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A B S T R A C T

The internal properties of the neutron star crust can be probed by observing the epoch of

thermal relaxation. After the supernova explosion, powerful neutrino emission quickly cools

the stellar core, while the crust stays hot. The cooling wave then propagates through the crust,

as a result of its finite thermal conductivity. When the cooling wave reaches the surface (age

10–100 yrÞ, the effective temperature drops sharply from 250 eV to 30 or 100 eV, depending

on the cooling model. The crust relaxation time is sensitive to the (poorly known)

microscopic properties of matter of subnuclear density, such as the heat capacity, thermal

conductivity, and superfluidity of free neutrons. We calculate the cooling models with the new

values of the electron thermal conductivity in the inner crust, based on a realistic treatment of

the shapes of atomic nuclei. Superfluid effects may shorten the relaxation time by a factor of

4. The comparison of theoretical cooling curves with observations provides a potentially

powerful method of studying the properties of the neutron superfluid and highly unusual

atomic nuclei in the inner crust.
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1 I N T R O D U C T I O N

Neutron stars are natural astrophysical laboratories of superdense

matter. In their cores, at densities above the nuclear matter density

r0 ¼ 2:8 � 1014 g cm23, the properties of matter, such as equation

of state and even composition, are largely unknown (e.g. Lattimer

& Prakash 2000, and references therein). In the absence of an exact

theory of superdense matter, different theoretical models predict

different equations of state and compositions (neutrons, protons

and electrons; hyperons; pion or kaon condensates; deconfined

quarks).

One of the potentially powerful methods used to probe the

internal structure of isolated neutron stars is modelling their

cooling (e.g. Pethick 1992; Page & Applegate 1992; Page

1998a,b). The theoretical cooling curves depend on the adopted

physical models of the stellar interior, especially the neutrino

emission and heat capacity, as well as the superfluidity of neutrons

and protons in the core. Confronting theory and observations

allows one, for example, to constrain the range of the critical

temperatures of the superfluidity (e.g. Yakovlev et al. 1999).

Observing the thermal emission of the very young neutron stars,

with t & 100 yr, opens a possibility of studying the properties of

the neutron star crust. Soon after a supernova explosion, the young

star has large temperature gradients in the inner parts of the crust.

While the powerful neutrino emission quickly cools the core, the

crust stays hot. The heat gradually flows inward on a conduction

time-scale, and the whole process can be thought of as a cooling

wave propagation from the centre towards the surface. During this

thermal relaxation the effective temperature stays almost constant

at about 250 eV. When the cooling wave reaches the surface, the

effective temperature drops sharply by as much as an order of

magnitude in the fast-cooling scenario, and by a factor of 2–3 in the

slow-cooling scenario. The duration of the relaxation epoch

depends mainly on the heat capacity and the thermal conductivity

of the inner crust (Lattimer et al. 1994).

Although the equation of state of matter at subnuclear density is

known accurately enough (Negele & Vautherin 1973; Pethick &

Ravenhall 1995), the properties of atomic nuclei are not. The

nuclei become unusually neutron-rich, with the smooth proton and

neutron distributions. At the bottom of the crust ðr * 1014 g cm23Þ,

the nuclei can be non-spherical and form clusters (Lorenz,

Ravenhall & Pethick 1993; Pethick & Ravenhall 1995). The liquid

of neutrons dripped from the nuclei may be superfluid, with critical

temperatures that are very model-dependent. The thermodynamic

and transport properties of this matter are subjects of large

theoretical uncertainty.

In this paper we make improved models of the young neutron

stars. We obtain the new values of the electron thermal

conductivity in the inner crust, based on a realistic treatment of

the shapes of atomic nuclei. Using a new numerical code, we

calculate the cooling models and determine the duration of the

thermal relaxation epoch. We extend the analysis of Lattimer et al.*E-mail: ognedin@ast.cam.ac.uk

Mon. Not. R. Astron. Soc. 324, 725–736 (2001)

q 2001 RAS



(1994) and derive the dependence of the relaxation time on the

microscopic parameters of the crust. Our preliminary results have

been summarized by Yakovlev et al. (2001a).

2 C O O L I N G M O D E L

2.1 Equations of thermal evolution

Neutron stars are born very hot in supernova explosions, with the

internal temperature T , 1011 K, but gradually cool down. About

20 s after birth, they become fully transparent for the neutrinos

generated in numerous reactions in stellar interiors. We consider

the cooling in the following neutrino-transparent stage. The

cooling is realized via two channels, by neutrino emission from the

entire stellar body and by heat conduction from the internal layers

to the surface resulting in thermal emission of photons. For

simplicity, we neglect the possible reheating mechanisms

(frictional dissipation of the rotational energy, Ohmic decay of

the internal magnetic field, or the dissipation associated with weak

deviations from the chemical equilibrium; see, e.g., Page 1998a).

The internal structure of neutron stars can be regarded as

temperature-independent (e.g. Shapiro & Teukolsky 1983). The

relativistic equations of thermal evolution include the energy and

flux equations (Thorne 1977):
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where Qn is the neutrino emissivity (erg cm23 s21), Cv is the

specific heat capacity (erg cm23 K21), k is the thermal

conductivity and Lr is the ‘local luminosity’, defined as the non-

neutrino heat flux transported through a sphere of radius r. The

gravitational mass m(r ) and the metric function F(r ) are

determined by the stellar model. After thermal relaxation, the

redshifted temperature ~TðtÞ;Tðr; tÞeFðrÞ becomes constant

throughout the interior.

It is conventional (Gudmundsson, Pethick & Epstein 1983) to

subdivide the calculation of heat transport in the neutron star

interior ðr , RbÞ and in the outer heat-blanketing envelope

ðRb # r # RÞ, where R is the stellar radius, and the boundary

radius Rb corresponds to the density rb ¼ 1010 g cm23 (,100 m

under the surface). The thermal structure of the blanketing

envelope is studied separately in the stationary, plane-parallel

approximations in order to relate the effective surface temperature

Ts to the temperature at the inner boundary of the envelope Tb. We

use the T s–Tb relation obtained by Potekhin, Chabrier & Yakovlev

(1997) for the envelope, which is composed mostly of iron.

The effective temperature determines the photon luminosity;

Lg ¼ LrðR; tÞ ¼ 4psR 2T4
s ðtÞ. Both Lg and Ts refer to the locally flat

reference frame on the surface. A distant observer would register

the ‘apparent’ luminosity as L1
g ¼ Lgð1 2 rg/RÞ and the ‘apparent’

effective temperature as T1
s ¼ Ts

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 rg/R

p
, where rg ¼ 2GM/c 2

is the gravitational radius. Typically, rg/R ¼ 30–40 per cent.

We have developed a new evolutionary code based on the

Henyey-type scheme on a grid of spherical shells (Kippenhahn,

Weigert & Hofmeister 1967). The hydrostatic model of the neutron

star with a given equation of state is calculated separately and is

fixed throughout the calculation. In the initial configuration the star

has a constant redshifted temperature throughout the interior,
~T ¼ 1010 K, and no heat flux, Lr ¼ 0. Also, to improve numerical

convergence, the thermal conductivity in the core is boosted for the

initial epoch t , 1022 yr. As the crust is thermally detached from

the core at such a small age, this correction has no effect on the

cooling curves. Full details of the new code are available on the

Internet (http://www.ast.cam.ac.uk/,ognedin/ns/ns.html).

2.2 Physics input

We use the equation of state of Negele & Vautherin (1973) in the

stellar crust with the smooth composition model of ground-state

matter to describe the properties of atomic nuclei (Kaminker et al.

1999). We assume that the nuclei are spherical throughout the

entire crust. The core – crust interface is placed at

rcc ¼ 1:5 � 1014 g cm23. For simplicity, we consider the neutron

star cores to be composed of neutrons (n), protons (p) and electrons

(e) and use the moderately stiff phenomenological equation of state

of Prakash, Ainsworth & Lattimer (1988) (in the simplified version

proposed by Page & Applegate 1992), in agreement with our

previous work (Yakovlev et al. 1999 and references therein).

The parameters of the models are summarized in Table 1. It

shows the stellar masses, radii, central densities, crust masses and

crust thicknesses for a number of models. The maximum mass of

the stable neutron stars with this equation of state is 1.73 M(. We

define the crust thickness as DRcrust ¼ R 2 Rcore, while the proper

geometrical thickness (for DRcrust ! RÞ is DRcrust/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 rg/R

p
. As

we increase the mass M, the radii and crust masses of the stable

configurations get smaller, i.e. the stars become more compact.

Free neutrons in the inner crust and both neutrons and protons in

the core of a neutron star are likely to be superfluid. We assume the

singlet-state pairing of the protons in the core. The superfluidity of

the free neutrons in the crust and of the neutrons in the outermost

part of the core is known to be of the singlet-state type, but at

higher densities it switches to the triplet-state type. Various

microscopic theories predict a large scatter of the critical

temperatures of the neutron and proton superfluids, Tcn and Tcp,

depending on the nucleon–nucleon potential model and the many-

body theory employed (see Yakovlev et al. 1999 for references).

As an example we will use two models, a weak and a strong

superfluidity (Fig. 1). The model of strong superfluidity

corresponds to the higher Tc. It is based on the rather large energy

gaps calculated by Elgarøy et al. (1996) for the singlet-state pairing

(with the maximum gap of about 2.5 MeV) and by Hoffberg et al.

(1970) for the triplet-state pairing. The weak superfluid model

makes use of the smaller gaps derived by Wambach, Ainsworth &

Table 1. Neutron star models.

M R rc14
c Mcrust DRcrust

d MD RD

(M() (km) (M() (km) (M() (km)

1.1 12.20 8.50 0.050 1.66 … …
1.2 12.04 9.52 0.044 1.45 … …
1.3 11.86 10.70 0.039 1.26 … …
1.4 11.65 12.20 0.033 1.09 … …
1.44a 11.54 12.98 0.031 1.02 0.000 0.00
1.5 11.38 14.20 0.028 0.93 0.065 2.84
1.6 11.01 17.20 0.022 0.77 0.301 4.61
1.7 10.37 23.50 0.016 0.59 0.685 5.79
1.73b 9.71 32.50 0.011 0.47 0.966 6.18

a Threshold configuration for switching on direct Urca process.
b Configuration with maximum allowable mass.
c Central density in 1014 g cm23.
dDRcrust is defined as R 2 Rcore.
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Pines (1993) (with the maximum gap of about 1 MeV) for the

singlet-state superfluid and by Amundsen & Østgaard (1985) for

the triplet-state neutron superfluid. For simplicity, we use the same

function Tc(n) to describe the singlet pairing of free neutrons in the

crust ðn ¼ nnÞ and of the protons in the core ðn ¼ npÞ.

The cooling of neutron stars is mainly determined by the

neutrino emissivity, specific heat capacity and thermal conduc-

tivity. We include all the relevant sources of neutrino emission

(Yakovlev et al. 1999, 2001b): the direct and modified Urca

processes, nn, pp and np bremsstrahlung in the core; and plasmon

decay, e2e1 pair annihilation, electron–nucleus (eZ ) and nn

bremsstrahlung in the crust. The emissivity of the proton branch of

the modified Urca process derived by Yakovlev & Levenfish (1995)

has been corrected by Yakovlev et al. (2001), which has almost no

effect on the cooling curves. We include the proper reduction of the

neutrino reactions by superfluidity and also an additional neutrino

emission that is a result of Cooper pairing of superfluid nucleons.

The effective nucleon masses in the core and the crust are set equal

to 0.7 of their bare masses.

A very important cooling effect is produced by the powerful

direct Urca process (Lattimer et al. 1991). For our equation of state,

this process is allowed at densities above the threshold,

rcrit ¼ 1:298 � 1015 g cm23. If the central density of the model

exceeds the threshold, rc . rcrit, the stellar core has a central

kernel where the direct Urca process leads to fast cooling. The

masses and radii of these kernels, MD and RD, are given in Table 1.

The mass of the central kernel increases rapidly with M. In

addition, we show the threshold configuration with rc ¼ rcrit. It

separates the low-mass models, where the direct Urca process is

forbidden, from the high-mass models, where the direct Urca is

allowed.

For illustration, Fig. 2 shows the emissivity of various neutrino

processes versus density at T ¼ 109 K. The plasmon decay is a

powerful neutrino emission mechanism in a hot crust at not very

high densities, but it fades away quickly when the temperature

decreases below 109 K. The electron–nucleus bremsstrahlung is

efficient throughout the entire crust. In superfluid crusts, the

Cooper pairing neutrino emission switches on at temperatures

T ¼ Tcn, reaches maximum at T slightly below Tcn, and fades away

exponentially for T ! Tcn. In the neutron star core, a large jump of

the neutrino emissivity at r ¼ rcrit is associated with the direct

Urca process.

The heat capacity is contributed to by neutrons, protons and

electrons in the core, and by electrons, free neutrons and atomic

nuclei (vibrations of ions in Coulomb lattice) in the crust. The

superfluid effects on the heat capacity of nucleons in the core and

of free neutrons in the crust are incorporated according to

Levenfish & Yakovlev (1994). In the absence of superfluidity, the

neutrons would have the dominant contribution in the core and the

inner crust. The effects of neutron superfluidity are illustrated in

Fig. 3 in the case of crust superfluidity. When T falls only slightly

below Tcn, the superfluidity increases the neutron heat capacity

caused by the latent heat released at the phase transition. However,

Figure 2. Density dependence of the neutrino emissivity at T ¼ 109 K.

Solid lines: partial emissivities due to electron–nucleus bremsstrahlung (e-

brems) and plasmon decay (plasma) in the crust and the total emissivity

produced by direct and modified Urca processes and by nucleon-nucleon

(NN ) bremsstrahlung in the nonsuperfluid core. Dashed and dash-dot lines:

the emissivity due to Cooper pairing of neutrons for the models of strong

and weak superfluidity in the crust. Vertical dotted lines indicate the neutron

drip density and the boundary of the core.

Figure 3. Density dependence of the specific heat capacity at T ¼ 109 K.

Solid lines: partial heat capacities of ions (i ), electrons (e ) and free

neutrons (n ) in non-superfluid crusts, as well as of neutrons, protons ( p )

and electrons in nonsuperfluid cores. Dashed lines: heat capacities of free

neutrons in the crust modified by weak or strong superfluidity.

Figure 1. Density dependence of the critical temperatures of superfluidity

(SF) of free neutrons in the inner crust, and neutrons and protons in the core

for the strong (solid lines) and weak (dashed lines) superfluid models (see

text for details).
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for T ! Tcn the superfluidity exponentially reduces the heat

capacity. If the stellar crust was sufficiently colder than in Fig. 3,

any neutron superfluid would reduce the contribution of free

neutrons to negligibly small values, and the heat capacity would be

determined by the ions and electrons. These effects are analogous

in the core. The heat capacity in the superfluid core at T ! Tcn and

T ! Tcp would be determined by the electrons.

The thermal conductivity in the core is taken as a sum of the

conductivities of the electrons (Gnedin & Yakovlev 1995) and

neutrons (Baiko, Haensel & Yakovlev 2001). The electron

contribution usually dominates. The conductivity in the crust is

assumed to be as a result of the electron scattering off atomic

nuclei. In the outer crust the finite size of the proton charge

distribution within a nucleus can be neglected. We use the recent

results of Potekhin et al. (1999), which include the multiphonon

processes in electron–nucleus scattering in a Coulomb solid and

incipient long-range nucleus–nucleus correlations in a strongly

coupled Coulomb liquid of atomic nuclei. In the inner crust, we

have performed original calculations using the same formalism but

have taken into account the finite size of the proton core of atomic

nuclei (finite-size nuclei). Details of the calculations and the

numerical fits are given in the Appendix.

The results are illustrated in Fig. 4, which shows the density

profiles of the electron thermal conductivity for T ¼ 107, 108 and

109 K. The conductivity in the core is several orders of magnitude

higher than in the crust, because there are not as efficient electron

scatterers in the core as atomic nuclei. In the crust we plot the

thermal conductivity for finite-size nuclei (solid lines) and for

point-like nuclei (dashed lines). The finite-size effects are

negligible near the neutron drip point but increase the conductivity

at the crust base ðr , 1014 g cm23Þ by a factor of 3–5.

Another contribution to the thermal conductivity in the crust

may come from the scattering of electrons off charged impurities,

which are the randomly distributed nuclei of different elements.

However, the most important temperature interval for neutron star

cooling is ,108–109 K. We have verified that the thermal

conductivity is almost unaffected by the impurities in this

temperature interval (for a not very impure matter, Qimp & 1,

where Qimp is the impurity parameter as defined in the Appendix),

although they can noticeably decrease the conductivity at lower T.

Therefore, we neglect the effects of impurities in the present

calculations.

3 T H E R M A L R E L A X AT I O N I N

N O N - S U P E R F L U I D N E U T R O N S TA R S

First, consider thermal relaxation in a young non-superfluid

neutron star. The main features of the process are known from

previous cooling simulations (Page & Applegate 1992; Lattimer

et al. 1994; Page 1998a,b; and references therein).

Fig. 5 shows some cooling models of neutron stars with different

masses. In the low-mass models, M , 1:44 M(, the direct Urca

process is forbidden. These stars follow the standard cooling

scenario and the cooling curves are almost independent of M. The

high-mass models go through the fast-cooling scenario and

demonstrate a spectacular drop in surface temperature at the end of

the thermal relaxation epoch, t , 50 yr, as a result of the

emergence of the cooling wave on the surface. The same, although

much less pronounced, effect takes place in the case of slow

cooling.

As the neutrino emissivity of the direct Urca process is several

orders of magnitude larger than that of the modified Urca

processes, the fast-cooling regime is established even if the central

kernel, where the direct Urca process is allowed, occupies a small

fraction of the stellar core (Page & Applegate 1992). For the high-

mass stars ðM . 1:44 M(Þ, the cooling curves again depend

weakly on the mass. The change of the slope of the cooling curves

at t , 105–106 yr manifests the transition from the neutrino to the

photon cooling stage.

The surface temperature at the initial cooling stage (the first 100

years) is rather independent of the equation of state, the stellar

mass or the core neutrino luminosity. The surface temperature is

mainly determined by the physical properties of matter in the crust.

The core and the crust are thermally decoupled, and the effective

surface temperature does not reflect the thermal state of the stellar

core.

In contrast, the evolution of the central temperature, T(0, t ), is

drastically different for the slow- and fast-cooling scenarios. In all

low-mass models, Tð0; tÞ/ t 21=6 throughout the neutrino cooling

era, t & 105 yr, with a small offset in normalization. This follows

Figure 4. Density dependence of the electron thermal conductivity at

T ¼ 107, 108 and 109 K in the core and the crust.

Figure 5. Cooling curves for non-superfluid neutron star models with 1.1,

1.2 …, 1.7 M(.
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from the simple power-law temperature dependence of the heat

capacity ðCv/TÞ and the standard neutrino emissivity ðQn/T 8Þ.

In the models with fast cooling, where the dominant neutrino

process is the direct Urca ðQn/T 6Þ, the scaling relation is

Tð0; tÞ/ t 21=4 for the initial period t , 1022 yr. However, until

t & 10 yr the central temperature remains almost constant at 108 K

as the heat flows from the warmer outer core, in which direct Urca

process is prohibited, into the inner core. During the thermal

relaxation epoch, 10 , t , 100 yr, the central temperature falls

again by a factor of several. After the thermalization until the end

of the neutrino era, once again Tð0; tÞ/ t 21=4.

Figs 6 and 7 illustrate the effects of thermal relaxation on the

internal temperature profiles in the slow- and fast-cooling

scenarios, respectively. Until the age of about 1 yr, the neutron

star core and the inner and outer crusts form almost independent

thermal reservoirs. The region around 4 � 1011 g cm23, where free

neutrons appear in the crust, seems to be the most effective at

cooling, owing to the powerful neutrino emission (see below). The

outer crust cools to 109 K in less than a month, while the inner parts

remain much hotter. The core also cools independently but is

unable to affect the inner crust because of the slow thermal

conduction. During the first years the central kernel of the 1.7 M(

model in Fig. 7 remains much colder than the outer core. This is

because the kernel is cooled by the powerful direct Urca process

and thermal conduction is still unable to establish thermal

relaxation throughout the core. Almost full core relaxation is

achieved in 10 yr.

After the first year, the crust temperature profiles of the slow-

and fast-cooling scenarios start to differ. In the former, the

temperature gradient between the core and the crust is slowly

eroded, as the cooling wave from the centre reaches the surface. In

the latter, the temperature gradient continues to grow until it

reaches a maximum at t , 10 yr. Then a huge amount of heat is

released from the crust and leads to a spectacular drop in the

surface temperature by an order of magnitude (which lowers

the photon luminosity by four orders of magnitude). At t ¼ 50 yr,

the entire star is already isothermal. Note that, despite larger

temperature gradients, thermal relaxation proceeds more quickly

overall in the fast cooling scenario.

Prior to thermal relaxation, the contributions of the neutron star

crust to the integrated heat capacity and neutrino luminosity are

significant (Figs 8 and 9). In the slow-cooling models, the heat

capacity in the crust ranges from 10 to 20 per cent of that in the

core, with the larger fraction in the low-mass models (where crusts

occupy a larger fraction of the volume). In the fast-cooling models,

the ratio of the crust to core heat capacities reaches a maximum of

55 per cent at t , 10 yr before dropping to under 10 per cent after

the relaxation. Similarly, the integrated neutrino luminosity of the

crust is about 15–40 per cent of that of the core at t , 1 yr, and then

it drops to a tiny fraction at later times.

The importance of the individual neutrino mechanisms for the

crust cooling varies at different epochs. First, for t , 1022 yr in the

fast-cooling scenario or for t , 3 � 1023 yr in the slow-cooling

scenario, the e2e1 pair emission controls the crust temperature. As

the temperature drops below 5 � 109 K, this process quickly fades

away. The next epoch is controlled by plasmon decay. It dominates

for 1022 , t & 10 yr (fast cooling) or 3 � 1023 , t & 10 yr (slow

cooling). The last epoch of thermal relaxation lasts for a period of

10 & t , 100 yr (fast cooling) or 10 & t , 1000 yr (slow cooling),

where either electron–nucleus or neutron–neutron bremsstrahlung

is important. In fact, both neutrino processes give almost identical

cooling curves in the absence of superfluidity. However, free

neutrons in the crust are thought to be in a superfluid state which

strongly suppresses nn bremsstrahlung. Therefore, electron–

nucleus bremsstrahlung is likely to be the dominant neutrino

mechanism in this last epoch.

4 R E L A X AT I O N T I M E

The duration of the thermal relaxation epoch is potentially

interesting from the observational point of view. This problem has

been studied in a number of papers, with the most detailed and

thorough work by Lattimer et al. (1994, and references therein).

Those authors considered thermal relaxation for the fast cooling

and defined the relaxation time tw as the moment of the most

negative slope of the cooling curve, ln Tsðln tÞ, of a young neutron

star. This is a typical time for the cooling wave to reach the surface.

Figure 6. Temperature profiles in the 1.3-M( neutron star without

superfluid effects. The numbers next to the curves show stellar age.

Contours are at 0, 1025, 1024, 1023, 1022, 1021, 1, 2, 5, 10, 20, 50, 100 and

1000 yr.

Figure 7. Temperature profiles in the 1.7-M( neutron star without

superfluid effects. The contours are at 0, 1025, 1024, 1023, 1022, 1021, 1, 2,

5, 10, 20 and 50 yr.

Thermal relaxation in young neutron stars 729
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We will focus mainly on the case of rapid cooling, where the

relaxation effects are more pronounced.

According to Lattimer et al. (1994), the relaxation time of

rapidly cooling neutron stars of various masses is determined

mainly by the crust thickness DRcrust and is given by a simple

scaling relation

tw < a t1; a;
DRcrust

1 km

� �2

ð1 2 rg=RÞ
23=2: ð3Þ

Here, t1 is the normalized relaxation time which depends solely on

the microscopic properties of matter, such as the thermal

conductivity and heat capacity. In superfluid neutron stars, t1 is

sensitive to the magnitude and density dependence of the critical

temperature of neutron superfluidity in the crust, as we discuss

later. It is important that t1 appears to be almost independent of the

neutron star model, its mass M and radius R. We have verified that

this scaling holds also for the slow-cooling non-superfluid models.

For the non-superfluid stars with the core–crust interface placed

at r0=2, which is close to our value rcc ¼ 1:5 � 1014 g cm23,

Lattimer et al. (1994) obtained t1 < 26 yr. Our rapidly cooling

models show similar scaling, t1 ¼ 28:4 ^ 0:2 yr, whereas in the

slowly cooling models t1 ¼ 32:9 ^ 1:2 yr.

The dependence of tw on the thermal conductivity k and heat

capacity Cv follows from a simple estimate of the thermal

relaxation time in a uniform slab of width l:

tw , Cvl 2=k: ð4Þ

The proper width of a thin crust ðDRcrust ! RÞ, taking into account

the effects of general relativity, is l ¼ DRcrust/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 rg/R

p
. This

gives tw/1=ð1 2 rg/RÞ in equation (3). An additional factor of

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 rg/R

p
accounts for the gravitational dilation of time

intervals.

The parameter t1 can be roughly estimated using equation (4)

with the values of the specific heat capacity and thermal

conductivity in the crust near the crust–core interface, for

instance, at r ¼ 1014 g cm23. Fig. 7 shows that the relevant

temperature at the interface is T < 2 � 108 K. At those temperature

and density values, according to our physics input, Cv ¼

1:9 � 1019 erg cm23 K21 and k ¼ 1:8 � 1020 erg cm21 s21 K21.

This gives t1 , ð1 kmÞ2Cv/k < 34 yr, which is in qualitative

agreement with the model value.

Fig. 10 shows the sensitivity of the relaxation time to test

variations of physical properties of the neutron star crust in the fast

cooling scenario of the 1.5-M( star. The corresponding values of tw
and t1 are listed in Table 2. They may differ from the mean values

(Table 3) within the error-bars. We present also the results for the

superfluid models discussed in the next section. The solid (‘real’)

curve is taken from Fig. 5. It is calculated using the best available

physics input for a non-superfluid neutron star model.

Figure 9. Ratio of the neutrino luminosities in the crust and the core for the

neutron star models of masses 1.1, 1.2, …, 1.7 M(.

Figure 8. Ratio of the integrated heat capacities in the crust and the core for

the neutron star models of masses 1.1, 1.2, …, 1.7 M(.

Figure 10. Thermal relaxation for the 1.5-M( model without superfluid

effects (see also Table 2). Solid line: cooling curve for the best values of the

thermal conductivity, heat capacity, and neutrino emissivity. Dotted lines:

switched-off neutrino emission from the crust (upper) or infinite thermal

conductivity at r . 1010 g cm23 (lower). The dashed curve Cn ¼ 0 :

removed neutron heat capacity in the crust. The dashed curve k: the thermal

conductivity in the crust for point-like nuclei. Two other dashed lines:

removed all neutrino mechanisms in the crust except either plasmon decay

(pl) or electron–nucleus bremsstrahlung (eZ ).
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Switching off the neutrino emission from the crust, while

keeping the heat capacity, slows down the thermalization epoch by

almost an order of magnitude, from 50 to 250 yr. Turning on the

plasmon decay alone would lead to the cooling curve not very

different from the real one, although the thermalization epoch

would be delayed by about 30 per cent ðtw ¼ 68 yrÞ. Turning off the

plasmon decay and switching on the electron–nucleus brems-

strahlung instead would give a hotter neutron star before the

relaxation but almost correct relaxation time, tw ¼ 58 yr.

Combined together, plasmon decay and electron– nucleus

bremsstrahlung would accurately reproduce the real cooling curve.

Restoring the neutrino emissivity in the crust but switching off

the heat capacity of crustal neutrons ðCn ¼ 0Þ we obtain much

faster relaxation, which lasts about 15 yr. This numerical

experiment imitates the suppression of the neutron heat capacity

by strong neutron superfluidity (discussed in Section 5). On the

other hand, had we neglected the quantum suppression of the heat

capacity of the nuclei below the Debye temperature, the latter heat

capacity would have become important in older neutron stars,

t * 104 yr, strongly delaying the cooling.

Finally, the relaxation time depends on the thermal conductivity

in the inner crust. For instance, a neglect of the finite sizes of

atomic nuclei in the electron–nucleus scattering rate would lower

the electron thermal conductivity at the crust base ðr *

1013 g cm23Þ by a factor of 2–5 (cf. Fig. 4). Using that less

realistic thermal conductivity we would have had much longer

relaxation (about 130 yr). If the thermal conductivity were infinite

in the stellar interior (at r . rbÞ, we would have obtained an

isothermal cooling scenario. In this case a sharp drop of the surface

temperature associated with the relaxation disappears.

We have run additional cooling models with M ¼ 1:5 M(,

varying the heat capacity and thermal conductivity within the crust

(at rb # r # rccÞ by a fixed factor of 1/8, 1/4, 1/2, 2, 4 or 8. The

results confirm that tw and t1 are indeed quite sensitive to the

variations of Cv and k, in agreement with the qualitative estimate,

equation (4), and the results of Lattimer et al. (1994). It is

important that these variations do not invalidate the scaling relation

for the relaxation time; see equation (3). Moreover, if Cv is

increased and k is decreased, the dependence of t1 on the values of

the heat capacity and thermal conductivity is described by a simple

scaling relation t1/Cv/k 0:8.

We have also done sensitivity tests of the relaxation time,

analogous to those performed by Epstein et al. (1983). In each

density region, 0.2 dex of log r, either the heat capacity, thermal

conductivity, or neutrino emissivity have been changed by a factor

1/8, 1/4, 1/2, 2, 4 or 8. Fig. 11 shows the variations of tw when Qn

and k are reduced by a factor of 8, and Cv is enhanced by a factor of

8. The relaxation time depends mostly on the values of Cv and k in

the crust in the density range 1013–1:5 � 1014 g cm23 near the

crust–core interface, being rather insensitive to the variations of

Qn. Variations of the physical parameters in the core affect the

crustal relaxation much less strongly (at least for non-superfluid

models). The density range where tw is most affected by the

variations of k is narrower than the density range where it is

affected by the variations of Cv. The most important temperature

range which influences tw is 108 & T & 109 K. The properties of

matter in these ‘sensitivity strips’ of r and T are very model-

dependent. For instance, the nuclei may be strongly non-spherical

(rods, plates, etc.) at r . 1014 g cm23, which is not included in our

calculations. Note that the thermal conductivity has not been

calculated so far for the phase of non-spherical nuclei.

However, if Cv were noticeably lower, or k were noticeably

higher than in our basic non-superfluid models, the decrease of the

crust relaxation time would saturate at tw < 13 yr. This is the time

it takes the inner core with the direct Urca emission to equilibrate

Table 3. Normalized relaxation times in the crust t1,
equation (3), and in the core t2, equation (5).

Fast cooling Slow cooling

Crust t1 (yr)
no SF 28.4^ 0.2 32.9^ 1.2
weak crust SF 10.3^ 0.6 3.4^ 0.3
weak core 1 crust SF 11.5^ 0.5 25.0^ 0.4
strong crust SF 7.0^ 0.9 6.8^ 1.0
strong core 1 crust SF 6.2^ 0.4 5.7^ 0.2

Core t2 (yr)
no SF 9.1^ 0.8
weak core SF 11.2^ 0.5
strong core SF 3.6^ 0.2

Figure 11. Sensitivity of the crust relaxation time to the variations of the

heat capacity, thermal conductivity, and neutrino emissivity in various

density regions of the 1.5-M( neutron star model with the non-superfluid

core. In each 0.2 dex of log r, Qn and k are reduced by a factor of 8 (solid

lines, no superfluidity), and Cv is enhanced by a factor of 8 without

superfluid effects (dashes) and with weak superfluidity (dots).

Table 2. Relaxation time tw and normalized time t1 for neutron
stars with different crust models.

Test crust model tw (yr)a t1 (yr)a t1 (yr)b

Real model, no SF 52.4 28.8 33.9
no crust neutrinos 253.5 139.2 134.9
only plasmon decay neutrinos 67.6 37.1 41.6
only eZ neutrino bremsstr. 58.3 32.0 34.5
no neutron heat capacity 15.3 8.4 6.7
cond. for point-like nuclei 131.8 72.4 102.3

Real model, weak crust SF 20.2 11.1 3.3
no Cooper neutrinos 29.0 15.9 19.0
weak core 1 crust SF 22.3 12.2 25.7

Real model, strong crust SF 15.0 8.2 6.7
no Cooper neutrinos 15.5 8.5 6.9
strong core 1 crust SF 10.7 5.9 5.8

a for the 1.5 M( model, with a ¼ 1:821.
b for the 1.3 M( model, with a ¼ 2:875.
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thermally with the outer core (cf. Fig. 7). More generally, this is a

core relaxation time tcore, which is almost independent of the

parameters of the crust. It can be estimated using the same

formalism of heat diffusion as in equation (4) through a slab of

material between the direct-Urca-allowed kernel and the boundary

of the core, with l ¼ Rcore 2 RD. The relativistic factors appear as

ðe 2Fcc Þ3, where Fcc is the metric function at the core–crust

interface.

We have calculated the core relaxation time by setting the crust

conductivity very high for the fast cooling models of non-

superfluid neutron stars with M ¼ 1:5; 1:6; 1:7 M(. The least-

squares fit gives

tcore ¼ t2
Rcore 2 RD

10 km

� �2

e23Fcc ; ð5Þ

with t2 ¼ ð9:1 ^ 0:8Þ yr. Thus, the fast-cooling models may have

two distinct relaxation times, in the core and in the crust, and the

latter is typically longer, at least for non-superfluid models.

The normalized crustal relaxation time t1 shows very small

variations with the neutron star mass, ^0.2 yr for fast cooling and

^1.2 yr for slow cooling (see Table 3). Even combining the models

with all masses we find that the scaling relation, equation (3), holds

remarkably well, and t1ðallÞ ¼ 31 ^ 2 yr. Therefore, the cooling of

the crust prior to thermal relaxation is indeed insensitive to the

thermal evolution of the core. The slow cooling makes the

relaxation much less pronounced but it does not change its basic

features. This property is a result of the very high thermal

conductivity in the core (Fig. 4), which makes the core-relaxation

time typically much shorter than the crust one. Accordingly, the

cooling curves do not depend on the exact value of the conductivity

in the core as long as it is much higher than in the crust.

Among earlier works on thermal relaxation in young neutron

stars we would like to also mention the papers by Nomoto &

Tsuruta (1981, 1987). These authors used a different definition of

tw, defining it as the time when the real cooling curve differs by 0.5

per cent from the isothermal one. Naturally, this definition yields a

longer tw than the ‘physical’ relaxation time, during which

departures from isothermality can be important. Thus, contrary to

Nomoto and Tsuruta’s conclusion, most neutron stars from the

103–104 yr old supernova remnants can be described quite

accurately by isothermal models.

Nomoto & Tsuruta (1987) correctly noticed the dependence of

the relaxation time on the equation of state for the fixed stellar mass

of 1.4 M(: tw is longer for the stiffer equation of state (with a

thicker crust). This dependence was quantified later as equation (3)

by Lattimer et al. (1994). Unfortunately, we cannot make a

quantitative comparison with those earlier results because the

physics input has changed significantly from the 1980s. Nomoto

and Tsuruta also observed that superfludity in the core and the crust

plays an important role in regulating thermal relaxation. We

consider the superfluid effects next.

5 E F F E C T S O F S U P E R F L U I D I T Y

Free neutrons in the crust and both neutrons and protons in the core

of a neutron star are likely to be in the superfluid state. We

implement the effects of superfluidity as discussed in Section 2.2. It

turns out that superfluidity in the crust affects the cooling curves at

the thermal relaxation stage, while superfluidity in the core affects

cooling at later stages. First, consider the effects of neutron

superfluidity in the crust. If the temperature T falls much below the

critical temperature Tcn, the superfluidity strongly reduces the

neutron heat capacity and nn neutrino bremsstrahlung. While

the latter is compensated by electron–nucleus bremsstrahlung, the

former effect leads to a faster thermal relaxation. In addition, a new

neutrino process is allowed in the superfluid state: the neutrino

emission as a result of Cooper pairing of free neutrons. It further

accelerates cooling and thermal relaxation of the crust.

Fig. 12 illustrates how the weak neutron superfluidity in the crust

carves out the temperature profiles in the standard cooling

scenario, M ¼ 1:3 M(. For the first 1024 yr, when the temperature

is above Tcn, the thermal structure is identical to that of the non-

superfluid model. Later, the region where the critical temperatures

are the highest cools much faster than the neighboring layers. The

acceleration of cooling is mainly as a result of the reduction of the

heat capacity and the switching on of the Cooper-pairing neutrino

emission. A sequence of points in Fig. 12, in which solid lines start

to deviate from the dotted ones, can reproduces the density profile

of Tcn shown in Fig. 1. As the temperature falls further, wider

density regions become affected, producing shells of cool matter

surrounded on both sides by hotter layers. After the cooling wave

from the core reaches the outer crust, the star settles into almost the

same isothermal state as the non-superfluid model, but at a greater

rate.

The effects are much stronger if the superfluidity is allowed for

inside the stellar core. Fig. 13 shows the combined effect of the

strong superfluidity in the core and crust. Both neutrons and

protons are superfluid in the core of this 1.5-M( neutron star. In

addition to the trough in the crust layers, the core develops a

complex structure. All the sources of neutrino emission and the

nucleon heat capacity in the core are affected by the superfluidity,

while the electron heat capacity is not and becomes dominant in

highly superfluid cores. As soon as the temperature drops

significantly below the critical temperatures Tcn or Tcp, Cooper-

pairing neutrino emission comes into play. It starts in the inner part

of the core and drives the temperature down. At t , 1022 yr that

region is even cooler than in the non-superfluid model, while the

other parts of the core are slightly hotter. By the age of 1 yr, this

cool region includes all of the core except the inner kernel. As a

Figure 12. Temperature profiles in the interior of the 1.3 M( model with

(solid lines) and without (dots) weak crust superfluidity of free neutrons.

The core is not superfluid. Numbers next to curves show the stellar age. The

contours are at 0, 1024, 1022, 1, 100 and 1000 yr.
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result, thermal relaxation proceeds on a shorter time-scale, and at

t & 20 yr the stellar interior is isothermal. Thus, for the large

assumed values of Tcn and Tcp the neutrino emission caused by

Cooper pairing becomes so strong that, instead of slowing down,

the presence of the core superfluidity accelerates the cooling.

Fig. 14 demonstrates the aforementioned effects on the thermal

relaxation time in the 1.5 M( neutron star. The stellar core is

assumed to be non-superfluid. The thermal relaxation stage occurs

about 2.6 times faster in the case of weak crust superfluidity and

about 3.5 times faster in the case of strong crust superfluidity,

compared to the non-superfluid crust. And also, while the inclusion

of the neutrino emission caused by Cooper pairing leads to faster

cooling for t , 20 yr, most of the accelerating effect is a result of

the reduction of the crust heat capacity. Therefore, the relaxation

time is greatly reduced by the effect of superfluidity on the heat

capacity of free neutrons in the stellar crust.

Still, the relaxation time of the superfluid crust satisfies the same

scaling relation, equation (3), as for the non-superfluid crust. Table

3 summarizes the results, taken as the mean of M ¼ 1:5; 1:6, and

1.7-M( models for fast cooling, and M ¼ 1:1; 1:2; 1:3, and 1.4-M(

models for slow cooling. In case of the fast-cooling models, crust

superfluidity reduces the relaxation time by up to a factor of four;

t1 ¼ 7:0 ^ 0:9 yr for the strong superfluidity. In case of the slow-

cooling models with strong crust superfluidity the effect is similar,

but with the weak superfluidity it is much different, by almost a

factor of 10. The inclusion of superfluidity in the core does not

affect the relaxation time significantly. The values of t1 change by

about <1 yr and are within the error-bars of the results for the non-

superfluid cores. Again the notable exception is the weak

superfluidity in the slow-cooling models.

Superfluidity in the core changes the core relaxation time,

although it still scales as in equation (5). Weak core superfluidity

only increases the core heat capacity and delays the relaxation by a

few years, t2 ¼ 11:2 ^ 0:5 yr, while the strong superfluidity

suppresses the heat capacity and gives much faster relaxation, by

a factor of 2.5.

The large difference of the values of t1 for the slowly and rapidly

cooling stars with weakly superfluid crusts indicates that,

generally, superfluidity may violate the simple scaling relations

for the relaxation time as well as the strict thermal decoupling of

the crust and the core prior to the relaxation. This happens because

superfluidity makes the heat capacity (and other properties of

matter) a strong function of density.

The shortening of the thermal relaxation phase in a rapidly

cooling star, as a result of the superfluid reduction of the crustal

heat capacity, was emphasized by Lattimer et al. (1994). Using a

model of superfluidity, which is closer to our model of strong

superfluidity in the crust, Lattimer et al. found that the relaxation

time becomes three times as short, tw ¼ 8:4 ^ 2:0 yr, in qualitative

agreement with our results. Our calculations indicate that the effect

is sensitive to the model of neutron superfluidity in the crust and

thus it can be used to test such models.

When thermal relaxation is over, the cooling is mainly regulated

by the neutrino luminosity and heat capacity of the core. The

processes in the crust cease to play a significant role except for the

very low-mass neutron stars with large crusts. We find, however,

that for some superfluid models the neutrino luminosity of the crust

may affect the cooling for a short period of time during the

transition from the neutrino cooling era to the photon era. For

instance, cooling of superfluid neutron stars after the thermal

relaxation is discussed in detail by Yakovlev et al. (1999).

6 C O N C L U S I O N S

We have studied thermal evolution of young neutron stars using a

new cooling code and updated physics input. The effective surface

temperature of isolated neutron stars in the first 100 yr is

determined by the properties of the crust. After the cooling wave

from the core reaches the surface, the effective temperature drops

from 250 eV to 50 eV or lower. We confirm the conclusion of

Lattimer et al. (1994) that the duration of the relaxation epoch in a

Figure 14. Superfluid effects in the crust of the 1.5-M( neutron star model

with the non-superfluid core. The dashed line is for the case of weak

neutron superfluidity, while the dash-and-dot line is for the case of strong

superfluidity. The dotted line is obtained neglecting the Cooper-pair

neutrino emission for the weak-superfluid model. The solid line is the

cooling curve for the non-superfluid crust.

Figure 13. Temperature profiles (solid lines) in the interior of the 1.5-M(

model with strong superfluidity both in the crust and the core. The numbers

next to the curves show the stellar age. The contours are at 0, 1024, 1022, 1

and 20 yr. The dotted lines show the temperature profiles of the non-

superfluid star.
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fast cooling scenario depends sensitively on the heat capacity and

thermal conductivity of the crust. The relaxation time scales with

the size of the crust, equation (3), and the normalization is t1 ¼

28 yr without superfluid effects or t1 ¼ 7 yr with strong superfluid

effects. We find that the same conclusion holds in the case of slow

cooling, in which thermal relaxation is less pronounced.

We also investigate the effects of various neutrino emission

mechanisms in the crust, superfluidity of free neutrons, heat

capacity, and thermal conductivity on the relaxation time (as

summarized in Table 2 and Fig. 11). The relaxation time is most

sensitive to the variations of k and Cv in the density range

1013–1:5 � 1014 g cm23 near the crust–core interface.

Young cooling neutron stars can serve as astrophysical

laboratories of matter at subnuclear densities. The sensitive

dependence of the relaxation time on the microscopic properties of

matter in the deep inner crust provides a possibility to study these

properties by observing the emergence of the cooling wave. In

order to realize this method, one needs to detect thermal emission

from a very young neutron star in the range from 50 to 250 eV. Such

stars have not been found so far, but may be detected in young

supernova remnants by Chandra and XMM.

To improve the cooling theory of young neutron stars, it would

be desirable to continue theoretical studies of microscopic

properties of matter in the inner crust, in particular, the possible

unusual phases of nonspherical nuclei at r . 1014 g cm23, as well

as the thermal conductivity, heat capacity and neutrino emission of

such matter. The evolution of a possible magnetic field in the crust

needs to be addressed, as a strong field may alter the electron

conductivity and other transport phenomena. It is also important to

refine our knowledge of matter containing spherical nuclei at

r & 1014 g cm23. In this paper (see the Appendix) we present and

use the results of new calculations of the electron thermal

conductivity determined by the scattering of electrons off spherical

atomic nuclei, taking into account the effects of finite sizes and

smoothed shapes of proton nucleus cores.
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A P P E N D I X A : E L E C T R O N C O N D U C T I V I T Y

O F T H E I N N E R C R U S T

In the inner crust, the electrons are strongly degenerate. The heat

and charge are transported mainly by the electrons with energies in

a narrow thermal band near the Fermi level eF. The coefficients of

the electrical and thermal conductivities can be written as

s ¼
e 2nets

m*
e

; k ¼
p2k2

BTnetk

3m*
e

; ðA1Þ

where m*
e ; eF/ c 2, ne is the electron number density, kB is the

Boltzmann constant and ts and tk are the effective relaxation

times. In the presence of several electron scattering mechanisms,

the cumulative relaxation time is determined by the Matthiessen

rule (e.g. Ziman 1960). In the envelopes of neutron stars, one

traditionally considers the electron–ion (ei), electron–electron,

and electron–impurity scatterings. We focus on the main

mechanism, the ei scattering, which is electron scattering off

strongly correlated ions – atomic nuclei – (if they form a Coulomb

liquid) as well as scattering off ions which oscillate around their

equilibrium positions (in a Coulomb solid). In the latter case, the

adequate quantum-mechanical description is provided by the

electron–phonon scattering formalism – cf. Baiko et al. (1998).

A modern theoretical treatment of the conductivities due to the

ei scattering in strongly coupled Coulomb plasmas of ions has been
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proposed by Baiko et al. (1998) and applied to the outer envelopes

of neutron stars by Potekhin et al. (1999). In the latter work,

practical formulae for s and k incorporating all three scattering

mechanisms have been derived; the corresponding FORTRAN

code is available electronically at http://www.ioffe.rssi.ru/astro/

conduct/.

For the inner crust these expressions must be modified. First, the

atomic nuclei cannot be considered as point-like. Secondly, the ei

scattering in the inner crust at temperatures much below 108 K

changes its character: so-called umklapp processes cease to

dominate and the normal processes (with electron-momentum

transfer within one Brillouin zone) become more important.

A1 Effects of the finite size of ions

The effective ei relaxation time is

tei ¼
3p"

4ZeFa
2
f LeiðeFÞ

; ðA2Þ

where af ; e 2=ð"cÞ is the fine-structure constant, and Lei is the

Coulomb logarithm. For a classical plasma of ions in the Born

approximation (e.g. Potekhin et al. 1999),

Lei ¼

ð2kF

0

dq q 3|fðqÞ|2SðqÞ 1 2 b2
r

q

2kF

� �2
" #

; ðA3Þ

fðqÞ;
FðqÞ

q 21ðqÞ
;

where kF ¼ ð3p
2neÞ

1=3 is the electron Fermi wave number,

br ¼ vF/ c, vF ¼ "kF/m*
e is the Fermi velocity, 1(q ) is the static

dielectric function, S(q ) is the static structure factor of the ions

(more precisely, its inelastic part – see Baiko et al. 1998) and F(q )

is the form factor of the ions. The latter three functions allow for

the electron polarization, ion–ion correlations, and the finite size

of the ions, respectively.

The quantization of ionic motion becomes important at T ! Tp,

where Tp ¼ "
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pniZ 2e 2/M

p
/ kB is the ion plasma temperature,

ni ¼ ne/Z is the ion number density, M ¼ Amu is the ion mass, and

mu is the atomic mass unit. In this case, in equation (A3) one should

use an effective structure factor, different for s and k. These

effective factors have been derived by Baiko et al. (1998) and fitted

by Potekhin et al. (1999) for the case where the umklapp processes

dominate.

A1.1 Uniform charge distribution in atomic nuclei

At r ! rcc, a good approximation for the charge density within a

nucleus is a step function. The corresponding form factor is

FðqÞ ¼
3

ðqrnucÞ
3
½sinðqrnucÞ2 qrnuc cosðqrnucÞ�; ðA4Þ

where rnuc is the proton core radius.

In general, Lei depends on r, T, Z, A and rnuc, and it appears to be

almost independent of the type of Coulomb lattice. It is convenient,

however, to introduce dimensionless parameters: the electron

relativity parameter xr ¼ "kF=ðmecÞ; the ion size parameter

xnuc ¼ rnuc/ai, where ai ¼ ð4pni=3Þ
21=3 is the ion-sphere radius;

the Coulomb coupling parameter of ions G ¼ Z 2e 2=ðaikBTÞ; the

inverse ion quantum parameter tp;T/Tp and the electron screening

parameter se ¼ k2
TF=ð2kFÞ

2 ¼ af =ðpbrÞ, where kTF is the electron

screening wave number. In accordance with the previous results, it

is also convenient to introduce an auxiliary parameter

sD ¼ ð2kFrDÞ
22, where rD ¼ ai/

ffiffiffiffiffiffi
3G
p

is the Debye screening

length for the ideal plasma of ions. Finally, the basic parameters

that characterize the Coulomb lattice are the normalized first- and

second-negative moments of the phonon frequency, u21 < 3 and

u22 < 13.

We have numerically calculated the effective Coulomb

logarithms Ls;k
ei for approximately 100 pairs (r, T ), varying over

orders of magnitude in the domain of strongly degenerate electrons

and strongly coupled ions, for eight ion species from ðZ ¼ 12 to

Z ¼ 60Þ, and for five values of xnuc (from 0 to 0.4). We have

included the non-Born corrections in the same manner as Yakovlev

(1987). The results can be fitted using the effective screening

function

|f effðqÞ|2 ¼
1

ðq 2 1 q2
s Þ

2
½1 2 e2s0q 2

�e2s1q 2

Gs;kD ðA5Þ

instead of |fðqÞ|2SðqÞ in equation (A3). Here, the first term

corresponds to the Debye screening with the effective screening

wave number qs, the factor in square brackets corrects for the ion

correlations, and the functions G and D describe ionic quantum

effects, as in Potekhin et al. (1999). An additional factor e2s1q 2

plays a role of the effective form factor. The numerical values of L

obtained from the accurate theory are reproduced (within several

per cent in the most important r–T range) if we use the effective

screening function (A5) with the following parameters:

s ; q2
s =ð2kFÞ

2 ¼ ðsi 1 seÞe
2bZ ; ðA6Þ

bZ ¼ pafZbr; si ¼ sDð1 1 0:06GÞe2
ffiffiffi
G
p

;

w ; ð2kFÞ
2s0 ¼ ðu22=sDÞð1 1 bZ =3Þ; ðA7Þ

w1 ; ð2kFÞ
2s0 ¼ 14:73 x2

nucð1 1
ffiffiffiffiffiffiffiffi
xnuc

p
Z=13Þð1 1 bZ =3Þ; ðA8Þ

Gs ¼ ð1 1 0:0361Z 21=3t2
pÞ

21=2ð1 1 0:122b2
Z Þ; ðA9Þ

Gk ¼ Gs 1
0:0105tp

ðt2
p 1 0:0081Þ3=2

½1 1 b3
r bZ�ð1 2 Z 21Þð1 1 x2

nuc

ffiffiffiffiffiffi
2Z
p
Þ;

ðA10Þ

D ¼ exp 20:42
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xr=ðAZÞ

p
u21 expð29:1tpÞ

h i
: ðA11Þ

If xnuc ¼ 0, these equations reduce to those presented in Potekhin

et al. (1999).

With the effective screening function in the form (A5), we can

integrate equation (A3) analytically and obtain

Ls;k
ei ¼ ½L0ðs;w 1 w1Þ2 L0ðs;w1Þ�Gs;kD; ðA12Þ

where

L0ðs;wÞ ¼ L1ðs;wÞ2 b2
r L2ðs;wÞ; ðA13Þ

2L1ðs;wÞ ¼ ln
s 1 1

s
1

s

s 1 1
ð1 2 e2wÞ2 ð1 1 swÞesw

� ½E1ðswÞ2 E1ðsw 1 wÞ�; ðA14Þ

2L2ðs;wÞ ¼
e2w 2 1 1 w

w
2

s 2

s 1 1
ð1 2 e2wÞ2 2s ln

s 1 1

s

1 sð2 1 swÞesw½E1ðswÞ2 E1ðsw 1 wÞ�; ðA15Þ

and E1ðxÞ ¼
Ð1

x
y 21e2y dy is the standard exponential integral.

Note that using equations (A14) and (A15) directly may result in

large numerical round-off errors in the limiting cases s ! 1, w ! 1,

or w @ 1. In these cases, explicit asymptotic expressions of

Potekhin et al. (1999) should be used.
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A1.2 Realistic charge distribution

Near the bottom of the crust, the boundary of the proton core in

nuclei becomes fuzzy and the above results should be modified.

Oyamatsu (1993) approximated the proton charge distribution by a

function proportional to ð1 2 r/ rmÞ
b (at r , rmÞ, where the power

index b controls the ‘sharpness’ of the charge profile. The

parameters b and rm have been described by the simple functions of

mass density in the smooth composition model of crust matter

(Kaminker et al. 1999). Using that model we have calculated the

electrical and thermal conductivities for r ¼ 109–1014:1 g cm23

and T ¼ 107–109 K, and compared the results with the fitting

formulae (A12– A15). We have found that the electrical

conductivity is reproduced (within <5–10 per cent), if we define

xnuc in equation (A8) so as to reproduce the same mean-square

proton-core radius as in the approximation of uniform charge

distribution:

xnuc ¼
rm

ai

1 2 15=ð5 1 bÞ1 15=ð5 1 2bÞ2 5=ð5 1 3bÞ

1 2 9=ð3 1 bÞ1 9=ð3 1 2bÞ2 1=ð1 1 bÞ
: ðA16Þ

In equation (A10), which determines the thermal conductivity at

T ! Tp, one should additionally multiply xnuc by a factor of

b=ð0:5 1 bÞ. The maximum-fit error of k does not exceed 13 per

cent.

A2 Normal processes at very low temperatures

Near the boundaries of the Brillouin zones the dispersion relation

of electrons differs from the free-electron case, and at the

boundaries the electron energy spectrum contains gaps. The gaps

De can be estimated in the weak coupling approximation (e.g.

Kittel 1986) as De , fðkFÞ ¼ 4pZe2nik
22
F ¼ 4e2=ð3pkFÞ. The

effect of gaps is most significant if the deviation of the electron

momentum from the intersection line between the Fermi surface

and the Brillouin zone boundary does not exceed

Dk , De=ð"vFÞ , 4=3pðaf /brÞkF ! kF. However, with decreasing

temperature the strips of the Fermi surface, between which the

umklapps proceed effectively, become narrower and closer to these

intersection lines. When the widths of the strips [,tpð6p
2niÞ

1=3�

become smaller than Dk, the umklapp processes are frozen out and

the normal processes prevail. The above estimates indicate that this

happens when the temperature falls below

Tu , TpZ 1=3af =ð3brÞ: ðA17Þ

In this case, the formalism used in Section A1 becomes

invalid. The asymptotes for the ei scattering rates at T ! Tu have

been obtained by Raikh & Yakovlev (1982). In our notation, they

yield

Ls
ei

Lk
ei

( )
¼

azx
1=2
r

A 1=2Z
�

ð4=3Þðaf =brÞt
5
p

t3
p

8<:
9=;; ðA18Þ

where

az ¼ 180
3

paf

me

mu

� �1=2

zð5Þ < 50;

and zð5Þ ¼ 1:0369 is the value of the Riemann zeta function.

Now we interpolate between the high-temperature Coulomb

logarithm Ls;k
ei;high given by equation (A12) and the low-temperature

asymptote Ls;k
ei;low given by equation (A18):

Ls;k
ei ¼ Ls;k

ei;high expð2Tu=TÞ1 Ls;k
ei;low½1 2 expð2Tu=TÞ�: ðA19Þ

Fig. A1 shows the thermal conductivities for three values of the

temperature. In the neutron star envelope, the plasma is in the solid

phase except for the segment to the left of the asterisk at the highest

T ¼ 109 K. At the lowest T ¼ 107 K, the change in the scattering

from umklapp to normal processes leads to a significant increase in

the conductivity shown by the hatched region. However, this

increase can be compensated by the scattering off impurities.

For example, the dashed line shows the conductivity for

Qimp ; kðZ imp 2 ZÞ2nimpl=ni ¼ 0:2, where nimp and Zimp are the

impurity number density and charge number, respectively. For

comparison, dashed lines show the thermal conductivity in the

smooth-composition model with smooth proton charge profile.

This paper has been typeset from a TEX/LATEX file prepared by the author.

Figure A1. Density dependence of the electron thermal conductivity at

T ¼ 107, 108 and 109 K in the neutron star crust. Solid and dot-dashed lines:

ground state composition (Negele & Vautherin 1973), rectangular profile of

nuclear charge (solid lines: pure crystal or liquid; dot-dashed line: including

impurities; bottom of the hatched region: neglecting freezing of umklapp

processes at T ¼ 107 KÞ; dashed lines: smooth-composition model, realistic

profile of nuclear charge, no impurities.
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