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ABSTRACT
We have derived a set of equations to describe the thermal evolution of a neutron star which
undergoes small-amplitude radial pulsations. We have taken into account, within the framework
of the general theory of relativity, the pulsation damping due to the bulk and shear viscosity
and the accompanying heating of the star. The neutrino emission of a pulsating non-superfluid
star and its heating due to the bulk viscosity are calculated assuming that both processes are
determined by the non-equilibrium modified Urca process. Analytical and numerical solutions
to the set of equations of the stellar evolution are obtained for linear and strongly non-linear
deviations from beta-equilibrium. It is shown that a pulsating star may be heated to very high
temperatures, while the pulsations damp very slowly with time as long as the damping is
determined by the bulk viscosity (a power-law damping over 100–1000 yr). The contribution
of the shear viscosity to the damping becomes important in a rather cool star with a low
pulsation energy.
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1 I N T RO D U C T I O N

Dissipation processes play an important role in neutron star physics;
for instance, they determine the damping of stellar pulsations (see,
e.g., Cutler, Lindblom & Splinter 1990). Pulsations may be ex-
cited during star formation or during the evolution of the star un-
der the action of external perturbations or internal instabilities. The
instabilities arising in a rotating star from the emission of gravita-
tional waves may be suppressed by dissipation processes. This af-
fects the maximum rotation frequency of neutron stars and creates
problems in the detection of gravitational waves (see, e.g., Zdunik
1996; Andersson & Kokkotas 2001; Lindblom 2001; Arras et al.
2003).

The joint thermal and pulsational evolution of neutron stars was
studied long ago (e.g. Finzi & Wolf 1968 and references therein).
Naturally, it was done with a simplified physics input and under
restricted conditions (Section 4). However, later, while estimating
the characteristic times of pulsational damping, one usually ignored
the temporal evolution of the stellar temperature (see, e.g., Cutler
& Lindblom 1987; Cutler et al. 1990), which led to an exponential
damping. This is not always justified because the parameters defin-
ing the damping rate, e.g. the bulk and shear viscosity coefficients,
are themselves temperature-dependent.

Clearly, the temperature variation can be neglected if the char-
acteristic damping time τ � t cool and E puls � E th, where tcool is
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the characteristic time of neutron star cooling, while Epuls and E th

are the pulsational and thermal energies, respectively. We will show
that these conditions are violated over a wide range of initial tem-
peratures and pulsation amplitudes.

This paper presents a self-consistent calculation of the dissipa-
tion of radial pulsations, taking into account the thermal evolu-
tion of a non-superfluid neutron star, the core of which consists of
neutrons (n), protons (p) and electrons (e). It extends the considera-
tion by Finzi & Wolf (1968) (see Section 4 for details). We consider
two dissipation mechanisms: one is via the non-linear (in the pul-
sation amplitude) bulk viscosity in the stellar core and the other
is due to the shear viscosity. We neglect other possible dissipation
mechanisms, in particular, the damping of pulsations induced by the
star magnetic field (as discussed in detail by McDermott et al. 1984
and by McDermott, van Horn & Hansen 1988). The magnetic field
is assumed to be low.

2 E I G E N F U N C T I O N S A N D
E I G E N F R E QU E N C I E S O F N O N - D I S S I PAT I V E
R A D I A L P U L S AT I O N S

Here we discuss briefly radial pulsations of a neutron star,
ignoring energy dissipation. This problem was first considered by
Chandrasekhar (1964), and we will refer to his results. The metric for
a spherically symmetric star, which experiences radial pulsations,
can be written as

ds2 = −eν dt2 + r 2 d�2 + eλ dr 2, (1)
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where r and t are the radial and time coordinates and d� is a solid
angle element in a spherical frame with the origin at the stellar centre.
Here and below, we use the system of units, in which light velocity
c =1. The functions ν andλdepend only on r and t and can be written
asν(r , t)=ν 0(r )+ δν(r , t);λ(r , t)=λ0(r )+ δλ(r , t). Hereν 0(r ) and
λ0(r ) are the metric functions for an unperturbed (equilibrium) star,
and δν(r , t) and δλ(r , t) are the metric perturbations due to the radial
pulsations (described by equations 36 and 40 of Chandrasekhar
1964).

The radial pulsations can be found by solving the Sturm–Liouville
problem (equation 59 of Chandrasekhar 1964). A solution gives
eigenfrequencies of pulsations ωk and eigenfunctions ξ k(r ), where
ξ k(r ) is the Lagrangian displacement of a fluid element with a ra-
dial coordinate r. By neglecting the dissipation and the non-linear
interaction between the modes (the pulsation amplitude is taken to
be small, |ξ k(r )| � r ), we can write the general solution for a kth
mode as ξ (r , t) = ξ k(r ) cos ωk t . The boundary conditions for the
Sturm–Liouville problem have the form P(r = R + ξ (R, t)) = 0,
ξ (0, t) = 0, where P(r , t) is the pressure and R is the unperturbed
stellar radius.

We employ the equation of state of Negele & Vautherin (1973)
in the stellar crust and the equation of state of Heiselberg & Hjorth-
Jensen (1999) in the stellar core. The latter equation of state is
a convenient analytical approximation of the equation of state of
Akmal & Pandharipande (1997). For this equation of state, the most
massive stable neutron star has a central density of ρ c = 2.76 ×
1015 g cm−3, a circumferential radius of R = 10.3 km and a mass
of M = M max = 1.92 M�. The powerful direct Urca process of
neutrino emission is open in the core of a star of mass M > 1.83 M�.

An important parameter which enters the equation of radial pulsa-
tions is the adiabatic index γ . As the frequency of stellar pulsations
is ωk � 1/t Urca, where tUrca is the characteristic beta-equilibration
time (see, e.g., Haensel, Levenfish & Yakovlev 2001; Yakovlev
et al. 2001), the adiabatic index must be determined assuming the
‘frozen’ nuclear composition (see, e.g., Bardeen, Thorne & Meltzer
1966):

γ = ∂ ln P(nb, xe)

∂ ln nb
, (2)

where nb is the baryon number density, x e = n e/nb, and ne is the
electron number density.

The relative radial displacement of matter elements in a pulsating
star (in the absence of dissipation effects) will be described by a
small parameter ε:

ε = lim
r→0

ξk(r )/r . (3)

Thus, ε determines the normalization of the function ξ k(r ).
Fig. 1 shows the dependence of ξ k(r )/r (artificially normalized

such that |ε| = 1) on the distance to the stellar centre r for the first
three modes with the frequencies ω0 = 1.705 × 104 s−1 (solid line),
ω1 = 4.121 × 104 s−1 (long dashed line) and ω2 = 5.950 × 104 s−1

(short dashed line), respectively. By way of illustration, we consider
a model of a star of mass M = 1.4 M� (R = 12.17 km, ρ c = 9.26 ×
1014 g cm−3). As expected, the fundamental mode is close to the
homological solution ξ 0(r ) = r . Introducing a normalization con-
stant, we obtain ξ 0(r ) = ε r . Therefore, for the fundamental mode, ε
determines the amplitude of relative displacements of the pulsating
stellar surface.

We will also need the pulsation energy, which can be calculated
if we formulate, for example, the variational principle for the char-
acteristic eigenvalue problem in question. For the kth radial mode,

Figure 1. The parameter ξ k/r normalized such that |ε| = 1, for the funda-
mental, first and second modes of radial stellar pulsations (solid, long-dashed
and short-dashed lines, respectively) versus the dimensionless radial coor-
dinate r/R.

we have (see, e.g., Meltzer & Thorne 1966)

Epuls = 1

2

∫
(P + ρ)

[
e(λ0−ν0)/2ωk ξk

]2
eν0/2 dV , (4)

where ρ is the mass density and dV = 4πr 2eλ0/2 dr is the volume
element measured in a comoving frame.

Taking account of the energy dissipation in the kth mode leads to
a relatively slow damping of pulsations. In particular, we take for
the Lagrangian displacement

ξ (r , t) = Ck(t) ξk(r ) cos ωk t, (5)

where Ck(t) is a slowly decreasing function of time (the character-
istic dissipation time τ � 1/ωk), which will be further termed the
pulsation amplitude. The dissipation is assumed to be ‘switched on’
at the moment of time t = 0, at which the initial amplitude is

Ck(0) = 1. (6)

From equation (4) the pulsation energy in the kth mode with dissi-
pation is

Epuls(t) = Epuls0C2
k (t). (7)

Using equations (4) and (7), we can estimate the pulsation energy
for the fundamental mode, E puls(t) ∼ 2 × 1053 ω2

4ε
2C2

k(t) erg. The
thermal energy of the star is E th ∼ (4π/3)R3cT T ∼ 1048T 2

9 erg,
where cT ∝ T is the specific (per unit volume) heat capacity of
the stellar matter (see, e.g., Yakovlev, Levenfish & Shibanov 1999)
and T 9 is the internal temperature of the star in units of 109 K,
ω4 = ωk/(104 s−1). These estimates show that there is a wide range
of values of the parameters ε, Ck(t) and T , at which E puls � E th. In
such a case, one should account, at least, for the stellar temperature
evolution during the damping of pulsations.
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3 N O N - E QU I L I B R I U M M O D I F I E D
U R C A P RO C E S S

The condition for beta-equilibrium in the stellar core has the form
δµ(r , t) = µn − µp − µe = 0, where µi is the chemical potential of
particle species i = n, p, e. Stellar pulsations lead to deviations from
beta-equilibrium, δµ(r , t) �= 0, and hence, to the dissipation of the
pulsation energy. The dissipation rate is determined by the processes
tending to return the system to equilibrium. We suggest that the
direct Urca process in the neutron star core is forbidden. Then the
main process which determines the pulsation energy dissipation
is the modified Urca process. In this section, we will discuss the
non-equilibrium modified Urca process and obtain the relationship
between the Lagrangian displacement ξ (r , t) and the parameter
δµ(r , t) that characterizes the local deviation from beta-equilibrium.

The non-equilibrium modified Urca process has been discussed
since the end of the 1960s (see the classical paper by Finzi & Wolf
1968 and references therein). However, those old studies were accu-
rate only qualitatively (see, e.g., Haensel 1992 and Section 4). Later
the problem was reconsidered by several authors (see, e.g., Haensel
1992; Reisenegger 1995; Haensel et al. 2001). Below, references
will primarily be made to the review of Yakovlev et al. (2001) since
we employ a similar notation. The modified Urca process has the
neutron and the proton branch, each including a direct and an inverse
reaction:

n + N → p + N + e + ν̄e, p + N + e → n + N + νe, (8)

where N = n or p for the neutron or proton branch, respectively.
In beta-equilibrium, the neutrino emissivities in these two channels
are given by

Q(n)
eq ≈ 8.1 × 1021

(
m∗

n

mn

)3 (
m∗

p

mp

)

×
(

np

n0

)1/3

T 8
9 αnβn erg cm−3 s−1, (9)

Q(p)
eq ≈ Q(n)

eq

(
m∗

p

m∗
n

)2
(pFe + 3pFp − pFn)2

8pFe pFp
�, (10)

where n0 = 0.16 fm−3 is the nucleon number density in atomic nu-
clei; np is the proton number density; mn and mp are the masses of
free neutrons and protons; m∗

n and m∗
p are the effective masses of

neutrons and protons in dense matter; pFe, pFp and pFn are, respec-
tively, the Fermi momenta of electrons, protons and neutrons; and
αn, β n ∼ 1 are the correction factors (for details, see Yakovlev et al.
2001). In equation (10) the function � = 1 if the proton branch is
allowed by momentum conservation (pFn < 3pFp + pFe), and � =
0 otherwise.

In beta-equilibrium, the direct and inverse reaction rates in equa-
tion (8) coincide, i.e. the matter composition does not change with
time. The reactions involve only particles in the vicinity of their
Fermi surfaces, with the energy |ε i − µi | � k BT , where i = n, p, e,
and kB is the Boltzmann constant. Therefore, the neutrino emissivity
depends sensitively on the temperature, and the process cannot oc-
cur at T = 0. A drastically different situation arises in the presence
of deviations from beta-equilibrium (δµ �= 0). The rates of the direct
and inverse reactions become different, the system tends to equilib-
rium, and the matter composition changes; the process remains open
even at T = 0.

Let � and �̄ be the numbers of direct and inverse reactions of the
modified Urca process per unit volume per unit time. The analyt-
ical expressions for �� = �̄ − � and for the neutrino emissivity

Qnon–eq = Q(n) + Q(p) of the non-equilibrium modified Urca process
were derived by Reisenegger (1995):

�� = 14 680

11 513

Qeq

kBT
y H (y), (11)

Qnon-eq = Qeq F(y), (12)

where Q eq = Q(n)
eq + Q(p)

eq ; and the functions H(y) and F(y) are given
by

H (y) = 1 + 189π2 y2

367
+ 21π4 y4

367
+ 3π6 y6

1835
, (13)

F(y) = 1 + 22 020π2 y2

11 513
+ 5670π4 y4

11 513

+ 420π6 y6

11 513
+ 9π8 y8

11 513
, (14)

where y ≡ δµ/(π2k BT ); the factor π 2 in the denominator is intro-
duced to emphasize that the real variation scale of the functions H(y)
and F(y) is δµ/(10k BT ) (not just δµ/k BT ). It follows from equa-
tions (11) and (12) that there are two pulsation regimes. The regime
with δµ � k BT (y � 1) will be referred to as subthermal and that
with δµ � k BT (y � 1) as suprathermal. Relative displacements of
fluid elements in both regimes are taken to be small (ε � 1). From
these equations one can see that the values of δµ �� and Qnon−eq

in the suprathermal regime are independent of temperature.
Let us now find the relationship between the Lagrangian displace-

ment ξ (r , t) and the chemical potential difference δµ(r , t). The
quantity δµ can be treated as a function of three thermodynamic
variables, say, nb, n e and T: δµ = δµ(nb, n e, T ). During pulsations,
these variables will deviate from their equilibrium values nb0, n e0

and T 0 by �nb(r , t), �n e(r , t) and �T (r , t). Taking the deviations
to be small, i.e. obeying the inequality ε � 1, one can write

δµ(r , t) = ∂δµ(nb0, ne0, T0)

∂nb0
�nb(r , t)

+ ∂δµ(nb0, ne0, T0)

∂ne0
�ne(r , t)

+ ∂δµ(nb0, ne0, T0)

∂T0
�T (r , t). (15)

The last term in equation (15) can be neglected because δµ(nb0,
n e0, T 0)/T 0 ∝ T 0 and �T (r , t) ∼ �nb(r , t) T 0/nb0 (see, e.g.,
Reisenegger 1995). Accordingly, for strongly degenerate matter
(µi � k BT 0, i = n, p, e), this term is much smaller than the first
two terms. The temperature T will further denote an ‘average’ tem-
perature T 0 and its oscillations around the equilibrium value will be
neglected.

The form of the functions nb(r , t) and n e(r , t) can be found from
the continuity equations for baryons and electrons:(

nbuα
)

; α
= 0, (16)(

neu
α
)

; α
= ��, (17)

where uα = dxα/ds is the velocity four-vector of the pulsating mat-
ter. Note that the source �� in the continuity equation for electrons
is responsible for beta-relaxation processes.

Writing explicitly the covariant derivatives in equations (16) and
(17) in the metric (1) and neglecting all terms which are quadratic
and higher order in ξ (r , t), one obtains

∂nb

∂t
+ eν0/2

r 2

∂

∂r

[
nb0r 2e−ν0/2 ∂ξ (r , t)

∂t

]
= 0, (18)
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∂ne

∂t
+ eν0/2

r 2

∂

∂r

[
ne0r 2e−ν0/2 ∂ξ (r , t)

∂t

]
= ��eν0/2. (19)

These expressions have been derived using equation (36) of
Chandrasekhar (1964) for the correction δλ(r , t) to the metric (see
Section 2):

δλ(r , t) = −ξ (r , t)
d

dr
(λ0 + ν0). (20)

Equation (18) is easily integrated and yields

�nb(r , t) ≡ nb(r , t) − nb0

= − eν0/2

r 2

∂

∂r

[
nb0r 2e−ν0/2 ξ (r , t)

]
. (21)

The solution to equation (19) can be written as

�ne(r , t) ≡ ne(r , t) − ne0 = �ne0(r , t) + �ne1(r , t), (22)

�ne0(r , t) = − eν0/2

r 2

∂

∂r

[
ne0r 2e−ν0/2 ξ (r , t)

]
, (23)

where �n e0(r , t) describes variations of the electron number den-
sity ignoring beta-processes, while the function �n e1(r , t) describes
variations determined by these processes. The latter function satis-
fies the equation

∂�ne1

∂t
= �� eν0/2. (24)

Generally, the source �� is a complicated function of the electron
number density n e(r , t). We are, however, interested in the high-
frequency limit, where ωk � 1/t Urca (see Section 2). In that case,
the source in the right-hand side of equation (19) is smaller than other
terms. This means that changes in the electron number density due
to beta-transformations are relatively small in a pulsating star (see,
e.g., Haensel et al. 2001). Therefore, the small parameter �n e1 can
be omitted in equation (15).

By substituting the expressions for �nb and �n e from equa-
tions (21) and (23) into equation (15), we find the relationship be-
tween δµ(r , t) and ξ (r , t):

δµ(r , t) = −∂δµ(nb0, xe0)

∂nb0
nb0

eν0/2

r 2

∂

∂r
[r 2e−ν0/2 ξ (r , t)]. (25)

Note that the partial derivative with respect to nb0 is taken at constant
x e0 = n e0/nb0. Using equation (25), we can express the parameter
y = δµ/(π2k BT ), as well as �� and Qnon–eq (see equations 11 and
12), through the Lagrangian displacement ξ (r , t). The relationship
between δµ(r , t) and ξ (r , t) for non-radial pulsations can be derived
in a similar way.

4 T H E E QUAT I O N S O F S T E L L A R T H E R M A L
E VO L U T I O N A N D P U L S AT I O N DA M P I N G O U T
O F B E TA - E QU I L I B R I U M

The thermal balance equation for a pulsating neutron star will be
derived, taking into account three dissipation mechanisms: the shear
viscosity in the core, the non-equilibrium beta-processes in the core
and heat conduction. The equations of relativistic fluid dynamics to
describe energy–momentum conservation are written as

T αβ

;β = −Qν uα, (26)

where Q ν is the total neutrino emissivity of all processes (includ-
ing the non-equilibrium modified Urca process described by equa-
tion 12); T αβ is the energy–momentum tensor to be written as (see,

e.g., Weinberg 1971):

T αβ = Pgαβ + (P + ρ) uαuβ

+ �T αβ

shear + �T αβ

cond, (27)

�T αβ

shear = −η Hαγ Hβδ

(
uγ ;δ + uδ ;γ − 2

3
gγ δ uλ

;λ

)
, (28)

�T αβ

cond = −κ(Hαγ uβ + Hβγ uα)
(

T;γ + T uγ ;δ uδ
)
, (29)

where gαβ is the metric tensor, η is the shear viscosity coefficient,
κ is the thermal conductivity and Hαβ = gαβ + uα uβ is the projec-
tion matrix. In this paper we use η = ηe, where the electron shear
viscosity ηe in the stellar core is taken from Chugunov & Yakovlev
(2005). We neglect the shear viscosity of neutrons (the proton shear
viscosity is even smaller, see Flowers & Itoh 1979) because it de-
pends strongly on the nuclear interaction model and the many-body
theory employed. A similar problem for heat conduction was dis-
cussed by Baiko, Haensel & Yakovlev (2001). The neutron shear
viscosity is comparable to the electron shear viscosity (Flowers &
Itoh 1979), but it cannot change our results qualitatively.

The use of equations (16), (17) and (26) together with the second
law of thermodynamics (dρ =µn dnn + µp dnp + µe dn e + T dS)
can yield the continuity equation for the entropy in the neutron star
core (see, e.g., Landau & Lifshitz 1959; Weinberg 1971):

(Suα);α = (Qbulk + Qshear + Qcond − Qν) /kBT , (30)

Qbulk = δµ ��, Qshear = (
�T αβ

shear

)
;β

uα, (31)

Qcond = (
�T αβ

cond

)
;β

uα, (32)

where S is the entropy density and Qbulk is the pulsation energy
dissipating into heat per unit volume per unit time owing to the
non-equilibrium modified Urca process. The latter term can be in-
terpreted as viscous dissipation due to an effective bulk viscosity.
We will show below that at δµ � k BT it coincides with the term
commonly considered by other authors (see, e.g., Sawyer 1989 or
Haensel et al. 2001). The term Qshear describes the dissipation of
pulsation energy into heat due to the shear viscosity. The term
Qcond is generally responsible for heat diffusion in the star bulk
and for the dissipation of pulsation energy due to heat conduction.
Finally, Q ν is the neutrino emissivity. In this work, the quantity
Qcond was calculated using an unperturbed metric [the metric (1)
with ν = ν 0 and λ = λ0] neglecting temperature variations over
a pulsation period. The result coincides with the similar expres-
sion well known in the cooling theory of non-pulsating neutron
stars (see, e.g., Thorne 1977; van Riper 1991). These assumptions
are quite reasonable in the case of strongly degenerate matter. The
damping due to heat conduction has been analysed by Cutler &
Lindblom (1987) for the more general case of non-radial pulsa-
tions. The conclusion drawn by these authors was that the contribu-
tion of heat conduction to the dissipation of pulsation energy can be
neglected.

For the spherically symmetric metric (1), the left-hand side of
equation (30) can be rewritten as

(Suα);α =
{

∂(S eλ/2)

∂t
+ 1

r 2

∂

∂r

[
r 2 S eλ/2 ∂ξ (r , t)

∂t

]}
e−(λ+ν)/2.

(33)

In our further treatment, we will use the isothermal approximation,
in which the redshifted internal temperature is taken to be constant
over the star bulk: T̃ = T eν/2 = constant. This approximation works
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well for a cooling star of age t � (10–50) yr (see, e.g., Yakovlev
et al. 2001; Yakovlev & Pethick 2004). The isothermal approxi-
mation considerably simplifies calculations without any significant
loss of accuracy (at least for the case of non-equilibrium modified
Urca processes). Using equation (33) and the integral form of equa-
tion (30), and averaging over a pulsation period, we arrive at the
thermal balance equation:

dEth

dt
≡ CT

dT̃

dt
= −Lphot − Lν + Wbulk + Wshear, (34)

CT =
∫

cT dV , (35)

Lphot = 4πR2 σ T 4
s eν0(R), Lν =

∫
Qν eν0 dV , (36)

Wbulk =
∫

Qbulk eν0 dV , Wshear =
∫

Qshear eν0 dV , (37)

where Lphot and L ν are the redshifted photon and neutrino luminosi-
ties of the star; W bulk and W shear denote the heat released in the star
per unit time owing to the bulk and shear viscosities, respectively; σ
is the Stefan–Boltzmann constant; T s is the effective surface temper-
ature (the relationship between the surface and internal temperatures
is reviewed, for example, by Yakovlev & Pethick 2004). The upper
horizontal line denotes averaging over a pulsation period. In deriv-
ing equation (34), we neglected the terms of the order of ∼T 2ε2, as
compared with those of ∼T 2, in the left-hand side of the equality.
The term Qcond in equation (30) leads to the appearance of Lphot in
equation (34).

The rate of the heat release due to the shear viscosity is

Qshear = η

3

e−ν0

r 2

(
−2r

∂2ξ (r , t)

∂r∂t
+ 2

∂ξ (r , t)

∂t
+ r

∂ξ (r , t)

∂t

dν0

dr

)2

= η

6
ω2

k C2
k (t)

e−ν0

r 2

(
−2r

dξk

dr
+ 2ξk + rξk

dν0

dr

)2

. (38)

Among the processes contributing to the neutrino emissivity Q ν , the
only process for which the emissivity Qnon-eq can vary dramatically
over a pulsation period is the modified Urca process (we assume that
the direct Urca process is forbidden). The expression for Qnon-eq is
obtained from equation (12) by averaging over the pulsation period
P = 2 π/ωk allowing for y(r , t) = y0 cos(ωk t), where y0 is a slowly
varying function of time:

Qnon-eq = Qeq

(
1 + 11 010π2 y2

0

11 513

+ 8505π4 y4
0

46 052
+ 525π6 y6

0

46 052
+ 315π8 y8

0

1473 664

)
, (39)

y0 = Ck(t)

π2kBT

∂δµ(nb0, xe0)

∂nb0
nb0

eν0/2

r 2

∂

∂r

(
r 2e−ν0/2 ξk

)
. (40)

Similarly, equations (11) and (25) result in the expression for the
heating rate produced by the dissipation of the pulsation energy due
to deviations from beta-equilibrium:

Qbulk = 14 680π2

11 513
Qeq

×
(

y2
0

2
+ 567π2 y4

0

2936
+ 105π4 y6

0

5872
+ 21π6 y8

0

46 976

)
. (41)

Analogous expressions for the non-equilibrium direct Urca process
are presented in the Appendix.

The quantities Qnon-eq(y0) and Qbulk(y0) for the modified Urca
process were calculated numerically by Finzi & Wolf (1968). Their
results (their fig. 1) at y0 � 1 are correct only qualitatively (Haensel
1992), although they become exact in the limit of y0 � 1.

Using equations (39) and (41), one can easily find the neutrino
emissivity and the viscous dissipation rate of the non-equilibrium
modified Urca process for both subthermal or suprathermal pul-
sations (if they are small, i.e. ε � 1). The typical value y0 of the
parameter y0 in the stellar core can be estimated for the fundamental
mode as

y0 ∼ 100 εCk(t)/T9. (42)

Thus, we have derived the equation describing the thermal evo-
lution of a pulsating neutron star. This equation depends on the
current pulsation amplitude Ck(t) and, hence, on the pulsation en-
ergy E puls(t) (see equation 7). Let us now derive the equation to
describe the evolution of the pulsation energy. In principle, it can
be obtained from the ‘pulsation equation’ (59) of Chandrasekhar
(1964) by taking into account the dissipation terms and considering
them as small perturbations (generally non-linear in ξ k). We have
performed this derivation, but here we will present a much simpler
derivation following from the energy conservation law. One should
bear in mind that the pulsation energy dissipates due to the bulk
and shear viscosities and is fully spent to heat the star. The cor-
responding terms have already been found for the thermal balance
equation (34). The same terms, but with the opposite sign, should be
valid for the damping equation which can thus be presented in the
form:
dEpuls

dt
= −Wbulk − Wshear. (43)

The set of equations (34) and (43) has to be solved to obtain self-
consistent solutions for the pulsation amplitude Ck and temperature
T̃ as a function of time.

Similar equations were formulated, analysed and solved numer-
ically by Finzi & Wolf (1968) under some simplified assumptions.
In particular, the authors neglected the pulsational damping due to
the shear viscosity (W shear = 0). They used approximate expressions
for L ν and W bulk (see above) and neglected the effects of general
relativity. In addition, they used simplified models of neutron stars
and stellar oscillations. However, their approach was quite sufficient
to understand the main effects of the non-equilibrium modified Urca
process on the thermal evolution of neutron stars and damping of
their vibrations. We extend this consideration using the updated mi-
crophysics input with the proper treatment of the effects of the shear
viscosity and general relativity.

We can generally write:

CT = 1039 aC T̃9 erg K−1, Lν0 = 1040 aL T̃ 8
9 erg s−1,

Epuls = 1053 aP ω2
4 ε2C2

k erg, Eth = CT T̃ /2,

Lν = Lν0

(
1 + a1 y2

0 + a2 y4
0 + a3 y6

0 + a4 y8
0

)
,

Wshear = 1038 aS ω2
4 y2

0 erg s−1,

Wbulk = Lν0

(
2

3
a1 y2

0 + 4

3
a2 y4

0 + 2a3 y6
0 + 8

3
a4 y8

0

)
,

y0 ≡ 102 εCk/T̃9, (44)

where T̃9 = T̃ /(109K); L ν0 is the neutrino luminosity of a non-
pulsating star; aC, aL, aP, aS, a1, . . . , a4 are dimensionless factors
which depend on a stellar model and on a pulsation mode. For our
model of a neutron star with M = 1.4 M� (the equation of state of
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Heiselberg & Hjorth-Jensen 1999) and for the fundamental pulsation
mode we have obtained aC = 1.88, aL = 5.34, aP = 1.81, aS = 4.75,
a1 = 9.18, a2 = 20.0, a3 = 15.0, a4 = 3.61.

5 A NA LY T I C A L S O L U T I O N S
A N D L I M I T I N G C A S E S

Before presenting numerical solutions to equations (34) and (43),
let us point out general properties of the solutions and consider the
limiting cases. Numerical values will be given for the fundamental
mode and for the above model of the star with M = 1.4 M�.

Equation (43) describes the damping of pulsations due to the bulk
and shear viscosities. In the present problem, there are no instabil-
ities that could amplify stellar pulsations. In contrast, the thermal
balance equation (34) permits both stellar cooling (at L ν + L phot >

W bulk + W shear) and heating due to the viscous dissipation of the
pulsation energy (at L ν + L phot < W bulk + W shear).

One may expect qualitatively different solutions in the subthermal
(y0 � 1) and suprathermal (y0 � 1) regimes. For the former, we
have E puls � E th, while for the latter E puls �E th.

5.1 The modified Urca regime

A sufficiently hot star has L phot � L ν and W shear � W bulk. Then
the evolution of pulsations and the thermal evolution of the star are
totally determined by the non-equilibrium modified Urca process.
The main features of this modified Urca regime were analysed by
Finzi & Wolf (1968). We present this analysis using a more accurate
approach (see above).

This regime is conveniently studied by analysing the evolution
of T̃ (t) and y0(t). Neglecting Lphot and W shear, we can rewrite equa-
tions (34) and (43) as

2Eth

y0

dy0

dt
= Lν − Wbulk

(
1 + Eth

Epuls

)
= T̃ 8 A(y0), (45)

2Eth

T̃

dT̃

dt
= −Lν + Wbulk = T̃ 8 B(y0), (46)

where Eth/Epuls = aC/(20 y2
0 aP ω2

4); the functions A(y0) and B(y0)

are independent of T̃ . Their exact form is easily deduced from
equation (44). One immediately has d ln y0/d ln T̃ = A(y0)/B(y0),
which allows one (in principle) to obtain the relation between y0

and T̃ in an integral form. Equations (45) and (46) have two special
solutions.

The first solution is obvious and refers to an ordinary non-
vibrating [y0(t) ≡ 0] cooling neutron star. In this case

T̃ (t) = T̃ (0)
/[

1 + 6β0T̃ 6
9 (0) t

]1/6
, (47)

where β 0 = aL/(108 aC). We have β 0 ≈ 1/(1.12 yr), for our neutron
star model.

The second solution is realized (Finzi & Wolf 1968) if the initial
value y0(0) satisfies the equation

Lν

Wbulk
= 1 + Eth

Epuls
= 1 + aC

20 y2
0 aP ω2

4

, (48)

at which A(y0) = 0 and dy(t)/dt = 0. In this case y0(t) remains
constant during the modified Urca stage. We will denote this specific
value of y0 by y0L ; it is equal to y0L ≈ 0.607 for our neutron star
model. In this limiting case T̃ (t) and Ck(t) are easily obtained from
equation (34):

T̃ (t) = T̃ (0)
/[

1 + 6β T̃ 6
9 (0) t

]1/6
, (49)

Ck(t) = T̃9(t) y0L/102ε, (50)

where β = aL(L ν − W bulk)/(108 aC L ν0) [≈1/(3.05 yr), for our
model]. Thus, the internal stellar temperature T̃ (t) and the pulsa-
tion amplitude Ck(t) simultaneously decrease with time, leaving the
suprathermality level constant, intermediate between the subther-
mal and suprathermal pulsation regimes. The decrease follows a
power law (i.e. is non-exponential).

The thermal evolution of neutron stars in the two limiting cases
is remarkably similar. If the star was born sufficiently hot [T̃ (0) �
109 K] then within a few years after the birth the initial temperature
becomes forgotten. For the non-vibrating star from equation (47)
we have T̃ (1)

9 (t) ≈ (6β0 t)−1/6, while for the vibrating star from
equation (49) we have T̃ (2)

9 (t) ≈ (6β t)−1/6. Thus, the vibrating star
stays somewhat hotter, T̃ (2)(t)/T̃ (1)(t) = (β0/β)1/6 (≈1.18 for our
model).

Once the two limiting solutions are obtained, all other solutions
for the modified Urca regime become clear. If y0(0) > y0L , then
A(y0(0)) < 0 and y0(t) will tend to y0L from above. If y0(0) < y0L ,
then A(y0(0)) > 0 and y0(t) will tend to y0L from below. After y0(t)
comes sufficiently close to y0L , the stellar evolution is approximately
described by the limiting solution given by equations (49) and (50).
Therefore, this limiting solution describes the universal asymptotic
behaviour of all vibrating neutron stars.

5.2 The damping of oscillations by the shear viscosity

One may expect qualitatively different solutions for the damping
due to the bulk viscosity (Wbulk � Wshear, a hot star) and the shear
viscosity (Wshear � Wbulk, a cold star). Using equations (44), it is pos-
sible to show that the temperature T visc separating these two regimes
(and obeying the condition W bulk ∼ W shear) is approximately equal
to Tvisc ∼ 7 × 108/(1 + y2

0)3/8 K. For the regime of damping due
to shear viscosity (T � T visc), equation (43) reduces to a linear
equation for Ck(t), irrespective of the value of y0:

dCk(t)

dt
= −αshear

2T̃ 2
9

Ck(t), (51)

where α shear ≈ 3 × 10−11 s−1 ∼ 1/(1000 yr) is a constant factor.
The solution to this equation shows an exponential damping, which
is independent of y0:

Ck(t) = Ck(t0) exp

[
−αshear

2

∫ t

t0

dt ′

T̃ 2
9 (t ′)

]
. (52)

5.3 Subthermal pulsations

In this case (y0 � 1), equation (41) can be reduced to

Qbulk = 14 680π2

11 513
Qeq

y2
0

2

= ζ

[
1

r 2

∂

∂r

(
r 2e−ν0/2

∂ξ (r , t)

∂t

)]2

= ζ
(

u α
;α

)2
, (53)

ζ = 14 680

11 513π2

Qeq

(kBT )2

n2
b0

(ωke−ν0/2)2

[
∂δµ(nb0, xe0)

∂nb0

]2

. (54)

The quantity ζ can be treated as the bulk viscosity. Equation (54)
coincides with the corresponding expression of Sawyer (1989) and
Haensel et al. (2001). If the temperature remains constant during
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the damping, equations (7) and (43) yield an exponential fall of the
pulsation amplitude Ck(t), which is often discussed in the literature
(see, e.g., Cutler et al. 1990).

According to equation (44), the subthermal regime is character-
ized by L ν ≈ L ν0 � W bulk. In this case pulsations do not affect the
neutrino luminosity, and the energy dissipation due to the bulk vis-
cosity cannot produce a considerable stellar heating. The dissipation
due to the shear viscosity is also too weak, W shear � L ν0. For these
reasons, the pulsations do not change significantly the thermal bal-
ance equation (34) and the thermal evolution of the star. At the neu-
trino cooling stage (when L ν0 � L phot, which happens at t � 105 yr)
we obtain the well-known formula (47) for non-superfluid neutron
stars that cool via the modified Urca process. It can be rewritten as
(see, e.g., Yakovlev & Pethick 2004)

t = CT T̃ /(6Lν0) ∼ 1 yr/T̃ 6
9 . (55)

This value of t can be considered as a characteristic cooling time tcool

of the star with internal temperature T̃ . For a hot star with W bulk �
W shear (T � T visc; the modified Urca regime), equation (43) gives
the characteristic pulsation damping time

tpuls ∼ Epuls/Wbulk ∼ tcool. (56)

Therefore, the internal temperature T̃ and the typical imbalance of
the chemical potentials δµ decrease with approximately the same
characteristic time tcool (see, e.g., Yakovlev et al. 2001). The param-
eter y0 ∝ δµ/T̃ , which describes the ‘level’ of pulsations relative
to the thermal ‘level’, should tend to the limiting value y0L (Section
5.1). The damping of pulsations obeys the power law (rather than
an exponential, as would be the case in the absence of thermal evo-
lution). This is because the viscous damping rate depends strongly
on temperature, Wbulk ∝ T̃ 6.

In a cooler star (T̃ � Tvisc, Wshear � Wbulk), the damping of
subthermal pulsations is due to the shear viscosity and occurs, ac-
cording to equation (52), more abruptly (exponentially), decreasing
the pulsation level y0.

5.4 Suprathermal pulsations

In this case, the quantity Qbulk cannot be generally described by an
expression of the type of equation (53). Strictly speaking, we cannot
introduce a bulk viscosity ζ , but equation (41) adequately describes
the rate of the pulsation energy dissipation due to the modified Urca
process. Nevertheless, at least for radial suprathermal pulsations, the
quantity Qbulk can be formally calculated from equation (53), as be-
fore, with the effective bulk viscosity ζ being given by equation (54)
with an additional factor of Qbulk/Qbulk(y0 → 0). In the suprather-
mal regime, the effective bulk viscosity and the viscous dissipation
rate appear to be much larger than in the subthermal regime, as
was pointed out by Haensel, Levenfish & Yakovlev (2002). How-
ever, there is an omission in their equations (13)–(15) for the effec-
tive bulk viscosity in the suprathermal regime: the authors should
have introduced an additional factor of ∼(1 + y2

0). This does not
change their principal results qualitatively. Nevertheless, we stress
that while analysing the damping of pulsations, one should account
for the thermal evolution of the star. Accordingly, in the suprathermal
regime equation (16) of Haensel et al. (2002) gives the characteristic
time of the non-exponential damping.

The pulsation equation (43) in the suprathermal regime (Epuls �
Eth, y0 � 1) at Wbulk � Wshear (T̃ � Tvisc; the modified Urca

regime) can be rewritten as

dC2
k (t)

dt
= −αbulkC8

k (t), (57)

where αbulk ≈ 3 × 104 ε6/ω2
4 s−1 is a constant factor. Assuming

Ck(0) = 1 we obtain

Ck(t) ≈ (1 + 3αbulkt)−1/6. (58)

This solution describes a slow (power-law) fall of the pulsation
amplitude ∼t−1/6 with the characteristic time 1/(3 αbulk). In this
regime, the stellar heating always dominates over the cooling, with

the heating rate Wbulk ≈ 8
3 Lν ∝ δµ

8
being nearly independent of

temperature (determined by the imbalance of the chemical poten-
tials δµ). This result was obtained by Finzi & Wolf (1968). The
power-law decrease of Ck(t) is associated with a strong dependence
of W bulk on δµ (which mimics the dependence on T in the sub-
thermal regime). The relative pulsation amplitude should decrease,
and the star should evolve to the subthermal regime (y0 → y0L ;
Section 5.1).

In a rather cool star, the damping of pulsations due to the shear
viscosity dominates over the damping caused by the bulk viscosity
(Wshear � Wbulk, T̃ � Tvisc). The shear viscous damping is expo-
nential, according to equation (51), so that the star rapidly evolves
to the subthermal regime.

6 R E S U LT S

Generally, the set of equations (34) and (43) has no analytical
solution, and we have to solve it numerically. We have modified
the isothermal version of our cooling code (for details see the re-
view by Yakovlev et al. 1999) by including a block for solving the
damping equation (43). Our code calculates the stellar surface tem-
perature T ∞

s (redshifted for a distant observer), as a function of
time t, as well as Ck(t). All of the computations presented in this
section are for the fundamental mode of radial pulsations. Com-
putations for higher modes will not lead to qualitatively different
conclusions.

The left-hand panel of Fig. 2 shows the thermal evolution paths of
a neutron star (M = 1.4 M�), which differ in the initial internal tem-

perature T̃ (0) = T̃0 and the initial relative amplitude of pulsations
ε (see equation 3). The right-hand panel presents Ck(t) curves for
the same models. The dotted curve on the left-hand panel shows the
cooling of a non-pulsating star (in the isothermal approximation).
The circle indicates the observations of the Vela pulsar. References
to the original observations can be found in Gusakov et al. (2004).

The solid lines in both panels of Fig. 2 are for the model with
T̃0 = 1010 K and ε = 0.01. This model describes a star which was
born hot and strongly pulsating. The initial pulsation energy is about
half that of its initial thermal energy, and the star is in an intermediate
pulsation regime, between the supra- and subthermal regimes, with
δµ ∼ kBT . The heating due to viscous dissipation is not as fast
as the neutrino cooling due to the non-equilibrium modified Urca
process and the star is cooling down. The main contribution to the
dissipation at the initial stage is produced by the bulk viscosity. The
maximum difference between the surface temperatures of such a star
and a non-pulsating star occurs at t � 1000 yr. During this period
of time, δµ remains of the order of kBT (y0 ≈ y0L ). At t � 1000 yr,
the damping begins to be determined by the shear viscosity, which
is not as temperature-dependent as the bulk viscosity. This leads to
exponential damping in the subthermal regime (E puls/E th � 1; see
the right-hand panel of Fig. 2).
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Figure 2. Temporal evolution of the surface temperature (left) and pulsation amplitude (right) for three initial conditions: T̃0 = 1010 K, ε = 0.01 (solid lines);
T̃0 = 106 K, ε = 0.01 (dashed lines); T̃0 = 106 K, ε = 0.0001 (dash-dotted lines). The short dashed lines denote a self-consistent calculation, the long dashed
lines are calculated neglecting non-linear effects due to deviations from the beta-equilibrium (see the text). The dotted line on the left-hand panel shows the
cooling of a non-pulsating star. The full circle denotes the observations of the Vela pulsar. The inset displays the pulsation damping at t � 30 yr in more detail.

The short dashed lines in Fig. 2 correspond to an initially cold
star with T̃0 = 106 K and ε = 0.01. The initial ratio of the pulsation
energy to the thermal energy is E puls0/E th0 ∼ 5 × 107, i.e, the
star pulsates in a strongly suprathermal regime. As follows from
equation (44), at low temperatures we have W bulk � W shear, and the
star is initially heated up by the shear viscosity. The heating due to
the bulk viscosity starts to dominate only at T̃ � 5 × 108 K. After
heating to T̃ ≈ 1.7 × 109 K in t ∼ 1 month, the star appears in the
intermediate regime with δµ ∼ kBT and begins to cool down. At
t � 10 yr, the star starts evolving along the same ‘universal’ path
(y0 ≈ y0L ) as in the first model.

The long dashed curves are obtained for the same initial condi-
tions but in the ‘naive’ approximation neglecting non-linear effects
in non-equilibrium beta-processes. In particular, the neutrino lumi-
nosity is taken to be L ν = L ν0 and the damping due to the bulk
viscosity is determined by equations (53) and (54). One can see
that this approximation leads to qualitatively incorrect results. The
viscous heating during the first year after the pulsation excitation
is much slower than in the scenario with non-linear effects, and the
star heats up slowly. The neutrino luminosity is also lower, which
enables the star to heat to higher temperatures. In fact, the slow
damping due to the bulk viscosity does not decrease the pulsation
amplitude during the first year.

The dash-and-dot lines in Fig. 2 refer to the cold star with
T̃0 = 106 K and ε = 0.0001. The initial ratio of the pulsation and
thermal energies is E puls0/E th0 ∼ 5 × 103, which means that the
star is initially in the suprathermal regime. Nevertheless, the pul-
sation energy E puls0 ∼ 5 × 1045 erg is insufficient to heat the star
to a temperature at which the damping is determined by the bulk
viscosity. For this reason, the pulsation energy is damped by the
shear viscosity. The damping of pulsations takes ∼100 yr (see the
right-hand panel of Fig. 2). At t � 100 yr the star cools via photon
emission from the surface. It is clear from the left-hand panel that
this model can, in principle, explain the surface temperature of a
neutron star with the same thermal X-ray luminosity as the Vela
pulsar but with a different history. For example, it may be an old
and cold isolated neutron star, in which radial pulsations have been

excited. Approximately 10 yr after the excitation, the star will be
heated to the temperature of the Vela pulsar. In 100 yr, the pulsa-
tions will die out but the star will stay warm for ∼105 yr before it
starts cooling down noticeably. It should be emphasized that these
results will not change if we take a lower initial temperature, e.g.
T̃0 = 104 K. This star will also acquire a surface temperature of
T ∞

s ∼ 7 × 105 K in a year and will emit in soft X-rays.
For a correct calculation of the pulsation damping, one should

take into account the thermal evolution of the star. The evolutionary
effects are especially important when the damping is determined by
non-equilibrium beta-processes. They are relatively weak only in
the subthermal regime, provided the damping is produced by shear
viscosity.

These statements are also illustrated in Fig. 3 which shows the
pulsation damping for a star with the initial internal temperature
T̃ (0) = 109 K and the initial relative pulsation amplitude ε = 0.01.
The initial ratio of the pulsation-to-thermal energy is E puls0/E th0 ∼
50, indicating that the star is pulsating in a slightly suprathermal
regime. The solid line is the result of a self-consistent solution of
the thermal evolution and damping equations. The damping follows
a power law for about 100 yr; afterwards the damping is determined
by the shear viscosity and becomes exponential. The pulsations die
out completely in ∼1000 yr.

The dotted line in Fig. 3 shows the solution to the damping
equation neglecting the thermal evolution, at a constant internal
temperature T̃ = T̃ (0). In this case, the pulsations are first damped
by the bulk viscosity and then by the shear viscosity in ∼30 yr.

The short dashed curve is obtained by taking into account the
thermal evolution and damping, but neglecting the non-linear effects
in non-equilibrium beta-processes. For about 100 yr, the damping is
governed by the bulk viscosity; it follows a power law, but is slower
than with the non-linear effects. Later, the shear viscosity becomes
important, leading to exponential damping, nearly the same as with
the non-linear effects.

Finally, the long dashed curve is calculated neglecting both the
thermal evolution and the non-linear effects. As in the case with
these effects (the dotted curve), the damping is steep (exponential),
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Figure 3. Temporal evolution of the pulsation amplitude for the initial
conditions: T̃0 = 109 K, ε = 0.01. The solid line presents a consistent
calculation taking account of the thermal evolution and non-linear deviations
from beta-equilibrium (see the text); the dotted line shows the same but with
the internal stellar temperature fixed; the short dashed line is the same as the
solid line but without non-linear effects; the long dashed line is obtained by
neglecting non-linear effects at the fixed temperature. The inset displays the
pulsation damping at t � 30 yr in more detail.

taking about 30 yr, but occurs slightly more slowly (the long dashed
curve is above the dotted curve).

7 S U M M A RY

Extending the consideration of Finzi & Wolf (1968) we have anal-
ysed the thermal evolution of a non-superfluid star which undergoes
small-amplitude radial pulsations. We have derived a set of equa-
tions to describe the thermal evolution and the damping of pulsations
within the framework of general relativity. We have included the ef-
fects of non-linear deviations from beta-equilibrium in the modified
Urca process on the neutrino luminosity and on the pulsation en-
ergy dissipation due to the bulk viscosity in the stellar core. We
have also taken into account the dissipation due to the shear viscos-
ity and the associated heating. A set of equations for the evolution
of a neutron star with a nucleon core, in which the direct Urca pro-
cess is forbidden, has been analysed and solved analytically and
numerically.

We have shown that the evolution of a pulsating star depends
strongly on the degree of non-linearity of the non-equilibrium mod-
ified Urca process and on the nature of the pulsation damping (the
shear or bulk viscosity). In the non-linear regime, the star may be
considerably heated by the pulsation energy dissipation but it is
always cooled down in the linear regime. Pulsations of a hot star
are damped by the bulk viscosity in both the linear and non-linear
regimes, and this process is rather slow (a power law). In a cooler
star, the damping is produced by the shear viscosity and goes much
faster (exponentially). The characteristic times of damping of the
fundamental mode lie within the range 100–1000 yr.

We have not discussed here the specific damping mechanism via
the ambipolar diffusion of electrons and protons relative to neu-

trons when the averaged (over the period) chemical composition of
the stellar matter remains constant in time. As far as we know, this
mechanism of pulsation damping has not been analysed in the liter-
ature. However, it may be as efficient as the damping by the shear
viscosity, at least in the suprathermal regime. We will consider this
problem in a separate publication.

The analysis presented here is based on a simplified model. In
particular, if the direct Urca process is open in the stellar core or
if the core contains hyperons or quarks, the bulk viscosity can be
many orders of magnitude higher than discussed here (see, e.g.,
Haensel et al. 2002 and references therein). The results may also
differ significantly for superfluid neutron stars, because superfluid-
ity drastically changes the reaction rates in dense matter and, hence,
its kinetic properties, including the viscosity. It would also be in-
structive to consider other types of neutron star pulsations, primarily
r-modes. They can be accompanied by the emission of gravitational
waves (see, e.g., Andersson & Kokkotas 2001) which can, in prin-
ciple, be registered by next generation gravitational detectors. We
expect to continue the analysis of the evolution of pulsating neutron
stars.
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A P P E N D I X : N O N - E QU I L I B R I U M D I R E C T
U R C A P RO C E S S

If the non-equilibrium direct Urca process is allowed in a pulsating
neutron star, it can also be described by the quantities Qnon-eq and
Qbulk given by equations (12) and (31), respectively. These quan-

tities are taken from Yakovlev et al. (2001) and are denoted here
as Q(D)

non-eq(y) and Q(D)
bulk(y). The averaging over a pulsation period

yields

Q
(D)
non-eq = Q(D)

eq

(
1 + 1071π2 y2

0

914

+ 945π4 y4
0

3656
+ 105π6 y6

0

7312

)
, (A1)

Q
(D)
bulk = 714π2

457
Q(D)

eq

(
y2

0

2
+ 15π2 y4

0

68
+ 5π4 y6

0

272

)
, (A2)

where Q(D)
eq is the neutrino emissivity of the direct Urca process

and (as before) y0 = δµ/(π2 k BT ). In a pulsating star with the
allowed direct Urca process, Q

(D)
non-eq and Q

(D)
bulk should be included

in the quantities Qnon-eq and Qbulk given by equations (34) and (43),
respectively. In the absence of nucleon superfluidity, the contribution
of the direct Urca process into Q

(D)
non-eq and Q

(D)
bulk is five to seven orders

of magnitude greater than that of the modified Urca process.
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