide range of parameter 

space
• Dificult to extract relevant physics

Exact Models with Simpified Assumptions
• Can get analytic results in restricted models
• Leave out terms like viscosity, gravity

Phenomenological Approaches
• Model lift, drag, etc. phenomenologically
• Can include in this way all relevant forces
• Fluid degrees of freedom difficult to treat

Possible Theoretical Approaches



Recent Theoretical Approaches
Solutions of Kirchoff’s equations for an Ideal Fluid

Aref & Jones (1993)

Study the motion of a body through an ideal fluid – 
incompressible, inviscid, irrotational.

Kirchoff’s derived a set of ordinary DEQs which govern the 
motion of a body under such conditions.

Treatment includes important effects of fluid inertia by way 
of added mass tensor.

Leaves out: viscosity, vorticity, gravity.

Dynamics is not driven, dissipative chaos as in falling 
card problem.



Phenomenological Models of Falling Objects
Tanabe and Kaneko (1994)

Falling of a 1D “stick” in a 2D fluid.

Phenomenologically model lift, drag, and 
gravitational forces.

Find several dynamical phases as system 
parameters are varied.  Two of these are 
chaotic in nature.

The fluid degrees of freedom are ignored.



“Falling Paper” Behaviors Observed by Tanabe and Kaneko
PRL 73, 1372 (1994)

Periodic Fluttering

Simple
Perpendicular Fall

(my interpretation)

Periodic Rotation

Chaotic Rotation

Chaotic Fluttering



Phenomenological Models of Falling Objects
Mahadevan (1996)

More rigorous treatment of previous theory. 

Falling of an infinite cylinder in an ideal 2D 
fluid with a phenomenological dissipative term.

Characterization of motion based on 
fundamental system parameters–shape, mass 
anisotropy, densities, etc.

Numerics show periodic oscillations, tumbling, 
steady fall, and chaotic regimes.

“Falling card”



Disk Parameters
Diameters: d = 5.1–18.0 mm
Thicknesses: t = 0.076–1.63 mm
Materials: ρ: Steel, Lead, Paper (in air)

Fluid Parameters
Fluid Used: ρf : Water/Glycerol Mixtures
Viscosities: ν = 0.01–0.12 cm2/s

Other Parameters
Drop Heights: 0.3–1.0 m

Direct Observation
of Falling Disk

Motion



Can reduce these five to only three 
independent dimensionless ratios:

• * / disk

sphere of fluid

I t d
I

If= ∝πρ ρ64

•  Re = Ud/ν

•  t/d « 1 (ignore)

These five parameters d, t, ρ, ρf, and ν
imply a very large parameter space.

Thus from dimensional considerations 
alone expect behavior of a (thin) disk to 
depend only on two parameters I* and Re
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(I*, Re) Phase diagram provides compact overview of disks’ behavior
Can we find a more quantitative measure of their motion?

z

y
x

ψn ˆ =θ,ϕ

Side View Front View

Six degrees of freedom;
we record four:

• x, z
• n = θ, ϕ

Not recorded:
• y
• ψ

ˆ 

Video
Camera

Experimental Determination of Iteration Maps



θi=θ0

Dropped from rest

θ1

θ2



Why might θ1 determine θ2 ?

• At extrema, other angular velocities & horizontal 
velocities ≈ 0.

• Vertical velocity ≈ constant.
• Fluid degrees of freedom: vortex shedding, 

turbulence, etc.
• But for repetitive oscillations of disk, motion of 

fluid near disk also repeats–fluid motion 
included in renormalized mass of disk (I*). 

Label extrema of motion θ0, θ1, θ2...

Deterministic motion: Since disk 
dropped from rest at θ0, θ1 = f(θ0).

Question: does θ2 = f(θ1), with the 
same mapping f?

Yes, if θ alone completely specifies the 
initial conditions.

Experiment will show if these ideas hold.
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Intermittency Route to Chaos

Schuster, Deterministic Chaos

In the intermittent transition, there is a 
“laminar” region where the trajectory 
moves through the narrow neck between 
the map and the diagonal.

In our system, this neck is the narrow 
region near θ = 90°.

Thus the laminar region in our case is the 
oscillating regime building up to chaos.

Prediction: <L> ≈ ε

Narrow Neck

–1/2



• In the above classification the maps are 
differentiable about the fixed point.

• Bauer et al. [PRL 68, 1625 (1992)] 
discuss the case of discontinuous maps:

Chaos with Discontinuous Maps
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Trajectory moves along map until it passes 
point of discontinuity xd.  Then iterations are 
reinjected randomly into laminar region.

Notice similarity to our map.  At θd ≈ 67°, disk 
begins to tumble, yielding a very dense map for 
“random” reinjection.
For continuous maps, laminar length scales as 

<L> ≈ ε−1/2.  For discontinuous maps, have <L> 

≈ log(ε).

Could not observe any such scaling - can’t set  ε 
precisely due to disk imperfections.
Future:  Change viscosity via temperature? 



Tumbling Regime
At very large values of I* > 0.04, the disks 
tumble continuously; there is no oscillating 
“laminar” regime.
Experimentally, this tumbling does not 
appear to be periodic.  Is it chaotic?

Our
tumbling

data

G. E. Stringham et al., USGS Prof. Paper 562-C (1969)

Evidence for Periodic Tumbling:
Two Tumbling Regimes?

Theoretical Treatments:
Mahadevan (1996)
Maxwell(1853)

Experimental Observations:
Paper disks with very high I*
appear to tumble periodically

Data of Stringham et al.



• Understanding motion of objects falling in a 
viscous medium of  technological and scientific 
importance.

• Found four distinct dynamical phases (with 
perhaps two tumbling phases) with clear 
boundaries between them. These generally 
agree  with theory, but not in detail.

• At least one chaotic phase clearly exists – an 
oscillating/tumbling phase.

• Complex behavior of disks can be reduced to a 
series of 1D maps.

• Chaos develops when fixed point collides with 
a discontinuity in the map, leading to a novel 
type of intermittency.

• Future directions:
• Explore tumbling regime in greater 

detail
• Look at scaling in laminar-to-chaotic 

transition
• Better connections between 

hydrodynamic theory and chaos. 

Conclusions


