
Chaotic Dynamics of Falling Disks

Stuart B. Field,1 M. Klaus,2 M. G. Moore,2 and Franco Nori2
1Department of Physics, Colorado State University, Fort Collins, CO 80523

2Department of Physics, The University of Michigan, Ann Arbor, MI 48109-1120

(June 3, 1997)

We investigate experimentally the behavior of falling disks in a 
uid and identify several dynamical

regimes as a function of the moment of inertia and Reynolds number: steady falling, periodic
oscillating, chaotic, and continuous tumbling. One-dimensional iteration maps of the disk angles at

turning points were constructed to explore the evolution of the dynamics, as boundaries between

these regimes are crossed. We obtain the �rst experimental evidence of a progression from �xed-
point to chaotic motion via a type-V intermittency, characterized by a discontinuity in the iteration

map.

PACS numbers: 47.52.+j, 05.45.+b

In a certain lucrative bar trick, a naive bystander is
asked to try to drop a playing card into a hat at his feet.
The idea is demonstrated to him by the crafty challenger,
who holds the card vertically and drops it over the hat.
Each time the bystander drops the card in this manner,
it 
utters wildly in some apparently random direction
and completely misses the hat. The challenger bets that
he can hit the hat with just one drop. Bets are placed.
The challenger then steps up and drops the card with a
horizontal initial orientation, and it falls obediently into
the hat. This simple trick illustrates several fundamental
aspects of the dynamics of a falling thin plate. First, as
shown by the behavior of the card when dropped verti-
cally, the motion of such an object can be very chaotic.
Here, one of the key features of chaotic dynamics|a se-
vere sensitivity to the precise initial conditions|is what
makes the scheme unpro�table for the bystander. Sec-
ond, the severity of this dependence can itself be a func-
tion of the value of the initial condition. Thus, a card
dropped with an initially horizontal orientation remains
nearly so; for vertical distances typical for this trick, ini-
tially di�erent trajectories diverge only slightly, reaping
the challenger his pro�t.
Understanding the motion of blu� objects falling in

a viscous medium is of great importance, and has ap-
plications in many disciplines, including meteorology [1],
sedimentology [2], aerospace engineering [3], and chemi-
cal engineering [4]. The study of this problem goes back
to at least Newton, who observed complex motion of ob-
jects falling in both air and water [3]. The problem was
also studied by Maxwell, who discussed the motion of a
falling strip of paper in a beautiful 1854 article [5]. More
recently, Aref and Jones [6] have studied numerical so-
lutions of Kirchho�'s equations for an object moving (in
the absence of gravity and viscosity) in an ideal 
uid.
Tanabe and Kaneko [7] have taken a di�erent approach,
using a simpli�ed model of a falling one-dimensional (1D)
piece of paper, including within this model e�ects of lift
and viscosity, but neglecting the inertial e�ects of the

uid. Both [6] and [7] �nd that the motion of moving or

falling bodies may be chaotic.
Given the di�culty of studying this problem theoreti-

cally, many workers have chosen to examine experimen-
tal systems [3,4,8,9]. Of particular note is the work of
Refs. [8] and [9]. These groups studied the behavior of
disks falling in various liquids, and found a wide vari-
ety of di�erent types of motion: steady-falling, periodic-
oscillating, continuous tumbling, and \glide-tumbling"
behaviors. Perhaps most interesting is this last type of
motion. Here, the disk would oscillate back and forth
several times as it fell, increasing its amplitude each oscil-
lation until it completely turned over. It would then tum-
ble several times \in an apparently random manner," and
when the disks �nally hit the container bottom, \Their
ultimate location : : :could never be predicted [8]." These
statements were made several years before the develop-
ment of the ideas of deterministic chaos, and yet they
may contain at least the seeds of these ideas.
No experiments on this systems appear to have been

done since the advent of modern chaos theory. The the-
oretical study of Ref. [6] neglects e�ects of 
uid viscosity
and gravity, while that of Ref. [7] focuses on 1D objects
and ignores the important e�ect of 
uid inertia. This
somewhat unclear state of a�airs has motivated us to
perform systematic experimental studies of the motion
of disks falling in a liquid, applying modern tools of dy-
namical systems.
The experiments are in principle simple. Steel and

lead disks with diameters d = 5.1{18.0 mm and thick-
nesses t = 0.076{1.63mm were dropped in water and wa-
ter/glycerol mixtures from heights ranging from � 0.3{
1 m; some paper disks were also dropped in air, as dis-
cussed later. This combination of disk sizes and densities,
and 
uid viscosities, allowed us to explore a very large re-
gion of parameter space. Several di�erent types of motion
were observed, as shown in Fig. 1. These sequences were
obtained by imaging from the side using a video camera;
the digitized images were measured, and computer-drawn
images are shown. Figure 1(a) shows the steady-falling
regime observed at low Reynolds' number R: A disk,
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dropped with any initial orientation quickly settles down
to a steady fall with horizontal orientation. Figure 1(b)
shows the periodic-oscillating motion observed at higher
R and low dimensionless moment of inertia I�. Such
disks oscillate with a well-de�ned period, again settling
into this pattern after initial transients have died down.
Figure 1(c) shows the chaotic motion characteristic when
both R and I� are moderately large. Typically, a disk in
this regime will begin to oscillate with larger and larger
amplitude until its angle is so high that it actually 
ips.
It then tumbles several times and then suddenly jumps
back to oscillating behavior. The number of tumbles and
time between tumbling behaviors appear to the eye to be
random. The disk may also suddenly change its overall
direction of motion. Finally, Fig. 1(d) shows the tum-
bling motion found at very large I�. Here, the disk turns
continuously end-over-end while drifting in one direction.
What system parameters determine the type of motion

observed? There are �ve material parameters: the disk
diameter d, thickness t, and density �, as well as the 
uid
density �f and kinematic viscosity �. The parameter
space implied by these �ve parameters is of course quite
large. Fortunately, it is possible to reduce this number
to only three independent dimensionless ratios [8]. The
geometry of the disks may be characterized by the dimen-
sionless moment of inertia I� = Idisk=�fd

5 = �� t=64�fd.
I� is thus the ratio of the moment of inertia of a disk
to a quantity proportional to the moment of inertia of a
sphere of liquid with the same diameter. That we take
the ratio to a sphere of liquid emphasizes the importance
of the momentum of the liquid in determining the mo-
tion of the disk [8]. For small I�, we expect the e�ects
of the 
uid to be important; at large I� the moment of
inertia of the disk dominates. A second dimensionless
quantity is the Reynolds number R = Ud=�. Here, U
is the mean vertical disk velocity. The �nal independent
dimensionless quantity is the thickness-to-diameter ratio
t=d. However, for the disks we consider here, t=d � 1,
and we expect therefore that this ratio plays no role in
the disks' dynamics.
To investigate the dependence of the disks' behavior on

these two dimensionless parameters I� and R, we have
dropped a large number of disks and characterized their
motion as steady falling, periodic oscillating, chaotic or
tumbling. It was generally obvious to the eye to which of
these types of motion any particular drop corresponded.
We may then plot a \phase" diagram, indicating a disk's
behavior as a function of I� and R (Fig. 2). Also plotted
on this diagram is the data of Refs. [8] and [9]; their
data and ours agree quite well. We note that there is a
well-de�ned boundary between each regime. This implies
that the two dimensionless quantities I� and R do in fact
characterize a disk/liquid combination; it further implies
that ignoring the small but �nite thickness of these disks
is justi�ed.
Mapping out a phase diagram by direct observation

allows a compact overview of the disks' behavior. How-
ever, it does not give us any physical insight as to why

the disks fall as they do. To explore this question more
fully, we have made direct observations of the trajectories
of disks as they fall. A video camera and frame grabber
allowed us to obtain side-view images of falling disks at
a frame rate of 60 Hz. From such images, it is possible
to obtain the two Cartesian coordinates of a disk's cen-
ter in the vertical plane perpendicular to the direction of
observation, as well as the direction in space of the sym-
metry axis of the disk. The Cartesian coordinate parallel
to the direction of observation, and the angle of rotation
around the symmetry axis, could not be recorded. A
simple analysis of this motion would seem di�cult, then,
since the disk has six degrees of freedom, of which we
record four.
Interestingly, we have found it possible to describe this

complex behavior by a simple one-dimensional map. The
single variable required is the angle � between the disk's
normal and the vertical, so that a horizontal disk has
� = 0. To understand this, imagine dropping a disk
from rest in a 
uid, starting at an angle �i. As seen in
Fig. 1(a), the disk will glide downwards and to the side,
level o�, and then begin to tilt in the other direction.
Just when it has reached the extremum of its motion
[arrow in Fig. 1(a)] the disk is almost stationary in all
variables except for its vertical coordinate. Thus there is
a well-de�ned �nal angle �f for a disk dropped from rest
with initial angle �i. Since the motion is deterministic,
this �nal angle �f of the disk must be a function f of
its initial conditions|the initial angle equaling �i and
the other coordinates and velocities being zero. Thus it
must be true that �f = f(�i).
We may now ask the interesting question as to whether

this �nal angle �f may serve as the initial angle �i for
the next oscillation, with the next �f determined from
the same mapping f(�i) as above. This will be possible
to the extent to which this angle alone completely speci-
�es the initial conditions, even for a disk which has fallen
quite far. How might this be so? At an extremum, it
appears (cf. Fig. 1) that the angular velocities are essen-
tially zero. So, too, are the horizontal translational veloc-
ities. The vertical velocity, while not zero, very rapidly
reaches a terminal value which is about the same for all
subsequent extrema; one could argue that this velocity, in
dimensionless form, is simply the Reynolds number and
is hence a parameter, not a dynamical variable, of the
motion. Certainly the disk's center-of-mass coordinates
are irrelevant if we consider the 
uid to be in�nite. We
also expect from symmetry considerations that e�ects of
rotations around the disk's axis will be small. Thus, the
only relevant disk coordinate is the angle � between the
disk's plane and the horizontal.
The e�ect of the in�nite degrees of freedom of the 
uid

is, of course, much more di�cult to consider. A detailed
study of the 
uid dynamics as the disk approaches a
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given �f would undoubtedly reveal vortex shedding, tur-
bulence, and other complex motion. However, the ques-
tion we are considering is only whether the disk's subse-
quent motion is determined by its initial angle. Without
knowing the details of the motion of the 
uid, we can
imagine that for a repetitive motion like the periodic os-
cillation of a disk, the motion of the 
uid in the vicinity
of the disk also repeats itself. Thus we can consider the

uid motion to be included in our description of the state
of the system, which we describe by the single variable
�f . This state is still determined by the previous �i, even
thought it is determined by extremely complicated dy-
namics. We can thus think of f(�i) as a single-valued
function, and can map it out empirically.
This idea of including the 
uid dynamics in some vari-

able which ostensibly describes the disk is not a novel
one. For the related case of a body moving in an ideal


uid, Kirchho� showed (see, e.g., Ref. [6]) that the equa-
tions of motion for such a body can be written so that
the in�nite degrees of freedom of the 
uid are eliminated.
Rather than explicitly including the 
uid in the equations
of motion, one can in e�ect ignore the 
uid but think of
the object as having a di�erent (tensor) mass from its
physical (scalar) mass. Its mass is transformed by way of
the added mass tensor, whose elements depend only on
the shape of the body.
In Fig. 3, we show eight iteration maps of �f vs �i,

for several disk/liquid combinations. These maps were
constructed as follows. A disk was dropped from rest
with some initial angle �0. From the resulting digitized
motion, a sequence of angles at the extrema of motion
was measured. Each angle serves as an initial angle �i
for the next �nal angle �f . By starting out at several
di�erent values of �0, a rather wide range of angles could
be mapped out. To avoid transients, we did not include
the initial angle from which the disk was dropped at rest
in constructing these maps, making small initial angles
sometimes di�cult to achieve|the angle after even the
�rst iteration was often already large.
Maps shown in Fig. 3(a){(d) correspond to those

points in the phase diagram of Fig. 2 labeled a{d. We
see that the later form a vertical slice in phase space
which cuts from the periodic oscillation region of low I�

through the boundary with the chaotic region of high I�.
The progression of the maps indicates how this change in
dynamical behavior proceeds. In Fig. 3(a), we see that,
near an initial angle of about �0 � 60�, the map cuts
across the diagonal line �f = �i with a slope less than
one. �0 thus represents a stable �xed point, and the mo-
tion will always settle down to periodic oscillations with
an extremum angle of about 60�. As we increase I�,
we come to point b of Fig. 2, which is near the border
between periodic and chaotic behavior. In the iteration
map of Fig. 3(b), we see that there appears to be a stable
�xed point, although it is very near to 90�. Thus, at the
end of each oscillation, the disk is nearly vertical, and is

quite near to actually 
ipping over. Proceeding further
in I�, we come to point c of Fig. 2, which is now clearly
in the chaotic region. The map of Fig. 3(c) shows how
this comes about. The map no longer crosses the diago-
nal, so there are no �xed points. Instead, a disk dropped
with any initial angle very rapidly increases its succes-
sive angles until � � 90�. We see from the map, how-
ever, that there is no �nal angle de�ned for initial angles
greater than about 80�; this is because for initial angles
greater than this the disk will actually 
ip over. We �nd
that it then tumbles several times; this number is unpre-
dictable. Then the disk suddenly is reinjected into the
map at some low angle �, and the process begins again.
This progression from oscillations near a �xed point to
chaotic behavior has been termed intermittency [10]. Fi-
nally, for very large I� [Fig. 3(d)] the map is very far from
the diagonal line, and the motion is strongly chaotic. Os-
cillation angles rapidly build towards 90�, and the disk
alternates rapidly between tumbling and oscillating. We
have schematically indicated this complicated tumbling
behavior by the rapidly 
uctuating curve for � >

�
67� in

Fig. 3(d).
A similar route to chaos is observed when taking hor-

izontal slices through the phase diagram, as in runs e{h

in Fig. 2. At low values of R (point e), the behavior
is steady falling (Fig. 1a). Figure 3(e) shows the corre-
sponding map. The map appears to be heading towards
the origin with slope less than one, i.e., there is a stable
�xed point at zero angle. Thus the disk is driven towards
a state where all angles are zero, which is the steady
falling situation. Point f of Fig. 2 appears to be right on
the boundary between steady falling and periodic motion.
In the corresponding iteration map [Fig. 3(f)], it is indeed
di�cult to judge whether the map goes through the ori-
gin without crossing the diagonal (a stable �xed point
at 0�), or leaves the origin with a slope greater than one
and recrosses the diagonal at some low angle �0 (a stable
�xed point at �0). By point g of Fig. 2, however, we are in
the periodic regime, and the iteration map clearly crosses
the diagonal at �0 � 70�. Finally, the phase-space slice
cuts through the periodic-chaotic boundary, and point h
is chaotic, as shown by the map of Fig. 3(h). Again, a
disk at any initial angle quickly moves into the tumbling
regime, only to be reinjected into the oscillating regime
at some apparently random time.
Pomeau and Manneville classify three types of inter-

mittency depending on the way �xed points become un-
stable, i.e., in the way the eigenvalues of the map cross
the unit circle [10]. The great majority of experimental
systems exhibiting intermittency appear to be of one of
these three types. This classi�cation, however, does not
cover maps that are not di�erentiable around �xed points
[11]. Here, a �xed point can lose its stability by colliding
with a discontinuity in the map. When the critical con-
trol parameter � vanishes, the �xed point is stable in one
direction of the 1D phase space and unstable in the other.
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After passing the point of discontinuity, the iteration is
reinjected \stochastically" into the laminar region. We
observe this \type V" intermittency in our experiments.
Examining the progression from periodic to chaotic be-

havior described by the maps of Fig. 3, we see that for
periodic maps, as in Fig. 3(a), the disk will fall forever os-
cillating at a stable �xed point; for the borderline map of
Fig. 3(b), the angle of oscillation is very nearly 90�. As we
enter the chaotic regime, a discontinuity indeed develops
in the map [Fig. 3(c),(d)] at that value of �i = �c which
yields �f = 90�. For �i > �c, the disk will tumble several
times before being reinjected at some angle less than �c.
Since this tumbling is deterministic, we expect that the
map still exists|but is extremely complicated|for an-
gles �i > �c. This part of the map is shown schematically
in Fig. 3(d) as a rapidly 
uctuating line. In this sense
the map is essentially discontinuous at �c.
In principle, the time the disk remains in the oscillating

or \laminar" regime should diverge, possibly logarithmi-
cally [11], as the control parameter|say, I�|is varied
past some I�c which reduces �c below 90�. We have not
been able to quantitatively study any such divergence,
probably because of the di�culty in accurately tuning I�

to values near I�c . Imperfections in the disks could well
mask the details of this transition.
Finally, we turn to the �nal regime, that of continu-

ous tumbling, observed at very large values of I�. This
regime cannot be analyzed in the same way as the pre-
vious three, since the disk never comes to rest and hence
no values of �i are de�ned. It is actually not clear if this
tumbling behavior is periodic in nature. The analysis of
Maxwell [12] indicates that this might be so; however,
direct video observation on lead disks shows some depar-
ture from periodicity [Fig. 1(d)]. Also, Ref. [9] has shown
that the velocity of a tumbling disk's center of mass can
vary by large (� 60%) amounts from the mean value, in
an apparently unpredictable manner. These two observa-
tions suggest that the rotational period in the tumbling
regime is not constant. It is thus possible that the tum-
bling regime is also characterized by chaotic dynamics,
although we have no de�nitive information on this point.
It is also possible to access some extremely high values of
I� using paper disks in air, with its very low value of �f .
It appears to the eye, at least, that the rotational period
of these is quite constant. It is possible, then, that at
very high values of I� there is another periodic tumbling
regime.
In conclusion, we have studied the motion of falling

disks, constructing a phase diagram which shows sharply-
de�ned regimes of steady-falling, periodic, chaotic, and
tumbling behavior. The apparently complex behavior of
the disks can surprisingly be reduced to a series of 1D
maps. In particular, the maps develop a discontinuity
as the border between periodic and chaotic behavior is
crossed. This discontinuity leads to an unusual type-
V intermittency transition between the two behaviors,

which we observe here for the �rst time.
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FIG. 1. Trajectories of falling disks, as captured on video
and rendered by computer. (a) Steady falling, (b) periodic

oscillating, (c) chaotic, and (d) tumbling trajectories. The

arrow in (a) points to an extremum or turning point of angular
motion.

FIG. 2. Phase diagram showing the behavior of the disks

as a function of the two dimensionless parameters I� and R.
Closed symbols represent disks with steady falling or chaotic

behavior, and open symbols periodic or tumbling behavior.

Gray symbols represent cases judged to lie on the border be-
tween two regimes. The lettered points, enlarged for clarity,

correspond to iteration maps (a){(h) of Fig. 3.

FIG. 3. Iteration maps of falling disks. Sequence (a){(d)

represents a roughly vertical slice through I
�-R space, and

(e){(h) a horizontal slice. The curves are guides to the eye. In
(d), the map is extended schematically as a rapidly 
uctuating

curve for angles above �c � 67�.
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