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Abstract— An energy-efficient longitudinal controller is de-
signed for connected automated trucks traveling in mixed
traffic environment, consisting of connected and non-connected
vehicles. A data-driven optimization method is proposed to
determine the parameters of the energy-optimal controller while
modeling the speed of nearby vehicles as stochastic processes.
Spectral estimation is utilized for the analysis of the linearized
system and the efficacy of our proposed method is evaluated
statistically using synthetic data.

I. INTRODUCTION

Improving the energy efficiency of heavy duty vehicles can
bring great environmental and financial benefits for freight
transportation. Previous research has shown that applying
different longitudinal controllers may result in significant
differences in energy consumption [1]. Thus, an effective
way of improving energy efficiency is to optimize the longi-
tudinal control design. This may bring benefits to trucks with
different powertrains (internal combustion engines, battery
electric and hybrid electric).

Adaptive cruise control(ACC) is a popular longitudinal
controller, which determines the acceleration of host vehicle
utilizing the measurement of position and speed of vehi-
cle immediately in the front. Wireless vehicle-to-everything
(V2X) communication may bring new opportunities in im-
proving energy efficiency. When a group of connected auto-
mated vehicles are following each other closely, one may uti-
lize cooperative adaptive cruise control (CACC) algorithms
in order to save energy [2], [3], [4], [5]. However, the pene-
tration of connected and automated vehicles is still very low,
demanding strategies that may enable energy savings for lean
penetration of connectivity and automation. Connected cruise
control (CCC) exploits information from V2X connectivity
with the reachable connected vehicles in traffic [6], [7], and
this may lead to significant energy savings [8].

One of the main challenges is that vehicles ahead may
exhibit a large variety of different motions and a controller
that ensures high energy efficiency for one profile may
perform poorly for another one. V2X connectivity allows
vehicles to obtain information from beyond line of sight [9],
making it possible to make better predictions in traffic [10],
[11], [12]. One can optimize the longitudinal controller based
on the prediction of motions of preceding vehicles [13], [14],
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but this heavily relies on the accuracy of prediction. While
long prediction horizon is needed to save energy [8], the
uncertainty of prediction grows rapidly with the prediction
horizon. In this paper, instead of pursuing more precise
prediction of transient human behavior, we optimize the en-
ergy consumption in the average sense for stationary motion.
In particular, we propose a stochastic modeling framework
for the vehicles’ motion and apply spectral methods to
evaluate the effects of controller. The spectral properties
of vehicle motion are estimated using data collected via
V2X. Therefore our method is non-parametric and requires
no first-principle driver models. The controller parameters
are optimized according to traffic data and the optimality of
the controller parameters are validated statistically with large
amount of synthetic data.

This rest of the paper is organized as follows. Section II
describes the problem setting and proposes a longitudinal
controller that utilizes information obtained via V2X com-
munication. Section III describes the stochastic modeling
of vehicle trajectories. Section IV proposes a method to
determine the control parameters that minimize the aver-
age energy consumption. Section V evaluates the energy
efficiency for adaptive cruise control and connected cruise
control. Section VI summarizes the results and lay out future
research directions..

II. CONNECTED CRUISE CONTROL DESIGN

In this section, we design a longitudinal controller for
connected automated truck (CAT) traveling in a mixed traf-
fic consisting of connected human-driven vehicles (CHVs)
and non-connected human-driven vehicles (HVs) shown in
Fig. 1(a). We assume that the truck senses the vehicle imme-
diately ahead using range sensors (e.g., radar or LIDAR) and
can also communicate with another preceding vehicle ahead
via vehicle-to-vehicle (V2V) communication. The longitudi-
nal controller of the CAT shall respond to the motion of all
vehicles from which it obtains information (either by sensors
or via V2V communication. We refer to this concept as
connected cruise control (CCC) which has been investigated
both theoretically [6], [7] and experimentally [15]. Here we
focus on the energy benefits of this strategy following the
concepts laid out in [8].

We model the longitudinal dynamics of the truck using
the differential equations

ḣ(t) = v1(t)− v(t),

v̇(t) = −f
(
v(t)

)
+ sat

(
u(t− σ)

)
,

(1)

where v and v1 denote the speed of the truck and the vehicle
right in the front of it, while h is the distance headway be-
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Fig. 1. (a) A connected automated truck (CAT) driving in a mixed traffic
consisting of connected human-driven vehicles (CHVs) and non-connected
human-driven vehicles (HVs). (b,c) Saturation function (2) (3). (d) Range
policy (6). (e) Speed policy (14).

tween them. The resistance term f(v) = c0 + c1v
2 originate

from the rolling resistance and the air drag and we neglect the
road grade for simplicity. Here we use c0 = 0.0585 [m/s2]
and c1 = 1.30× 10−4 [1/m] adopted from [8].

The effect of control input u appear in (1) after some time
delay and it is subject to saturation. The time delay σ models
the delay in the powertrain system while saturation results
from the limited available braking torque, engine torque, and
engine power. In particular we have

sat(u) = max
{
umin, min{u, ũmax}

}
(2)

where
ũmax = min

{
umax,

Pmax

meffv

}
, (3)

that are visualized in Fig. 1(b,c). Here we con-
sider the parameters umin = −4 [m/s2], umax = 1 [m/s2],
Pmax = 300.65 [kW], meff = 29641 [kg]; see [8].

In this paper we propose the controller

u(t) = f̃
(
v(t)

)
+ ad(t) , (4)

where compensation term f̃(v(t)) is implemented by the
lower level controller in order to cancel the resistance term,
while ad defines the desired acceleration given by the higher
level controller. We use I to denote the set of vehicles whose
motion information the CAT has access to. This includes
vehicle 1 which is monitored by the range sensors, as well
as the CHVs who share their motion information via V2X
connectivity. Here we consider controllers of the form

ad = α
(
V (h)− v

)
+
∑
i∈I

βi
(
W (vi)− v

)
, (5)

where the first term is designed to maintain the headway and
the second term aims to match the speed with the speed of
the preceding vehicles.

The controller (5) contains the range policy

V (h) = max
{

0, min{κ(h− hst), vmax}
}
, (6)

depicted in Fig. 1(d). For small headway the truck tends to
stop, for large headway it aims to travel with maximum speed
vmax, while between the desired speed increases linearly with
gradient κ = vmax/(hgo − hst). In addition, the speed policy

W (v) = min{v, vmax} , (7)

shown Fig. 1(e) is designed to keep the speed below the
limit vmax in case the preceding vehicles are speeding.
In this paper we set vmax = 35 [m/s] [m/s], hst = 5 [m],
hgo = 55 [m], yielding κ = 0.6 [1/s].

In order to study the performance of the controller we
linearize the closed loop system (1,4,5) about the equilibrium

h(t) ≡ h∗ , v(t) = vi(t) ≡ v∗ = V (h∗) , (8)

for i ∈ I. Defining headway and speed perturbations
h̃ = h− h∗, ṽ = v − v∗, ṽi = vi − v∗ we obtain

˙̃
h(t) = ṽ1(t)− ṽ(t) ,

˙̃v(t) = α
(
κh̃(t− σ)− ṽ(t− σ)

)
+
∑
i∈I

βi
(
ṽi(t− σ)− ṽ(t− σ)

)
.

(9)

Applying the Laplace transform with zero initial condition
leads to

V (s) =
∑
i∈I

Ti(s)Vi(s) , (10)

where V (s) and Vi(s) denote the Laplace transform of the
speed of the CAT v(t) and the speed of the preceding
vehicles vi(t), while the so-called link transfer functions are
defined as

T1(s) =
β1s+ ακ

D(s)
, Ti(s) =

βis

D(s)
, (11)

for i ∈ I \ {1} where

D(s) = s2esσ +
(
α+

∑
i∈I

βi

)
s+ ακ . (12)

In order to ensure that the truck is able to approach the
equilibrium (8), the linearized system (9) needs to be plant
stable [6]. That is, all roots of the characteristic equation
D(s) = 0 must have negative real parts. This is satisfied if
the parameters (α, βi), i ∈ I are selected from the region Ω:

α > 0 ,

ω sin(ωσ)− α ≤
∑
i∈I

βi < ω sin(ωσ)− α , (13)

where ω and ω are the solutions of transcendental equation
ακ = ω2 cos(ωσ) such that 0 < ω < ω < π

2 .
To evaluate the energy consumption of the CAT, we use

energy consumption per unit mass in time interval t ∈ [t0, tf ]:

w =

∫ tf

t0

v(t)g (v̇(t) + f(v(t))) dt , (14)

where g(x) = max{x, 0}. Our goal is to find the combi-
nations of the control gains (α, βi), i ∈ I that minimize w
while also ensuring plant stability.
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III. STOCHASTIC MODELING

In this section, we propose a stochastic approach where we
model the motion of the preceding vehicles using stochastic
processes. For simplicity, we limit our analysis on a specific
family of stochastic processes, called Gaussian processes,
which result in physically realistic vehicle motions.

Consider a closed loop system with dynamics (1,4,5)
where the inputs vi, i ∈ I are stochastic processes. The goal
is to relate the gain parameters (α, βi), i ∈ I to the system
output v and in turn to the energy consumption w defined in
(14). To simplify the analysis, we make three assumptions
about the input processes vi, i ∈ I: (i) They are wide-sense
stationary (WSS); (ii) They are differentiable; (iii) They
are Gaussian processes. We discuss these assumptions more
rigorously below and relate them to spectral theory.

The stationarity assumption enables us to apply spectral
analysis, and link the controller parameters to characteristics
of output process v. We begin with some definitions.

Definition 1 (Strict-sense Stationary (SSS)). A stochastic
process {Xt}t∈T is strict-sense stationary if for any in-
dices t1, · · · , tk ∈ T and sets A1, · · · , Ak, the probabilities
P(Xt1+t ∈ A1, · · · , Xtk+t ∈ Ak) do not depend on t ∈ T .

In many cases, strict-sense stationarity can be restrictive.
Instead we utilize wide-sense stationary which enforces
stationarity on first and second order moments.

Definition 2 (Mean and Correlations). For a stochastic
process {Xt}t∈T , the mean and the autocorrelation are given
by

µX(t) = E[Xt] , RXX(s, t) = E[XsXt] , (15)

where E[·] denotes the expected value. Considering another
stochastic process {Yt}t∈T defined on the same probability
space, we define the cross-correlation

RXY (s, t) = E[XsYt] . (16)

Definition 3 (Wide-sense Stationary (WSS)). A stochastic
process {Xt}t∈T is called wide-sense stationary if there exist
a constant m and a function r(t), t ∈ T , such that

µX(t) ≡ m, RXX(s, t) = r(t− s) , ∀s, t ∈ T . (17)

When {Xt}t∈T is WSS, RXX(s, t) is a function of (t− s)
and we write RXX(τ) = RXX(t− s) without ambiguity.
One may verify that autocorrelation is symmetric, that is,
RXX(s, t) = RXX(t, s) for a general stochastic process,
yielding RXX(τ) = RXX(−τ) for a WSS process. Similarly
the cross-correlation is also symmetric. Also note that the
autocorrelation RXX(0) gives the second moment; cf. (15).
We assume that speed perturbations of the preceding vehicles
ṽi are WSS, that is, vi = v∗ + ṽi where v∗ denotes the
equilibrium speed and µṽi = 0, for all i ∈ I.

One major benefit from the WSS assumption is that,
we can apply spectral analysis, and thus, determine the
input/output relationship for linear time-invariant (LTI) sys-
tems. First we define power spectral density as the Fourier

transform of autocorrelation function:

SXX(ω) = F [RXX(τ)] =

∫ ∞
−∞

RXX(τ)e−jωτdτ , (18)

where ω denotes the angular frequency. Since
RXX(τ) = RXX(−τ), the power spectral density SXX(ω)
is a non-negative real number and one can also show that
SXX(ω) = SXX(−ω). For LTI systems with input being
a WSS process, the power spectral density of the output
process can be calculated using the following theorem [16].

Theorem 1 (Spectral Analysis of LTI Systems). For a linear
system with transfer function G(s), if the input signal Xt is
a WSS process, then the output signal Yt is also WSS. The
first and second order moment of Yt are given by

µY = G(0)µX , SY Y (ω) = |G(jω)|2SXX(ω) . (19)

Similarly, the cross power spectral density can be defined
as the Fourier transform of crosscorrelation function

SXY (ω) = F [RXY (τ)] , (20)

which may be a complex number. The following theorem de-
fines the input/output relationship of signal passing through
different LTI systems [16].

Theorem 2. Given two signals Xt and Yt separately passing
through two LTI systems with transfer functions G1(s) and
G2(s), respectively, the cross power spectral density of the
corresponding outputs Zt and Ξt is

SZΞ(ω) = G1(jω)G∗2(jω)SXY (ω) , (21)

where the star denotes the complex conjugate.

Due to physics, the speed of preceding vehicles are
continuous and differentiable. The derivative of stochastic
processes are often considered in mean square sense; see [16]
for details. Specifically, for a WSS process Xt, we have the
following properties of the time derivative Ẋt:
(a) Xt and Ẋt are jointly WSS,
(b) µẊ(t) = 0,
(c) RẊX(τ) = d

dτRXX(τ) = −RXẊ(τ),
(d) RẊX(0) = RXẊ(0) = 0,
(e) RẊẊ = − d2

dτ2RXX(τ).
Apart from being differentiable, the speed of preceding ve-

hicles are assumed to be Gaussian processes. This simplifies
the analysis and enables us to derive analytical results.

Definition 4 (Gaussian Process (GP)). A stochastic process
{Xt}t∈T is a Gaussian process if for every finite set of
indices t1, · · · , tk ∈ T , X(t1, · · · , tk) = (Xt1 , · · · , Xtk) is
multivariate Gaussian random variable.

Gaussian process has the following nice properties [16].
(a) Gaussian process is uniquely determined by its mean

function and autocorrelation function.
(b) If a Gaussian process is WSS, then it is SSS.
(c) For a linear system, if the input signal is a Gaussian

process, then the output is also a Gaussian process.
(d) If a Gaussian process Xt is mean square differentiable,

then Ẋt is also a Gaussian process.
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IV. DATA-DRIVEN CONTROLLER OPTIMIZATION

In this section, we propose a method to determine the
energy-optimal parameters for the proposed controller using
traffic data. First we derive an optimization problem assum-
ing the oracle knowledge of spectral density of preceding
vehicles’ speed. Then we introduce two estimators for the
cross power spectral density, and finally formalize the data-
driven controller optimization method.

A. Optimization with oracle knowledge

Here we utilize the concepts introduced in the previous
section. We apply spectral analysis for the linearized system
(9), derive analytical expression for the expectation of energy
consumption defined in (14), and formulate the optimization
problem to determine energy-optimal controller parameters.

The inputs ṽi, i ∈ I are assumed to be WSS, mean-square
differentiable Gaussian processes with zero mean. Then the
output ṽ is also a WSS Gaussian process with zero mean.
According to (10), the output signal ṽ can be decomposed
into response to each input signal ṽi:

ṽ(t) =
∑
i∈I

ηi(t) , (22)

According to Theorems 1 and 2, for all i, j ∈ I we have

µηi = 0 , Sηiηj (ω) = Ti(jω)T ∗j (jω)Sṽiṽj (ω) , (23)

such that when i = j

Sηiηi(ω) = |Ti(jω)|2Sṽiṽi(ω) . (24)

Then taking inverse Fourier transform we calculate the
autocorrelations Rηiηj (τ) = F−1[Sηiηj (ω)] for all i, j ∈ I,
which allow us to calculate the autocorrelation of the speed
perturbation ṽ:

Rṽṽ(τ) = E[ṽ(t)ṽ(t+ τ)]

=
∑
i,j∈I

E[ηi(t)ηj(t+ τ)]

=
∑
i,j∈I

Rηiηj (τ) .

(25)

The speed perturbation of the truck ṽ as well as its
derivative ˙̃v are WSS Gaussian processes with zero mean.
Let us consider the second moments

ς2 = Rṽṽ(0) , ϑ2 = R ˙̃v ˙̃v(0) . (26)

Since R ˙̃v ˙̃v(τ) = − d2

dτ2Rṽṽ(τ), we have

ϑ2 = − d2

dτ2
Rṽṽ(τ)

∣∣∣∣
τ=0

= F−1[ω2Sṽṽ(ω)]|τ=0

=
1

2π

∫ ∞
−∞

ω2Sṽṽ(ω)ejωτdω

∣∣∣∣
τ=0

.

(27)

Since Sṽṽ(ω) = Sṽṽ(−ω), we have

ϑ2 =
1

π

∫ ∞
0

ω2Sṽṽ(ω)dω . (28)

Thus, considering Rṽ ˙̃v(0) = 0, we can write down the joint
distribution of v = ṽ + v∗ and v̇ = ˙̃v as follows

p(v, v̇) =
1

2πςϑ
exp

(
− (v − v∗)2

2ς2
− v̇2

2ϑ2

)
. (29)

Applying Fubini’s theorem, the expected value of the
energy consumption w can be calculated as

E[w] =

∫ tf

t0

dt

∫ ∞
−∞

dv

∫ ∞
−∞

vg(v̇)p(v, v̇)dv̇

= (tf − t0)

∫ ∞
−∞

dv

∫ ∞
0

vv̇p(v, v̇)dv̇ (30)

= (tf − t0)
1

2πςϑ

[∫ ∞
−∞

v exp

(
− (v − v∗)2

2ς2

)
dv

]
×
[∫ ∞

0

v̇ exp

(
− v̇2

2ϑ2

)
dv̇

]
= (tf − t0)

v∗√
2π
ϑ .

That is, the expected value of the energy consumption
proportional to ϑ, the standard deviation of v̇. This motivates
us to formalize the optimization problem as

min
(
E[w]

)2
= (tf − t0)2 (v∗)2

2π
ϑ2

∝
∫ ∞

0

ω2Sṽṽ(ω)dω (31)

=
∑
i,j∈I

∫ ∞
0

ω2Ti(jω)T ∗j (jω)Sṽiṽj (ω)dω

:= J ,

such that (α, βi)i∈I ∈ Ω (32)

where Ω is given in (13) and we substituted (28). In the rest
of the paper we will use J as a cost function.

B. Data-driven optimization

In practice, we do not know the real value of cross
power spectral density of preceding vehicles’ speed. Instead,
we need to estimate them from data sampled in discrete
time with finite length. Such estimation problem has been
extensively investigated in literature. Here we utilize two
classical methods: periodogram and Welch’s method [17].

Given observation data of signal {vi(tk)}N−1
k=0 for time

instances tk = k∆t. First we subtract the sample means
to get the centralized data {ṽi(tk)}N−1

k=0 . Let {Ṽi(ωk)}N−1
k=0 ,

ωk = 2πk
N∆t be the discrete time Fourier transform of

{ṽi(tk)}N−1
k=0 . Then the periodogram estimator is defined as

Ŝṽiṽi (ωk) =
2∆t

N

∣∣Ṽi(ωk)
∣∣2 . (33)

The periodogram is fairly good estimator because it is
asymptotically unbiased, however, it suffers from high vari-
ance. We can alleviate the latter problem using Welch’s
method [18]. In time domain, we split the original signal into
segments with 50% overlap ratio. Then in frequency domain,
we apply window function to each segment, e.g., Hamming
window, and calculate the periodogram for windowed sig-
nals. Finally we average the results for each frequency.
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For cross-spectral density estimation, periodogram and
Welch’s method are similarly defined. Given two signals
{vi(tk)}N−1

k=0 and {vj(tk)}N−1
k=0 , and let {Ṽi(ωk)}N−1

k=0 and
{Ṽj(ωk)}N−1

k=0 be the discrete time Fourier transform of
centralized data {ṽi(tk)}N−1

k=0 and {ṽj(tk)}N−1
k=0 , the peri-

odogram method estimates the cross-spectral density with

Ŝṽiṽj (ωk) =
2∆t

N
Ṽi(ωk)Ṽ ∗j (ωk) . (34)

Indeed, when i = j this reduces to (33).
It is straightforward to replace the power spectral density

Sṽiṽj in (31) with periodogram estimator, and rewrite the
optimization problem for discrete time observations:

min J ≈ 2∆t

N

∑
i,j∈I

N−1∑
k=0

ω2
kTi(jωk)T ∗j (jωk)Ṽi(ωk)Ṽ ∗j (ωk) .

(35)
The optimization problem is similar for Welch’s method.
We only need to substitute the cross power spectral den-
sity Sṽiṽj (ω) in (31) with estimation results from Welch’s
method. Notice that we do not need to know the equilibrium
velocity v∗ in our data-driven method.

We also note that in our previous paper [8] we formalized
an optimization problem to determine the energy-optimal
controller parameters by minimizing

∑N−1
k=1 ω2

k

∣∣Ṽ (ωk)
∣∣2,

which is identical to our optimization problem (35) if we
choose the periodogram as spectral estimator. Nevertheless
the method presented here gives a new interpretation to this
cost function and provides a new method to improve it by
choosing a better spectral estimator, e.g. Welch’s method.

V. NUMERICAL RESULTS

In this section, we evaluate the optimization method
proposed in the previous section using synthetic data. Since
the system is stochastic and the parameters are optimized
for the average energy consumption, we perform a large
amount of simulations and evaluate our algorithm with the
statistics of energy consumption. The evaluation scenarios
include adaptive cruise control and connected cruise control
with a connected vehicle ahead in the traffic.

A. Adaptive cruise control (ACC)

When using ACC, the truck only responds to the vehicle
right in front. Therefore the controller (5) simplifies to

ad = α
(
V (h)− v

)
+ β

(
W (v1)− v

)
, (36)

where we dropped the subscript in β. Correspondingly, the
transfer function (11,12) becomes

T1(s) =
βs+ ακ

s2esσ + (α+ β)s+ ακ
. (37)

We search for the parameter β that minimizes the energy
consumption.

The evaluation of our proposed method consists of two
steps: observation and testing. In the observation step, we
observe the speed profile of the preceding vehicle, estimate
the spectral density, and solve the optimization problem (31)
to get the optimal gain parameter. In the testing step, we

Fig. 2. Sample trajectory of a preceding vehicle. (a) Speed profile. (b)
Acceleration profile.

simulate the truck for different preceding vehicle speed pro-
files using the gain parameter calculated in the observation
step. The speed profile of the preceding vehicle in the testing
step is generated from the same distribution as in observation
step. In particular, we create 101 candidate speed profiles for
the preceding vehicle and arbitrarily pick one for observation
and another one for testing.

The candidate speed profiles are independently generated
from Gaussian process with Matérn kernel

Rṽ1ṽ1(τ) = C2 21−ν

Γ(ν)

(√
2ν
τ

ρ

)ν
Kν

(√
2ν
τ

ρ

)
, (38)

where Γ(·) is the Gamma function, Kν(·) is the modified
Bessel function of the second kind, and ρ and ν are positive
parameters. In our simulations, we choose v∗ = 25 [m/s],
C = 1, ρ = 5, and ν = 5

2 . It can be proved that this process
is second-order mean square differentiable [19]. A sample
speed profile and the corresponding acceleration profile are
plotted in Fig. 2(a) and (b) respectively. Each candidate speed
profile has 2 minute duration.

Fig. 3 plots statistics of the 101 candidate speed profiles
in time domain and frequency domain. In time domain, we
calculate sample autocorrelation for each candidate trajectory
and plot the mean (cyan solid curve) and the standard
deviation (cyan shading) in Fig. 3(a). We also plot function
(38) as purple dashed curve for comparison that we refer to
as the“oracle”. Observe that the mean of sample autocorre-
lation function matches the oracle very well. In frequency
domain, we calculate the power spectral density using the
periodogram (orange curve and shading) and Welch’s method
(green curve and shading) and compare them with the oracle
power spectral density (purple dashed curve) in Fig. 3(b).
The latter one is obtained as the Fourier transform of (38).
The mean of spectral estimators matches the oracle very well
except at zero frequency. Note that the spectral density at
zero frequency does not influence the objective function (31).
The periodogram estimator has higher resolution compared
to Welch’s method, but the variance is significantly higher.

In order to show the optimality of our proposed method,
we first apply grid search to find the “ground truth” optimal
parameter. For each candidate trajectory, we simulate the
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Fig. 3. Statistics of 101 candidate speed profiles. (a) Sample correlation
function and the oracle correlation function (38). (b) Spectral estimations
according to the 101 candidate speed profiles and the oracle power spectral
density. Solid curves denote the mean while the standard deviation is
indicated by shading.

truck using different β values between 0 and 1 [1/s] with
step size 0.01 [1/s] while fixing α = 0.4 [1/s]. The initial
condition is set to be v(t) ≡ v∗, h(t) ≡ h∗ for t ∈ [−σ, 0].
We conduct simulations using the nonlinear model (1,4,5)
as well as the linear model (9) and plot the statistics of the
energy consumption in Fig. 4, where solid curves indicate
the mean and shadings indicate the standard deviation. The
optimal parameters, which results in minimum average en-
ergy consumption, are marked by crosses in both cases. They
are located at β∗lin = 0.54 [1/s] and β∗nonlin = 0.63 [1/s] for
linear and nonlinear simulations, respectively. For compar-
ison, we also plot the cost function J which is calculated
with oracle knowledge of spectral density. The shape of this
curve is similar to the curve of average energy consumption
in Fig. 4(a) and it reaches its minimum at βo = 0.58 [1/s].

Considering the 101 candidate speed profiles, there are
101× 100 = 10100 observation-testing pairs available to
evaluate our optimization method. In the observation step,
the spectral density may come from the spectral estimators
(periodogram or Welch’s method), or potentially from oracle
knowledge. These spectral densities are then plugged into
(31), and the resulting optimal parameters are denoted as
βp, βw, and βo. We use these optimized parameters in
the testing step and denote the corresponding energy con-
sumption values as wp, ww, and wo, respectively. For each
testing trajectory, since we have simulated for all β ranging
between 0 and 1 [1/s], we know the ground truth of the
energy-optimal parameter and the corresponding minimum
energy consumption w∗. The sub-optimality of βp, βw and
βo can be evaluated using the differences ∆wp = wp − w∗,
∆ww = ww − w∗ and ∆wo = wo − w∗.

We visualize these differences for all 10100 observation-
testing pairs using the histograms in Fig. 5(a) and (b) for
the linear and nonlinear simulations, respectively. In general,
∆wp, ∆ww and ∆wo are all concentrated around 0, which
means with high probability, the energy consumption wp, ww

and wo are all very close to the optimal value w∗. Notice,
however, that ∆wo has lighter tails than ∆wp and ∆ww, so

Fig. 4. (a) Energy consumption obtained by simulating the linear (blue) and
the nonlinear (red) truck models. Solid curves denote the mean, the standard
deviation is indicated by shading, and crosses mark the gain parameters β∗

lin
and β∗

nonlin with minimum average energy consumption. (b) Cost function
J with oracle knowledge of spectral density with a cross marking βo.

the parameters chosen from the oracle spectral density are
closer to the ground truth optimal. Since in general we do
not have access to the oracle knowledge of spectral density,
it is important to compare the two estimation methods. The
histograms in Fig. 5(c) and (d) depict ∆wpw = wp − ww for
the linear and nonlinear simulation, respectively. Among all
10100 observation-testing pairs, Welch’s method consumes
less energy than periodogram method in 56% cases for linear
simulations and in 61% cases for nonlinear simulations. So
in ACC scenario, Welch’s method outperforms periodogram.

B. Connected cruise control (CCC)

When implementing CCC we assume that the truck re-
sponds to vehicle 1 immediately ahead as well as to vehicle
L further ahead, which is connected to the truck through
V2V communication; see Fig. 1(a). This so-called leading
vehicle is not necessarily adjacent to vehicle 1. Since the
speed of leading vehicle L can influence the speed of vehicle
1, we generate speed trajectories for vehicle L with Gaussian
process described in (38), and then simulate the vehicle chain
from vehicle 1 to L using the human driver model

v̇i(t) = αh(Vh(hi(t− σh))− vi(t− σh))

+ βh(W (vi+1(t− σh))− vi(t− σh)),
(39)

for i = 1, . . . , L− 1. We use the nonlinear range policy

Vh(h) = max
{

0, min{κh(h− hst), vmax}
}
, (40)

(cf. (6)) and the speed policy W is defined in (7). We use
L = 8, αh = 0.1 [1/s], βh = 0.4 [1/s], κh = 1.0 [1/s] and
σh = 1.0 [s]. Similar to the ACC case, we generate 101
candidate speed profiles for vehicles L and 1, and evaluate
our proposed methods for all observation-testing pairs.

Again we fix α = 0.4 [1/s] and optimize for the parame-
ters β1 and βL. We search for all (β, βL) ∈ [0, 1]×[0, 1] [1/s]
with step size 0.05 [1/s] to find the ground truth for each
candidate speed profile. For the 10100 observation-testing
pairs, we evaluate wp, ww, and wo and compare them to
the ground-truth energy consumption w∗. In Fig. 6(a) and
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Fig. 5. Histogram of ∆wp, ∆ww, ∆wo and wpw for ACC. Panels (a),
(c) show linear simulation results while (b), (d) show nonlinear results.

(b) we plot the histogram of ∆wp, ∆ww and ∆wo for
linear and nonlinear simulations, respectively. In both cases,
the histograms are concentrated around zero. In this case,
Welch’s method is even more advantageous compared to
oracle’s method and periodogram method. Still, the oracle
method is better than the periodogram. In Fig. 6(c) and (d)
we directly compare the periodogram and Welch’s method
and show that Welch’s method consumes less energy than
periodogram for 65% cases in linear simulations, and for
65% cases in nonlinear simulations. Therefore in case of
CCC, Welch’s method still outperforms the periodogram.

VI. CONCLUSION

A class of longitudinal controllers was investigated for
a connected automated truck traveling in a mixed traffic
consisting of connected and non-connected human-driven
vehicles. The proposed connected cruise controller utilized
information about the position and velocity of preceding
vehicles from on-board sensors and V2V communication
and it was applicable for lean penetration of automation
and connectivity. In order to determine the energy-optimal
controller parameters, we modeled the speed of preceding
vehicles as wide-sense stationary, mean-square differentiable
Gaussian processes, and formalized an optimization prob-
lem that minimized the average energy consumption using
spectral analysis and spectral estimation. The optimality of
our method was validated statistically with large number of
simulations. We also showed that choosing better spectral
estimator can improve the energy efficiency. Generalization
to broader class of stochastic processes is left for future work.
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