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Abstract
In this paper, we propose a delay learning algorithm for time delay neural networks (TDNNs) based
on mini-batch gradient descent. We show that the proposed algorithm is suitable for learning the
dynamics of nonlinear time delay systems using TDNNs with trainable delays. The delays are
introduced in the input layer and are learned with the same approach as weights and biases. The
learned delays are easy to interpret and they are not restricted to discrete values. We demonstrate the
method with an example of learning the dynamics of an autonomous time delay system. We show
the performance of two proposed network architectures with trainable delays and compare it to a
standard TDNN which has a large number of fixed (non-trainable) input delays. We demonstrate
that the networks with trainable input delays achieve significantly better performance in neural net-
work simulations compared to the standard TDNN. We also highlight that undesired local minima
may appear due to the delays in the networks.
Keywords: time delay system, time delay neural network, delay learning

1. Introduction

Neural networks belong to one of the most important branches of machine learning. Since they were
proposed by Rosenblatt (1958) and further developed with back-propagation algorithm (Rumel-
hart et al., 1986; Van Ooyen and Nienhuis, 1992; Zhang et al., 2007), a large variety of neu-
ral networks have been designed for classification, regression, system identification, etc. Start-
ing from the 1990’s, there have been many applications of feed-forward neural networks (FNNs)
and recurrent neural networks (RNNs) in dynamical systems and control (Kumpati and Kannan,
1990; Kuschewski et al., 1993). Feed-forward neural networks are concise and straight-forward
for learning the dynamics of time-invariant systems due to their relatively simple architectures and
ability to approximate the nonlinear relation between inputs and outputs. Recurrent neural net-
works, on the other hand, contain a kind of concentrated “memory”, which makes them popular
in learning dynamical systems; see, for example, the continuous time recurrent neural networks
(CTRNNs) (Kimura and Nakano, 2000; Chow and Li, 2000; Li et al., 2005), long-short term mem-
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ory (LSTM) (Wang, 2017) and gated recurrent units (GRUs) (Jordan et al., 2019; De Brouwer et al.,
2019).

In this paper, we focus on the applications of neural networks in learning the dynamics of time
delay systems. In many engineering and physical systems the dynamics are affected by past states,
which leads to the occurrence of time delays. For example, time delays show up in the areas of
vehicular traffic (Burger et al., 2019; Molnár et al., 2021), tire models (Beregi et al., 2019), man-
ufacturing processes (Quintana and Ciurana, 2011; Molnár et al., 2017), human balancing (Milton
et al., 2015), biological networks (Chen and Aihara, 2002; Orosz et al., 2010) or even in the spread-
ing of infectious diseases like COVID-19 (Casella, 2020; Ames et al., 2020). Time delays often lead
to rich and complex dynamic behavior. They are rarely considered or studied in feed-forward neural
networks, although the idea of introducing delays into FNNs was already proposed in the 1980’s
for speech recognition (Waibel et al., 1989). Here we aim to fill this gap and extend the usage of
feed-forward neural networks in learning the dynamics of time delay systems.

The rest of the paper is organized as follows. In Section 2, we relate time delay systems and
feed-forward neural networks and give a short literature overview on this topic. Then, we introduce
a continuous delay learning algorithm together with weights learning in Section 3. To illustrate the
algorithm, we give an example of learning two delays and nonlinearities from simulation data using
two network architectures in Section 4. We also highlight a fundamental problem of learning the
differential instead of the true dynamics when using FNNs with delayed inputs. In Section 5, we
conclude our results and lay out the possible extensions of the algorithm.

2. Delays in Dynamical Systems and Neural Networks

Delays have gained popularity in learning dynamics in the recent years. For example, some re-
searchers started to include delays into FNN architectures and considered the effect of delays in dy-
namical systems. This has led to so-called time delay neural networks (TDNNs), which are widely
used in mapping one sequence of data to another (Wan, 1994). In general, delays can exist in each
layer of a TDNN, however, delays are sometimes considered within the input layer only for a better
interpretability. For example, as an application to capturing car-following behavior, Khodayari et al.
(2012) added delay as another input to FNNs, Zheng et al. (2013) used a separate neural network
to train an instantaneous input delay, Wang et al. (2018) compared the use of RNNs to FNNs with
fixed delayed inputs, and Ji et al. (2020) constructed delayed FNNs based on first principle models.

In what follows, we use TDNNs to study autonomous nonlinear delayed dynamical systems
written in the form

ẋ(t) = g(x(t), x(t− τ1), ..., x(t− τK)), (1)

x(t) ∈ Rn. Our objective is to approximate the nonlinear mapping g(·) and at the same time learn
the delay values τ1, . . . , τK by including them as trainable parameters along with the weights and
biases. We intend to learn delays in a continuous fashion, i.e., without restricting ourselves to
discrete delays that are integer multiples of the time step in the data. To increase the interpretability
of the network, we impose a restriction that delays are used in the input layer.

Chen et al. (2015) gave a method of learning a continuous delay from data, however, neural
networks are not incorporated in that approach. The idea of using adaptive delays in TDNNs was
first proposed by Lin et al. (1992, 1995). They included delays in hidden layer which may be
hard to interpret and can make the networks hard to train or simulate. Learning the actual delay
in the excitation through a linear combination of basis functions was realized by Ren and Rad
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Figure 1: Schematic diagram of network architectures: (a) deep neural network with one delayed
input; (b) fully-connected shallow network with two trainable delayed inputs; (c) de-
coupled shallow network with two trainable delayed inputs; (d) standard TDNN with a
window of fixed delayed inputs.

(2007) while Ji et al. (2020) used special network architectures to learn the time delay. In Lin et al.
(1992, 1995) and Ji et al. (2020), the learned delays were discrete, while Ren and Rad (2007) only
considered a single delay in the excitation. In this paper, we propose a continuous delay learning
algorithm with multiple delays using TDNNs. We implement the algorithm on an example and
compare the simulations of the learned networks to those given by a standard TDNN with a window
of fixed delayed inputs.

3. Feed-forward Neural Networks with Trainable Delays

In this section, we introduce feed-forward neural networks with trainable input delays; see the
corresponding network architecture and notation in Fig. 1(a). For simplicity, the following equations
describe a single input and single output example with one delay variable τ but the formulas can be
generalized to multiple dimensions with multiple delays straightforwardly. We show an example of
learning two delays in Section 4 with the network architectures illustrated in Fig. 1(b) and (c), and
compare the performance with the standard TDNN architecture depicted in Fig. 1(d).

First, we consider a fully-connected neural network with input layer (layer 0), l − 1 hidden
layers and output layer (layer l). Activation functions fi(·) are applied at each layer (except the
input layer) with the derivative f ′i(si) = ∂fi(si)

∂si
well-defined for all i = 1, 2, ..., l. The equation of

this network can be written as

si = Wizi−1 + bi,

zi = fi(si),
(2)

where si is the linear combination of zi−1, the outputs of layer i − 1. The input of the network is
defined as z0 and the output of the network is zl = fl(sl) where we can choose fl(·) to be a linear
function.

In the context of learning the dynamics given by (1), the input z0 corresponds to the signal
x(t− τ) and the output zl gives a prediction of the state derivative denoted by ˆ̇x(t) that approxi-
mates ẋ(t). Note that the input and output data are usually discretized with a time step ∆t and are
only available at the discrete time moments tj = j∆t, j ∈ Z. In what follows, we use superscript
j to represent the data point corresponding to time tj and we denote variables without superscript
when referring to all available data. The input and output are therefore given by zj0 = x(tj − τ) and
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zjl = ˆ̇x(tj). Note that x(tj − τ) may not exist in the data if τ is not an integer multiple of ∆t, hence
we will approximate it later in this section as x̃(tj − τ) based on the network’s delay parameter τ
and the data we have.

We define the loss function as

L =
1

N

N∑
j=1

(
zjl − y

j
)2
, (3)

whereN is the number of data points we consider in each update and yj is the output corresponding
to time tj , that is, yj = ẋ(tj) when learning the dynamics of (1). We use the loss function (3)
for parameter training with gradient descent method. Delays are viewed the same way as other
parameters, that is, we iterate the delay values based on the same updating rule. The updating
formula for parameter θ at iteration n+ 1 uses the gradient of the loss function at iteration n:

θ(n+ 1) = θ(n)− ηθ(n)
∂L

∂θ
(n). (4)

The learning rate ηθ can be a tuned constant or be adaptive during the training. We can potentially
choose different learning rates for delays and weights. A significant difference between delay pa-
rameters and weights is that we have a constraint over the delays: 0 ≤ τ ≤ τmax, since the value of
the delay cannot be negative and since time delay systems may have solutions which reappear for
infinitely many different delay values (Yanchuk and Perlikowski, 2009).

Here, we also point out the difference between learning continuous delays and learning discrete
delays. For learning continuous delays, we have the following updating formula:

τ(n+ 1) = max

{
τ(n)− ητ (n)

dL

dτ
(n), 0

}
, (5)

where the time delay τ is a non-negative real number. Although the delayed states may not exist in
the dataset in this case, we can still approximate them from adjacent data points. In discrete delay
learning (Ji et al., 2020), we have

τ(n+ 1) = round

(
max

{
τ(n)− ητ (n)dLdτ (n), 0

}
∆t

)
∆t, (6)

which is an integer multiple of the time step. Using the discrete values ensures that the delayed
states exist in the dataset. However, the rounding in the updating formula leads to some problems.
For example, it is difficult to find a good learning rate for the delay so that the delay can still change
when the gradient is small. Since the delay cannot evolve smoothly, more local minima appears.
Also, the learned delay is limited by the time step ∆t. When ∆t is relatively large compared to how
fast the system evolves, learning the continuous delays is more robust.

The gradient information of weights and biases can be expressed by the following equations

∂L

∂bi
=
∂si
∂bi

hi
∂L

∂zl
=

2

N

N∑
j=1

hji
(
zjl − y

j
)
, (7)

∂L

∂Wi
=

∂si
∂Wi

hi
∂L

∂zl
=

2

N

N∑
j=1

zji−1h
j
i

(
zjl − y

j
)
, (8)
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where
hi =

∂zi
∂si

∂si+1

∂zi
hi+1 = f ′i(si)Wi+1hi+1, (9)

for i = 1, 2, ..., l − 1 while hl = f ′l (sl).
Similarly, we define the gradient with respect to the delay τ as

∂L

∂τ
=
∂z0
∂τ

∂s1
∂z0

h1
∂L

∂zl
=

2

N

N∑
j=1

∂zj0
∂τ

W1h
j
1

(
zjl − y

j
)
. (10)

For multiple delays and multiple states, we can simply concatenate the delayed states together,
by creating a large input vector and a vector τ from delay values. Note that the input zj0 is the
approximate delayed state x̃(tj − τ), thus we can write

∂zj0
∂τ

=
∂x̃(tj − τ)

∂τ
= −∂x̃(tj − τ)

∂t
= −˜̇x(tj − τ), (11)

where ˜̇x(tj − τ) is approximate time derivative of the delayed states. That is, learning a delay with
gradient-based methods requires information about the derivative ẋ in addition to the input x itself.
This is a significant difference compared to learning weights and biases.

We consider the delay as continuous variable even though data are only available at the discrete
time moments tj . That is, tj−τ may not coincide with any sampling time tk. Thus, we approximate
the delayed state x(tj − τ) and the delayed state derivative ẋ(tj − τ) by the closest data point using
a round function in the time argument. Note that introducing the round function here does not affect
the continuity in the delay learning (τ is not restricted to integer multiples of ∆t). One can also use
linear interpolation between neighboring data points or zero-order-hold approximation.

Algorithm 1 Mini-batch gradient descent with input delays training
Data: training data and validation data
Result: learn Wi, bi and τ from data
normalize inputs and outputs between [0,1] and get derivatives of normalized inputs
choose the initial learning rate η(1) and learning rate updating method
set maximum iteration number nmax, maximum violation number vmax and maximum allowed delay τmax

initialize Wi(1) between [-1,1], bi(1) = 0 and τi(1) within interval [0, τ ], τ < τmax, v = 0
for n = 1,..., nmax do

randomly take one batch of data from the training set
shift batch based on τ(n), calculate loss Ltr(n), Lva(n) for training data and validation data
get gradient information and update parameters Wi(n+ 1), bi(n+ 1) and τ(n+ 1)
if n > 1 and Lva(n) ≥ Lva(n− 1) then

v = v + 1
else

v = 0
end
if τ(n+ 1) > τmax or v > vmax then

break loop
end

end
Wi = Wi(n), bi = bi(n), τ = τ(n)
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We describe the training process in Algorithm 1. It is a mini-batch gradient descent algorithm
for training dataset which consists of multiple input-output trajectories. The validation dataset con-
tains different trajectories so that it is independent from the training dataset, and those data are
not used for updating parameters but for monitoring the training. For each parameter update, one
batch of data (corresponding to one trajectory) is taken for calculating the training loss Ltr, and the
validation dataset is used for calculating the validation loss Lva. If the validation error increases
consecutively for vmax iterations, we stop training to prevent overfitting. After training is done, we
test the performance of the trained networks on a separate testing dataset.

4. Learning the Dynamics of Nonlinear Time Delay Systems

Consider an autonomous delayed dynamical system which has quadratic and cubic nonlinearities in
two delayed terms:

ẋ(t) = a2x
2(t− τ2) + a3x

3(t− τ3). (12)

We choose the parameters a2 = a3 = −1, τ2 = 1 and τ3 = 0.5 for which the system has two
equilibria at x = 0 and x = −1. We are interested in how well shallow networks with input delays
can learn the nonlinearity from a limited number of trajectories and whether such networks can
learn the delays in the system.

We simulate (12) to obtain four batches of data for training by using constant values ctr =
{0.8, 1.0, 1.2, 1.4} as histories, i.e, x(t) ≡ ctr for t ∈ [−τmax, 0]. Simulation data with constant
history cva = 1.1 is used for validation and we test the trained networks using the constant history
cts = 1.3. Each batch of data contains the state information x(tj) over 0 ≤ tj ≤ 5 with a time
step ∆t = 0.01. We obtain the time derivative from state through forward Euler method. The
derivative is used both as output and for calculating the gradient with respect to delay in (11). We
normalize the input and output between [0, 1] and choose the learning rate ηθ(n) ≡ 0.1 for all
parameters including delays. In training, we also include the initial constant history in the data so
that the shifting between inputs and outputs does not affect the length of prediction. Another reason
for including the history into the training data is the fact that for autonomous delayed dynamical
systems the solutions get smoother as time t increases (Michiels and Niculescu, 2007; Insperger
and Stépán, 2011). Thus, the initial segments of the solution contain the “richest” dynamics for a
stable trajectory without excitation. This also indicates that longer trajectories do not necessarily
mean more beneficial datasets, because the significant initial segments have less weight.

We implement the delay training algorithm with a fully-connected network and a decoupled
network shown in Fig. 1(b) and (c). Both are shallow neural networks and the difference is the
structure of the hidden layer. The fully-connected network does not contain any prior knowledge
about the form of (12), while the decoupled architecture implies that there is no cross term between
delayed states. The number of neurons in the hidden layer is M = 30 for fully-connected network
andM = [20, 20] for the two parts of the decoupled network. Both networks use ReLU as activation
function in the hidden layer, i.e., f(z) = max{z, 0}, and we set τmax = 2.

The evolution of the loss L and the learned delays τa and τb along the iterations of one train-
ing process is shown in Fig. 2(a,b) for the fully-connected architecture and in Fig. 2(d,e) for the
decoupled architecture. We also show how the true nonlinearities are approximated by these two
networks in Fig. 2(c) and (f). Note that the neural networks do not distinguish the order of the two
delays, that is, τa and τb can approach τ2 and τ3 or, alternatively, τ3 and τ2, respectively. Never-
theless, the two delays converge to the true values 1 and 0.5 with both architectures. The delays in
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Figure 2: Evolution of the loss (left) and delays (middle) over the iterations during training, and
the equivalent approximation F of the nonlinearities given by trained networks (right):
(a)-(c) fully-connected network; (d)-(f) decoupled network.

the input layer can be learned and they can be interpreted clearly as the trained networks represent
the delayed dynamical system. Moreover, the nonlinearities are also recovered from data with the
meaningful learned delays. We can see the piece-wise property of the network approximation given
by the ReLU activation function in the hidden layer.

To investigate the performance of the trained networks, we analyze the system

ẋ(t) = F (x(t− τa), x(t− τb)), (13)

with histories ctr = 1.4 and cts = 1.3, where F , τa and τb are the nonlinearity and delays learned
by the networks. First, we inspect the input-output relationship between x(t) and ẋ(t), which
we refer to as static mapping. Then, we simulate system (13) using the learned parameter values
which we refer to as the neural network simulation results. Both of these results are compared
to the those obtained from simulating the original system (12). For further comparison, we also
consider a standard TDNN which uses x(t), x(t−∆t), ..., x(t− τmax) as inputs and ẋ(t) as output.
This architecture is referred to as network with a window of delayed inputs. Since ∆t = 0.01 and
τmax = 2, this TDNN has 201 inputs where 200 of them are delayed with different quantized delays.
Here we use a shallow TDNN with 12 hidden neurons and ReLU activation function as benchmark
to learn from the same data.

The three trained networks are compared to the data in Fig. 3(a) and (b) in terms of static
mapping and simulation results of the trajectory with ctr = 1.4 from training dataset. Figure 3(c)
and (d) show the performance of the trained networks on testing data. All three networks have good
static mapping performance on both training and testing dataset. In neural network simulation, the
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(a)

(c)

(b)

(d)

Figure 3: Static mapping and simulation results for the trained networks: (a), (b) performance on
one of the trajectories with ctr = 1.4 in the training dataset; (c), (d) performance on
testing dataset with cts = 1.3.

Architecture Standard TDNN Fully-connected network Decoupled network

Training loss Static mapping (ẋ) 0.0229 0.0102 0.0106√
Ltr Simulation (x) ∞ 0.0514 0.0676

Testing loss Static mapping (ẋ) 0.1453 0.0096 0.0085√
Lts Simulation (x) ∞ 0.0305 0.0143

τa/τb - 0.505/1.005 0.996/0.495

Table 1: Performances of different networks on training and testing trajectories. The normalized
root-mean-square deviations are calculated based on ẋ for the performance of static map-
ping and on x for the performance of neural network simulation.

networks with two trainable delays give reasonable simulations close to the data, while the standard
TDNN with 200 delays fails (the simulation blows up). This shows that with trainable delays, the
networks have the capability of approximating the true dynamics given by (12).

Remark 1 The standard TDNN may have the overfitting problem due to its large number of dis-
tributed delays when it is used to learn a system with small number of point delays.

Also, the simulation of the standard TDNN with 200 delayed inputs is more time-consuming com-
pared to the other two networks. The root-mean-square deviations on training data

√
Ltr and on

testing data
√
Lts of all trained networks are collected in Table 1. Since we normalize all data be-

fore training,
√
Ltr and

√
Lts are also normalized values according to the maximum and minimum

values of ẋ and x in the training set. From the table we notice that two networks with trainable
delays outperform the standard TDNN on testing data in both static mapping and neural network
simulation.

With multiple runs of training, we also discovered some undesired local minima introduced by
delays in the networks, which led us to the following observation.
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Figure 4: Example of the fully-connected network learning the differential: (a), (b) evolution of the
loss and delays, respectively, over the iterations during training, (c) the approximation
given by trained networks.

(c)(b) (d)

Figure 5: Histograms of final learned delays from 100 training runs with initial delays distributed
uniformly over [0, 1]. The study is performed on the fully-connected network with dif-
ferent time steps and delay learning methods: (a), (b) continuous delay learning; (c), (d)
discrete delay learning. Color indicates the frequency of the delays occurring in a region.

Remark 2 If we use TDNNs with input delays for learning the dynamics of delay differential equa-
tions (mapping the delayed states to the time derivative), the TDNN has a possibility of approximat-
ing the differential instead of the right hand side of the equations.

In other words, the training may end up learning to differentiate when iterating F , τa and τb. For ex-
ample, a backward Euler method ẋ(t) ≈ (x(t)− x(t−∆τ))/∆τ may result from learning τa = 0,
a small value τb = ∆τ and F (x(t− τa), x(t− τb)) = (x(t− τa)− x(t− τb))/∆τ . This problem
can happen to all time delay neural networks used for mapping the states to the time derivative of
the states, especially for the case where ∆t is small. For instance, the results of the fully-connected
network learning the backward Euler method are shown in Fig. 4. The training and validation errors
still decrease to a small value in panel (a) and the delays in panel (b) converge to τa = 0 and a small
value τb = 0.088. Panel (c) shows that the visualization of the learned nonlinearity F appears to be
two lines with slopes around±1/τb ≈ ±11.4, which indicates that the network is approximating the
backward Euler method. Since the data is discretized with forward Euler method and ∆t = 0.01,
the error between two discretization methods depends on the time step.
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We also increase ∆t to test the robustness of the proposed continuous delay learning method (5)
and compare it to the discrete delay learning method (6). We choose ∆t = 0.15 to create low-
resolution datasets for training. This larger time step not only introduces larger numerical differ-
entiation error when generating the data for ẋ, but also affects the gradients with respect to delays
(in (11) the time derivative ˜̇x approximated by adjacent data points is inaccurate). We consider
previous datasets with ∆t = 0.01 as high-resolution datasets. We ran 100 training trials with initial
delays distributed uniformly over [0, 1] on both high-resolution and low-resolution datasets. The
histogram of the final learned delays for the fully-connected network is plotted in Fig. 5.

Remark 3 The continuous delay learning method is more robust compared to discrete delay learn-
ing method on both high-resolution data and low-resolution data.

With discrete delay learning, the learning process is easily trapped in many local minima introduced
by the discretization in the delay parameter space. Although the learning rate was tuned for discrete
delay learning separately, the convergence of delays is not clear. Choosing a small time step does
not resolve this issue and having a large time step makes the learning performance worse. However,
with the continuous delay learning algorithm, most of the delays converge to the correct values or
to the very small values related to the differential. Even when the time step is large, the continuous
delay learning algorithm is able to approach the true delay values.

5. Summary

We proposed a delay learning algorithm with time delay neural networks and we showed its imple-
mentation for learning delays and nonlinearities in the dynamics of time delay systems. By com-
paring the simulations of networks with two trained delays to those of a standard TDNN with 200
fixed delays, we demonstrated the advantages of using trained delays over considering a window of
delayed inputs. We discovered a generic problem in learning the dynamics of time delay systems:
neural networks can potentially learn the differential instead of the true dynamics. We tested the
robustness of our proposed continuous delay learning method by comparing the convergence in de-
lays to the discrete delay learning with large time step (with larger numerical differentiation error in
data). The continuous delay learning method is able to get the correct delay values for most of the
cases. Although the example given in this paper is restricted to shallow networks, we also success-
fully applied the input delay training on fully-connected deep neural networks. The input delays
can be learned through deep neural networks, however, the training process is more susceptible to
running into undesired local minima compared to the shallow networks.

In the future, we plan to improve the robustness of the algorithms to avoid undesired local
minima and speed up the delay learning. Potential directions can be: using batch normalization in
each layer, applying more advanced optimization methods (e.g., Levenberg–Marquardt algorithm)
for parameter training, or including the simulation error into the loss function.
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