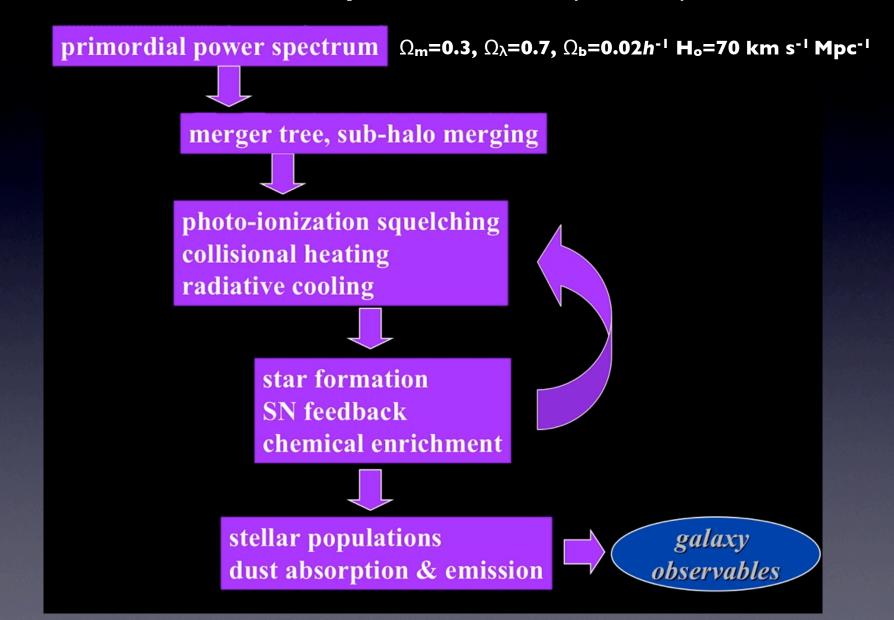
On the Origin of the Mass-Metallicity Relation for Metal-Poor Globular Clusters

Simulations from an observer's point of view

Barry Rothberg (STScI)


Collaborators: W. Harris (McMaster U.), R. Somerville (MPIA Heidelberg), B. Whitmore (STScI), R. Cockcroft (McMaster U.)

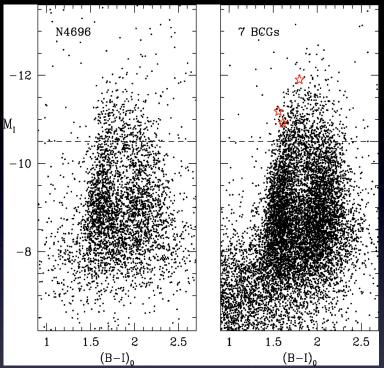
Outline

- I. Semi-Analytic Models (SAMs)
- 2. Blue Mass-Metallicity Relation (*blue-MMR*) in early-type galaxies
 - 2.1.Is the MMR "natural" to ΛCDM ?
 - 2.2.Are luminous GCs kin to dwarf ellipticals and ultra-compact dwarfs?
- 3. Future Work

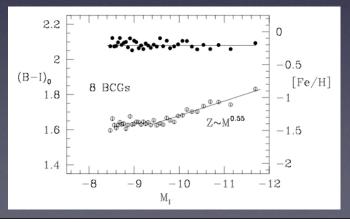
Semi-Analytic Models (SAMs)

SAMs

- Models based on code by R. Somerville (Somerville & Primack 1999, Somerville et al. 2001, Somerville 2007 in preparation)
- Major mergers "build" bulge, minor mergers shift stars from small → large galaxy
- Luminosity, colors, metallicity based on BC03, Kennicutt SF law, Chabrier IMF
- Modified code to form GCs (currently metallicity only)

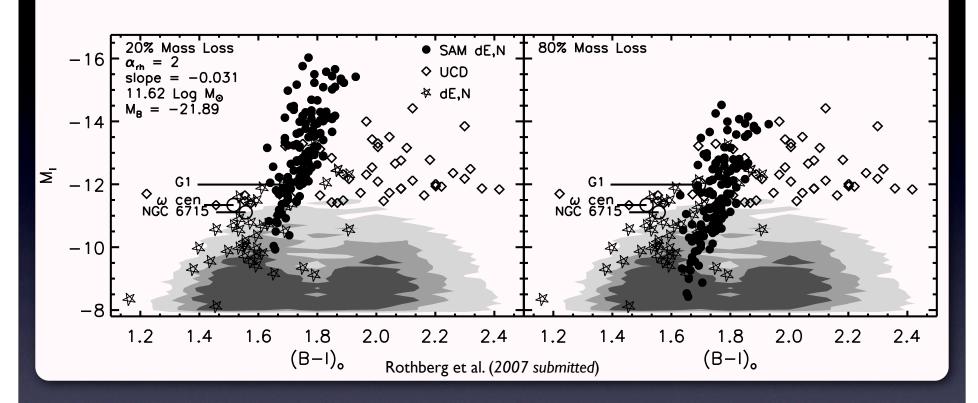

GOAL:

Testing contribution of dwarf ellipticals (dE) to blue-MMR


- Not testing simulated MPC contribution to blue-MMR
- Accretion/stripping of dwarfs only, not accretion of their GCs

Blue Mass-Metallicity Relation (blue-MMR)

- Harris et al. (2006) first noted that GC bimodality becomes unimodal at $M_1 < -10.5$
- Also found in ACS Virgo Cluster Survey of early-type galaxies, Sombrero Galaxy, NGC 3311
- Hints of this trend in earlier studies (i.e. M87)
- Notably absent in NGC 4472 (gE in Virgo)


Harris et al. (2006) - BCG Survey w/ACS (HST). Open red stars are NGC 6175, ω Cen, G1.

 Bekki et al. (2007) tested (N-body sims) whether GCs and dEs w/formation truncated at z~10 could form blue-MMR

• found dE,N did not contribute significantly to *blue-MMR*

blue-MMR

- SAMs can reproduce observed blue-MMR (and a few UCDs) using "standard" prescription
- Assume simple tidal stripping (20-80% mass loss), recompute luminosity and colors

blue-MMR

- Simulated Slopes match observed slopes
- Slope does not change as a function of central galaxy luminosity/mass

Observed Galaxies		
Galaxy	M_B	Slope
NGC 4696^{a}	-22.44	-0.029 ± 0.003
NGC 4472 (M49) ^b	-21.87	-0.008 ± 0.024
NGC 4486 (M87) ^b	-21.69	$-0.042_{\pm 0.015}$
NGC 4649 (M60) ^b	-21.49	-0.028 ± 0.009
NGC 4594 $(M104)^{c}$	-21.38	-0.035 ± 0.005
NGC 3348 ^a	-21.34	-0.051 ± 0.008
$NGC 5557^{a}$	-21.33	-0.055 ± 0.005
$NGC 1407^{a}$	-21.25	-0.045 ± 0.009
$NGC 3258^{a}$	-21.18	-0.051 ± 0.002
$\operatorname{NGC}_{\operatorname{NGC}}$ 3258 ^a	-21.01	-0.051 ± 0.002
$NGC 3268^{a}$	-21.01	-0.058 ± 0.002
NGC 7049 ^a	-20.79	-0.038 ± 0.011
ACSVCS $(-21.7 < M_B < -21)^{b,d}$	••••	-0.037 ± 0.004
ACSVCS $(-21 < M_B < -20)^{b}$		$-0.033_{\pm 0.011}$
ACSVCS $(-20 < M_B < -18.4)^{b}$		$-0.032_{\pm 0.012}$
ACSVCS $(-18.4 < M_B < -15.2)^{b}$		-0.009 ± 0.013
Simulations		
Galaxy	Avg. No Dwarfs	Slope
All Models	76	-0.033±0.0003
Models ($M_B < -21.7$)	178	-0.033 ± 0.0003
Models $(-21.7 < M_B < -21)$	21	-0.027 ± 0.002
Models $(-21 < M_B < -20)$	8	-0.033 ± 0.003
Models $(-20 < M_B^B < -17.1)$	$\tilde{4}$	-0.016 ± 0.012

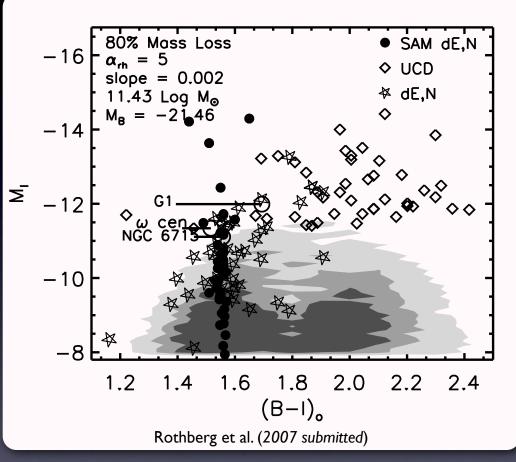
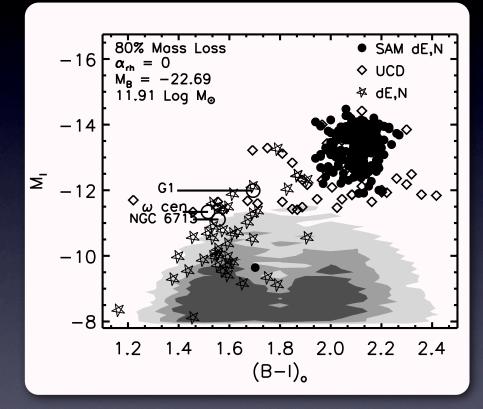

Rothberg et al. (2007 submitted)

Table 1. Slope of Blue GCs in Observed & Simulated Galaxies

No blue-MMR

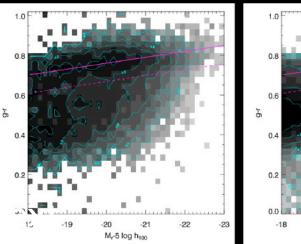
- Model should be able to account for lack of blue-MMR (NGC 4472)
- Supernovae (SN)
 Feedback Efficiency may provide answer

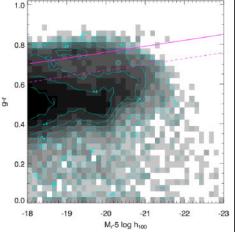

$$\dot{m}_{\rm rh} = \epsilon_0^{SN} \left(\frac{V_0}{V_c}\right)^{\alpha_{\rm rh}} \dot{m}_*$$

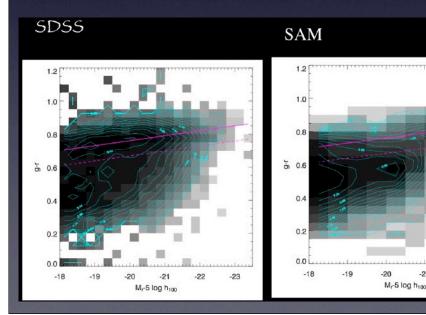
Increase the dependency on galaxy mass of gas reheated via SN (α_{rh}) i.e increase reheating efficiency

Accounting for Ultra-Compact Dwarfs (UCDs)

- UCDs do not show same MMR relation - large scatter in properties
- Large variations in UCD observed properties (Virgo, Fornax, Abell 1689, & Hydra)
- Changing α_{rh} to no or little dependency on mass (α_{rh} = 0) can produce objects coincident with UCDs
 - Observations show support for (Martin 1999, Martin et al. 2002, Martin 2005) in starburst dwarfs


Rothberg et al. (2007 submitted)


Is α_{rh} just a knob?


SDSS

SAM

- ACDM SAMs have over-cooling problem, produce too many bright *blue* galaxies
- α_{rh} also affects LF (curvature at faint end)

- SN feedback restores proper
 <u>MMR for galaxies</u>, *if*, α_{rh} ~ 2
- Newer AGN feedback, momentum driven winds improve CMDs

Future Work

- Need to resolve theoretical and observational differences
 - Models need SN feedback, assume fixed amount
- Observations suggest SN feedback may vary, but why?
 - Environment?
 - Galaxy Mass? (dwarfs vs. larger systems)
- Newer models will incorporate (IN PROGRESS):
 - mass & luminosity computed for all GCs
 - more sophisticated tidal stripping physics, new & improved feedback
- Observations of early-type galaxies, their GCs, and surrounding dEs and UCDs in different environments (IN PROGRESS)

Conclusions

(final preliminary results!)

- SAMs show simulated tidally stripped dE,N match the slope of the *blue-MMR*
- Slope invariant as function of mass/luminosity host galaxy
- Feedback Variations:
 - Can remove *blue-MMR if* dependence of SN feedback efficiency *increases* with mass
 - SAMs can produce UCDs if no dependence of SN feedback efficiency on galaxy mass

