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A B S T R A C T

The dynamics of automated vehicles are studied and the existence and stability of steady state cornering
maneuvers are investigated. Utilizing tools from analytical mechanics, namely the Appellian approach, vehicle
models are constructed which incorporate geometrical nonlinearities and differentiate between front wheel
drive (FWD) and rear wheel drive (RWD) automobiles. The dynamics of these models are studied using
bifurcation analysis. Stable and unstable steady states are mapped out as a function of speed and steering
angle. It is demonstrated that RWD and FWD vehicles exhibit different behavior, especially when they operate
close to their handling limits. The theoretical results are verified experimentally using an automated vehicle
performing safety critical maneuvers.
1. Introduction

Automated vehicles are likely to enter our roads soon and they need
to satisfy more strict safety requirements compared to their human-
driven counterparts (Ersal et al., 2020). For motion planning and
control of automated vehicles choosing an appropriate model is impor-
tant. The model must have high enough fidelity to be able to predict
the motion of the vehicle accurately, while in the meantime it must
be simple enough so it can be run in realtime. When focusing on the
lateral and yaw motion, the so-called single track or bicycle model is
often used to plan the motion of the vehicle and to track the planned
trajectory by steering the vehicle (Popp and Schiehlen, 2010; Schramm
et al., 2014; Rajamani, 2012; Ulsoy et al., 2012). In this paper we
consider this modeling approach and show that by adding important
geometric nonlinearities one can improve the predictive power of
bicycle models without significantly increasing their complexity.

While in many scenarios assuming rigid wheels can be used to
simplify the model (Paden et al., 2016; Várszegi et al., 2019), taking
into account the deformation of the tires is important when trying
to predict and control the motion of the vehicle; especially, close to
its handling limits (Liu et al., 2016). One of the earliest work about
the bicycle model with tires can be found in Riekert and Schunck
(1940), and since then there has been a large number of publications
following this approach. These models mainly differ in how the tire-
road interaction is modeled. Since the lateral deformation of a tire leads
to the formation of a slip angle between the direction of the wheel
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plane and the direction of velocity of the wheel center, the lateral force
arising due to this deformation is often expressed as a function of the
tire slip angle (Pacejka, 2005). Nevertheless, more precise tire models
that capture the effects of the tire deformation along the contact patch
have been recently proposed and analyzed (Beregi and Takács, 2019;
Mi et al., 2020).

In general, the lateral force is a nonlinear function of the slip angle
and this nonlinearity was taken into account in prior studies using
the bicycle model. In earlier works, bifurcations of a bicycle model
with nonlinear tire characteristics were investigated (Ono et al., 1998;
Della Rossa et al., 2012; Farroni et al., 2013) and steering controllers
were designed in order to maintain lateral stability (Voser et al., 2010).
More recent studies about lateral stabilization and operating vehicles
at their handling limits relied on boundaries in state space related to
the peak lateral tire forces (Hwan Jeon et al., 2013; Erlien et al., 2013).
However, the actual region of attraction of steady states may differ from
these boundaries depending on the steering angle and the drive type.
Moreover, mapping out the detailed state space picture may allow one
to design high-performance controllers. Indeed, many recent research
efforts in automated vehicle control is related to driving vehicles at
their handling limits (Li et al., 2020; Berntorp et al., 2020; Wurts et al.,
2020; Lu et al., 2021), including the control of unstable motions like
drifting (Velenis et al., 2011; Goh et al., 2020), in order to improve the
vehicle’s agility. However, existing models do not differentiate between
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Table 1
Parameters of a 2016 KIA Soul automobile used in this paper.

Parameter name Value Unit

𝑚 Vehicle mass 1110 kg
𝐽G Vehicle mass moment of inertia 1343 kg m2

𝑐 Vehicle center of mass position 1.03 m
𝑑 Vehicle center of mass position 1.54 m
𝑙 = 𝑐 + 𝑑 Wheelbase 2.57 m
𝑘 Distributed tire stiffness 4 × 106 N/m2

𝑎 Half contact length 0.1 m
𝐶 = 2𝑘𝑎2 Cornering stiffness 8 × 104 N/rad
𝜇 Sliding friction coefficient 0.6
𝜇0 Static friction coefficient 0.9

drive types, which provide a fundamental limitation for the predictive
power of the models as well as for the performance of the designed
controllers. This limitation is particularly important to overcome if one
wishes to exploit the opportunities brought by the integration of vehicle
automation and electrification (Zhang et al., 2018).

To answer this challenge, in this study we utilize the Appellian
approach (Gantmacher, 1975; De Sapio, 2017) and construct nonlinear
bicycle models which, in addition to the tire nonlinearities, incorporate
geometric nonlinearities. We demonstrate that these models are able to
bring out the qualitative differences between rear wheel drive (RWD)
and front wheel drive (FWD) automobiles. We use bifurcation analysis
to investigate the steady state cornering while varying the steering
angle and the speed of the vehicle. The bifurcation diagrams and state
space pictures reveal stable and unstable turning motions and the
regions of attractions for the former ones. These diagrams allow us to
explore the similarities and differences between the behavior of RWD
and FWD vehicles. The theoretical results are validated with a help of
an automated vehicle driven up to its handling limits. We also point
out specific unstable motions which, if stabilized by appropriate control
design, can significantly enhance the maneuverability of automated
vehicles.

The paper is organized as follows. In Section 2 we describe the
governing equations and the cornering characteristics of a so-called
traditional model with tire nonlinearity. In Section 3 we provide the
derivation of the equations of motion of the proposed nonlinear models
for RWD and FWD vehicles using the Appellian approach and show
that these models simplify to the traditional model for small steering
angles. Section 4 contains the analysis of steady state cornering for
different models using numerical continuation. In Section 5 we discuss
the experimental results that validate the FWD model. In Section 6 we
conclude our work and propose future research directions.

2. Traditional bicycle model

In this section we describe a version of the bicycle model that has
been used in the literature. We refer to this as the traditional bicycle
model in the remaining of the paper. While discussing this model we
also introduce some basic notations and terminology related to the
steady state cornering. Finally, we point out some of the shortcomings
of this traditional model.

Fig. 1(a) shows the schematic diagram of a bicycle model for an
automobile with front wheel steering. In this model the front wheels
are united as one wheel and the rear wheels are also united as one
wheel. The mass of the vehicle is 𝑚, its mass moment of inertia about
the center of mass G is denoted by 𝐽G, the wheel base in given by 𝑙, the
distance between the center of the front axle F and the center of mass
G is given by 𝑐 while the distance between the center of the rear axle
R and the center of mass G is given by 𝑑. Indeed we have 𝑙 = 𝑐+𝑑. The
parameters used in this paper are listed in Table 1.

The vehicle can be described by three configuration coordinates
and these are typically chosen to be the position of the center of mass
(𝑥 , 𝑦 ) and the yaw angle 𝜓 . The velocity state is typically given
2

G G
Fig. 1. (a) Bicycle model with geometric, kinematics and dynamics quantities indi-
cated. (b) Nonlinear tire characteristics for brush model (blue) and magic formula
(green). The location of peak force 𝛼pk , the beginning of the sliding region 𝛼sl,
the cornering stiffness 𝐶 = d𝐹

d𝛼
(0) and the saturation force 𝜇𝐹𝑧 are indicated. (For

interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

by the angular velocity 𝜔 called the yaw rate, and by the velocity
components of the center of mass G resolved in the frame fixed to the
vehicle’s body, referred to as longitudinal velocity 𝑣 and lateral velocity
𝜎; see Fig. 1(a). The kinematic relationships between the derivatives
of the configuration coordinates and the velocity components can be
expressed by

�̇�G = 𝑣 cos𝜓 − 𝜎 sin𝜓,

�̇�G = 𝑣 sin𝜓 + 𝜎 cos𝜓,

�̇� = 𝜔.

(1)

Also, we assume that the steering angle 𝛾 can be assigned by the
controller of the automated vehicle which is the input in the dynamical
systems constructed below.

The rest of the modeling effort shall go into deriving differential
equations for the longitudinal velocity 𝑣, the lateral velocity 𝜎, and the
yaw rate 𝜔. Due to the elasticity of the rear tire, the velocity 𝐯R of the
wheel center point R is not aligned with the rear wheel plane but it
forms the slip angle 𝛼R. Similarly, for the front wheel, the velocity 𝐯F
of the wheel center point F is not aligned with the front wheel plane
but it forms the slip angle 𝛼F. The lateral tire deformations lead to the
lateral forces 𝐹R and 𝐹F that are indicated in Fig. 1(a).

By approximating the deformation along the contact patch with a
straight line, the lateral force can be expressed as a function of the slip
angle as given in the Appendix and visualized by the blue curve in
Fig. 1(b). This is often referred to as the brush model. The slip angle
𝛼pk corresponds to the peak value of the lateral force while 𝛼sl marks the
limit of complete sliding. When the slip angle exceeds the latter value,
the lateral force saturates at 𝜇𝐹𝑧, as indicated in the figure, where 𝐹𝑧 is
the normal force and 𝜇 is the sliding friction (as opposed to the static
friction that is denoted by 𝜇0). Finally, the derivative 𝐶 = d𝐹

d𝛼 (0) is also
highlighted. This is referred to as the cornering stiffness and for the
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brush model it can be calculated as 𝐶 = 2𝑘𝑎2 where 𝑘 denotes the
distributed tire stiffness and 𝑎 is the half contact length; see Table 1
for the numerical values used in the paper.

For comparison, an empirical model, called the magic formula
(Pacejka, 2005), is also shown in Fig. 1(b) by the green curve; see
corresponding formula in the Appendix. The four independent param-
eters appearing in the nonlinear tire characteristics are matched for
the brush model and the magic formula by matching the location and
the value of the peak, the saturating value of the lateral force, and the
cornering stiffness. In this paper we consider the brush model but the
results shall look very similar for the magic formula. We remark that
the tire deformations also lead to aligning moments but those have
typically small effects in scenarios investigated in our paper, and thus,
they are neglected. Finally, we mention that the longitudinal slip is
neglected in this paper in order keep the complexity of the model low.
We found that the longitudinal forces required to keep the longitudinal
velocity constant are typically much smaller than the peak lateral force.
They may reach around 10%–15% of the peak lateral force in a small
velocity range, where one may use higher degree of freedom models
incorporating both lateral and longitudinal tire deformations.

2.1. Equations of motion

When focusing on handling it is often considered that the longi-
tudinal velocity is constant, i.e., 𝑣(𝑡) ≡ 𝑣∗, which can be ensured by
applying the appropriate driving force. Moreover, it is often assumed
that the steering angle and the slip angles are small and the geometrical
nonlinearities can be neglected, which lead to

𝛼R = −𝜎 − 𝑑 𝜔
𝑣∗

,

𝛼F = 𝛾 − 𝜎 + 𝑐 𝜔
𝑣∗

,
(2)

cf. (29) and (37) for the nonlinear versions developed further be-
low. Similarly, one may neglect the geometrical nonlinearities when
calculating the force components normal to the body and obtain

�̇� =
𝐹R(𝛼R) + 𝐹F(𝛼F)

𝑚
− 𝑣∗𝜔,

�̇� =
−𝑑 𝐹R(𝛼R) + 𝑐 𝐹F(𝛼F)

𝐽G
,

(3)

that are the Newton–Euler equations for the lateral and rotational
motions, respectively; cf. (28) and (36) for the nonlinear versions
developed further below. Here 𝐹R and 𝐹F denote lateral tire forces and
these depend on the rear and front slip angles 𝛼R and 𝛼F as shown
in Fig. 1, and in turn depend on the state variables 𝜎 and 𝜔 and the
nput 𝛾 according to (2). In summary, (1), (2), (3) provide us with five
onlinear differential equations for the state variables 𝑥G, 𝑦G, 𝜓, 𝜎, 𝜔
ith input 𝛾. Notice that these equations are not fully coupled: one
ay first solve (2), (3) to obtain velocities 𝜎, 𝜔, and then solve (1) to

btain the configuration coordinates 𝑥G, 𝑦G, 𝜓 .
In order to further simplify the matter, Eqs. (2), (3) are often

inearized around the rectilinear motion yielding

[

�̇�
�̇�

]

=

⎡

⎢

⎢

⎢

⎣

−
𝐶R + 𝐶F
𝑚𝑣∗

𝑑 𝐶R − 𝑐 𝐶F
𝑚𝑣∗

− 𝑣∗

𝑑 𝐶R − 𝑐 𝐶F
𝐽G𝑣∗

−
𝑑2𝐶R + 𝑐2𝐶F

𝐽G𝑣∗

⎤

⎥

⎥

⎥

⎦

[

𝜎
𝜔

]

+

⎡

⎢

⎢

⎢

⎣

𝐶F
𝑚
𝑐 𝐶F
𝐽G

⎤

⎥

⎥

⎥

⎦

𝛾 (4)

where 𝐶R =
𝜕𝐹R
𝜕𝛼R

(0) and 𝐶F =
𝜕𝐹F
𝜕𝛼F

(0) denote the cornering stiffness
f the rear and the front wheels, respectively. For simplicity, the so-
alled traditional linear model (1), (4) is often used instead of the
raditional nonlinear model (1), (2), (3). However, due to the linear
ire characteristics the former model is only valid far from the handling
imits, i.e., in the domain 𝛼 ≪ 𝛼 in Fig. 1(b).
3

pk d
2.2. Steady state cornering

Steady state cornering corresponds to negotiating a curve of con-
stant radius by keeping the steering angle constant. Such a test can
be conducted with an automated vehicle as explained further below in
order to validate dynamical models and design controllers.

When substituting 𝜎(𝑡) ≡ 𝜎∗, 𝜔(𝑡) ≡ 𝜔∗, 𝛾(𝑡) ≡ 𝛾∗ into (2), (3) one may
obtain

𝛼∗R = −𝜎
∗ − 𝑑 𝜔∗

𝑣∗
,

𝛼∗F = 𝛾∗ − 𝜎∗ + 𝑐 𝜔∗

𝑣∗
,

0 = 𝐹R(𝛼∗R) + 𝐹F(𝛼∗F) − 𝑚𝑣
∗𝜔∗,

0 = −𝑑 𝐹R(𝛼∗R) + 𝑐 𝐹F(𝛼∗F).

(5)

hese can be solved for the state variables 𝜎∗, 𝜔∗ and the slip angles
∗
R, 𝛼

∗
F while taking into account the nonlinear tire force character-

stics (41), (42) (or alternatively (46)). Due to these nonlinearities
he solutions can typically be found numerically (as detailed further
elow).

According to (1) the corresponding configuration coordinates read

𝑥∗G(𝑡) =
𝑣∗

𝜔∗ sin(𝜔∗𝑡 + 𝜓0) +
𝜎∗

𝜔∗ cos(𝜔∗𝑡 + 𝜓0) + 𝑥0,

𝑦∗G(𝑡) = − 𝑣
∗

𝜔∗ cos(𝜔∗𝑡 + 𝜓0) +
𝜎∗

𝜔∗ sin(𝜔∗𝑡 + 𝜓0) + 𝑦0,

𝜓∗(𝑡) = 𝜔∗𝑡 + 𝜓0,

(6)

here the constants 𝑥0, 𝑦0, 𝜓0 are obtained from the initial conditions.
he radius of the circular arc ran by the center of mass G can be
alculated as

G =
√

(𝑥∗G − 𝑥0)2 + (𝑦∗G − 𝑦0)2 =

√

(𝑣∗)2 + (𝜎∗)2

𝜔∗ . (7)

Similarly all points of the automobile move along circular paths. For
example, the corresponding radius of the rear axle center point R is
given by

𝑅R =

√

(𝑣∗)2 + (𝜎∗ − 𝑑 𝜔∗)2

𝜔∗ . (8)

Of particular importance is the difference 𝛼∗F − 𝛼∗R whose sign deter-
ines whether the vehicles displays understeer (𝛼∗F − 𝛼∗R > 0) or over-

teer (𝛼∗F − 𝛼∗R < 0) behavior. Most production vehicles are designed
o have understeer characteristics, but, as we will demonstrate below
hey may exhibit oversteer behavior for specific sets of parameters and
nitial conditions.

For small steering angles (and correspondingly small slip angles)
ne may utilize the linearized Eqs. (4) instead of (2), (3), which result
n
[

𝜎∗

𝜔∗

]

=
[

𝐶R + 𝐶F −(𝑑 𝐶R − 𝑐 𝐶F) + 𝑚(𝑣∗)2

−(𝑑 𝐶R − 𝑐 𝐶F) 𝑑2𝐶R + 𝑐2𝐶F

]−1 [ 𝐶F𝑣∗

𝑐 𝐶F𝑣∗

]

𝛾∗. (9)

Substituting these into (2) one may derive

𝛼∗F − 𝛼∗R = 𝐾us
𝑣∗𝜔∗

𝑔
, (10)

where the so-called understeer coefficient

𝐾us =
𝑚𝑔
𝑙

(

𝑑
𝐶F

− 𝑐
𝐶R

)

, (11)

determines the understeer (𝐾us > 0) or oversteer (𝐾us < 0) behavior for
mall slip angles.

For most production automobiles understeer characteristic is typ-
cally ensured by having the engine at the front (that results in the
eight distribution 𝐹𝑧,R < 𝐹𝑧,F ⇒ 𝑑 > 𝑐) and using the same type of tires
t the rear and the front (that yields 𝐶R ≈ 𝐶F); see, for example, the
ata of a 2016 KIA Soul in Table 1. For some high-end automobiles the
ngine is more toward the middle/rear (that results in the even weight
istribution 𝐹 ≈ 𝐹 ⇒ 𝑑 ≈ 𝑐).
𝑧,R 𝑧,F
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Fig. 2. The critical longitudinal velocities (13) and (15) as a function of the steering
angle 𝛾∗ in case of steady state cornering.

In some special scenarios, analytical solutions of the nonlinear
Eqs. (5) exist and these solutions can lead to further insight. Let us
consider the case when both tires have the maximal tire force; see
𝛼 = 𝛼pk in Fig. 1(b). Using the static weight distribution 𝐹𝑧,R = 𝑚𝑔𝑐∕𝑙
and 𝐹𝑧,F = 𝑚𝑔𝑑∕𝑙 in (44) we obtain

𝛼∗R = arctan

(

𝜇0𝑚𝑔𝑐
2𝑘𝑎2𝑙

(

1 −
2𝜇
3𝜇0

)−1
)

,

𝛼∗F = arctan

(

𝜇0𝑚𝑔𝑑
2𝑘𝑎2𝑙

(

1 −
2𝜇
3𝜇0

)−1
)

,

𝐹R(𝛼∗R) =
𝜇0𝑚𝑔𝑐
3𝑙

( 4
3
−
𝜇
𝜇0

)(

1 −
2𝜇
3𝜇0

)−2
,

𝐹F(𝛼∗F) =
𝜇0𝑚𝑔𝑑

3𝑙

( 4
3
−
𝜇
𝜇0

)(

1 −
2𝜇
3𝜇0

)−2
.

(12)

Substituting the last two equations of (12) into the third equation of
(5) and substituting the first two equations of (12) into the first two
equations of (5) while using the approximation arctan 𝛼 ≈ 𝛼, we can
calculate the critical velocity:

𝑣∗cr,1 ≈

√

√

√

√

√

√

√

√

𝜇0𝑙𝑔
3

( 4
3
−
𝜇
𝜇0

)(

1 −
2𝜇
3𝜇0

)−2

𝛾∗ −
𝜇0𝑚𝑔(𝑑 − 𝑐)

2𝑘𝑎2𝑙

(

1 −
2𝜇
3𝜇0

)−1
, (13)

which only exist for 𝛾∗ > 𝜇0𝑚𝑔(𝑑−𝑐)
2𝑘𝑎2𝑙

(

1 − 2𝜇
3𝜇0

)−1
. When the vehicle

reaches this speed both tires provide the maximum available lateral
force, that is, increasing the speed further one may expect the handling
to deteriorate.

Another special scenario of interest is when the both wheel are at
the sliding limit (𝛼 = 𝛼sl in Fig. 1(b)) which yields

𝛼∗R = arctan
( 3𝜇0𝑚𝑔𝑐

2𝑘𝑎2𝑙

)

, 𝐹R(𝛼∗R) =
𝜇𝑚𝑔𝑐
𝑙

,

𝛼∗F = arctan
( 3𝜇0𝑚𝑔𝑑

2𝑘𝑎2𝑙

)

, 𝐹F(𝛼∗F) =
𝜇𝑚𝑔𝑑
𝑙

,
(14)

according to (41) and (43) with static weight distribution. Now, sub-
stituting the last two equations of (14) into the third equation of
(5) and substituting the first two equations of (14) into the first two
equations of (5), the approximation arctan 𝛼 ≈ 𝛼 leads to the second
critical velocity:

𝑣∗cr,2 ≈
√

√

√

√

√

𝜇𝑙𝑔

𝛾∗ −
3𝜇0𝑚𝑔(𝑑 − 𝑐)

2𝑘𝑎2𝑙

, (15)

which only exists for 𝛾∗ > 3𝜇0𝑚𝑔(𝑑−𝑐)
2𝑘𝑎2𝑙 . When this speed is reached both

tires enters full sliding and the vehicle becomes uncontrollable.
4

The critical velocities (13) and (15) are shown as a function of the
steering angle 𝛾∗ in Fig. 2. Indeed, these velocities only exist above
certain steering angles as indicated by the dashed vertical asymptotes.
Also, observe that for large steering angles the two critical velocities
are close to each other. We remark that there exist no analytical proof
that the above special states (where both tires have maximal tire force
and where both tires are at the limit of full sliding) actually exist.
However, in Section 4 we will demonstrate by numerical continuation
that they do in fact show up for the traditional nonlinear model (1),
(2), (3) where that the analytical formulae (13) and (15) provide good
approximations of the critical speeds.

Finally, we remark that apart from finding the steady states by
solving (5) one may also evaluate the stability of steady state cornering
by linearizing (2), (3) about the steady state. In particular, defining the
perturbations �̃� = 𝜎 − 𝜎∗, �̃� = 𝜔 − 𝜔∗, �̃� = 𝛾 − 𝛾∗ one may obtain the
linearized system

[ ̇̃𝜎
̇̃𝜔

]

=

⎡

⎢

⎢

⎢

⎢

⎣

−
𝐶∗

R + 𝐶∗
F

𝑚𝑣∗
𝑑 𝐶∗

R − 𝑐 𝐶∗
F

𝑚𝑣∗
− 𝑣∗

𝑑 𝐶∗
R − 𝑐 𝐶∗

F
𝐽G𝑣∗

−
𝑑2𝐶∗

R + 𝑐2𝐶∗
F

𝐽G𝑣∗

⎤

⎥

⎥

⎥

⎥

⎦

[

�̃�
�̃�

]

+

⎡

⎢

⎢

⎢

⎢

⎣

𝐶∗
F
𝑚
𝑐 𝐶∗

F
𝐽G

⎤

⎥

⎥

⎥

⎥

⎦

�̃� (16)

where 𝐶∗
R =

𝜕𝐹R
𝜕𝛼R

(𝛼∗R) and 𝐶∗
F =

𝜕𝐹F
𝜕𝛼F

(𝛼∗F) are the generalized corner-
ing stiffnesses. Note that (4) is special version of (16) where the
linearization happens around the rectilinear motion.

In order to derive stability conditions for the generalized cornering
stiffnesses we assume the trial solution �̃� = 𝑎 e𝑠𝑡, �̃� = 𝑏 e𝑠𝑡, 𝑎, 𝑏, 𝑠 ∈ C,
which results in the characteristic equation

𝑠2 + 𝑝𝑠 + 𝑞 = 0, (17)

where

𝑝 =
𝐶∗

R + 𝐶∗
F

𝑚𝑣∗
+
𝑑2𝐶∗

R + 𝑐2𝐶∗
F

𝐽G𝑣∗
,

𝑞 =
𝑙2𝐶∗

R𝐶
∗
F

𝑚𝐽G(𝑣∗)2
+
𝑑 𝐶∗

R − 𝑐 𝐶∗
F

𝐽G
.

(18)

The Routh–Hurwitz stability criteria 𝑝 > 0 and 𝑞 > 0 can be visualized
in the (𝐶∗

R, 𝐶
∗
F )-plane as depicted in Fig. 3 by the green shaded domain.

The boundary given by 𝑝 = 0 (blue line) denote Hopf bifurcation: a
complex conjugate pair of characteristic roots crosses the imaginary
axis and oscillations arise. This is highlighted by the two panels in
the right hand side that show the characteristic roots for two different
parameter choices. On the other hand, the boundary given by 𝑞 = 0 (red
curve) denote fold bifurcation: a real eigenvalue crosses the imaginary
axis and stability is lost in a non-oscillatory way. The two panels in the
left hand side illustrate this case by showing the characteristic roots
for two different parameter choices. At the intersection of the stability
boundaries (𝐶∗

R = 𝐶∗
F = 0) there exits a double zero characteristic root.

The special states discussed above (with both tires having peak force or
both tires are being at the sliding limit) are in fact correspond to this
case.

While the traditional nonlinear model discussed in this section can
provide insight into the dynamics of automobiles, it only incorporates
the tire nonlinearities and omits the geometric nonlinearities. As will
be shown below geometric nonlinearities can have significant effects on
the dynamics, especially when the vehicle operates close to its handling
limits. Moreover, these effects differ for front wheel drive and rear
wheel drive automobiles which demand the modeling efforts discussed
in the next section.

3. Bicycle models for different drive types

In this section we derive models for rear wheel drive (RWD) and
front wheel drive (FWD) automobiles while taking into account the
geometric nonlinearities as well as the nonlinear tire characteristics.
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𝑥

Fig. 3. Stability chart for the traditional nonlinear model on the plane of the generalized cornering stiffnesses 𝐶∗
R and 𝐶∗

F . The blue and red stability boundaries correspond to
Hopf and fold bifurcations, respectively, while the stable region is shaded green. The characteristic roots are depicted in the panels on the left and the right for four different
parameter sets. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
𝜎

We distinguish the drive types by considering different kinematic con-
straints and the equations of motion are derived by using the Appellian
framework. We show that both models simplify to the traditional
nonlinear model, presented in the previous section, when assuming
small steering and slip angles.

3.1. Rear wheel drive model

Recall Fig. 1. Again we use the three generalized coordinates
(𝑥G, 𝑦G, 𝜓) describing the position of the center of mass G and the
orientation of the vehicle in the plane. We assume that the rear wheel
is rolling with constant speed, that is, the longitudinal velocity of the
center of the rear wheel is constant and it is denoted by 𝑣∗. This is
equal to the longitudinal velocity of the center of mass G, leading to
the kinematic constraint

̇ G cos𝜓 + �̇�G sin𝜓 = 𝑣∗, (19)

which is ensured by applying the appropriate driving force at the rear.
Since we have 3 configuration coordinates and 1 kinematic constraint
we need 3 − 1 = 2 pseudo velocities when applying the Appellian
formalism (Gantmacher, 1975; De Sapio, 2017). These are chosen to
be the lateral velocity of center of mass G and the yaw rate:

𝜎 = −�̇�G sin𝜓 + �̇�G cos𝜓,
𝜔 = �̇� .

(20)

Eqs. (19), (20) can be solved for the generalized velocities:

�̇�G = 𝑣∗ cos𝜓 − 𝜎 sin𝜓,

�̇�G = 𝑣∗ sin𝜓 + 𝜎 cos𝜓,

�̇� = 𝜔,

(21)

where the first two rows give the coordinate transformation for the
velocity of the center of mass G between the Earth fixed frame (�̇�G, �̇�G)
and the body fixed frame (𝑣∗, 𝜎).

The acceleration energy of the system can be calculated as

𝑆 = 1
2
𝑚
(

�̈�2G + �̈�2G
)

+ 1
2
𝐽G�̈�

2

= 1𝑚
(

�̇�2 + 2𝑣∗𝜔�̇�
)

+ 1𝐽 �̇�2 +⋯
(22)
5

2 2 G
where … represent terms that do not contain the pseudo acceleration
̇ and we used the derivative of (21) when deriving the last row.

The virtual power generated by the lateral tire forces 𝐅R and 𝐅F can
be calculated as

𝛿𝑃 = 𝐅R ⋅ 𝛿𝐯R + 𝐅F ⋅ 𝛿𝐯F, (23)

where 𝛿𝐯R and 𝛿𝐯F are the virtual velocities of the wheel center points
R and F, respectively. In order to calculate the dot products in (23) it
is convenient to resolve the velocities and forces in a frame attached to
the vehicle body:

𝐯R =
[

𝑣∗

𝜎 − 𝑑 𝜔

]

body
, 𝐅R =

[

0
𝐹R

]

body
,

𝐯F =
[

𝑣∗

𝜎 + 𝑐 𝜔

]

body
, 𝐅F =

[

−𝐹F sin 𝛾
𝐹F cos 𝛾

]

body
.

(24)

Substituting these into (23) and using 𝛿𝑣∗ = 0 we obtain

𝛿𝑃 = (𝐹R + 𝐹F cos 𝛾)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

𝛱𝜎

𝛿𝜎 + (−𝑑 𝐹R + 𝑐 𝐹F cos 𝛾)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝛱𝜔

𝛿𝜔, (25)

which results in the pseudo forces

𝛱𝜎 = 𝐹R + 𝐹F cos 𝛾,

𝛱𝜔 = −𝑑 𝐹R + 𝑐 𝐹F cos 𝛾.
(26)

Notice that 𝛱𝜎 is the lateral component of the resultant tire force while
𝛱𝜔 is the resultant moment of these forces about the center of mass G.

The Appell equations are given as
𝜕𝑆
𝜕�̇�

= 𝛱𝜎 ,

𝜕𝑆
𝜕�̇�

= 𝛱𝜔,
(27)

which lead to

�̇� =
𝐹R(𝛼R) + 𝐹F(𝛼F) cos 𝛾

𝑚
− 𝑣∗𝜔,

�̇� =
−𝑑 𝐹R(𝛼R) + 𝑐 𝐹F(𝛼F) cos 𝛾 ,

(28)
𝐽G
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where we spelled out the that tire forces depend on the slip angles.
Using the component of the velocities in (24) we obtain

tan 𝛼R = −𝜎 − 𝑑 𝜔
𝑣∗

,

tan(𝛼F − 𝛾) = −𝜎 + 𝑐 𝜔
𝑣∗

,
(29)

here the second equation can also be rewritten as

tan 𝛼F =
𝑣∗ tan 𝛾 − (𝜎 + 𝑐 𝜔)
𝑣∗ + (𝜎 + 𝑐 𝜔) tan 𝛾

, (30)

hat is a more practical form when substituting into (41).
The equations of motion of the rear wheel drive automobile are

hen described by (21), (28), (29). These provide us with 5 first
rder differential equations which are often referred to as 2.5 degrees
f freedom (DOF). Also, notice that when considering small steering
ngles and small slip angles, (28) simplifies to (3) and (29) simplifies
o (2). That is, the rear wheel drive model simplifies to the traditional
odel under the small angle assumption.

We also remark that the kinematic equations for the RWD model
re the same as those for the traditional model (cf. (21) and (1)).
onsequently, in case of steady state cornering the radii of the center
f mass 𝑅G and the rear wheel center point 𝑅R can be calculated by
7) and (8), respectively.

.2. Front wheel drive model

A similar derivation can be performed for the front wheel drive
ehicle where we assume that the front wheel is rolling with a constant
peed. That is, the velocity component of the center of the front wheel
ligned with the wheel plane is constant and it is denoted by �̂�∗. The
orresponding kinematic constraint can be written as

̇ G cos(𝜓 + 𝛾) + �̇�G sin(𝜓 + 𝛾) + 𝑐 �̇� sin 𝛾 = �̂�∗, (31)

sing the velocity components of the center of mass G. Again we
hoose the lateral velocity of center of mass G and the yaw rate as
seudo velocities; cf. (20). The system (20), (31) can be solved for the
eneralized velocities:

�̇�G =
( �̂�∗

cos 𝛾
− (𝜎 + 𝑐 𝜔) tan 𝛾

)

cos𝜓 − 𝜎 sin𝜓,

�̇�G =
( �̂�∗

sin 𝛾
− (𝜎 + 𝑐 𝜔) tan 𝛾

)

sin𝜓 + 𝜎 cos𝜓,

�̇� = 𝜔,

(32)

when 𝛾 ≠ 𝜋
2 , where the first two rows give the coordinate transforma-

ion for the velocity of the center of mass G between the Earth fixed
rame (�̇�G, �̇�G) and the body fixed frame (�̂�∗∕ cos 𝛾 − (𝜎 + 𝑐 𝜔) tan 𝛾, 𝜎);

cf. (21).
Using the time derivative of (32) we can calculate the acceleration

energy:

𝑆 =1
2
𝑚
(

�̈�2G + �̈�2G
)

+ 1
2
𝐽G�̈�

2

=1
2

𝑚
cos2 𝛾

�̇�2 + 1
2
(

𝐽G + 𝑚𝑐2 tan2 𝛾
)

�̇�2 + 𝑚𝑐 tan2 𝛾 �̇� �̇�

+ 𝑚
(

�̂�∗

cos 𝛾
− 𝑐 𝜔 tan 𝛾

)

𝜔 �̇�

+ 𝑚
tan 𝛾
cos2 𝛾

(

𝜎 + 𝑐 𝜔 − �̂�∗ sin 𝛾
)

�̇� �̇�

+ 𝑚𝑐
tan 𝛾
cos2 𝛾

(

𝜎 + 𝑐 𝜔 − �̂�∗ sin 𝛾
)

�̇� �̇�

+ 𝑚𝑐 𝜎 𝜔 tan 𝛾 �̇� +⋯ ,

(33)

here again … refer to the terms without the pseudo acceleration �̇�.
6

The velocities of the wheel center points can be expressed as

𝐯R =
⎡

⎢

⎢

⎣

�̂�∗

cos 𝛾
− (𝜎 + 𝑐 𝜔) tan 𝛾

𝜎 − 𝑑 𝜔

⎤

⎥

⎥

⎦body

,

𝐯F =
⎡

⎢

⎢

⎣

�̂�∗

cos 𝛾
− (𝜎 + 𝑐 𝜔) tan 𝛾

𝜎 + 𝑐 𝜔

⎤

⎥

⎥

⎦body

,

(34)

in the body fixed frame while the lateral forces are still given by (24).
These are used when calculating the virtual power (23) and yield the
pseudo forces

𝛱𝜎 = 𝐹R +
𝐹F
cos 𝛾

,

𝛱𝜔 = −𝑑 𝐹R +
𝑐 𝐹F
cos 𝛾

,
(35)

cf. (25), (26).
Then the Appell Eqs. (27) become

[ 𝑚
cos2 𝛾

𝑚 𝑐 tan2 𝛾

𝑚 𝑐 tan2 𝛾 𝐽G + 𝑚𝑐2 tan2 𝛾

]

[

�̇�
�̇�

]

+

⎡

⎢

⎢

⎢

⎣

𝑚
tan 𝛾
cos2 𝛾

(

𝜎+𝑐 𝜔−�̂�∗ sin 𝛾
)

�̇� + 𝑚
(

�̂�∗

cos 𝛾
−𝑐 𝜔 tan 𝛾

)

𝜔

𝑚 𝑐
tan 𝛾
cos2 𝛾

(

𝜎+𝑐 𝜔−�̂�∗ sin 𝛾
)

�̇� + 𝑚𝑐 𝜎 𝜔 tan 𝛾

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝐹R(𝛼R) +
𝐹F(𝛼F)
cos 𝛾

−𝑑 𝐹R(𝛼R) +
𝑐 𝐹F(𝛼F)
cos 𝛾

⎤

⎥

⎥

⎥

⎦

(36)

where the dependency of the tire forces on the slip angles 𝛼R and 𝛼F
re spelled out again, cf. (28). These can be determined by using the
omponents of the velocities in (34):

tan 𝛼R = −
(𝜎 − 𝑑 𝜔) cos 𝛾

�̂�∗ − (𝜎 + 𝑐 𝜔) sin 𝛾
,

tan(𝛼F − 𝛾) = −
(𝜎 + 𝑐 𝜔) cos 𝛾

�̂�∗ − (𝜎 + 𝑐 𝜔) sin 𝛾
,

(37)

where the second formula can be simplified to the more practical
form

tan 𝛼F = tan 𝛾 − 𝜎 + 𝑐 𝜔
�̂�∗ cos 𝛾

, (38)

that can be used in (41).
The equations of motion of the front wheel drive automobile are

given by the 5 first order Eqs. (32), (36), (37). Again, considering small
steering angles and small slip angles, which also yields �̂�∗ ≈ 𝑣∗, (36)
simplifies to (3) and (37) simplifies to (2). That is, the front wheel drive
model also simplifies to the traditional model under the small angle
assumption. Note however that the kinematics of the FWD model is
given by (32) (and not by (21)) which result in the radii

𝑅G =

√

( �̂�∗

cos 𝛾∗
− (𝜎∗ + 𝑐 𝜔∗) tan 𝛾∗

)2
+ (𝜎∗)2

𝜔∗ , (39)

and

𝑅R =

√

( �̂�∗

cos 𝛾∗
− (𝜎∗ + 𝑐 𝜔∗) tan 𝛾∗

)2
+ (𝜎∗ − 𝑑 𝜔∗)2

𝜔∗ , (40)

in case of steady state cornering (cf. (7) and (8)).

4. Nonlinear analysis

In this section we analyze the nonlinear dynamics of the models
developed above by utilizing numerical continuation. Namely, we study
the traditional nonlinear model (2), (3) described in Section 2, the rear
wheel drive model (28), (29), (30) and the front wheel drive model
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Fig. 4. Bifurcation diagrams (a,b,d,e,g,h) and phase portraits (c,f,i) for three models with steering angle 𝛾∗ = 2 [deg]. Stable and unstable steady states are denoted by green and
red colors, respectively. Gray shading indicates the domains where the slip angles are smaller than 𝛼pk . In the bifurcation diagrams the blue stars indicate Hopf bifurcations,
magenta crosses denote fold bifurcations, and black diamonds mark singularities. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
(36), (37), (38) developed in Section 3. Note that for the analysis below
the kinematic Eqs. (1), (21), and (32) can be dropped.

We utilize the numerical continuation software DDE-Biftool (Sieber
et al., 2014) in order to find steady states while fixing the steering angle
𝛾∗ and changing the velocity 𝑣∗ (for the traditional and RWD models)
or the velocity �̂�∗ (for the FWD model). The steady state equations
were shown in (5) for the traditional model but we do not spell out
the formulae for the RWD and FWD models for simplicity. Apart from
finding the steady state lateral velocity 𝜎∗, steady state yaw rate 𝜔∗, and
steady state slip angles 𝛼∗R, 𝛼

∗
F, DDE-biftool also evaluates stability by

linearizing the equations around the steady state. These were calculated
analytically in (16) for the traditional model but are not spelled out for
the RWD and FWD models due to algebraic complexity.

Fig. 4 shows the numerical continuation results when setting the
steering angle to 𝛾∗ = 2 [deg]. The top, middle, and bottom rows corre-
spond to the traditional, RWD, and FWD models, respectively. Panels
(a) and (b) display the bifurcation diagrams for the traditional model.
In particular, the steady state slip angles 𝛼∗R and 𝛼∗F are plotted as
function of the longitudinal velocity 𝑣∗. Stable and unstable states are
shown by green and red curves, respectively. Gray shading highlights
the domain where the slip angles are below the limit 𝛼pk , i.e., |𝛼R| ≤ 𝛼pk
and |𝛼F| ≤ 𝛼pk ; cf. (2) and Fig. 1(b).

The stable steady state stays within this region and slip angles
increase with the speed. This state correspond to negotiating a curve
without saturating the tires and we refer to this as regular turning in the
rest of the paper. There are also two unstable states which move closer
to the stable state as the speed increases. The upper unstable steady
state corresponds to the motion where the rear tire is saturated and the
vehicle is taking a sharper turn compared to the regular turning motion,
so we refer to this as sharp turning in the rest of the paper. On the other
7

hand, the lower unstable steady state corresponds to drifting, i.e., the
vehicle is turning (with saturated rear tire) to the opposite direction
than the steering wheel’s direction would suggest.

The phase portrait in Fig. 4(c) is drawn for 𝑣∗ = 20 [m∕s]; cf. solid
vertical line in panels (a) and (b). Stable and unstable steady states are
indicated by green and red points, respectively, while trajectories for
different initial conditions are shown by blue curves. The gray domain
indicates where |𝛼R| ≤ 𝛼pk and |𝛼F| ≤ 𝛼pk and it is obtained via (2). This
provides an estimate for the region of attraction for stable steady state,
which is given accurately by the stable manifolds of the unstable steady
states. When choosing initial condition outside of these manifolds the
vehicle spins away from the stable motion. This is often utilized by law
enforcement officers to stop a fleeing vehicle: the pursuing vehicle shall
hit the rear of the fleeing vehicle hard enough to make it spin.

Fig. 4(d,e) show the bifurcation diagrams for the RWD model. The
corresponding phase portrait for 𝑣∗ = 20 [m∕s] is shown in Fig. 4(f)
where the gray regions are obtained from |𝛼R| ≤ 𝛼pk and |𝛼F| ≤ 𝛼pk
using (29), (30). When comparing the results with the traditional
model, a high level of similarity can be noticed. That is, for small
steering angles the traditional and the RWD models are essentially
equivalent in the speed regime investigated.

For the FWD model the bifurcation diagrams and the phase portrait
are displayed in Fig. 4(g,h) and (i), respectively, and (37), (38) is used
to obtain the gray shaded domain in panel (i) from |𝛼R| ≤ 𝛼pk and
|𝛼F| ≤ 𝛼pk . While the stable branch behaves similar as in the traditional
and RWD cases, the unstable branches show qualitative differences. In
particular, the upper branch, corresponding to sharp turning, displays
a singularity at small speed (indicated by black diamond) while the
drifting branch at the bottom folds back (marked by magenta cross)
and also gains stability via a Hopf bifurcation (denoted by blue star)
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Fig. 5. Bifurcation diagrams (a,b,d,e,g,h) and phase portraits (c,f,i) for three models with steering angle 𝛾∗ = 8 [deg]. Stable and unstable steady states are denoted by green and
red colors, respectively. Gray shading indicates the domains where the slip angles are smaller than 𝛼pk . In the bifurcation diagrams the blue stars indicate Hopf bifurcations,
magenta crosses denote fold bifurcations, and black diamonds mark singularities. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
for larger speed. Due to the fold, there exist two drifting solutions, one
of these is outside of the window in Fig. 4(i). The Hopf bifurcation is
subcritical (Guckenheimer and Holmes, 1983; Kuznetsov, 2004) and
results in an unstable periodic orbit around the stable steady state.
The amplitude of the periodic orbit is very small and this orbit gives
the region of attraction of the stable steady state. These qualitative
differences, however, only influence the behavior for large slip angles
or for small speed. The rest of the diagram still looks akin to that of
the traditional model.

We remark that from Fig. 4 one may also infer how the bifurcation
diagrams and phase portraits look like in the limit 𝛾∗ = 0. In this case,
the stable steady state remains at zero as the speed increases. This
corresponds to the rectilinear motion. The unstable steady states appear
symmetrically around the stable one and these correspond to special
motions where the vehicle turns despite zero steering angle.

Fig. 5 depicts the bifurcation diagrams and phase portraits for
steering angle 𝛾∗ = 8 [deg]. For the traditional model the bifurcation
diagrams (panels (a,b)) show qualitative differences compared to the
𝛾∗ = 2 [deg] case in Fig. 4(a,b). As the speed is increased the stable
branch reaches the peak slip angle where it meets with the upper
unstable branch of sharp turning via a degenerate fold bifurcation
(indicated by magenta cross). The corresponding speed 𝑣∗cr,1, given by
(13), is highlighted by the vertical dashed line. Such critical point only
exist due to the ‘‘symmetry’’ of the traditional model which causes
both wheels to reach the handling limit at the same speed. However,
reminiscences of this bifurcation will show up for the RWD and FWD
models as explained below.

As the speed is increased further a stable branch arises for which
the rear slip angle stays smaller than the peak value 𝛼pk while the
front slip angle becomes larger and the front tire saturates. An unstable
8

branch with both slip angles being larger than the peak value also
arises. This ends in a singularity (marked by black diamond) when the
speed reaches the critical value 𝑣∗cr,2, given by (15), that is marked by
the vertical dashed–dotted line. For higher speeds only two solutions
exists: the stable steady state with saturated front tire and the unstable
drifting state with saturated rear tire. These are shown in Fig. 5(c)
that highlights that the stable state has a small region of attraction
which is not anymore approximated by the gray shaded domain given
by |𝛼R| ≤ 𝛼pk and |𝛼F| ≤ 𝛼pk ; cf. (2).

The bifurcation diagrams of the RWD model, displayed in
Fig. 5(d,e), show some similarities to the those of the traditional model.
The biggest change is that the degenerate fold bifurcation is broken,
resulting in two separate branches. The stable branch behaves similar
to the traditional model while the unstable branch folds back (as
marked by the magenta cross). The phase portrait in Fig. 5(f) reveals
that there also exist multiple unstable drifting states, one of which is
outside of the window in the bifurcation diagram as the slip angles are
(unrealistically) large. Again, the shaded region given by |𝛼R| ≤ 𝛼pk and
|𝛼F| ≤ 𝛼pk (cf. (29), (30)) is not related to the region of attraction of the
stable steady state.

For the FWD model, as depicted in Fig. 5(g,h), the degenerate fold
bifurcation is broken in another way, resulting in two folding branches
(see magenta crosses). For lower speed we obtain steady states of stable
regular turning and unstable sharp turning (with saturated rear tire).
For higher speed we have sharp turning motions with saturated tires
that are mostly unstable (see top branches). Even when stability is
gained via subcritical Hopf bifurcation (see blue stars) the resulting
stable motion has very small region of attraction (given by a small
periodic orbit). Similar behavior can be observed for the branches
corresponding to drifting (see bottom branches). The phase portrait in
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Fig. 6. Experimental results for steady state cornering when the steering wheel angle is set to 180 degrees and the speed is set to 10.0 m/s (black), 12.5 m/s (blue), 15.0 m/s
(orange), 17.5 m/s (gray). (a) Trajectories of the rear axle center point R. (b,c,d) Speed of the point R, steering wheel angle, turning radius of the point R as function of time.
(e) Turning radius as a function of speed. The colored curves correspond to those on the left side of Fig. 5(g,h). (f) Trajectories of R for regular turning and sharp turning for set
speed 12.5 m/s obtained by simulations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 5(i) suggests that no stable motion with practically-sized region
of attraction exists for large speed, as opposed to what suggested by
the gray shaded domain given by |𝛼R| ≤ 𝛼pk and |𝛼F| ≤ 𝛼pk ; cf. (37),
(38). The most notable phenomenon observed for the FWD model is
that there exist a range of speed where neither regular nor fast turning
motion happens. This behavior will be confirmed experimentally in
Section 5 using an automated vehicle.

To summarize, the bifurcation analysis performed above reveals
the similarities and differences between different models. For small
steering angles the traditional, RWD, and FWD models show similar
behavior (except for small speed) but such statement does not hold
for larger steering angles. In the latter case, the traditional model can
still provide some guidance, in particular regarding the critical speed,
but differentiating the drive type seems critical in understanding the
dynamics at large steering angles and speeds. In the next section we
show experimental results obtained for a front wheel drive vehicle and
compare those to the theoretical results discussed above.
9

Table 2
Experimental results for steady state cornering with steering wheel angle set to 180
degrees.

Set speed Measured speed |𝑣R| SWA Turning radius 𝑅R

10.0 [m/s] 9.75 ± 0.17 [m/s] 180.02 ± 0.34 [deg] 16.72 ± 0.41 [m]
12.5 [m/s] 11.92 ± 0.19 [m/s] 180.11 ± 0.95 [deg] 19.53 ± 0.45 [m]
15.0 [m/s] 14.02 ± 0.26 [m/s] 178.27 ± 2.37 [deg] 24.91 ± 0.80 [m]
17.5 [m/s] 15.56 ± 0.73 [m/s] 176.13 ± 4.14 [deg] 30.99 ± 2.65 [m]

5. Experimental validation

In this section, we present the results of the steady state cornering
experiments and compare to those obtained by bifurcation analysis in
the previous section. In particular, we demonstrate that the experimen-
tal results match with the theoretical results for a front wheel drive
automobile when using the FWD model developed in Section 3.2 that
includes the appropriate geometric nonlinearities. We emphasize that
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the RWD model developed in Section 3.1 and the traditional model
analyzed in Section 2 would give qualitatively different behavior.

A front wheel drive automated KIA Soul with specifications given
in Table 1 were used for the experiment. We tune the parameters
𝑚 = 1600 [kg], 𝐽G = 2000 [kgm2], 𝑘 = 2 × 106 [N∕m2], 𝜇 = 𝜇0 = 1.2 in ac-
cordance with our experimental setup, but these do not lead to qual-
itative changes in the bifurcation diagrams. The driving tests were
performed on dry asphalt at the University of Michigan test track called
Mcity. The steering angle was held constant by the human operator
while the speed was held constant by the controller. GPS data was
collected together with vehicle data including the steering angle and
the wheel based velocity. The GPS antenna was mounted above the
center of the rear axle (see point R in Fig. 1) and below we display the
position and speed of this point.

The experimental results are shown in Fig. 6 where panel (a) depicts
the traces of the rear center point R for four different set speed values:
10.0 [m/s] (black), 12.5 [m/s] (blue), 15.0 [m/s] (orange), 17.5 [m/s]
(gray). The steering wheel angle is set to 180 degrees which corre-
sponds to 𝛾∗ ≈ 11 degrees at the wheel (given the steering ratio 15.7).
Corresponding to the constant steering angle the vehicle is moving on a
circular path and the size of this circle increases with the speed. Steady
state cornering cannot be maintained for a full circle for the largest set
speed as shown by the gray trajectory. We remark that in reality the
paths observed during the experiments for different set speed values
were not concentric but we shifted them to increase the readability of
the figure.

Fig. 6(b) displays the corresponding speed as a function of time; see
Table 2 for the corresponding mean and standard deviation values. One
may notice that the higher the set speed is the larger the speed errors
are. This is due to the fact that the longitudinal control was achieved
by a proportional controller that did not compensate for the resistance
arising from steering, i.e., the force component 𝐹F sin 𝛾∗ ≈ 0.2𝐹F; see
Fig. 1(a). The steering wheel angle SWA and the turning radius 𝑅R
are shown in Fig. 6(c) and (d), respectively, as function of time, while
the corresponding mean and standard deviation values are given in
Table 2. Again, observe that the errors of the steering wheel angle and
the turning radius increase with the set speed and for set speed 17.5
[m/s] the steady state cannot be sustained. We remark that the turning
radius we obtained by locally fitting arcs to the trajectories using a
window size of 19 points.

Fig. 6(e) summarizes the experimental results by displaying the
turning radius as function of the measured speed. The dots mark the
mean values while the error bars indicate the standard deviations for
each experiment. These results are compared with those obtained via
bifurcation analysis; cf. Fig. 5(g,h). In particular, the radius 𝑅R is
calculated using (40) with 𝛾∗ = 11 [deg], while we also use |𝑣R| =
𝜔∗𝑅R; cf. (34), (40). There is good agreement between the theoretically
obtained stable branch (green) and the experimental measurements
(black, blue, orange, gray squares). In particular, we emphasize the
qualitative agreement that no steady state exists above a critical speed;
cf. the magenta cross denoting the fold bifurcation and the data point
for the highest speed (where no steady state was found). We remark
that such qualitative agreement holds for an extended set of vehicle
parameters, that is, this behavior is a robust feature of the FWD model
developed in this paper.

While the measurement data fit the stable branch in Fig. 6(e), the
unstable branch also reveals some interesting dynamics. In particular,
observe that the unstable steady state indeed corresponds to sharp
turning (smaller radius than the stable steady state cornering) with
saturated rear tire; cf. Fig. 5(g,h). The corresponding trajectories of
the rear axle center point R, obtained via numerical simulations, are
depicted in Fig. 6(f) for set speed 12.5 [m/s]. When linearizing the FWD
model (36), (37), (38) around these steady states one obtains a model
similar to (16). This way one can show that the sharp turning motion
is controllable (at least at the linear level) by modulating the steer-
ing angle. This suggests that, with the appropriate controllers, FWD
automated automobiles may execute sharp turns, and thus, achieve
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enhanced maneuverability.
6. Conclusion

High fidelity single track models were developed to describe the
lateral and yaw motion of automated vehicles. The models differentiate
between front wheel drive and rear wheel drive automobiles by in-
corporating the geometric nonlinearities beside the tire nonlinearities.
The steady state cornering behavior was analyzed with the help of
numerical bifurcation analysis that allowed us to compare the newly
developed models to a traditional nonlinear model which omits geo-
metric nonlinearities. It was demonstrated that for small steering angles
the three models were essentially equivalent and they all exhibited
three qualitatively different motions: regular turning, sharp turning,
and drifting. In the latter two cases the rear tires were saturated.
For larger steering angles similar motions appeared but the models
exhibited significant differences about how the motions changed as the
speed of the vehicle was increased. The front wheel drive model was
validated experimentally by using an automated vehicle on a test track.
Experiments confirmed the existence of a region where neither regular
nor sharp turning motions existed. The potential of exploiting sharp
turning and drifting motions to enhance maneuverability of automated
vehicles has been highlighted but the corresponding control design was
left for future research. Including the effects of combined slip in the
models is another important future direction.
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Appendix

Here we provide the algebraic formulae for the nonlinear tire char-
acteristics shown in Fig. 1(b). For the brush model (blue curve), assum-
ing parabolic pressure distribution along the tire-ground contact region
one may obtain the form

𝐹 (𝛼) =

{

𝜙1 tan 𝛼 + 𝜙2 tan2 𝛼 sgn 𝛼 + 𝜙3 tan3 𝛼, if 0 ≤ |𝛼| < 𝛼sl,
𝜇𝐹𝑧 sgn𝛼, if 𝛼sl < |𝛼|,

(41)

ith coefficients
𝜙1 = 2𝑘𝑎2,

𝜙2 = −
(2𝑘𝑎2)2

3𝜇0𝐹𝑧

(

2 −
𝜇
𝜇0

)

,

𝜙3 =
(2𝑘𝑎2)3

(3𝜇0𝐹𝑧)2
(

1 −
2𝜇
3𝜇0

)

,

(42)

nd sliding limit

= arctan
( 3𝜇0𝐹𝑧 ). (43)
sl 2𝑘𝑎2
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(

Here 𝑎 is the contact patch half-length, 𝑘 is the distributed lateral
stiffness of the tires, 𝐹𝑧 is the vertical load on the axles, 𝜇 and 𝜇0 are
the friction coefficients between the tires and the road for sliding and
sticking, respectively. Notice that 𝑘 and 𝑎 only show up as 2𝑘𝑎2 in the
above formulae. A simplified version of this model with 𝜇 = 𝜇0 can be
found in Fiala (1954)

Using (41), (42) one may derive the location and the value of the
peak as

𝛼pk = arctan

(

𝜇0𝐹𝑧
2𝑘𝑎2

(

1 −
2𝜇
3𝜇0

)−1
)

,

𝐹 (𝛼pk ) = 𝜇0𝐹𝑧
( 4
3
−
𝜇
𝜇0

)(

1 −
2𝜇
3𝜇0

)−2
,

(44)

nd the cornering stiffness
d𝐹
d𝛼

(0) = 2𝑘𝑎2. (45)

The green curve in Fig. 1(b) is given by the magic formula

𝐹 (𝛼) = 𝐷 sin
(

�̃� arctan
(

𝐵(1−𝐸) tan 𝛼 + 𝐸 arctan
(

𝐵 tan 𝛼
)

)

)

, (46)

where the four independent parameters 𝐴,𝐵, �̃�, 𝐷 are typically identi-
fied experimentally. One may calculate the lateral force corresponding
to complete sliding

𝐹 (𝜋∕2) = 𝐷 sin(�̃�𝜋∕2), (47)

the location and the value of the peak

𝛼pk = arctan
( tan

(

𝑓 (�̃�, 𝐸)
)

𝐵

)

,

𝐹 (𝛼pk ) = 𝐷,
(48)

where 𝑓 (�̃�, 𝐸) is the solution of the equation

1 − 𝐸) tan 𝑧 + 𝐸𝑧 + tan 𝜋
2�̃�

= 0, (49)

for 𝑧, and the cornering stiffness is given by
d𝐹
d𝛼

(0) = 𝐵�̃�𝐷. (50)

Then comparing (41), (44), (45) with (47), (48), (50) the parameters
of the brush model and the magic formula can be matched.
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