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ABSTRACT
Quantifying whether a distribution is better described by one or two modes is still an unsolved problem in

statistics. While there are algorithms that split the inputdistribution into two modes or assign probabilities that
a given data point belongs to either of the two modes, there isno proper statistic that evaluates whether such a
split is preferred to a unimodal distribution. In this Guide, we describe our improvement of a popular KMM
algorithm, as well as an independent test of bimodality based on the Dip statistic. If you use this code for a
publication, please acknowledge the original paper:

A. L. Muratov & O. Y. Gnedin, 2010, ApJ, submitted, arXiv:1002.1325
"Modeling the Metallicity Distribution of Globular Clusters".

Subject headings:

1. GMM – A BETTER VERSION OF KMM

Ashman et al. (1994) popularized a mixture modeling code
KMM for detecting bimodality in astronomical applications.
This code has been widely used for globular cluster studies
and can be considered a standard method in the field. The
KMM algorithm assumes that an input sample is described
by a sum of two Gaussian modes and calculates the likelihood
of a given data point belonging to either of the two modes. It
also calculates the likelihood ratio test (LRT) as an estimate of
the improvement in going from one Gaussian to two Gaussian
distributions. However, the LRT obeys a standardχ2 statistic
only when the two modes have the same width (variance),
which may not be satisfied by real datasets. Even though the
probability of the LRT can be estimated using bootstrap in
principle, in practice the use of the KMM code has been lim-
ited to common width modes (the so-called “homoscedastic”
case). Brodie & Strader (2006) and Waters et al. (2009) pro-
vide further discussion of KMM.

The KMM method belongs to a general class of algorithms
of Gaussian mixture modeling (GMM). GMM methods max-
imize the likelihood of the data set given all the fitted pa-
rameters, using the expectation-maximization (EM) algorithm
(e.g., Press et al. 2007). A major simplification, which al-
lows one to derive explicit equations for the maximum like-
lihood (ML) estimate of the parameters, is that each mode is
described by a Gaussian distribution.

For simplicity, and as appropriate for the metallicity distri-
bution, we consider a univariate input data set. However, the
algorithm is fully scalable to multivariate distributions. The
likelihood function of a univariate samplexn is

LK =
∏

n

(

K
∑

k=1

pk N(xn|µk,σk)

)

, (1)

where

N(x|µ,σ) =
1

(2πσ2)1/2
exp

[

−
(x − µ)2

2σ2

]

(2)

is the Gaussian density. The modal fractions are normalized
as
∑

k pk = 1. A unimodal distribution (K = 1) has two inde-
pendent parameters (µ andσ), whereas a bimodal distribution
has five parameters (p1,µ1,σ1,µ2,σ2), sincep2 = 1− p1.

The power of the GMM method lies in its ability to de-
termine the ML values of the parameters (pk,µk,σk). The
disadvantage is that the method will always split the data set
into the specified number of modes,K. In order to detect bi-
modality it is extremely important to be able to judge whether
the bimodal fit is an improvement over the unimodal fit. For
this purpose the KMM code uses the LRT test, which ap-
pears to be an approximation derived by Wolfe (1971) for the
homoscedastic case (σ1 = σ2). Define the ratio of the max-
imum likelihoods asλ ≡ L1,max/L2,max. According to nu-
merical Monte Carlo studies of Wolfe (1971), the statistic
−2lnλ approximately obeys theχ2 distribution with a num-
ber of degrees of freedom equal to “twice the difference be-
tween the number of parameters of the two models under
comparison, not including the mixing proportions” (McLach-
lan 1987). This is theχ2

2 distribution in our case. However,
the statistic does not apply in the heteroscedastic caseσ1 6= σ2

(it would have beenχ2
4). Note that this unusual number of

degrees of freedom was found as an empirical approximation.
Unfortunately, no exact estimation exists for the goodnessof
modal split.

Several variations of the method have been suggested in the
literature. McLachlan (1987) proposed aparametric boot-
strap to test for the number of components. In this method,
a test sample is drawn randomly from a unimodal Gaussian
distribution with the parameters {µ, σ} best-fitting the input
sample. The number of objects in the test sample is taken the
same as in the input sample. The bimodal split is calculated
for this test sample using the EM algorithm and the likelihood
ratioλboot is saved. Repeating the bootstrap a large number of
times, we obtain the probability of randomly drawing the ratio
as large as that observed in the input sample,λobs. If the prob-
ability is below a few percent, we reject the null hypothesis
that the input sample belongs to a unimodal Gaussian.

However, the parametric bootstrap is not a perfect solution.
In the limit of a large number of objects in the input sample,
the likelihood function is very sensitive to outliers far from
the center of the distribution. Simple measurements errors
in the wings of the Gaussian function may cause a unimodal
distribution to be rejected, even if it is correct. In other words,
GMM is more a test of Gaussianity than of unimodality (see
Muthén 2003; Bauer 2007, for more discussion).
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Lo et al. (2001) proposed a modified LRT method to test
for the true number of components of a Gaussian mixture.
The modified statistic must be evaluated numerically, but still
does not address the problem with Gaussian wings. Subse-
quently, Lo (2008) suggested to use the standard LRT with
the parametric bootstrap to test for heteroscedastic split, and
also suggested restricting the ratio of the standard deviations
of the two modes to be not less than 0.25, to avoid numerical
artifacts. Such a method was recently implemented in globu-
lar cluster studies by Waters et al. (2009).

The sensitivity of LRT to the assumption of Gaussian dis-
tribution calls for additional, independent tests of bimodality.
A useful and intuitive statistic is the separation of the means
relative to their widths:

D ≡ |µ1 − µ2|
[

(σ2
1 + σ2

2)/2
]1/2

. (3)

We use the factor
√

2 for consistency with the definition in
Ashman et al. (1994), who noted thatD > 2 is required for
a clean separation between the modes. If the GMM method
detects two modes but they are not separated enough (D < 2),
then such a split is not meaningful. The power of GMM in this
case is counterproductive. A histogram of such a distribution
would show no more than two little bumps, which would not
be recognized as distinct populations.

Another simple statistic is the kurtosis of the input distri-
bution. A positive kurtosis corresponds to a sharply peaked
distribution, such as the Eiffel Tower. A negative kurtosis
corresponds to a flattened distribution, such as a top hat. A
sum of two populations, not necessarily Gaussians, is broader
than one population and therefore has a significantly negative
kurtosis. However,kurt < 0 is a necessary but not sufficient
condition of bimodality. A broad unimodal distribution, such
as an actual top hat, also has negative kurtosis. Therefore,
kurt < 0 is only useful as an additional check to support the
results of LRT and theD-value.

In order to provide a more robust measure of the modal
split, we have revised and implemented the GMM algorithm
independently of the KMM code. We begin with a single
run of the EM algorithm to calculate the means and standard
deviations assuming a heteroscedastic bimodal distribution.
Then we repeat the estimation assuming a unimodal Gaussian
case. We take the ratio of the likelihoodsλ, the separation
D, and the kurtosis as the three statistics of interest. We then
estimate the error distribution for the modal parameters us-
ing non-parametric bootstrap (drawing from the input sample
with repetitions) of 100 realizations. We also run the para-
metric bootstrap to assess the confidence level at which a uni-
modal distribution can be rejected based on each of the three
statistics. Its practical application for an input sample of more
than 100 objects is limited to about 1000 bootstrap realiza-
tions, limiting the confidence level to∼ 10−3. A sufficiently
low probability of each statistic means a unimodal distribution
can be rejected in favor of a bimodal distribution. The code
also calculates the probability of each data point belonging to
either mode.

A sum of two Gaussians with the same variance can some-
times be preferred to the case of different variances, because
of the one fewer degree of freedom. The choice between
the homoscedastic and heteroscedastic cases can be simi-
larly made using LRT, but we feel that it is less important
than choosing between a bimodal and unimodal distributions.
For comparison with the KMM code, we calculate the ho-

moscedastic split and its approximate probability using theχ2
2

statistic. We also calculate an alternative split into two Gaus-
sian modes with the same mean but different variance. This
is a more extended distribution than a single Gaussian, which
may be a better fit for a unimodal but non-Gaussian sample.

The steps of our algorithm are summarized below:
1. Calculate{µ,σ} and{p1,µ1,σ1,µ2,σ2} using a single

EM run.
2. Form three statistics:λ, D, andkurt.
3. Run non-parametric bootstrap to estimate the errors:

∆µk, ∆σk, ∆p1, and∆D.
4. Run parametric bootstrap to estimate the probability of a

unimodal distribution, according toλ, D, andkurt.
As a first test of the algorithm, we verified that it reproduces

exactly the test output of the KMM code, given the test input
provided with the code.

We also made two random realizations of a unimodal Gaus-
sian distribution,N(0,1), with 150 objects and 1500 objects,
respectively. The smaller sample has the mean and standard
deviation ofµ = −0.088 andσ = 0.987, within the intended tar-
get given the sample size. Indeed, a non-parametric bootstrap
gives∆µ = 0.084,∆σ = 0.063. The kurtosis of the input sam-
ple iskurt = 0.104. A heteroscedastic split gives two peaks, by
construction, withµ1 = −0.483,σ1 = 1.206 andµ2 = −0.032,
σ2 = 0.938. However, the split is not statistically significant.
The likelihood is improved only by−2lnλ = 0.26 relative to
the unimodal case, which gives the probability better than
99% that the input sample is unimodal. The parametric boot-
strap gives a similar probability of 96%. The separation of the
peaks also leads to the same conclusion:D = 0.42±1.46. The
parametric bootstrap probability of drawing such value ofD
randomly from a unimodal distribution is 87%. The probabil-
ity of drawing the measured kurtosis is 74%. Thus, all three
statistics show correctly that the input distribution is not bi-
modal. The larger test sample has smaller parameter errors,
as expected, but similar significance levels from the paramet-
ric bootstrap.

We then apply the GMM algorithm to the sample of ob-
served metallicities of the Galactic globular clusters. A uni-
modal fit givesµ = −1.298± 0.049 andσ = 0.562± 0.028,
where the errors are calculated with the non-parametric boot-
strap. A heteroscedastic split givesµ1 = −1.608±0.064,σ1 =
0.317±0.051 andµ2 = −0.583±0.074,σ2 = 0.281±0.075.
Of the total number of 148 clusters, 103 (or 70%) are in
the metal-poor group and 45 (or 30%) are in the metal-rich
group. A homoscedastic split givesµ1 = −1.620± 0.037,
µ2 = −0.608± 0.055, andσ1 = σ2 = 0.303± 0.026. In this
case, there are 101 metal-poor clusters and 47 metal-rich clus-
ters. In either case, the likelihood improvement in the 1000
parametric bootstrap realizations is never as high as observed,
−2lnλ = 27.5. That is, a unimodal distribution is rejected at a
confidence level better than 0.1%. The separation of the peaks
is also very clear,D = 3.42±0.47. The observed cluster dis-
tribution is indeed bimodal!
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To install GMM, untar the distribution and typemake. It
will create an executablegmm. To run GMM on the Galactic
sample, included in the fileobs.in, type

gmm obs.in 0 -1 0

The first command line argument is the file name, the
second is 0 for different variances or 1 for same variances,

and the other arguments are the approximate means of the
modes/peaks. The number of arguments determines precisely
how many modes GMM will calculate. In this case, it will
look for two modes, centered near -1 and 0. The algorithm
automatically finds the means, so their initial values are not
important.

Given the input, GMM will produce the following output:

Gaussian Mixture Model of a univariate sample
looking for 2 peaks with different variances
number of data points = 148 kurtosis = -0.691
...running unimodal Gaussian
iter=2 err=0.0e+00: peak=-1.298 (n=148.0 sig=0.562) logL1=-124.725
...running Gaussian mixture with different variances
iter=45 err=7.0e-07: peak1=-1.608 (n=103.3 sig=0.317) peak2=-0.583 (n=44.7 sig=0.281) logL=-110.967
Chi-square statistic (null=unimodal): chi2=27.52 Ndof=4 p=1.56e-05
Peak separation DD = 3.42
...running Gaussian mixture with same variances
iter=24 err=9.9e-07: peak1=-1.620 (n=100.9 sig=0.303) peak2=-0.608 (n=47.1 sig=0.303) logL=-111.115
Chi-square statistic (null=unimodal): chi2=27.22 Ndof=2 p=1.23e-06
Peak separation DD = 3.34
...running Gaussian mixture with same means and different variances
iter=35 err=8.5e-07: peak1=-1.298 (n=145.4 sig=0.562) peak2=-1.298 (n= 2.6 sig=0.562) logL=-124.725
Chi-square statistic (null=equal means): chi2=27.52 Ndof=1 p=1.56e-07
Chi-square statistic (null=equal variances): chi2=0.30 Ndof=1 p=5.86e-01
...running bootstrap to estimate errors of best-fit parameters
Bootstrap unimodal: mean = -1.297 +- 0.049 sig = 0.562 +- 0.028
Bootstrap peak1: mean = -1.596 +- 0.064 sig = 0.329 +- 0.051 n = 104.5 +- 9.3
Bootstrap peak2: mean = -0.581 +- 0.074 sig = 0.268 +- 0.075 n = 43.5 +- 9.3
Bootstrap DD = 3.37 +- 0.47
...running parametric bootstrap to rule out unimodal distribution
Parametric bootstrap: p(chi2) < 0.001
Parametric bootstrap: p(DD) = 0.199
Parametric bootstrap: p(kurt) = 0.02
summary -1.608 0.064 -0.583 0.074 0.317 0.051 0.281 0.075 148 0.302 0.063 3.42 0.47 0.001 0.199 0.020 obs.in

The last line summarizes the important statistics for conve-
nient parsing by a shell script.

The code also writes a filepeakprob.out, which con-
tains the assigned probabilities of each data point belonging
to either of the modes. The first line repeats the best-fit pa-

rametersµ1,σ1, p1,µ2,σ2, p2 (and so on if more modes are
requested). The othern lines give the probabilitiesp1,n, p2,n,
etc. (

∑K
k=1 pk,n = 1) and the value ofxn. These data can be

used to separate the objects into their most likely mode.
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2. DIP TEST

A completely independent test of unimodality was pro-
posed by Hartigan & Hartigan (1985). It was first used
for globular cluster studies by Gebhardt & Kissler-Patig
(1999). The Dip test is based on the cumulative distribu-
tion of the input sample. The Dip statistic is the maxi-
mum distance between the cumulative input distribution and
the best-fitting unimodal distribution. In some sense, this
test is similar to KS test but the Dip test searches specifi-
cally for a flat step in the cumulative distribution function,
which corresponds to a “dip” in the histogram representa-
tion. The probability of rejecting a unimodal distributionis
calculated empirically and tabulated as a function of sam-
ple size. We obtained an updated table of the probabili-
ties,dip_tab.txt, calculated recently by Martin Maechler
(www.cran.r-project.org/web/packages/diptest).

We have added a driver routine to the original Fortran code
of Hartigan & Hartigan (1985). Our code interpolates the
probability table for any input sample size up to 5000 ob-
jects. Looking just at the significance levels, the Dip test
appears less powerful than GMM. The Dip probability of
the observed Galactic sample being bimodal is 90%, whereas
the LRT probability is 99.998% and the parametric bootstrap

probability is 99.9%. However, the Dip test has the benefit
of being insensitive to the assumption of Gaussianity and is
therefore a true test of modality. It is also much faster to run
than the GMM code.

To install Dip, untar the distribution and typemake dip.
It will create an executabledip. To run Dip test on the Galac-
tic sample, included in the fileobs.in, type

dip 148 obs.in

The first command line argument is the number of objects
in the file, the second is the file name. The input sample must
be sorted in the increasing order. Given the input, Dip will
produce the following output:

148 0.0390332602 0.896628618

The first number repeats the number of objects, the second
is the value of Dip statistic (which you can ignore), the third is
the significance level with which a unimodal distribution can
be rejected.
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