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Abstract

We take the first step in using vehicle-to-vehicle (V2V) communication to provide real-time on-board
traffic predictions. In order to best utilize real-world V2V communication data, we integrate first
principle models with deep learning. Specifically, we train recurrent neural networks to improve
the predictions given by first principle models. Our approach is able to predict the velocity of
individual vehicles up to a minute into the future with improved accuracy over first principle-based
baselines. We conduct a comprehensive study to evaluate different methods of integrating first
principle models with deep learning techniques. The source code for our models is available at
https://github.com/Rose-STL-Lab/V2V-traffic-forecast.
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Figure 1: Connected vehicles traveling on the highway where an ego vehicle intends to predict its
future motion based on a lead vehicle’s past data.
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TRAFFIC FORECASTING USING V2V COMMUNICATION

1. Introduction

The ability to predict future slowdowns on highways in the timescale of minutes can have significant
benefits for traffic participants traveling on the road. For example, vehicles may use such information
to brake earlier and drive more smoothly, improving safety, comfort, fuel economy, and overall traffic
throughput (Ge et al., 2018). Existing traffic forecasting methods mostly rely on collecting data
from a large number of vehicles (via loop detectors, cameras, and cell phones), aggregating this data
on back-end servers, and using complex models in order to predict the future traffic states. This
can capture large scale traffic dynamics but is neither accurate nor fast enough to provide real-time
predictions for individual vehicles. In this paper, we consider a novel approach where even single
vehicle data can be used to generate predictions in an efficient manner, allowing us to generate
predictions on-board in real-time tailored to the needs of individual traffic participants. When
implemented on real vehicles, the method has the potential to transform the way traffic predictions
are generated and utilized.

The main concept is illustrated in Figure 1, where a connected vehicle, called ego, obtains
information (position and speed data) from another connected vehicle ahead, called lead. The lead
car’s past data may then help to predict the future of the ego car, since the ego will encounter the traffic
the lead has already met. For example, if the lead car’s velocity decreases due to a traffic congestion,
the ego car is also likely to slow down when it reaches the congestion wave. Such prediction can be
done by using first principle-based models that capture the propagation of congestion waves along
the highway. Alternatively, data-driven methods may be used to obtain predictions, and one may
combine them with first principle-based models — this approach is explored in the rest of this paper.

We use a recently collected dataset from connected vehicles in real-world traffic (Molnér et al.,
2021) to generate traffic forecasts up to one minute ahead. Related work makes longer term large-
scale traffic predictions using loop detector data (Ma et al., 2017; Li et al., 2018), or short term
predictions using camera or Lidar data (Wang et al., 2020; Chang et al., 2019). To make use of lead
car data, it is critical to understand how traffic conditions have evolved since the lead car experienced
them. While mechanistic models (Bando et al., 1995; Treiber et al., 2000) are traditionally used to
understand the physical principles that govern traffic flow, data-driven methods have also gained
popularity recently. Purely data-driven methods such as those of Ma et al. (2017) or Li et al. (2018)
use deep neural networks to predict slowdowns, but with limited temporal and spatial resolution.

In this paper, we propose an integrated approach where recurrent neural networks are trained to
learn and correct the errors in the prediction of first principle models. Unlike a pure deep learning
approach, our method leverages first principles from physics and insights from the study of traffic
flow. At the same time, machine learning may discover higher order correlations that are not captured
by the first principle model, tune the model to the specific traffic conditions at hand, or improve
robustness to unprocessed noisy signals. Our method achieves better accuracy than either a purely
first principle-based baseline or a pure machine learning approach using similar input features.

Contributions
e Utilize arecently collected vehicle-to-vehicle communication dataset to generate high-resolution
traffic forecasts.
e Combine first principle models and deep learning to achieve better accuracy than either alone.

e Investigate the generalizability of the method across different traffic conditions.
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2. Background in Traffic Models

Traffic models have traditionally been established based on physical first principles. Although first
principle models can capture large-scale traffic dynamics, they often fail to capture the small-scale
variability and the uncertainty of human behavior. More recently, deep learning methods have
also had success in predicting traffic. However, these purely data-driven methods sometimes make
unrealistic predictions and have difficulties in generalization.

First Principle Models Describing and predicting the motion of vehicles in traffic has a long
history, initially focusing on first principle models. These include, on one hand, car-following models
such as the optimal velocity model (Bando et al., 1995), intelligent driver model (Treiber et al., 2000),
and models with time delays (Igarashi et al., 2001; Orosz et al., 2010). These are often referred to as
microscopic models as they aim to describe the behavior of individual vehicles. On the other hand,
traffic flow models such as the LWR model (Lighthill and Whitham, 1955; Richards, 1956) and its
novel formulations (Laval and Leclercq, 2013), the cell transmission model (Daganzo, 1994), and the
ARZ model (Aw and Rascle, 2000; Zhang, 2002) aim for describing the aggregate traffic behavior.
These are often called macroscopic models.

In what follows, we will use one of the most elementary car-following models introduced
by Newell (2002). Newell’s model assumes that each vehicle copies the motion of its predecessor
with a shift in time and space that is caused by the propagation of congestion waves in traffic. This
can qualitatively capture an upcoming slowdown, and provide a rudimentary traffic preview for the
ego vehicle. One can potentially improve prediction via more sophisticated first principle models,
however, the uncertainty of human driver behavior makes it challenging to achieve low prediction
errors. Alternatively, one may integrate these first principle models, which capture the essential
features of traffic dynamics (like the propagation of congestion waves captured by Newell’s model),
with data-driven approaches in order to improve the quality of predictions.

Deep Learning Models Recently, data-driven approaches such as deep learning have attracted
considerable attention for modeling both aggregated (macroscopic) traffic behavior (Li et al., 2018;
Yu et al., 2018) and individual (microscopic) driver behavior (Wang et al., 2018; Wu et al., 2018;
Tang and Salakhutdinov, 2019; Ji et al., 2020). We refer readers to Veres and Moussa (2020) for a
comprehensive survey on deep learning for intelligent transportation systems.

Using V2V communication to make traffic predictions with deep learning is a very new area.
Wang et al. (2020) use V2V communication for perception around obstacles and for making short-
term trajectory predictions in urban environments. Liang et al. (2020); Gao et al. (2020); Chang et al.
(2019) similarly make short-term predictions on the order of 3 seconds for individual car trajectories
in urban traffic using sensor data and not V2V data. Meanwhile, our work makes intermediate-term
estimates (10-40 seconds) of connected vehicle trajectories on highways. These approaches consider
individualized traffic forecasting for a given vehicle.

Alternatively, many works provide predictions for certain road locations rather than certain
vehicles. Ma et al. (2017) uses 2D CNNs to make longer-term traffic predictions (10-20 minutes)
on various road networks. Li et al. (2018) models traffic as a diffusion process using recurrent
convolutional architecture. Alternatively, Cui et al. (2020) use recurrent graph convolutional networks,
Loumiotis et al. (2018) consider general regression neural networks, and Yin et al. (2018) frame
traffic prediction as a classification problem. Zhao et al. (2017) use a spatio-temporal LSTM to make
traffic predictions on a similarly long timescale. More recently, attention mechanisms have been
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Figure 2: Experimental position (a) and speed (b) data of two connected vehicles called lead and
ego. Position (¢) and speed (d) predictions from the first-principle Newell’s model.

shown to be useful for forecasting on this time-scale (Do et al., 2019). These models all focus on road
networks, so they cannot capture the behavior of individual vehicles in the flow. Their predictions
are lower in spatial and temporal resolution than our model, since they rely on lower resolution road
sensor data instead of V2V data. Nevertheless the widespread use of recurrent methods suggests
their value in this domain.

3. Experimental Data Collected using Connected Vehicles in Highway Traffic

The data we use in this paper were collected by driving five connected vehicles along US39 for
three hours in peak-hour traffic near Detroit, Michigan; see Molnar et al. (2021) for details. Each
vehicle measured its position and velocity by GPS, which were sampled and transmitted amongst
the vehicles every 0.1 seconds using commercially available devices and standardized broadcast-
and-catch protocol. This dataset is unique as it contains V2V trajectory data of multiple vehicles
traveling on the same route for an extended duration of time involving entire traffic jams. Two
vehicles travelled farther ahead of the other three with an average distance of around 1300 and 900
m. This separation created six potential lead-ego vehicle pairs. We consider two vehicle pairs in our
study: the foremost lead vehicle and two different ego vehicles from the group of three. We omit the
data of other vehicles since they were too close to each other to provide long enough predictions.

Figure 2(a,b) show the experimental position data (along the highway) and speed data for one of
the lead-ego pairs. The data covers 1000 seconds and includes various traffic conditions. Since the
ego vehicle undergoes qualitatively similar speed fluctuations as the lead, it allows the ego to predict
its future motion based on the lead vehicle’s past data obtained through connectivity.
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4. Methods

Given the position data X1,, Xr € R and speed data vr,, vg € R of the lead and ego vehicles, respec-
tively, we make a prediction at time ¢ about the ego vehicle’s speed in the future 6 time ahead. We
denote the prediction by g (t, ), that approximates the actual future speed, denoted by vg(t + 0).

Baselines The simplest first principle-based prediction algorithm is the constant speed prediction

which does not use data from the lead vehicle, but may work well for short term predictions.

To leverage the data from V2V connectivity, we consider Newell’s car-following model (Newell,
2002) as another baseline. According to this model, the position X of the ego vehicle is the same as
the position X7, of the lead vehicle with a shift 7" in time and a shift w7 in space:

Xp(t) = Xo(t = T(t) — wT'(2), 2)

where w is the speed of the backward propagating congestion waves in traffic. Newell’s model allows
one to predict the ego vehicle’s future motion, which is illustrated graphically in Figure 2(c,d). Given
the data about the lead and ego vehicles’ past motion (shown by black and blue curves) up to the
time ¢ of prediction (see vertical line), one can identify the time shift 7'(¢) between the trajectories
by numerically solving (2) for T'(¢). Then, the ego’s future motion at ¢ + 6, 6 € [0,T(t)] (shown by
green curve) is predicted by translating the lead vehicle’s past velocity (see red curve) according to:

@E(t, 9) = 27E(t, 9) = UL(t + 60 — T(t)), (3)

where we use tilde Ug(¢, #) to distinguish Newell’s prediction from other methods. Figure 2(c,d)
illustrate that such a simple prediction (with wave speed w = 5m/s) can qualitatively capture an
upcoming slowdown, although there are quantitative errors in the ego’s speed preview.

Practically, predictions are made in discrete time, using data at time steps t; = iAt, 0; = jAt,
i,j € Z, where the sampling time is At = 0.1s in our dataset. For example, when predicting / time
steps of future motion, the constant (1) and Newell (3) predictions in discrete time are

ﬁE(Z,l) ’UE(Z) ﬁE(i,l) UL(i+l —U)
PN = AN D RN )
(7, 2) vg(7) (4, 2) vL(i+2— o)
ﬁE(i,l) UE(Z) ﬁE(i,l) UL(i+ 1 —O')

respectively, where 0g(4, j) is used as a short notation for v (t;,6;). Here o = T'(t)/At is the
maximum achievable horizon, thus { < ¢ must hold. We consider | = 400, that is, 40 seconds of
prediction horizon in what follows.

Apart from Newell’s model predictions, one may directly use deep learning to achieve more
accurate results. As a baseline, we consider an algorithm which does not use data from V2V
connectivity but relies solely on the ego vehicle’s data. This method, called Ego-only LSTM-FC,
predicts [ time steps of future motion using & time steps of past data according to

og(i, 1) vEg(7)

v UE(i — 1) (5)
on(i, 2) ! : ’
@E(i,l) UE(i—k+ 1)
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where we used k£ = 600, [ = 400, while M; is the map underlying the deep learning architecture
outlined below. Note that constant prediction is a special case where M outputs values of vg (7).

Hybrid first principle-deep learning methods We propose a hybrid method which uses deep
learning to improve the prediction 0g(¢, ) output by Newell’s model. We thus leverage the insights
of the first principle-based model and focus on learning higher order fluctuations in the signal. We
explore two configurations: (i) using the Newell’s model prediction as an additional input feature
and (ii) outputting the residual between the Newell’s model prediction and the truth.

In configuration (i), the input consists of two time series: k time steps of the ego’s past velocity
and [ time steps of the Newell prediction. The output is [ time steps of the ego’s predicted future
velocity. The input-output relationship is given by a map M, as summarized by

Og(i,1) vg(7) (i, 1)

M UE<i — 1) : (6)
ui,2)| : 93, 2)
@E(i,l) UE(i—k-l-l) ﬁE(i,l)

where we used k£ = 600, [ = 400. We implemented this configuration on two architectures: a
fully-connected feed-forward neural network, called Vvel-FC, and an LSTM network, called
VelLSTM-FC; see details about the model architecture below.

For configuration (ii), the input also contains the residual error R(%, j) = vg(i + j) — 9g(i,j) of
Newell’s model over the past. The output is the next [ time steps of the predicted residual }?(z, 7)-

Then 0 can be reconstructed as vg (i, j) = R(i,j) + Ug(4, j). This can be written formally as

R(Z7J)ZUE(Z+J)_TN)E(7’7])7 jE{—E,...,l,O},

A

R(i,1) vg (i) g (i,1) R(i,0)

oy v (i — 1) : R(i,—1) -
R(i,2) ’ : (i, —k + 2) : ’
R(i,1) vp(i—k+1)| |oe(i,—k+1)| |R@, —k+1)

or(i,5) = (i, ) + R(i,5), j€{1,2,...,1},

where we used k = 600, k£ = 300, [ = 400. Here M3 denotes the map underlying the deep learning
architecture, which is an LSTM network called ResLSTM-FC.

Model Architecture We implement the functions M7, My and M3 using the same encoder-decoder
architecture. We use a two-layer LSTM encoder (Hochreiter and Schmidhuber, 1997) with ReLU and
tanh activation functions to encode the input into a hidden state vector h = LSTM-Enc(x) where
we initialize the hidden state vector randomly. In each case the input vectors are concatenated into a
single long sequence. For Ve 1LSTM-FC,x = [vg(i—k+1:¢) 0g(i,1: )] and for ResLSTM-FC,
x=[vg(i—k+1:4) 0g(i,—k+1:1) R(i,—k+1:0)]. This structure accommodates different
numbers of time steps for different inputs. The hidden state vector h is then passed to a linear decoder
layer which predicts [ future time steps in one shoty = Dec(h).

5. Results

Data Preparation and Split We constructed samples from the data using rolling windows with
600 input time steps (representing 60 seconds of data) and 400 output time steps (40 seconds of
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Figure 3: Illustration of the data obtained from two lead-ego pairs (top and bottom) and its split into
training, validation and test sets in two alternative ways (left and right).

data) for two vehicle pairs. We used 50 second buffers between train, validation, and test sets in
order to ensure the test data is not partially seen during training. We created two train-validation-test
splits shown in Figure 3(a,c) and Figure 3(b,d) corresponding to sample sizes 7200/2400/2400 and
7800/2600/2600, respectively. Our primary split, shown in panels (a) and (c), has the test set during a
traffic jam with slower speed and varying traffic conditions. These are the conditions under which
Newell’s model applies and thus the target domain for our method. To test robustness, we also use an
alternative split as shown in panels (b) and (d) where the test set falls in a regime with higher speed
and less speed variation. The data was normalized by subtracting the sample mean and dividing by
the standard deviation of the train set, and we denormalized our results using the inverse formulation.

Evaluation Metrics We use the absolute prediction error (PE)
PE(i, j) = [0u(i, j) — ve(i + )|, (8)

to compute two performance metrics called velocity error (VE) and average velocity error (AVE):

l l
VE(j) = é‘ > PE(i,j), AVE= ;X;VE(j) = ”?‘Z’ ZZPE(Z’,]’). 9)
iz —

1€T

The velocity error at horizon j is the average of the absolute prediction error amongst the samples in
a certain dataset (e.g., training, validation or test set) denoted by Z with |Z| number of elements. The
average velocity error, on the other hand, averages results over the prediction horizon [ as well.

Prediction Accuracy The results for our primary data split are detailed in Table 1 and visualized
in Figure 4. The velocity error decreases over the prediction horizon with different rates for different
methods. The constant velocity metric gives the smallest velocity error for short horizon, but the error
grows quickly. Conversely, the error for the Newell prediction starts somewhat higher but remains
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Figure 4: Velocity error VE of the (a) Vvel-FC, (b) Ego—only LSTM-FC, (c) VelLSTM-FC
and (d) ResLSTM-FC models compared to the constant and Newell prediction baselines.
Results are averaged over two lead-ego pairs and five trained networks using our primary
data split. The standard deviation amongst the five networks is indicated by shading.

Method ‘ VE@10s VE@20s VE@30s VE@40s ‘ AVE@40s
Constant Velocity 3.94 5.10 5.69 6.78 4.61
Newell (translated) 5.37 5.40 5.08 4.77 5.24
Vel-FC 4.59+038 5.88+£0.27 6.36+048 7.38+0.49 | 5.48£0.15
Ego-only LSTM-FC | 5.45£044 7.33£0.63 7.86+086 7.03+0.81 | 6.23+0.48
VelLSTM-FC 4.67+086 6.15+054 6.63+0.54 6.63+0.88 | 5.43+0.75
ResLSTM-FC 424+031 4.494+0.18 4.98+0.26 5.794+0.57 | 4.34+0.14

Table 1: Results for main test set from ¢t = 350 to t = 470 seconds as shown in Figure 3(a,c). All
numbers are in m/s. Forecasting accuracy at § = 10, 20, 30, 40 seconds and mean accuracy
over 40 seconds is shown. Errors are shown as mean plus minus one standard deviation
over five training runs with random seeds.

constant over time. These baselines are outperformed by our best performing model Re 1LSTM-FC,
whose error is close to or better than the baselines across the forecasting window. In particular, it
blends the positive characteristics of both baselines: having small error for small # and low error
growth for higher §. Re1LSTM-FC has slightly higher error than constant prediction for small 6,
it has lower error than both baselines over 15 < 6 < 30, while it is surpassed by Newell’s model
for larger 6. Note that it is not possible to predict beyond § > T'(t) since at this point the traffic
conditions of the ego vehicle have not yet been encountered by the lead vehicle.

Meanwhile, the Ego-only LSTM-FC architecture, which takes only the ego car’s velocity
as input, has worse performance than both first principle-based methods and Re1LSTM-FC. This
justifies that using data from V2V connectivity has significant benefits and also validates our hybrid
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Figure 5: Error metrics evaluated for constant prediction, Newell’s model and the ResLSTM-FC
model. Errors are averaged over two lead-ego pairs. Surface of the absolute prediction
error for (a) constant (b) Newell’s (¢) ResLSTM-FC prediction. (d) Section of the error
surfaces at # = 20s. (e) The maximum achievable prediction horizon 7'(t) based on
Newell’s model for both lead-ego pairs.

approach. Lastly, we compare to a monolithic fully connected network Ve 1-FC which has the same
input and output as Ve 1LLSTM-FC. These networks have similar performance, and they are both
outperformed by ResLSTM-FC that gives the overall best average velocity error. These suggest that
the most significant parts of our method are integrating deep learning with the first principle-based
Newell prediction and predicting the residual from Newell’s model as output.

Figure 5(a,b,c) provide further visualization of the prediction accuracy by showing the absolute
prediction error for the constant prediction, Newell’s model and ResL.STM—-FC. Figure 5(d) shows
their comparison for a selected horizon, while Figure 5(e) indicates the physically achievable
maximum horizon 7'(¢). Sample predictions are visualized in Figure 6. For each network architecture,
training was repeated five times. In all figures purple line shows the mean and shading indicates plus
minus one standard deviation over five trained networks.

Accuracy under Distributional Shift To investigate the robustness of our method, we also test
using our alternative data split where training and validation data are in the middle of the traffic jam
characterized by variable and slower speeds. However, the test set is from a period of faster and more
free flowing traffic. Results are shown in Table 2. Velocity errors are smaller across all methods for
this test set since cars have little variability in speed. The performance of the deep learning methods
is worse relative to constant velocity and Newell baselines since small variations in the speed are hard
to predict. However, we do see that our methods generalize reasonably well over the distributional
shift as their overall error goes down despite the higher magnitude of the velocity outputs.
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Figure 6: Illustration of the predictions provided by constant velocity, Newell and ResLSTM-FC
models for two selected samples at (a) £ = 390 s and (b) ¢ = 430 s for one lead-ego pair.

Method \ VE@10s VE@20s VE@30s VE@40s \ AVE@40s
Constant Velocity 1.85 2.51 2.83 3.31 2.25

Newell (translated) 2.86 2.98 3.08 2.93 2.96

Vel-FC 2.65+£0.10 3.81+0.14 4.514+0.22 4.45+£0.51 | 3.49+0.14
Ego-only LSTM-FC | 2.18 £0.27 3.05+0.24 3.67+0.18 4.454+0.29 | 2.97 +0.28
VelLSTM-FC 2.74+096 345+1.18 3.974+0.89 4.88+0.85| 3.25+0.77
ResLSTM-FC 2.19+0.29 262+0.18 328+0.2 4.16+£048 | 2.61+0.16

Table 2: Results for alternative test set from ¢ = 770 to ¢ = 900 seconds. As shown by Figure 3(b,d),
there is a distributional shift between training and testing data which is especially challeng-
ing to predict. All numbers are in m/s. Forecasting accuracy at # = 10, 20, 30, 40 seconds
and mean accuracy over 40 seconds is shown. Errors are shown as mean plus minus one
standard deviation over five training runs with random seeds.

6. Discussion

We integrated first principle models and data-driven deep learning for traffic prediction utilizing
vehicle-to-vehicle communication. The proposed model (ResLSTM-FC) showed improved accuracy
over both purely first principle-based and purely deep learning-based baselines. This model used
a prediction from Newell’s model as input to an LSTM neural network and the prediction of the
residual error as output. Unlike baselines, ResLSTM—-FC has both a small error for short-term
predictions and a slowly growing error as the forecasting horizon increases. The model was trained
and tested on raw GPS data, and the observed robustness makes it a feasible candidate for real-time
on-board traffic predictions for connected vehicles.

Our model achieved fairly good generalization under distributional shift, however, first principle
baselines generalize better as they are independent of the data distribution. We hypothesize that
further improvements in our model can be obtained by more careful corrections of errors in the
underlying first principle model. Namely, while the Newell’s model prediction often succeeds in
predicting the degree of a slowdown, it is often slightly early or late. This corresponds to a time-shift
error. Future work includes adding prediction of this time shift to Re sLSTM-FC. Another potential
area for improvement would be to replace the Newell’s model with a more sophisticated first principle
baseline, and to consider data from multiple lead vehicles for prediction.
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