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A B S T R A C T

The observed rotation curves of dark matter-dominated dwarf galaxies indicate low-density

cores, contrary to the predictions of CDM models. A possible solution of this problem

involves stellar feedback. A strong baryonic wind driven by vigorous star formation can

remove a large fraction of the gas, causing the dark matter to expand. Using both numerical

and analytical techniques, we explore the maximum effect of the feedback with an

instantaneous removal of the gaseous disc. The energy input depends on the compactness of

the disc, hence the specific angular momentum of the disc. For the plausible cosmological

parameters and a wide range of the disc angular momenta, the feedback is insufficient to

destroy the central halo cusp, while the inner density is lowered only by a modest factor of 2

to 6. Any realistic modelling of the feedback would have even lesser impact on dark matter.

We find that no star formation effect can resolve the problems of CDM cusps.

Key words: galaxies: dwarf – galaxies: formation – galaxies: kinematics and dynamics –

dark matter.

1 I N T R O D U C T I O N

Dwarf spheroidal galaxies are excellent systems for testing current

theories of dark matter. The large mass-to-light ratios indicate that

even their centres are dominated by dark matter (Mateo 1998). The

velocity dispersion profile of stars and the rotation curve of gas

provide clean measures of the dynamical mass at all radii. Recent

observations of the gas-rich dwarfs show a nearly solid-body

rotation curve, which implies a finite core inside a few hundred pc

(van den Bosch et al. 2000; de Blok et al. 2001). This is in conflict

with the predictions of the cold dark matter (CDM) models.

Numerical simulations invariably produce a diverging, power-law

density ‘cusp’ r/ r 2g with g ¼ 1 (Navarro, Frenk & White 1997)

or g ¼ 1:5 (Moore et al. 1999b) within ,500(Mvir/109 M()1/2 pc

(Bullock et al. 2001a).

The additional disagreements of the CDM models with

observations include (1) the prediction of too many dwarf satellites

within large haloes (Klypin et al. 1999; Moore et al. 1999a); (2) the

triaxiality of haloes in conflict with the almost spherical cores of

some clusters of galaxies, as inferred from gravitational lensing

(Tyson, Kochanski & dell’Antonio 1998); (3) the efficient transport

of the baryon angular momentum, leading to too small discs of

spiral galaxies (Navarro & Steinmetz 2000). Of these, the central

cusps seem to be the most severe discrepancy. The CDM models

have been very successful in matching observations on scales

larger than a Mpc, but the smaller scale problems have lead to a

recent search for alternatives to CDM. The variants include warm

dark matter (e.g., Bode, Ostriker & Turok 2001) and self-

interacting dark matter (Spergel & Steinhardt 2000). Note that the

substructure of haloes may, in fact, be required for the

interpretation of the peculiar flux ratios of the quadruple-lensed

quasar images (Metcalfe & Zhao 2002).

We examine a possible astrophysical solution to the cusp

problem, the effect of star formation feedback. The energy released

in supernova explosions may heat and ionize the surrounding gas.

In the event of an extremely powerful burst of star formation, the

heated gas may leave the dwarf galaxy in a form of fast wind (e.g.,

Dekel & Silk 1986). In an idealization of this problem, a significant

fraction of the gas may be removed from the dwarf halo on a time-

scale shorter than the dynamical time. We consider the reaction of

the dark matter distribution to the sudden loss of baryonic mass in

the centre. Supermassive black holes can also have interesting

effects, somewhat different from the gas discs, and these will be

discussed elsewhere.

2 C O S M O L O G I C A L C O N T E X T

We explore the maximum effect of stellar feedback on the dark

matter profile, assuming (1) all cool gas within the dark halo can be

removed; (2) the amount of gas locked in stars is negligible; (3) the

removal of gas is instantaneous.

The initial conditions for the dark matter halo and the baryonic

disc are set using the cosmological concordance model with

Vm ¼ 0:35, VL ¼ 0:65, Vb h 2 ¼ 0:02 (Bahcall et al. 1999), where

h ¼ 0:65 is the Hubble constant in units of 100 km s21 Mpc21.

This gives the average baryon fraction f b ; Vb/Vm < 0:13. Some
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of the baryons associated with the halo of mass Mvir will never cool

and collapse towards the centre, some may be heated and ionized

early on and escape the shallow potential well before the starburst.

But since we are interested in the maximum effect, we assume that

all the associated baryons settle into a disc with the mass

Md ¼ f bMvir.

The size of the rotationally supported disc, rd, is determined by

the angular momentum of the baryons (e.g., Mo, Mao & White

1998). Cosmological simulations show that dark matter haloes

acquire a log-normal distribution of the dimensionless angular

momentum, l ; JjEj
1=2
/GM5=2

vir , with the median �l ¼ 0:05 and

dispersion sl ¼ 0:5 (Barnes & Efstathiou 1987; Efstathiou et al.

1988). If the gas had the same angular momentum as the halo, the

disc size would scale with l ðrd , l 2rvir if disc is fully self-

gravitating, and rd , lrvir in the no self-gravity case).

Initially, in isolated haloes the gas is supposed to acquire the

same angular momentum per unit mass as the dark matter. As a

result of hierarchical merging, the distribution of dark matter can

become highly non-homogeneous. Also, the cooling and

fragmentation of gas into dense clouds can transfer orbital angular

momentum to the dark matter via dynamical friction and direct

torques (Navarro & Benz 1991). In the end, the gaseous disc may

have a significantly lower value of the parameter lb ! l. We

mimic the effect of angular momentum redistribution by

considering three model discs with different lb.

The dark matter distribution self-consistently adjusts to the

formation of the disc in the middle of the halo. This process can be

described as adiabatic contraction (Blumenthal et al. 1986; Flores

et al. 1993; Dalcanton, Spergel & Summers 1997), which we

discuss at length in Section 3.1. Such condensation of both baryons

and dark matter has a significant effect on the central density. Fig. 1

demonstrates how adiabatic contraction increases the rotation

curve in the inner galaxy over that predicted by cosmological

simulations and intensifies the discrepancy with observations.

After the gas blowout, the final distribution of dark matter will

depend on the initial disc size in the following way. If the disc was

initially relatively extended ðrd * rsÞ the re-expansion phase is

driven by the energy input, which is proportional to the binding

energy of the disc, /Md/rd. If the disc was very compact ðrd ! rsÞ

only the total removed mass Md affects the results. The new

equilibrium profile after the removal of the entire baryonic disc

must be more extended than that prior to adiabatic contraction,

because any rapid expansion increases the actions of dark matter

orbits. The faster the expansion, the stronger is the effect.

The energetics of gaseous winds have been studied extensively

in the past (Dekel & Silk 1986; van den Bosch et al. 2000 and

references therein). In general, dwarf galaxies have shallow

potential wells and it is easy to create a strong wind after a few

supernova explosions. We shall simply assume that the supernovae

ejecta energy is sufficient and is efficiently deposited into the gas,

to facilitate a rapid expulsion of nearly all the initial baryons with

very little locked into stars and stellar remnants.

3 A N A LY T I C A L M O D E L S

3.1 Two models of adiabatic contraction

We consider the problem in a spherically symmetric approxi-

mation. For the initial virialized halo model we use a Hernquist

(1990) profile, which is a special case of a family of analytical

double-power-law models (Zhao 1996) with the mass Mdm(ri)

enclosed within radius ri given by

MdmðriÞ

ð1 2 f bÞMvir

¼
ri

rs þ ri

� �32g

; g ¼ 1; ð1Þ

where rs is the scale radius, and g is the slope of the cusp. We adopt

a concentration parameter rvir/rs ¼ 10, appropriate for the dwarf

haloes at high redshift, but the results at small radii are insensitive

to the actual value of this parameter. The profile has the same inner

slope ðg ¼ 1Þ as the NFW model (Navarro et al. 1997) and deviates

from it only in the outer parts which are not interesting for the

present problem. The Hernquist model is more convenient both for

analytical modelling and for generating the initial condition of an

isolated fixed-mass halo.

During adiabatic contraction, circular orbits conserve the absolute

value of the angular momentum, GM(r)r, and the enclosed dark

matter mass, Mdm(r). An orbit can be labeled interchangeably by its

initial radius ri or by the specific angular momentum j, where j and

ri are related by

j 2 ¼ riGMdmðriÞð1 2 f bÞ
21: ð2Þ

Here we use the constant factor ð1 2 f bÞ
21 to include the mass of

baryons assumed to have the same initial distribution. The orbit

with an angular momentum j has a post-contraction radius rj given

by

rj ¼
j 2

GMdmðriÞ þ GMbðrjÞ
; ð3Þ

where Mb(rj) is the mass of baryons enclosed within the contracted

orbit, which we need to specify separately.

We will use two independent models to evaluate adiabatic

contraction.

(i) Using the observations of disc galaxies as a guide, it is

common to assume that the disc would have an exponential surface

density profile. The enclosed disc mass is

Mb;expðrjÞ ¼ f bMvir½1 2 ð1 þ yÞ expð2yÞ�; y ;
rj

rd

; ð4Þ

Figure 1. Rotation curve before and after the formation of baryonic disc

and adiabatic contraction of dark matter, for three values of the angular

momentum parameter, l ¼ 0:05, 0.01, 0.0025.
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where the scalelength rd is computed numerically by matching the

total angular momentum (e.g., Mo et al. 1998, their equation 28). In

this approach, rj is an implicit function of ri or j, and the equation

must be solved iteratively.

(ii) Here we also take another approach, assuming the disc mass

Mb(rj) can be expressed as a function Mb½ , jðriÞ� of the initial

specific angular momentum j(ri), where j(ri) is given by equation

(2). The advantage is that the right-hand side of equation (3) can

now be expressed as an explicit function of ri, and hence rj is

computed directly without iteration as in the previous approach.

Since the z-component of the specific angular momentum

originated from tidal torquing of neighbouring haloes, hence it was

distributed in the same way in baryons and dark matter, we could

adopt the so-called universal angular momentum profile,

Mbð, jÞ ¼ f bMvirj/ð0:8j þ 0:2jmaxÞ, seen in dissipationless N-body

simulations of LCDM models (Bullock et al. 2001b), where jmax is

the maximum specific angular momentum determined by the spin

parameter l. Unfortunately, if baryons with such a distribution

collapse to a disc conserving angular momentum, then the central

density of the disc would be too high and the scalelength too low

compared to the observed discs (Bullock et al. 2001b; van den

Bosch, Burkert & Swaters 2001). The angular momentum

distribution of such a disc is also very different from that of

exponential discs, as shown in Fig. 2. This mismatch between the

present day exponential discs and the simulated initial baryon

angular momentum distribution is an intriguing problem, which

might argue for the transfer of angular momentum by bars or spiral

waves in the disc or unvirialized lumps in the halo. We will not

digress into this issue since the goal of our analytical and N-body

modelling is to explore the maximum effect of blowing out the

exponential discs.

We have decided to make an alternative choice of the functional

form of the initial cumulative distribution of the specific angular

momentum of baryons,

Mbð, jÞ

f bMvir

¼ 1 2 exp 2
j n

jn
0

� �
; n ;

6 2 2g

4 2 g
; ð5Þ

where 1:33 $ n $ 1:2 for a general cusp slope 1 # g # 1:5 of the

initial halo, and j0 is a characteristic specific angular momentum,

related to the median angular momentum by jmedian ; j0ðln 2Þ1/n.

This parametrization can describe the angular momentum profile

of observed discs fairly well (cf. Fig. 2), albeit with significant

scatter. It also creates an approximately exponential disc after

adiabatic contraction. This can be understood roughly since j ¼

rjvj / rj in a model with a nearly flat rotation curve, so that

equation (5) corresponds to an almost exponential distribution in

radius rj. Also, our angular momentum profile reproduces the

asymptotic profile Mb / j 4=3 / r2
j near the centre, as expected for

the exponential disc embedded in a Hernquist halo with g ¼ 1 and

n ¼ 4=3. The characteristic specific angular momentum j0 is

determined by the integrated total angular momentum J of the

initial halo,ð1

0

dxjxj

d½1 2 expð2xn
j Þ�

dxj

¼
J

Mvirj0

¼
lGM3=2

vir jEj
21=2

j0

; ð6Þ

where the left-hand side can be reduced to the gamma function,

Gð1 þ 1/nÞ. Since the baryons have initially the same distribution

as dark matter, the total energy of the system is

jEj ¼ ð1 2 f bÞ
22

ð1

0

dr
dMdm

dr

GMdm

2r
¼

GM2
vir

4ð5 2 2gÞrs

; ð7Þ

and we can express j0 in terms of the l parameter,

j0 ¼
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMvirrs

p

j
; j ; Gð1 þ 1/nÞ/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð5 2 2gÞ

p
: ð8Þ

At small radii the initial mass distribution of dark matter is

Mdm ! ð1 2 f bÞMvir

ri

rs

� �32g

; ri ! 0; ð9Þ

and the initial specific angular momentum

j /
ffiffiffiffiffiffiffiffiffiffiffiffi
Mdmri

p
/ r

42g
2

i / M
42g

622g

dm : ð10Þ

So with our choice of n, the asymptotic angular momentum

distribution of the baryons scales the same way as that of the dark

matter:

Mdm / Mb / j n; j ! 0: ð11Þ

It follows then that the mass profiles of the baryons and dark matter

are similar before and after the contraction,

Mb / Mdm / r
32g
i / j n / r

32g
j ; ð12Þ

where

rj / j
2

42g / ri ð13Þ

is the post-contraction radius. The contraction factor is finite at

small radii, and the cusp slope of the dark matter does not change.

Figure 2. Baryon mass profile according to our angular momentum

prescription (solid line, cf. equation 5 with g ¼ 1 and n ¼ 4=3Þ, in

comparison with the universal profile (dashed line) and the observed disc

galaxies (symbols), where jmedian is defined such that 50 per cent of the

disc mass has the specific angular momentum j , jmedian. The observed disc

profiles are adopted from van den Bosch, Burkert & Swaters (2001) with the

stellar mass-to-light ratio M/LR ¼ 1 M(/LR;(.
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To summarize, at small radii after the contraction we have

Mdm ! ð1 2 f bÞMvir

Crj

rs

� �32g

; ð14Þ

Mb ! j nl2nf bMvir

Crj

rs

� �32g

; ð15Þ

rj ! C 21ri; ð16Þ

where

C ; 1 þ ðj nl2n 2 1Þf b: ð17Þ

At a given radius rj, the enclosed dark mass and density are

enhanced by a factor C 32g. For an initial Hernquist halo, g ¼ 1,

n ¼ 4=3, and j ¼ 0:265. For the disc parameters f b ¼ 0:13,

l ¼ 0:05–0:01, the inner dark matter density is enhanced by a

factor C 2 ¼ 4–160.

It is interesting to note that the model with g ¼ 1 produces an

asymptotic mass distribution at small radii, Mb / r2
j , similar to that

of an exponential disc (cf. equation 4). Fig. 3 shows the computed

mass profiles of baryons for a family of models with different lb.

Our analytical models reproduce exponential profiles at 10 per cent

level within 0:5–5 scalelengths. The difference in the disc

potential is even less and therefore the adiabatic contraction of dark

matter is very similar. For all three models, the dark matter profiles

computed with the two methods are essentially indistinguishable

between 1023 and 10 rs.

3.2 Analytical models of slow wind and fast wind

The expulsion of gas can be worked out analytically in two limiting

cases: the adiabatic and instantaneous regimes. We shall refer to

these as the slow wind and the fast wind, respectively. The outflow

can play a significant role in massive galaxies as well as in dwarf

galaxies. Our analytical description is similar to that used in

estimating the maximum wind-induced expansion of the dark halo

of the Milky Way (Zhao 2002).

To gain more analytical insight, we first consider the slow wind.

In this case, a circular orbit of radius rj expands to a circular orbit of

radius rf while conserving the specific angular momentumffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMðrÞr

p
. So the expansion factor is inversely proportional to

the combined enclosed mass of baryons and dark matter, i.e.,

rf

rj

ýýýý
slow

¼
MdmðrjÞ þ MbðrjÞ

MdmðrjÞ þ MbðrjÞ 2 MwðrjÞ
ð18Þ

where Mb(rj) and Mdm(rj) are the baryon and dark matter masses

within radius rj, and Mw(rj) is the amount of baryons ‘gone with the

wind’. Alternatively, we can write

rf jslow¼
rj

1 2 f wðrjÞ
; ð19Þ

where

f wðrjÞ ;
MwðrjÞ

MdmðrjÞ þ MbðrjÞ
; ð20Þ

measures the blown-away mass as a fraction of the dynamical

mass. The expansion factor rf /rj is larger in the inner region where

the baryons are concentrated and is minimal at the virial radius,

where we have only a modest change, since

f wðrvirÞ ¼ df b & 0:1; ð21Þ

where 0 # d # 1 is the total fraction of baryons blown away.

Although we do not know of any close form for the effect of fast

wind, we could modify equation (19) for slow wind to mimic the

effects of wind of arbitrary strength. We suggest the following

simple formula

rf ¼
rf jslow

½1 2 f wðrjÞ�
k
4 ð1 2 2kdf bÞ

k
4

; 0 # k # 1; ð22Þ

where k is a tunable parameter to model the rapidity of the wind.

For example, slow wind is a special case with k ¼ 0 (cf. equation

19). The instantaneous wind is modelled with k ¼ 1, following the

rule of thumb that a system becomes unbound if it loses half of the

mass instantaneously. To verify this, we substitute k ¼ 1 and

f wðrvirÞ ! 1=2 in equation (22) and find that the right-hand side

factor 1 2 2kdf b ¼ 1 2 2f wðrvirÞ ! 0, hence rf ! 1. For the

winds of moderate speed with k , 1 and moderate mass-loss

with f wðrvirÞ , 22k, the system remains bound and expands by a

certain factor at large radii. At small radii, where the baryons

always dominate with f wðrjÞ ! 1, the particles may not necessarily

escape to infinity because they slow down when they cross the

orbits of outer particles. As we will show in Section 4, this

empirical parametrization turns out to approximate well the results

of numerical simulations.

To work out the properties of the model at very small radii, we

substitute equations (14–17) in equation (20) and obtain

f w ! j nl2nd C 21f b: ð23Þ

Substituting equations (16, 23) in equation (22), we find that in the

centre the final post-wind radius rf is related to the initial pre-

contraction radius ri by

F ;
rf

ri

¼
½1 þ ðj nl2n 2 1Þf b�

k
4

½1 þ ðj nl2nð1 2 dÞ 2 1Þf b�
1þk

4ð1 2 2kdf bÞ
k
4

: ð24Þ

Figure 3. Baryon mass profile according to our angular momentum

prescription, in comparison with the exponential disc profile (solid line; cf.

equation 4). The radii are normalized to the scalelength rd computed

numerically for three cases: l ¼ 0:05 (dots), l ¼ 0:01 (short dashes), l ¼

0:0025 (long dashes).
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The slope of the cusp remains the same. By comparing the dark

matter mass within a given radius, we find that the density is

reduced by a factor F 32g.

3.3 Maximum effect on the final halo density

The strongest effect on the halo is achieved in the limit of complete

removal of the baryonic disc, i.e., d ! 1. In this case we have for all

radii

rf ¼
ri

ð1 2 f bÞ

1 þ Mb/Mdm

1 2 2kf b

� �k
4

; d ! 1: ð25Þ

Interestingly, if the disc forms slowly and is removed slowly as

well (i.e., with k ¼ 0Þ, the halo expands slightly by a constant

factor

rf

ri

¼ ð1 2 f bÞ
21 ¼ constant; ð26Þ

as expected from adiabatic invariance. The result is the same if all

the baryons were removed from the initial halo distribution without

going through the phase of disc formation.

The effect is maximized when a very dense disc ðl ! 0:05Þ is

removed instantaneously ðk ¼ 1Þ. If the initial halo is a Hernquist

model (i.e., g ¼ 1, n ¼ 4=3 and j ¼ 0:265Þ, then close to the centre

the halo will expand by a factor (cf. equation 24)

F ,
1

1 2 f b

f b

ð1 2 f bÞð1 2 2f bÞ

� �1
4 0:265

l

� �1
3

,
0:15

l

� �1
3

; ð27Þ

relative to the original halo model. Here we assume a universal

baryon fraction f b ¼ 0:13 to make a massive disc. To summarize,

the density of the innermost dark matter can drop at most by a

factor F 2 ¼ 2–6 for l ¼ 0:05–0:01.

4 S P H E R I C A L S H E L L S I M U L AT I O N S

To confirm the analytical results, we compute the dynamics of dark

matter using the spherical shell method of Gnedin & Ostriker

(1999). The algorithm, originally due to L. Spitzer and

collaborators, utilizes spherical geometry to achieve high

resolution in the centre. Dark matter particles are distributed on

concentric spherical shells at radii rk with the mean energy Ek and

angular momentum jk. Shells move in the radial direction with the

velocity vr,k and can freely cross each other.

We have extended the code of Gnedin & Ostriker (1999) by

including variable shell masses, mk, and improving the corrections

for shell crossing. The code solves the equations of motion using

the first integral, Ck:

v2
r;k þ

j2k
r2

k

2
2GMðrkÞ

rk

¼ Ck; ð28Þ

where M(rk) is the mass enclosed within shell k, including a half of

its own mass (accounting for the shell self-gravity):

MðrkÞ ¼
Xk21

j¼1

mj þ
mk

2
; ð29Þ

if the shells are ordered in radius. The integrals Ck determine the

turn-around points where the direction of the velocity of the shell is

reversed. At each time step, the code finds the locations of all shell

crossings and adjusts the integrals Ck according to the changed

enclosed mass. Because of such corrections, two-body interactions

are effectively reduced and there is no need for force softening. As

a result, the central region of the system can be probed with very

high accuracy.

In order to investigate the effect of angular momentum loss, we

have run three models: Model A with the mean value of l ¼ 0:05,

and Models B and C where l deviates from its mean by 3sl

ðl ¼ 0:01, Model B) and 6sl ðl ¼ 0:0025, Model C).

We use the units G ¼ 1, Mvir ¼ 1, rs ¼ 1, and therefore the

results can be scaled to any halo parameters. Each model is run

with N ¼ 104, 4 £ 104, and 105 shells to check numerical

convergence. After the disc is removed, the models are run for

40 half-mass dynamical times ðtdyn ¼ 8 in code units) to ensure

that a new dynamical equilibrium is achieved.

Fig. 4 shows the initial halo profile and the new equilibrium

distribution after the instantaneous removal of the whole disc in

Model A. The scalelength of the disc, rd ¼ 0:085rs, is already a

small fraction of the scale radius of the halo. As expected, there is

no change in the profile outside the cusp, at r . rs. But even inside

the scale radius, the new profile is fairly close to the initial model

prior to adiabatic contraction. The central density is affected at

most by a factor of 2, in agreement with the analytical prediction

(equation 27).

Fig. 5 shows the density profile for Model B. The effect is

stronger but there is still no indication of a core forming instead of

the cusp. The asymptotic solution increases towards the centre as

r 21 and describes the numerical result reasonably well.

Finally, Model C may have achieved a central core (Fig. 6). The

inner profile can be fitted with an approximate isothermal sphere,

r/ ðr 2 þ r2
cÞ

21, where rc < 0:2rs. This core radius is significantly

larger than the tiny initial scalelength of the disc, rd ¼ 0:00041rs.

However, it seems that the energy input has already saturated in

Model C (the change in the binding energy is similar to Model B)

and further contraction of the disc would not lead to a larger core.

After the disc is removed, the dark matter particles with a large

Figure 4. Dark matter density profiles for Model A ðl ¼ 0:05, f b ¼ 0:13,

d ¼ 1Þ before and after the gas removal. Dashed line is the initial Hernquist

model, solid line is the halo profile after the adiabatic contraction. Symbols

show a new equilibrium profile after the removal of the baryonic disc,

computed with 105 spherical shells. Error bars are the sampling uncertainty.

Dotted line is the analytical prediction, equation (25).
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enough kinetic energy become unbound. At the end of the

simulation, the halo in Model A loses 6.5 per cent of its mass, while

haloes B and C lose 14 and 16 per cent, respectively. (About half of

those particles become unbound during the subsequent evolution of

the halo potential towards a new equilibrium.) However, as the disc

is made progressively more compact, the heating caused by the

disc removal is shared by a small number of particles in the centre.

They reach very high velocities and leave the system, whereas most

of the particles remain unaffected. In the limit of an infinitely small

disc, the final equilibrium profile would still be close to our

extreme Model C.

4.1 Artificial numerical effects

As any N-body simulation, our models are affected to some extent

by the artificial numerical relaxation. This relaxation arises from

the small-scale particle encounters and from the Poisson potential

fluctuations due to discreteness (Hernquist & Barnes 1990;

Weinberg 1993). Even though the shell-crossing corrections in our

code remove the small-scale errors, the large-scale fluctuation

modes are unavoidable.

The relaxation time over which the particle energy changes by

the order itself can be estimated at the half-mass radius of the

system, Rh, from (Spitzer & Hart 1971):

tr < 0:14
N

lnL

R3
h

GM

� �1=2

; ð30Þ

where lnL , ln N is the usual Coulomb logarithm. In the code

units, G ¼ 1, M ¼ 1, and with Rh < rs ¼ 1, we have

tr , 0:1
N

ln N
: ð31Þ

This expression can be compared with the relaxation rate (inverse

of the relaxation time) derived by Weinberg (1993). His fig. 3

expresses tr as a function of the system size divided by the Jeans

length. For a virialized Hernquist model, this ratio can be 0:6–0:8

and reading of the plot gives tr , 25–50. It agrees with equation

(31) for the particle number N ¼ 4000 used by Weinberg (1993).

Thus, the large-scale potential fluctuations can only be reduced

by increasing the number of particles in the simulation. We

estimate that our results with N ¼ 105 shells are unaffected by the

relaxation at the scale radius rs for t ! tr < 800 < 100tdyn. The

rate of relaxation does not increase much in the inner parts, because

it is dominated by the global modes and not by local encounters.

Another numerical effect, which is more important for the inner

shells than the outer shells, is the kinematic error due to a finite

time step. We chose Dt ¼ tdyn/N, so that each shell crosses on

average one other shell. Since the density at r , rs goes

approximately as rðrÞ / r 21, the orbital period of a shell

torbðrÞ < tdynðr/rsÞ
1=2. This shows that if 10 time steps are necessary

to properly resolve an orbit, our results are valid down to a tiny

radius r , ð10/NÞ2rs , 1028rs.

4.2 Comparison with previous work

Navarro, Eke & Frenk (1996) studied the effect of instantaneous

disc removal using a three-dimensional N-body code. They also

used a Hernquist model for the initial dark matter profile and

imposed an external potential of the exponential disc. Instead of

analytically calculating the adiabatic contraction, they let the dark

matter halo to adjust dynamically to the disc potential. Then, they

removed the disc and studied the subsequent expansion of the halo.

Navarro et al. found that the core did develop in the inner regions of

all of their models. They fit a non-singular isothermal sphere to the

inner 25 per cent of the mass and found the core radii satisfying the

following relation: rc ¼ 0:11ðMd/rdÞ
1=2rs, where Md is the mass of

the disc in units of the halo mass [or f b/ð1 2 f bÞ, in our notation].

The expansion effect that Navarro et al. find is much stronger

than what our simulations or analytical modelling show. For

example, their fit for the core radius would give for our Model C,

rc < 2:1, about ten times the value we find. In Models A and B the

core radii should also have been easily detectable, according to the

fit.

We identify two possible reasons for the disagreement, force

resolution and numerical relaxation effects. First, a force softening

at 0.03rs, used by Navarro, Eke & Frenk (1996), could prevent an

Figure 6. Density profiles for Model C ðl ¼ 0:0025Þ. Lines are as in Fig. 4.

Figure 5. Density profiles for Model B ðl ¼ 0:01Þ. Lines are as in Fig. 4.
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accurate calculation of the dynamics of inner particles, especially

in cases of very small discs. This would naturally cause a

development of a core in the particle distribution, although the core

radii found by Navarro et al. are larger than the softening length.

Secondly, numerical effects might be important, as their

simulations use only N ¼ 104 particles. The relaxation time, tr ,
100 time units, is 4 to 6 times shorter than the duration of their

experiments. Even though Navarro et al. demonstrate that the

numerical profile before the disc removal is stable, it may be more

susceptible to the relaxation afterwards, when a smaller number of

particles is left in the centre. This may also lead to a simple

statistical undersampling of the density distribution, posing as a

‘core’.

It is likely that the difference in the results is not related to the

geometry, 1D versus 3D simulations. In our one-dimensional

models, all shells conserve their initial angular momentum and do

not experience any non-radial perturbations. However, since the

dark matter halo is not centrifugally supported, precise conserva-

tion of angular momentum should not seriously affect the

dynamics. Also, the remaining stellar distribution in dwarf

spheroidal galaxies is observed to be roughly spherical, so we

can expect the dark matter halo to be spherical as well, lending

support to our 1D models. Finally, we have checked that our

different implementations of the adiabatic contraction gave almost

identical initial conditions and therefore cannot be responsible for

the disagreement.

Note, that our simulations achieve much higher resolution, with

10 times more particles and no force softening in the centre. But

the statistical error bars in Fig. 6, inversely proportional to the

square root of the number of particles in the bin, show that even our

models cannot probe regions smaller than 0:01–0:03rs. At larger

radii, except for the extreme model C, we do not find any

significant flattening of the dark matter distribution.

Any realistic modelling of stellar feedback would have an even

weaker effect. Lia, Carraro & Salucci (2000), using a more

complex tree-SPH simulation of star formation in a dwarf galaxy,

find that the central cusp remains intact.

4.3 Application to DDO 154

Our results demonstrate that stellar feedback is insufficient to

reduce the central dark matter density. We illustrate this point for a

prototypical low surface brightness galaxy DDO 154. Fig. 7 shows

the observed rotation curve of DDO 154, which peaks at 48 km s21.

As this is perhaps the most robustly determined quantity, we

normalize the simulation results to have the same value and

location of the circular velocity. The simulated curves correspond

to the final equilibrium density profiles of Models A, B, and

C. They are clearly more concentrated than allowed by the data.

In addition, the scale radii of the initial halo in Fig. 7 increase as

the effect of feedback gets weaker (corresponding to the larger

disc). For Model C rs ¼ 2:9 kpc, but for the less perturbed models

B and A it is rs ¼ 3:6 and 5.6 kpc, respectively. The virial halo

mass is about the same, around 1:3 £ 1010 M(. This mass is lower

than the best-fitting value (,3 £ 1010 M() from van den Bosch

et al. (2000), and yet the resulting rotation curve is well above

observations.

Note, that we do not attempt any accurate fitting of the rotation

curve. The beam-smearing effects are likely to be unimportant

(beam size is less than 1 kpc; van den Bosch et al. 2000), and

therefore the small error bars in the inner parts place very

strong constraints on the allowed dark matter profiles. Gelato &

Sommer-Larsen (1999) used a set of N-body simulations to address

this issue. They selected three haloes with M , 1010 M( at z ¼ 0

from a random realization of a 4 h 21 Mpc box with the SCDM

power spectrum. Varying the amount of gas and the concentration

of the dark matter halo, Gelato & Sommer-Larsen (1999) could

find a satisfactory fit to the inner rotation curve of DDO 154 only

(1) if the present disc contained 3 times more gas than is observed

and (2) if the halo had a low concentration, rvir/rs ¼ 4. However,

none of their models could fit simultaneously the inner and outer

parts of the rotation curve.

5 S U M M A RY

We have explored the effect of maximum feedback on the

central density of dark matter haloes of the gas-rich dwarfs,

combining analytical limits with numerical simulations. The

expansion of dark matter after the removal of the entire disc is

controlled by the mass and compactness of the disc. For a wide

range of the baryon angular momenta, we find the effect to be

modest, at most a factor of 2 to 6 reduction in the central halo

density. This is hardly enough to bring the models into agreement

with the observed solid-body rotation curves, as we demonstrate

for the case of DDO 154.

We conclude that the slowly rising rotation curves are likely to

be a genuine problem of CDM models. It might be necessary to

consider other possible solutions, such as the effect of merging of

massive black holes or an unusual property of dark matter particles.
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Figure 7. Rotation curve of DDO 154 from a high-resolution H I data (from

Carignan & Purton (1998) compared with the final circular velocities of

Models A (dots), B (short dashes), and C (long dashes). The simulated

rotation curves are normalized to pass through the maximum of the

observed one, with no formal fitting attempted.
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