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ABSTRACT

The unprotected left turn of a connected automated vehicle

(CAV) is investigated when it has a potential conflict with a con-

nected human-driven vehicle (CHV) approaching in the opposite

lane. A control architecture is proposed that includes interac-

tions between the decision making, motion planning, and control

levels. By utilizing the road context and information received

via vehicle-to-everything (V2X) communication, a reduced state

space representation is determined which allows the CAV to eval-

uate safety in a fast and efficient manner. Using a temporal met-

ric, a safety evaluation algorithm is developed which determines

the safety of the decision making at controller level. To evaluate

the algorithms, data collected with real vehicles is utilized.

1 INTRODUCTION

During the last decade there have been considerable devel-

opment in the area of decision making and control of automated

vehicles. A typical control system architecture has hierarchical

structure consisting of decision making, motion planning, and

vehicle control [1, 2]. Automated vehicles need to interact with

other road participants whose motion may conflict with that of

the automated vehicle. Such conflicts may be avoided at the de-

cision making level [3–5], at the motion planning level [6–8],

and at the control level [9–11]. However, very little research ex-

ists on the crosstalk between the different levels of the controls

architecture. In this paper we focus on this challenging problem.

In particular, we investigate the scenario when the auto-

mated vehicle is executing an unprotected left turn, resulting in

potential conflict with an upcoming human-driven vehicle. We

assume that both vehicles are equipped with wireless vehicle-to-

everything (V2X) communication and refer to them as connected

automated vehicle (CAV) and connected human-driven vehicle

(CHV). This allows the CAV to respond to the motion of the

CHV even when the CHV is beyond the line of sight of the sen-

sors of the CAV. We remark that the feasibility of V2X-based

control of CAVs has been recently demonstrated experimentally

using real vehicles on public roads [12].

In the left turn scenario the CAV can utilize V2X commu-

nication to sense and predict the motion of the oncoming CHV

and make decisions to avoid conflict based on the information

received. In particular, we define a conflict zone of finite size

around the intersection of the predicted path of the CHV and the

planned path of the CAV that shall not be shared with the two

vehicles at the same time. In order to achieve this we establish a

metric called time of share (TOS) that shall be kept negative in

order to avoid conflict. A similar concept appeared [13] where

a temporal window to pass an intersection was considered. Here

we will use TOS in order to establish cross talk between the dif-

ferent levels of the control architecture and improve safety in de-

cision making.

The rest of the paper is organized as follows. In Sec. 2 we

specify the left turn scenario and provide a sketch of the system

architecture. In Sec. 3 we describe the concept of state space

modeling and reduction followed by the details of decision mak-

ing, trajectory planning and control design. We end this section

with the TOS-based safety evaluation that links the controller

level to the decision making level. Sec. 4 is devoted to the theo-

retical and experimental results while we conclude our work and

point out future research directions in Sec. 5.
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FIGURE 1. UNPROTECTED LEFT TURN SCENARIO. (a)

AREAL VIEW INDICATING THE CONFLICT ZONE (MAGENTA

RECTANGLE), THE TURNING VEHICLE (CAV), AND THE ON-

COMING VEHICLE (CHV), (b) DASHBOARD VIEW OF THE

TURNING VEHICLE (CAV), (c) DASHBOARD VIEW OF THE ON-

COMING VEHICLE (CHV).

2 PROBLEM SETUP

In this section we describe the unprotected left turn scenario

and the proposed control architecture. More technical details will

be provided in the next section.

Figure 1 depicts the left turn scenario with real vehicles at

the University of Michigan test track called Mcity. The turn is

made by the CAV at an unsignalized intersection while the CHV

is approaching on the opposite lane. Panel (a) shows an areal

photo taken by a drone while panels (b) and (c) show the drivers’

views through dash cameras. We remark that when taking these

pictures both vehicles were in fact driven by human drivers while

being equipped by V2X devices (i.e., they were both CHVs). We

remark that the V2X communication allows the CAV to obtain

accurate motion information (e.g. position and velocity) about

the CHV for a few hundreds of meters and use this information

for decision making and control. This cannot be achieved us-

ing sensors. More details about the collected data will be given

Sec. 4.

FIGURE 2. (a) LAYOUT OF THE LEFT TURN SCENARIO WITH

THE STATE SPACE VARIABLES INDICATED. (b) MECHANICAL

MODEL OF THE CAV HIGHLIGHTING THE INITIAL, AN INTER-

MEDIATE, AND THE FINAL POSITION ALONG THE PLANNED

PATH. THE CONFLICT ZONE IS INDICATED WITH THE MA-

GENTA RECTANGLE.

The conflict zone (magenta rectangle) in Fig. 1(a) is drawn

around the point where the vehicles’ paths intersect. It is fixed

to the road and it can be included in the CAV’s digital map. If

the two vehicles appear in the this zone at the same time then we

say that a conflict occurs that compromises the vehicles’ safety.

Indeed, the CAV may avoid conflict by waiting the CHV to pass

through the conflict zone before moving into the zone. However,

waiting for the CHV to pass when a turn can be safely executed

reduces the efficiency of the CAV: if the opposite lane carries

heavy traffic the CAV may need to stay a long time at the in-

tersection. Thus, the objective of the CAV is chosen to make a

non-conflicting turn in minimum time.

The sketch in Fig. 2(a) models the scenario pictured in Fig. 1

with more technical details presented. The CAV is described by

three configuration coordinates: the location of the center of its

rear axle (x,y) and the yaw angle ψ . In addition, the speed of

the center of the rear axle is denoted by v. Notice that the ve-

locity of this point is aligned with the center line of the vehicle

as we assume no lateral tire deformations. When considering the

CHV only the longitudinal motion is of relevance. Thus, this ve-

hicle can be described by giving the distance sH of the rear axle

from the conflict zone (magenta rectangle) and the longitudinal

velocity vH.
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FIGURE 3. SKETCH OF THE SYSTEM ARCHITECTURE.

THE CONTROLLER EVALUATES THE BEHAVIORAL DECISION

MADE AT THE DECISION MAKING LAYER BY COMPUTING

TIME OF SHARE.

Fig. 2(b) provides more details about the CAV’s motion in-

cluding its initial position (x0,y0) = (0,0) and orientation ψ0 = 0

and its final position (xf,yf) = (9.8,7.9)m and orientation ψf =
π/2. We remark that the initial speed is zero v0 = 0 while

the final speed is set to vf = 5m/s. Moreover, the size of the

conflict zone a = 3.8m, b = 6.4m and the size of the vehicle

c = 1.8m, d = 4.8m are given together with the distance of

the rear axle from the rear bumper e = 1m and the wheel base

l = 2.85m. The steering angle γ is also indicated in the figure.

The vehicle is shown following a planned path and the distance

travelled by the center of the rear axle is highlighted by s. In-

deed, we have ṡ = v. Specific values of s are related to the cases

when the CAV enters the conflict zone s and when it exist it s (the

latter corresponding to the final state). For the optimal trajectory

(derived further below) we have s = 6.8m and s = 14.5m.

In order to achieve safe and efficient left turn while utiliz-

ing V2X connectivity we propose the control architecture for the

CAV as shown in Fig. 3. This consists of four consecutive mod-

ules: (1) motion predictor for the CHV, (2) decision maker, (3)

motion planner, (4) controller. While the detailed description of

each layer is presented in Sec. 3, here we highlight the connec-

tions between them. Each block feeds into the block below which

is a typical scenario for automated vehicles. However, in addi-

tion to this, the controller links back to the decision maker and

provides its estimation about the time of share (TOS) of the con-

flict zone. This may allow the decision maker to abort or confirm

the decision.

3 MODELING AND CONTROL ARCHITECTURE

In this section we describe the state space modeling and re-

duction as well as we provide the details of modules in Fig. 3.

3.1 State space modeling and reduction

As described above the system represented in Fig. 2(a)

can be described using a six-dimensional state space corre-

sponding to the two variables used to describe the CHV XH =
[sH,vH]

T and the four variables used to describe the CAV X =
[x,y,ψ,v]T. Searching for maneuvers that avoid conflict in this

six-dimensional space would be challenging and it would be par-

ticularly difficult to decide what information should be commu-

nicated between the modules in Fig. 3. In order to resolve this

issue we reduce the state space as described below.

Fig. 4 describes the reduction steps. For the CHV we can uti-

lize the knowledge about its intended path considering the road

context as shown in panels (a, b, c). Since we are only interested

in when the CHV occupies the conflict zone (even partially) we

only need to predict the Time to Reach (TTRH) and the Time to

Exit (TTRE) for the CHV (rather than predicting the motion of

the vehicle as a function of time). These correspond to the time

moments when the front bumper of the CHV reaches the zone

and when its rear bumper exits it. These may be estimated by us-

ing by the position, velocity and acceleration as described further

below.

In case of the CAV, as illustrated in Fig. 4(a, d, e), the state

space reduction can be done via path planning or trajectory plan-

ning. Path planning refers to designing a path in the (x,y)-plane

while trajectory planning refers to designing a trajectory in the

state space X = [x,y,ψ,v]T. In this paper we choose the latter

one. However, once the trajectory is generated it also contains

the path and, assuming the vehicle can track the path well, we

can describe the motion along the path by using the arclength

s and the velocity v. In the reduced state space X̂ = [s,v]T one

may identify the arclengths s and s where the front bumper of the

CAV enters the conflict zone and its rear bumper exits the zone,

respectively. These correspond to Time to Reach (TTR) and the

Time to Exit (TTE) for the CAV.

Finally, one may combine the reduced state space of the

CHV and the CAV as shown in Fig. 4(f). In the three-

dimensional space [s,v, t]T the goal is to move “diagonally” while

avoiding the conflict cuboid bounded by s = s, s = s, t = TTRH,

and t = TTEH. We remark that the latter two boundaries move

based on the updates of the motion prediction of the CHV, and

this may require the CAV to re-evaluate its decision as time

evolves. The example trajectory in Fig. 4(f) illustrates a case

where the CAV enters the conflict set and along the blue portion

of the trajectory conflict occurs. This is an example for an unsafe

situation that the method presented below tries to prevent.
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FIGURE 4. DIMENSION REDUCTION OF THE STATE SPACE. (a, b, c): REDUCTION FOR THE CHV USING INTENDED PATH ALONG

THE ROAD. (a, d, e): REDUCTION FOR THE CAV USING PLANNED TRAJECTORY. (f) MERGED REDUCED STATE SPACE WITH THE

CONFLICT INDICATED BY THE CUBOID. THE BLUE SECTION OF THE TRAJECTORY IS INSIDE THE CUBOID.

3.2 CHV motion prediction and decision making
We assume that the CAV has access to the digital map of the

area and monitors the state XH of the CHV via V2X communica-

tion. Then, the goal of the motion prediction module is to predict

TTRH and TTEH; see Fig. 3. Here we choose a deterministic ap-

proach to predict the future motion of the CHV. Since the CHV

is traveling on a straight one-lane road and it has the right way,

it is assumed that it will continue its way through the intersec-

tion (without responding to the CAV who is waiting for making

the turn). Moreover, it is assumed that it maintains its current

acceleration until it passes through the conflict zone.

Recall that sH denotes the distance of the rear axle of the

CHV from the conflict zone whose length is b; see Fig. 2(a).

Also, similar to the CAV, the distance of the rear axle from the

rear and front bumpers are e and d − e; see Fig. 2(b). These

assumptions lead to

TTRH =







(

− vH +
√

v2
H +2aH(sH −d + e)

)

/aH, if aH 6= 0,

(sH −d + e)/vH, if aH = 0,

TTEH =







(

− vH +
√

v2
H +2aH(sH +b+ e)

)

/aH, if aH 6= 0,

(sH +b+ e)/vH, if aH = 0,

(1)

where vH and aH are the longitudinal velocity of the CHV.

These predictions are fed into the decision making unit in

Fig. 3 that is also aware of the state X of the CAV standing at

the intersection. If the CAV “thinks” that it can execute its turn

before the CHV reaches the conflict zone, based on the state of

the CHV XH (received via V2X) and its own state X , it decides to

turn. Otherwise, it stays and waits until the CHV clears the con-

flict zone. More details about the decision making as a function

of sH and vH obtained from experiments with human drivers will

be given in Sec. 4.

3.3 Motion planning

Once a positive decision is made, the trajectory planning al-

gorithm computes a trajectory in the state space X = [x,y,ψ,v]T

while keeping the inputs u= [γ ,a]T bounded. Since our goal is to

clear the conflict zone as fast as possible we use the TTE of the

CAV as our cost function. We apply the methodology suggested

in [14] to rescale time and convert the minimum time problem

into a fixed horizon optimal control problem.

As shown in Fig. 2(b) the initial condition of the CAV is

given by X0 = [x0,y0,ψ0,v0]
T = [0,0,0,0]T, while the desired fi-

nal state Xf = [xf,yf,ψf,vf]
T = [9.8,7.9,π/2,5]T corresponds to

the case where the CAV’s rear bumper leaves the conflict zone.

Rather than setting the final state as a boundary condition we in-

clude it in the cost function in order to make the corresponding

nonlinear optimization problem easier to solve.

Using T for the terminal time we set up the optimal control

Copyright © 2020 ASMEV001T10A005-4



problem

min
u,T

J = T +
(

X(T )−Xf

)T
P(X(T )−Xf), (2)

subject to

Ẋ(t) = f (X(t),u(t)),

X(0) = X0,

C(u(t))≤ 0, 0 ≤ t ≤ T,

(3)

where the dot denotes the derivative with respect to time t.

The differential equation Ẋ = f (X ,u) corresponds to the bicy-

cle model

ẋ = vcosψ,

ẏ = vsinψ,

ψ̇ =
v

l
tanγ,

v̇ = a,

(4)

where l is the wheelbase, and C(u)≥ 0 represents the constraints

|γ| ≤ γmax, amin ≤ a ≤ amax. (5)

Here we use γmax = π/6, amin =−8m/s2, amax = 5m/s2. Finally,

the cost function contains the positive definite diagonal matrix

P =









( 1
2.5 )

2 0 0 0

0 ( 1
2.5 )

2 0 0

0 0 ( 9
π )

2 0

0 0 0 ( 1
2
)2









. (6)

We rescale time by defining σ = t/T and re-write (2,3) as

min
u,T

J = T +
(

X(1)−Xf

)T
P(X(1)−Xf), (7)

subject to

X ′(σ) = T f (X(σ),u(σ)),

X(0) = X0,

C(u(σ))≤ 0, 0 ≤ σ ≤ 1.

(8)

where the prime denotes the derivative with respect to rescaled

time σ . We solve this problem by converting it into a nonlinear

optimization problem using Euler discretization.

The output of the motion planner is the desired optimal tra-

jectory Xdes = [xdes,ydes,ψdes,vdes]
T and input udes = [γdes,ades]

T

that is given to the controller; see Fig. 2.

3.4 Control design and safety evaluation
The goal of the controller module is to track the trajectory

provided by the motion planner. The controller module consists

of a steering controller that regulates the steering angle and a

speed controller that regulates the acceleration. For steering we

may use the so-called pure pursuit controller [1], which calcu-

lates the steering angle to pursue a selected waypoint with con-

stant radius of curvature. For the low-speed scenarios considered

here, this controller is able to track the path with little error jus-

tifying the assumptions made above for the state space reduction

of the CAV. Thus, for the safety evaluation we can focus our at-

tention on the longitudinal controller.

In order to regulate the longitudinal acceleration we use both

feedforward and feedback actions. The feedforward part is com-

puted from the planned trajectory and feedback is used for com-

pensating discrepancy between the model used for planning and

the actual vehicle. Since we are concerned about low-speed ma-

neuvers, we neglect the resistance terms and represent the longi-

tudinal dynamics of the vehicle by

v̇ = sat(acom(t − τ)), (9)

where acom is the commanded acceleration, the sat function sat-

urates amin and amax, and τ represents the powertrain delay. This

delay is the gives discrepancy compared to the longitudinal part

of the bicycle model (4) where a was saturated by (5). Moreover,

we utilize the control law

acom = ades + kp(v− vdes), (10)

where ades and vdes are given by the motion planner while the

proportional gain is set to kp = 0.9 1
s
.

The decision made at the decision making level may become

unsafe at the controller level due to the changing predictions of

the CHV’s motion and due to imperfect tracking of the planned

trajectory. By numerically integrating the delay differential equa-

tion (9,10) the controller computes the Time to Exit of the CAV

and compares it with the Time to Reach of the CHV. Thus, we

can compute the Time of Share as

TOS = TTE−TTRH, (11)

and based on this value the decision can be revised.

If the TOS value is becomes positive the decision maker may

decide to abort the maneuver. However, rather than stepping on

the brakes immediately, it shall keep the vehicle running with

constant speed until the so-called point of no return is reached.

Once the vehicle reaches this point an emergency braking must

be performed with acceleration amin in order to stop the vehicle

before s = s and prevent it envading the conflict zone.
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FIGURE 5. (a) MEASUREMENT DEVICE: 1 LAPTOP, 2 ETHER-

NET CABLE, 3 V2X DEVICE, 4 POWER CABLE, 5 ANTENNA.

(b) HUMAN DRIVERS AND CARS USED DURING THE EXPER-

IMENTS.

The point of no return provides us a boundary at the reduced

state space (s,v) of the CAV. In order to calculate this boundary

we need to take into account the powertrain delay τ . In partic-

ular, to obtain a conservative estimate, we assume that once the

emergency braking maneuver is decided the CAV travels with

maximum acceleration amax for τ time before it is able to apply

amin. This leads to the formula

v(s) =−(amax −amin)τ +
√

2amin(s− s)+(amin −amax)aminτ2,

(12)

which can be used in the safety evaluation algorithm to determine

whether emergency braking is needed when the TOS becomes

positive.

4 RESULTS
In this section, experimental and simulation results are used

to demonstrate the concepts presented above. We use experimen-

tal data collected with different human drivers to train a deci-

sion model. For the motion planner and the controller, numerical

simulation is used to evaluate the performance. Combining the

experimental data with simulation, the effects of the cross talk

between different layers is illuminated.

There are different ways to design decision making algo-

rithms. Here we utilize data collected from human drivers at the

test track of the University of Michigan called Mcity. We apply

a machine learning based method to find the decision boundary

in state space.

FIGURE 6. SVM CLASSIFICATION RESULTS FOR TWO DIF-

FERENT DRIVERS.

In order to collect the data we used two human-driven vehi-

cles that were equipped with V2X devices; see Fig. 5. One these

CHVs played the role of the CAV by making the left turn while

the other CHV was approaching in the opposite lane with con-

stant speed. The driver of the “CAV” was asked to make a turn

for different distances sH and velocities vH of the approaching

CHV. The collected data is summarized in Fig. 6 where posi-

tive and negative decisions are differentiated by a color code and

clear decision boundaries can be observed.

In order to find the decision boundaries we utilize a super-

vised learning technique called support vector machine (SVM)

used for classification. The SVM classifier gives the hyperplane

that maximizes the margin from one class to another. In our case

these are lines of the form vH = α sH +β that can be related to

the TTEH in (1) when the CHV had a constant speed. Notice that

the line for the two drivers differ significantly: Driver 2 made

much more conservative decisions compared to Driver 1 as the

latter one was a race car driver.

In order to validate the proposed systems architecture, we

compare the algorithm that includes the safety evaluation at the

controller level to a so-called “naive” decision algorithm that

keeps the initial decision. We generate the CAV’s trajectory us-

ing the motion planning algorithm presented above and track it

using the proposed controller with time delay in the control loop.
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FIGURE 7. PLANNED PATH GIVEN BY THE TRAJECTORY

PLANNER (SOLID BLACK CURVE) AND ITS EXTENSION BE-

YOND THE CONFLICT ZONE (DASHED BLACK LINE).

The optimization problem above generates a trajectory until

the CAV exits the conflict zone, i.e., t ≤ T . The correspond-

ing path is shown by the solid black curve in the (x,y)-plane in

Fig. 7. We extend the trajectory by simply adding a straight line

motion with ψ(t) ≡ π/2 and v(t) ≡ vf for t > T as shown by

the dashed section. When re-running the planner from differ-

ent middle points of the trajectory (starting with velocities that

differ from the original plan), we found that the planned path

changes very little. We also found that the path can be tracked

very closely by using a pure pursuit controller. These justify the

proposed state space reduction and the safety evaluations using

the longitudinal controller.

Fig. 8 shows the results for a naive decision without the pro-

posed safety evaluation with input delay τ = 0.5s. Based on the

decision making boundary of Driver 1 in Fig. 6 we assume that

a decision is made when the CHV is sH = 43.8m away from the

conflict zone traveling at vH = 12.5m/s and that the CHV main-

tains this velocity as time evolves. Panels (a) and (b) show the

position and the velocity as function of time, while panel (c)

shows the trajectory in the three-dimensional state space. The

planned trajectories are shown as black (with the part extended

beyond the conflict zone being dashed) and they indeed avoid the

conflict cuboid in state space. However, due to the delays in the

control loop, the actual trajectories, shown as red curves, enter

the cuboid as indicated by the blue sections. Using the proposed

safety evaluation would result in positive TOS at t = 0, and thus,

the decision maker would not let the CAV to start the turning

maneuver.

Figure 9 shows the simulation result of the proposed deci-

sion making algorithm when safety is evaluated at the controller

level. The same input delay input τ = 0.5s is considered as in

Fig. 8, but it is assumed that the decision is made when the CHV

is at sH = 43.8m traveling at vH = 11.5m/s (that is still main-

tained for the rest of the time). In this case both the planned (not

shown) and the actual trajectories are able to avoid the conflict

cuboid, and thus, the CAV starts turning at t = 0 as indicated by

FIGURE 8. SIMULATION RESULTS FOR THE NAIVE DECI-

SION MAKING UNDER INPUT DELAY WITH THE PLANNED

TRAJECTORIES (BLACK) AND THE ACTUAL ONES (RED). THE

DASHED SECTIONS INDICATE THE MOTION BEYOND THE

CONFLICT ZONE WHILE THE BLUE SECTIONS INDICATE CON-

FLICT BETWEEN THE CAV AND THE CHV. (a) POSITION AS

FUNCTION OF TIME. (b) VELOCITY AS FUNCTION OF TIME.

(c) TRAJECTORIES IN THE REDUCED STATE SPACE.

the decision on panel (a) corresponding to the negative TOS on

panel (b). The corresponding velocity as a function of time is

plotted in panel (c) while the trajectory is shown in state space in

panel (d).

In order to test the effects of safety evaluations we assume

that the V2X packets sent by the CHV are lost for a section

of time. The black solid curves in Fig. 9 correspond to having

packet loss between 0.9− 1.2s while the red dashed curves cor-

respond to having packet loss between 0.9− 1.5s. During the

packet loss the CHV motion predictor considers the worst case

scenario and calculates the TTRH assuming that the CHV uses

maximum acceleration, i.e., aH = amax in (1). Correspondingly

the TOS becomes positive in panel (b). Since the CAV has not

reached the point of no return estimated by (12), the decision can

be kept positive as shown in panel (a). In the short packet loss

case, once the communication recovers the TOS becomes nega-

tive and the CAV accelerates again to complete the turn. On the

other hand, for the long packet loss case the CAV reaches the

point no return before the communication recovers and launches

an emergency break to come to a halt before s = 6.8m.
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FIGURE 9. SIMULATION RESULTS FOR THE PROPOSED SYS-

TEMS UNDER INPUT DELAY AND PACKET LOSS. THE SCE-

NARIOS FOR SHORT AND LONG PACKET LOSS ARE DEPICTED

AS SOLID BLACK AND RED DASHED CURVES, RESPECTIVELY.

(a) DECISION AS FUNCTION OF TIME. (b) ESTIMATED TIME OF

SHARE AS FUNCTION OF TIME. (c) VELOCITY AS FUNCTION

OF TIME. (d) TRAJECTORIES IN REDUCED STATE SPACE.

5 CONCLUSION

A safe decision making and control strategy was proposed

and it was applied to a scenario where connected automated ve-

hicle performed an unprotected left turn while trying to avoid

a conflict with an oncoming connected human-driven vehicle.

V2X communication was utilized to monitor and predict the mo-

tion of the CHV. By utilizing a temporal safety index, the safety

of CAV’s decision was evaluated at the controller level. It was

demonstrated that establishing cross talk between the different

levels of the control architecture can help the CAV to avoid con-

flict with the CHV and improve safety. The proposed algorithms

were evaluated with numerical simulations. In the future, the

proposed method should be generalized and expanded to various

public road scenarios including highway merge, lane change, and

other types of unprotected intersection.
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