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A lane-keeping controller for automobiles is analyzed in this paper, with the consideration of time 

delay in the feedback loop. Using numerical continuation, unstable periodic orbits are identified 

inside the linearly stable domain of control gains. Based on the amplitude of these unstable solutions, 

unsafe parameter zones can be identified, where the closed loop system is less robust against 

perturbations, i.e., where the basin of attraction of the stable equilibrium is smaller. This sensitivity 

to initial conditions in different regions of linearly stable control gains is demonstrated by a series 

of real vehicle experiments. 
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1. INTRODUCTION 

Advanced driver assistance systems such as lane-

keeping and lane-changing controllers have the potential 

to significantly reduce the number of road accidents 

caused by unintended lane departures [1]. One of the 

main bottlenecks of these controllers, however, is the 

presence of feedback delay in the control loop, which can 

significantly reduce control performance and can even 

lead to instability [2,3]. 

On the other hand, nonlinear phenomena, such as 

sensitivity to initial conditions and the presence of 

periodic orbits (limit cycles) are often not considered in 

the traditional methods of linear control design [3]. In the 

literature, the nonlinear dynamics of automobiles have 

mostly been analyzed with a focus on the cornering 

behavior of the vehicle without control action [4,5,6], or 

with the consideration of a human driver [7,8,9]. 

Understanding the nonlinear dynamics of the controlled 

vehicle is also essential to design high-performance 

controllers that are able to drive the vehicle at its handling 

limits [10,11,12]. 

This paper presents the nonlinear analysis of a lane-

keeping controller with feedback delay, with an emphasis 

on unstable limit cycles around the linearly stable region 

of control gains. This suggests a sensitivity of the system 

to initial conditions, which is demonstrated in a series of 

real vehicle measurements performed on a test track. 

Based on the results of our analysis, a so-called safe zone 

can be designated inside the linearly stable region of 

control parameters, where the vehicle is more resilient 

against perturbations. This can be used as a guideline 

when tuning the controller in order to ensure that the 

vehicle can safely handle unexpected disturbances (e.g. 

hitting an ice patch) and more dynamical maneuvers, 

such as emergency obstacle avoidance. 

The rest of the paper is organized as follows: the 

vehicle model with a hierarchical steering controller is 

presented in Section 2. The nonlinear analysis of the 

controlled vehicle is performed in Section 3 using 

numerical continuation. The experimental results are 

detailed in Section 4, and the results are concluded in 

Section 5. 

 

2. VEHICLE MODEL AND CONTROL DESIGN 

The vehicle model considered in this study is the in-

plane bicycle model shown in Fig. 1. The center points of 

the front and rear axles are denoted by F and R, 

respectively, while G is the center of mass. The 

generalized coordinates that describe the vehicle 

configuration consist of the coordinates 𝑥R  and 𝑦R  of 

point R, the yaw angle 𝜓  and the steering angle 𝛾 . 

Assuming a front-wheel drive vehicle, the longitudinal 

velocity component of the front wheel is kept at a 

constant value 𝑉. 

 
Fig. 1 Bicycle model with steering dynamics. 
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The geometrical parameters include the wheelbase 𝑙 
and the distance 𝑏 between points R and G. The vehicle 

mass is denoted by 𝑚, while 𝐽G is the yaw moment of 

inertia about the center of mass and 𝐽F denotes the mass 

moment of inertia of the steering system. 

Deriving the equations of motion of the vehicle 

model using the Appell-Gibbs method (see [13] for 

details) leads to 
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where 𝜎 is the lateral velocity of point R, 𝜔 is the yaw 

rate of the vehicle, and Ω  is the steering rate. The 

generalized mass matrix includes the elements 

 

𝑚11 =
𝑚
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,     (6) 

𝑚12 = 𝑚21 = 𝑚(𝑏 + 𝑙 tan2 𝛾),  (7) 

𝑚22 = 𝐽G + 𝐽F +𝑚(𝑏2 + 𝑙2 tan2 𝛾).  (8) 

 

The right-hand side of Eq. (5) consists of 
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The lateral tire forces 𝐹F and 𝐹R, as well as the self-

aligning moments 𝑀F  and 𝑀R  are considered as 

functions of the side-slip angles  

 

tan 𝛼F = −
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𝑉 cos𝛾
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using the nonlinear brush tire model, as detailed in [13]. 

In order to ensure stable path following, a higher-

level controller is designed in this paper to follow the 

straight-line reference path along the 𝑥  axis. Thus, the 

desired steering angle 𝛾des  is calculated using the 

feedback of the lateral position 𝑦R and the course angle 

𝜃 of the rear axle center point: 

 

𝛾des = −𝑘𝑦𝑦R(𝑡 − 𝜏) − 𝑘𝜃 sin(𝜃(𝑡 − 𝜏)),           (14) 

 

where 𝜏 is the feedback delay, which includes sensor and 

communication delays, data processing time and 

actuation delay. The course angle is calculated as 𝜃 =
𝜓 − 𝛼R , and 𝑘𝑦  and 𝑘𝜃  are the control gains. The 

tracking performance of this simple controller can be 

improved in case of varying path curvature by adding a 

feedforward term, as in e.g. [14]. 

In order to realize the desired steering angle, the 

steering torque 𝑀S is generated according to the lower-

level PID controller 

 

𝑀S = −𝑘p(𝛾 − 𝛾des) − 𝑘d�̇� − 𝑘i𝑧,              (15) 

 

where 𝑘p, 𝑘d and 𝑘i are the lower-level control gains and 

 

�̇� = 𝛾 − 𝛾des.                (16) 

 

It has been shown in [15] that as long as the time 

delay in the lower-level controller is below a critical 

value of ~1 ms, it has negligible effects on the stability of 

the system, therefore it will not be considered in our 

analysis. 

 

 

3. NONLINEAR ANALYSIS 

The resulting system of delay differential equations 

(1-16) of the controlled vehicle is analyzed with the help 

of the DDE-Biftool software package [16,17]. Subcritical 

Hopf bifurcations are detected along the stability 

boundaries in the plane of the control gains 𝑘𝑦 and 𝑘𝜃 . 

The periodic orbits emerging from these bifurcation 

points are followed using numerical continuation within 

the entire linearly stable parameter domain of the control 

gains. 

The bifurcation diagrams in Fig. 2 (a) and (b) show 

the limit cycle amplitudes in terms of the lateral position 

𝑦R  as a function of the control gain 𝑘𝜃  for the vehicle 

parameters listed in Table 1. It can be seen that the 

linearly stable range of 𝑘𝜃  is bounded by Hopf 

bifurcation points on both sides which are connected by 

an unstable periodic orbit. As shown in the bifurcation 

diagrams, for larger control gains, the amplitude of the 

unstable limit cycle is smaller, suggesting a smaller basin 

of attraction for stable path following. This means that if 

the vehicle is sufficiently perturbed, the controller will 

not be able to steer the vehicle back towards the reference 

path, even if the closed-loop system is stable in the linear 

sense. 

The color coding in Fig. 2 (c) shows how the 

unstable limit cycle amplitudes change inside the linearly 

stable parameter domain of both control gains, up to 2 

meters in terms of the lateral position 𝑦R. Points where 

the limit cycle amplitudes are above 2 meters are 

considered safe, since in these cases the controller can 

handle larger perturbations too. The corresponding safe 

zone of control gains is shaded in gray in Fig. 2 (c). 

Observe that a large part of the linearly stable 

parameter domain falls outside of this safe zone. This 

means that the system can leave the basin of attraction of 

the stable solution in these cases for sufficiently large 

perturbations, which is a severe safety issue in practice. 
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Fig. 2 (a)-(b) Bifurcation diagrams of the controlled vehicle. (c) Unstable limit cycles around the linearly stable domain 

of control gains. The coloring refers to the unstable limit cycle amplitudes. (d) The vehicle and the V2X measurement 

setup used in the experiments - 1: host computer, 2: network cable, 3: electronic control unit, 4: power cable, 5: 

antennae. (e) Experimental results. 

 

 

Table 1 Vehicle Parameters 

wheelbase 𝑙 2.57 m 

distance between rear axle 

and center of gravity 
𝑏 1.54 m 

vehicle mass 𝑚 1770 kg 

yaw moment of inertia 𝐽G 1343 kgm2 

steering system moment of 

inertia 
𝐽F 0.25 kgm2 

lower-level steering control 

proportional gain 
𝑘p 640 Nm 

lower-level derivative gain 𝑘d 8 Nms 

lower-level integral gain 𝑘i 40 Nm/s 

tire contact patch half-length 𝑎 0.1 m 

tire cornering stiffness 𝐶 40 kN 

sliding friction coefficient 𝜇 0.6 - 

rolling friction coefficient 𝜇0 0.9 - 

longitudinal velocity 𝑉 15 m/s 

feedback delay 𝜏 0.7 s 

 

4. EXPERIMENTAL VALIDATION 

In order to validate the results of the theoretical 

analysis, a series of real vehicle experiments were 

performed at the Mcity test track of the University of 

Michigan. The test vehicle (shown in panel (d) of Fig. 2) 

was equipped with a GPS device mounted at the rear axle 

center point. The experiments were aimed at 

demonstrating the feasibility of motion control relying on 

vehicle-to-everything (V2X) communication only, in 

cases when the onboard sensors fail [13]. This means that 

the applied control algorithms must be able to handle less 

frequent data transfer and less accurate sensor data. In 

case of the GPS device used in the experiments, the 

satellite data was upgraded only every 1 sec (with state 

estimations in-between) with an accuracy of 

approximately 0.7 m. 

The experiments were performed for different 

combinations of the higher-level control gains, where the 

vehicle aimed to follow the lane centerline of a straight 

multi-lane segment of the test track, relying on GPS data. 

For each control gain combination in Fig. 2 (e), three 

different measurements were carried out. Depending on 

the behavior of the vehicle, the individual measurement 

points were labelled as either stable (green circles in Fig. 

2 (e)), bistable (orange squares) or unstable (red crosses). 

For the gain combinations labelled as stable, the lane-

keeping controller was working as intended in all three 

test runs, with decaying oscillations. In the measurement 

points labelled as bistable, solutions with increasing and 

decreasing lateral oscillations were both observed 

presumably due to the non-uniform initial conditions and 

measurement noise. Finally, in the points labelled as 

unstable, the vehicle was not able to successfully follow 

the lane centerline in any of the test runs. 

Figure 3 shows some representative time series data 

of the lateral position of the vehicle in the measurement 

points marked in Fig. 2 (e). Figure 3 (a) shows a stable 

measurement (using the gains at point A), where the 

vehicle tended towards the reference path even from a 

relatively large initial condition. In panel (b), the control 

gains were selected from the theoretically unstable region 

(point B), which resulted in an oscillatory stability loss 

even when the vehicle was started close to the reference 

path. Panel (c) shows an example of the bistable behavior 

observed during the measurements (point C): for a small 

initial perturbation, the vehicle safely follows the 

reference path, but a slightly larger initial error leads to 

stability loss. 
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Fig. 3 Measured time series of the vehicle lateral 

position 𝑦R for the experiments corresponding to points 

A, B and C in Fig. 2 (e). 

 

5. CONCLUSION 

The bifurcation analysis of the lane-keeping control 

of automated vehicles was performed in this paper. Using 

numerical continuation, unstable limit cycles have been 

identified along the linearly stable domain of control 

gains. The oscillation amplitude of these periodic orbits 

around the equilibrium of stable path following can be 

used as an indicator of the robustness of the controller 

against perturbations. Based on the results of the 

nonlinear analysis, a safe zone of control gains has been 

identified, where the controlled vehicle is able to safely 

handle larger perturbations. 

The results have been verified using a series of real 

vehicle experiments on a test track. The measurement 

results confirm the importance of taking into account the 

time delay as well as the nonlinear effects in the control 

design. Consistently stable measurements were only 

achieved in the region of the stable domain where the 

amplitude of the unstable limit cycle was sufficiently 

large. Stable operation can still be achieved outside of 

this region, but the system was demonstrated to be more 

susceptible to perturbations and noise, which may lead to 

serious safety hazards in practice.  
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