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Abstract— In this paper, we introduce a sketching method
for data-driven prediction problems in an online setting. We
show that sketching the memory of dynamical systems in
a randomized way can achieve a constant time and space
complexity in each update. We demonstrate the effectiveness of
the proposed sketch-based data-driven prediction on trajectory
prediction in vehicular traffic. We show that the sketching
method can achieve high prediction accuracy with limited
memory space, thus enabling online deployment.

I. INTRODUCTION

Data-driven prediction and control has been attracting
increasing attention in recent years, with applications in
many fields such as connected and automated vehicles [1],
quadcopters [2], and power systems [3]. The approaches can
be categorized into indirect methods and direct methods [4].
Indirect methods use system identification to find a model
using input-output data, and then design controllers based
on that model. Direct methods skip the system identification
step: predictions are made and control actions are synthesized
directly from input-output data. In this paper, we show the
equivalence between an indirect method and a direct method.
We propose an improved direct method, and evaluate it using
the indirect method.

With increasing amount of data collected, the size of the
associated optimization problem grows, and it becomes com-
putationally expensive and infeasible for online deployment.
A common solution is to keep the most recent data, and
discard the older ones [5], [6], under the assumption that
the latest data are the most relevant to the current system
behavior. However, when discarding the older data, one may
lose important information about the system and the most
recent data may not be sufficient to characterize the system
behavior. As a compromise, one can keep the offline training
data, and in addition, select the most relevant data for online
deployment [7]. In order to extract the most important infor-
mation from the data, singular value decomposition (SVD)
can be used to obtain a minimum dimension representation
of the system [8]. However, in the presence of noise, the
thresholding of singular values is typically not possible, and
performing SVD sequentially is computationally expensive.
In addition to the issues mentioned above, the performance
of the proposed methods is rarely compared with the case
when the full data is utilized.
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Our goal is to develop a control framework that uses
limited memory such that the prediction accuracy is com-
parable to the result using the full data. We will show that
sketching [9] is a viable tool to solve this problem. Sketching
is a popular technique in database technology [10], where
data is streaming in and out of the database, and people
want to keep track of the most important features (such
as the most frequent items) without memorizing the whole
database. As a dimension reduction technique, sketching
methods are applied in optimization [11], signal processing
[12] and machine learning [13].

In this paper, for the first time, we establish sketching tools
for dynamical systems and control. Sketching methods have
two categories: deterministic and randomized. Deterministic
sketching methods, such as frequent directions sketch [14],
make use of dimension reduction techniques, such as SVD,
but they suffer from intermittent heavy SVD computation.
Thus, we focus on randomized sketching based on Johnson-
Lindenstrauss transform [15]. The main contributions of the
paper are as follows: (i) We propose a randomized memory
sketching method for online data-driven prediction which
can achieve constant space and time complexity for each
update. (ii) We provide a quantitative connection between
the memory size and the prediction accuracy.

The paper is organized as follows. In Section II, we
provide background knowledge on data-driven prediction
problems. In Section III, we introduce sketching methods,
and then establish the tools for memory sketching when
performing data-driven prediction. In Section IV, we demon-
strate the effectiveness of the proposed memory sketching in
trajectory prediction in vehicular traffic. We conclude the
paper and lay out future research directions in Section V.

II. BACKGROUND ON DATA-DRIVEN PREDICTION

In this section, we provide some background knowledge
on data-driven prediction. Consider a discrete-time LTI sys-
tem Σ with control input u ∈ Rm and system output y ∈ Rp.
Denote u(k1 : k2) = [u(k1)

⊤ u(k1 + 1)⊤ · · · u(k2)⊤]⊤,
and define y(k1 : k2) similarly. At time k, given
the input-output trajectory up = u(k − T p + 1 : k),
yp = y(k − T p + 1 : k) in the past horizon T p and the
control input uf = u(k + 1 : k + T f) in the future horizon
T f , the task is to predict the output yf = y(k + 1 : k + T f)
over the future horizon T f . In data-driven prediction, we
have access to a system input-output trajectory (ud, yd). We
will investigate how to utilize the data to predict the future
output yf .

As mentioned above, data-driven prediction can be cate-
gorized into direct and indirect methods. Direct methods for
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discrete-time LTI system are based on Willems’ behavioral
theory [16]–[18]. Consider the space of system trajectories
of length K:

WK(Σ) =
{
[u(0 : K − 1)⊤ y(0 : K − 1)⊤]⊤

|{u, y} are trajectories of Σ} ,
(1)

where u(0 : K − 1) = [u(0)⊤ · · ·u(K − 1)⊤]⊤, and
y(0 : K − 1) is defined similarly. For k < K, we can define
the Hankel matrix of order k as

Hk(u(0 : K−1)) =


u(0) u(1) · · · u(K − k)
u(1) u(2) · · · u(K − k + 1)

...
...

. . .
...

u(k − 1) u(k) · · · u(K − 1)

 .

(2)
Willems’ fundamental lemma shows that WK(Σ) can

be fully characterized by the input-output trajectory data
(ud, yd) assuming that the input data ud is rich enough. The
richness of the system input is measured as follows.

Definition 1 (Persistence of Excitation). The input trajectory
ud is persistently exciting of order k if the Hankel matrix
Hk(u

d) has full row rank.

This enables us to state the fundamental lemma.

Lemma 1 (Fundamental Lemma [19]). Let (ud, yd) be an
input-output trajectory of discrete-time LTI system Σ. If the
input trajectory ud is persistently exciting of order n+K,
where n is the state dimension of the minimal representation
of Σ, then WK(Σ) can be represented as the range space of
the Hankel matrix:

WK(Σ) = range

([
HK(ud)
HK(yd)

])
. (3)

The fundamental lemma enables data-driven predictions
for LTI systems. Given input-output trajectory (ud, yd)
of length L, choosing K = T p + T f , one can obtain the
prediction yf by solving the quadratic optimization problem:

min
g∈RN ,yf∈RpT f

1

2
∥g∥22, s.t.

[
HTp+T f (ud)
HTp+T f (yd)

]
g =


up

uf

yp

yf

 , (4)

where g ∈ RN and N = L−K + 1, which scales linearly
with the length of the input-output trajectory L.

To simplify problem (4), we split the data matrix into two:

HTp+T f (ud) =

[
Up

U f

]
, HTp+T f (yd) =

[
Y p

Y f

]
, (5)

where Up ∈ RmTp×N , U f ∈ RmT f×N , Y p ∈ RpTp×N ,
Y f ∈ RpT f×N . Using the Karush–Kuhn–Tucker (KKT) con-
dition, (4) results in

g +
[
Up⊤ U f⊤ Y p⊤ Y f⊤] [λ1

λ2

]
= 0, λ2 = 0,

(6)

where λ1 ∈ R(m+p)Tp+mT f

, λ2 ∈ RpT f

are Lagrange multi-
pliers corresponding to

[
Up⊤ U f⊤ Y p⊤]⊤, and Y f respec-

tively. Since λ2 = 0, we can rewrite the KKT condition as

g + Ξ⊤λ1 = 0, (7)

where Ξ =

Up

U f

Y p

. Thus, defining ξ =

up

uf

yp

, the optimiza-

tion problem (4) can be solved by first solving the least
squares problem

ĝ = argmin
g

1

2
∥g∥22, s.t. Ξg = ξ, (8)

and then using equality constraint to predict the future output

ŷf = Y f ĝ. (9)

In a direct method of data-driven prediction, we represent ξ
as a linear combination of the columns of Ξ, and then use
this linear combination to predict the future output. However,
such direct method does not provide a model for the system,
and thus, the evaluation of the method is not straightforward.
Fortunately, we can build the connection the proposed direct
method (8),(9) to the indirect method as follows.

Lemma 2. Given Ξ, Y f and ξ, the estimated ŷf in (8),(9)
is equivalent to

Φ̂ = argmin
Φ

1

2
∥ΦΞ− Y f∥2F, ŷf = Φ̂ξ. (10)

where ∥ · ∥2F denotes the Frobenius norm of matrices.

Proof. Using the Moore-Penrose pseudo-inverse †, the so-
lution to (8) is ĝ = Ξ†ξ, yielding ŷf = Y f ĝ = Y fΞ†ξ. On
the other hand, the solution to (10) is Φ̂ = Y fΞ†, yielding
ŷf = Φ̂ξ = Y fΞ†ξ. Thus, (8),(9) are equivalent to (10). ■

Lemma 2 explicitly decomposes the data-driven predic-
tion into system identification and prediction. We directly
consider the linear map from Ξ to Y f , which is referred to
as multi-step linear predictor [4], [20] in the literature. In
the following sections, we will evaluate our proposed direct
method based on the underlying multi-step linear predictor.

III. MEMORY SKETCHING

Data-driven prediction bypasses the system identification
step, thus enabling convenient online deployment. As new
input-output data is collected, those can be appended to the
last column of data matrices Ξ and Y f . If there is no noise
in the observation, storing the whole data is not necessary,
after the column space of data matrix [Up⊤ U f⊤ Y p⊤ Y f⊤]⊤

spans the WK(Σ). However, with noise in the observation,
more data is needed to improve the prediction accuracy and
the width of the Hankel matrix N grows linearly with time.
In this section, we study data-driven prediction with a fixed
memory size.

Consider Ξ ∈ Rd×N and Y f ∈ RpT f×N , where
d = (m+ p)T p +mT f . We call the linear map

Ξ̃ = ΞΠ, Ỹ f = Y fΠ, (11)
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a sketch of Ξ and Y f , where Π ∈ RN×S is the sketch matrix,
and S is the memory size. Then in the data-driven prediction
(8) (9), we replace Ξ and Y f with Ξ̃ and Ỹ f , respectively:

g̃ = argmin
g

1

2
∥g∥22, s.t. Ξ̃g = ξ, and ỹf = Ỹ f g̃, (12)

which can be re-written as

g̃ = argmin
g

1

2
∥g∥22, s.t.

[
Ξ
Y f

]
Πg =

[
ξ
yf

]
. (13)

When the data is generated without noise, any feasible
solution of (13) gives a valid trajectory of the underlying
system due to Lemma 1.

Similar to how (8), (9) was reformulated as (10), now (12)
or (13) can be reformulated as

Φ̃ = argmin
Φ

1

2
∥ΦΞ̃− Ỹ f∥2F, ỹf = Φ̃ξ. (14)

This is used to determine to what extent a sketching method
captures the system dynamics. Namely, we evaluate the in-
sample error of estimator Φ̃ trained with the sketched data:

J̃ = ∥Φ̃Ξ− Y f∥2F. (15)

and compare this to the error of the estimator Φ̂ in (10)
trained with the full data:

Ĵ = ∥Φ̂Ξ− Y f∥2F. (16)

A straightforward way to reduce the memory size is to
keep the most recent data. We call this window sketch.
Keeping the most recent S data points yields the linear map

Ξ̃win = ΞΠwin, Ỹ f,win = Y fΠwin, (17)

with
Πwin =

[
0(N−S)×S

IS

]
, (18)

where 0(N−S)×S is zero matrix of size (N − S)× S, and
IS is identity matrix of size S × S. The window sketch is
deterministic as the sketch matrix Πwin is determined given
memory size S. It is also data oblivious since the sketch
matrix Πwin is independent of the data matrices Ξ and Y f .

A deterministic oblivious sketch may result in estimator
degeneration for some data matrix which can be formalized
as a theorem.

Theorem 3. Let Π ∈ RN×S be a fixed matrix. There exist
Ξ and Y f such that J̃ = ∥Y f∥2F and Ĵ = 0.

Proof. See Appendix . ■

This theorem indicates that for any data-oblivious deter-
ministic sketch matrix Π, in the worst case, the estimator
degenerates into a trivial estimator Φ̃ = 0. In the meantime
the dynamics can still be recovered when using the full data.

When the deterministic sketch matrix Π is not data obliv-
ious, it depends on the data matrix Ξ and Y f . Then, from
(14) we have Φ̃ = Ỹ f Ξ̃†. Substituting this into (15), one may
determine the optimal Π by solving the optimization problem

min
Π∈RN×S

∥Y fΠ(ΞΠ)†Ξ− Y f∥2F. (19)

Unfortunately, this optimization problem is non-convex and
does not have a closed-form solution. Instead, one may apply
SVD to the data matrix[

Ξ
Y f

]
= UΛV ⊤, (20)

where U and V are orthogonal matrices, and Λ is a diagonal
matrix with descending singular values. Then one may
choose the first S columns of V as the sketch matrix:

Πsvd = VS ,

[
Ξsvd

Y f,svd

]
= USΛS , (21)

where US is the first S columns of U , and ΛS is the first
S × S block of Λ. We call this SVD sketch.

When the data does not contain noise, one may choose
S such that the S-th largest singular value is above some
threshold [8]. However, in the presence of noise, such choice
is arbitrary; see already Fig. 1 in Section IV. Moreover, ob-
taining sketch matrix Πsvd takes O((d+ pT f)N) space and
each SVD calculation has time complexity O((d+ pT f)2N)
that grow linearly with N .

To avoid the estimator degeneration of the window sketch
and the computational issues of the SVD sketch, we propose
a new Gaussian memory sketch. We rewrite (11) as

Ξ̃ =
[
ξ1 · · · ξN

] π
⊤
1
...

π⊤
N

 =

N∑
i=1

ξiπ
⊤
i , Ỹ f =

N∑
i=1

yfiπ
⊤
i .

(22)
If the πi are mutually independent, we can achieve an
incremental update of Ξ̃ and Ỹ f . Namely, when the i-th data
ξi and yfi are collected, we update the sketch as

Ξ̃← Ξ̃ + ξiπ
⊤
i , Ỹ f ← Ỹ f + yfiπ

⊤
i . (23)

Independence can be achieved by choosing πi to be an
i.i.d. Gaussian random vector. This enables us to state the
following lemma; see Lemma 5.3.2 in [21].

Lemma 4 (Johnson–Lindenstrauss lemma). For any ϵ > 0
and δ < 1/2, let

S =
8

ϵ2
log

2

δ
. (24)

Construct the random matrix Π ∈ RN×S whose entries are
i.i.d. Gaussian random variables Πij ∼ N

(
0, 1

S

)
. Then for

any x ∈ RN , with probability at least 1− δ, we have

(1− ϵ)∥x∥22 ≤
∥∥x⊤Π

∥∥2
2
≤ (1 + ϵ)∥x∥22. (25)

This lemma indicates that, with high probability, Π maps
a vector to a lower dimensional space with bounded norm
distortion. In addition, we can achieve an upper bound of
the in-sample error of the estimator (14) as stated by the
following theorem.

Theorem 5. Given 0 < ϵ < 1/2 and 0 < δ < 1/2, let the
entries of Π ∈ RN×S be i.i.d. Gaussian random variables
Πij ∼ N

(
0, 1

S

)
, where S satisfies (24). With probability at

least 1− δ, for any Ξ ∈ Rd×N and Y f ∈ RpT f×N , we have∥∥∥Φ̃Ξ− Y f
∥∥∥2
F
≤ 1 + ϵ

1− ϵ

∥∥∥Φ̂Ξ− Y f
∥∥∥2
F
. (26)
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Proof. By the optimality of Φ̃ in (14), we have∥∥∥Φ̃Ξ̃− Ỹ f
∥∥∥2
F
≤

∥∥∥Φ̂Ξ̃− Ỹ f
∥∥∥2
F
=

∥∥∥(Φ̂Ξ− Y f
)
Π
∥∥∥2
F

≤ (1 + ϵ)
∥∥∥Φ̂Ξ− Y f

∥∥∥2
F
.

(27)

On the other hand,∥∥∥Φ̃Ξ̃− Ỹ f
∥∥∥2
F
=

∥∥∥(Φ̃Ξ− Y f
)
Π
∥∥∥2
F
≥ (1− ϵ)

∥∥∥Φ̃Ξ− Y f
∥∥∥2
F

(28)
Combining (27) and (28) we get (26). ■

This theorem compares the in-sample error of the estima-
tor with Gaussian memory sketch to that of the estimator
trained with full data. Notice that the ratio (1 + ϵ)/(1− ϵ)
is independent of the data matrix Ξ and Y f . Moreover, (24)
provides a quantitative connection between the memory size
S and the prediction accuracy, which only depends on ϵ and δ
and is independent of the dimensions of the Hankel matrix d
and N . In addition, the logarithmic relationship with δ makes
it ‘cheap’ to achieve a high probability guarantee. Although
the worst case cannot be completely avoided, we provide
a probabilistic guarantee on the quality of the sketched
solution. In addition, such sketching can be implemented
incrementally, and we do not need to keep track of the πi in
each iteration. Thus the Gaussian memory sketch achieves
constant space and time complexity in each update.

IV. TRAJECTORY PREDICTION IN TRAFFIC

In this section, we demonstrate the effectiveness of the
proposed memory sketching for data-driven prediction by
applying it to trajectory prediction in vehicular traffic.

In Fig. 1(a), the ego vehicle (brown) is following a chain
of vehicles. It can access the speed of vehicle 1 (blue) via
a range sensor and the speed of vehicle 5 (purple) through
vehicle-to-vehicle (V2V) communication [22]. In [23], we
provided a data-driven control framework to predict the
speed v1 based on the speed v5. Here we apply memory
sketching to obtain data-driven predictions with high accu-
racy while using limited memory space.

The speed v5 is generated from a Gaussian process with
Matérn kernel

kν(x, x
′) = σ2 2

1−ν

Γ(ν)

(√
2ν
∥x− x′∥

L

)ν

Kν

(√
2ν
∥x− x′∥

L

)
,

(29)
where Kν is the modified Bessel function of the second kind.
Here we choose ν = 3/2 so that the sample paths are differ-
entiable [24]. The length scale is L = 6 [s] and the magnitude
is σ = 3 [m/s]. We simulate the speeds v4, v3, v2, v1 using
the delayed optimal velocity model with additive noise:

ḣi(t) = vi+1(t)− vi(t),

v̇i(t) = α
(
κ(hi(t− τ)− hmin)− v(t− τ)

)
,

+ β
(
vi+1(t− τ)− vi(t− τ)

)
+ w(t),

(30)

cf. [22]. Here w(t) is a Gaussian white noise, τ is the
reaction delay of drivers, hi = si+1 − si − l is the head-
way, and l = 5 [m] the vehicle length. Note that (30) is

(a)

(b) (c)

(d) (e)

Fig. 1. (a) Implicit traffic model with speed v5 as input and speed v1 as
output. (b) Speed trajectories generated with (30) without noise. (c) Singular
values of the data matrix without noise. (d) Speed trajectories generated
with (30) with noise. (e) Singular values of the data matrix with noise.

an affine system so linearizing it around the equilibrium
hi(t) ≡ v∗/κ + hmin, vi(t) ≡ v∗ results in an LTI system.
When generating the data we discretize time with step
size ∆t = 0.1 [s] using Euler’s scheme and we choose the
parameters vmax = 35 [m/s], hmin = 5 [m], α = 0.2 [1/s],
β = 0.8 [1/s], κ = 0.6 [1/s], τ = 0.8 [s] and v∗ = 30 [m/s].

In Fig. 1(b) and (d), we plot the trajectories generated with
a model without noise and with noise of standard deviation
0.5 [m2/s2]. This noise value is so small that it is difficult
to distinguish the trajectories between the two panels. Yet,
when computing the singular values of the corresponding
data matrices they look significantly different; cf. Fig. 1(c)
and (e). Without noise, there is a rapid drop around the 100th
singular value, while with noise no clear threshold can be
found. In the rest of the paper, we use the data with noise.

Speed trajectories of length 1000 [s] are generated for
vehicles 1 and 5. We break the trajectories into two phases.
In the first, observation phase, we observe and sketch the
trajectories without making predictions. In the second, eval-
uation phase, new observation data is collected in every 2
seconds, the memory is sketched, and a prediction is made.
The prediction horizon is T f = 5/∆t = 50. We evaluate the
performance of three memory sketching methods (window
sketch, SVD sketch, Gaussian sketch), and compare them
with the baseline predictor, which uses all the available data
for the prediction. At time step k, we record the predicted
speed v̂1(k + i), i = 1, . . . , T f . The normalized square error

Ek =
1

T f

T f∑
i=1

∥v1(k + i)− v̂1(k + i)∥22 (31)

is used for performance evaluation: we collect Ek, and com-
pare the mean and standard deviation for different methods.

Figure 2 shows the predicted speed trajectories with dif-
ferent sketching methods for two different memory sizes.
The purple solid curve depicts the input v5, and the blue
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Memory size S=100 Memory size S=500
(a) (b)

Fig. 2. Comparison of predicted speed trajectories with different sketching
methods with memory sizes (a) S = 100 and (b) S = 500. The purple solid
curve shows the input v5 and the solid blue curve depicts the output v1.
The predictions of v1 are plotted as dashed curves for the window sketch
(orange), SVD sketch (light green), Gaussian memory sketch (light blue),
and full-data prediction (black).

(a) (b)

Fig. 3. Histogram of the prediction error (31) for Gaussian memory sketch
with different memory sizes (a) S = 100 and (b) S = 500.

solid curve shows the output v1. The predictions of v1 are
plotted as dashed curves. The results of the window sketch,
SVD sketch, and Gaussian sketch are plotted with orange,
green, and blue dashed curves, respectively. The results of
the full-data prediction are plotted with black dashed lines.

Due to the randomness of Gaussian sketch, we generate
predictions of v1 using 1000 different Gaussian sketch matri-
ces, and plot the distribution of the prediction error in Fig. 3.
With high probability, the Gaussian sketch outperforms the
window sketch and on average performs as good as the
the SVD sketch and full data. When the memory size is
small (S = 100 corresponding to 10 seconds of memory),
the persistency of excitation is not satisfied for the window
sketch due to the limited amount of data, and the dynamics
are not captured by the predictions. On the other hand, the
full prediction and SVD prediction have access to all the
historical observations, thus, the persistency of excitation is
satisfied. The Gaussian sketch can capture the dynamics with
10 seconds of memory and incremental update. When the
memory size is large (S = 500 corresponding to 50 seconds
of memory), all the sketching methods capture the dynamics
(while the window sketch still performs the worst).

We also investigate the influence of the past horizon T p on
the prediction error. Fig. 4(a,c) shows the statistics of predic-
tion error for memory size S = 100. The prediction errors
for the window sketch are significantly larger than for the
other methods. The SVD sketch has a similar performance
as the full-data method since they both have access to the
full trajectory history. The Gaussian sketch has a slightly
larger error but is still in the same order of magnitude. The
window sketch is sensitive to the choice of the past horizon,

(a) (b)

(c) (d)

Fig. 4. Statistics of the prediction error (31) as a function of the past horizon
for different sketching methods. (a) Mean for memory size S = 100, (b)
Mean for memory size S = 500, (c) Standard deviation for memory size
S = 100, and (d) Standard deviation for memory size S = 500.

while the Gaussian sketch achieves similar errors for all the
choices of the past horizon. Initially, the errors of the SVD
method and full-data method decrease with the past horizon
but they do not decrease further when the past horizon is
larger than 4 seconds.

Fig. 4(b,d) shows the statistics of prediction error for mem-
ory size S = 500. The prediction errors of all the methods are
in the same order of magnitude while the window sketch still
has the largest error. The SVD sketch and full-data method
have similar performance. The Gaussian sketch has a slightly
larger error but still in the same order of magnitude. As the
prediction horizon increases, the error of the window sketch
has a convex shape: it decreases first and then increases
with increasing the past horizon. This is because increasing
T p increases the complexity of the model while the most
recent data does not necessarily contain enough information
to capture the dynamics. The error of Gaussian sketch, SVD
sketch, and full-data methods decrease at first but when the
past horizon reaches 4 seconds they do not further decrease.

We highlight that in Fig. 4, changes occur around 4
seconds of past horizon. This is related to the fact that each
driver responds to its predecessor with a delay of about 1
second, yielding a total delay of about 4 seconds for the
vehicle chain. This effect is incorporated in classical traffic
models [25].

V. CONCLUSION

In this paper, we established memory sketching for data-
driven prediction. We first provided two formulations of the
data-driven prediction problem, and then presented three dif-
ferent sketching methods. We showed that the deterministic
sketching methods (window sketch and SVD sketch) have
a dilemma between data obliviousness and the optimality of
the sketch matrix. Then we proposed a randomized sketching
method (Gaussian memory sketch) and we showed that it
is data oblivious and has optimality guarantee with high
probability. It enables incremental updates of memory sketch,
and thus, achieves constant space and time complexity.
We demonstrated the effectiveness of the proposed memory
sketching method on traffic trajectory prediction. We showed
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that the sketching method can achieve high prediction ac-
curacy while utilizing limited memory, and thus, it enables
online data-driven prediction. We also investigated the in-
fluence of past horizons on prediction accuracy. As future
research, we are interested in applying memory sketching to
time-varying, nonlinear systems, and in how the sketching
influences the performance of data-driven predictive control.

APPENDIX

PROOF OF THEOREM 3

Proof. Let the SVD of Π be Π = UΛV ⊤. The notation
may be in collision with (20), but in this proof, we focus
on the SVD of Π. Define U⊥ such that its column space
is the orthogonal complement of the column space of U .
When S ≤ N − d, rank(U⊥) ≥ N − d ≥ S, we can choose
Ξ⊤ ∈ range(U⊥) such that ΞU = 0. Then the sketched least
squares problem (14) gives Φ̃ = 0, and the sketched in-
sample error is J̃ = ∥Y f∥2F. We can choose Y f ∈ range(Ξ⊤)
to make sure Ĵ = 0.

When S > N − d, let Ξ = [U1 U⊥]⊤, where U1 are the
last S − (N − d) columns of U . Thus the rows of Ξ are
orthogonal. Then we have

ΞΠ =
[
U1 U⊥]⊤ UΛV ⊤

=

[
IS−(N−d) 0

0 0

] [
Λ1 0
0 Λ2

] [
V ⊤
1

V ⊤
2

]
=

[
Λ1V

⊤
1

0

]
,

(32)

where Λ1 has size (S − (N − d))× (S − (N − d)), and Λ2

has size (N − d)× (N − d). Then we have

(ΞΠ)† =
[
V1Λ

−1
1 0

]
, (33)

and the sketched in-sample error is

J̃ =
∥∥Y fΠ(ΞΠ)†Ξ− Y f

∥∥2
F

=
∥∥∥Y fUΛV ⊤ [

V1Λ
−1
1 0

] [
U1 U⊥]⊤ − Y f

∥∥∥2
F

=
∥∥Y f

(
U1U

⊤
1 − I

)∥∥2
F
=

∥∥Y fU3U
⊤
3

∥∥2
F
,

(34)

(cf. (15),(19)) where U3 = U⊥
1 is the orthogonal complement

of U1.
On the other hand, since Ξ is a matrix of size d×N with

orthogonal rows, d < N , we have

Ĵ =
∥∥Y fΞ†Ξ− Y f

∥∥2
F
=

∥∥Y f(Ξ⊤Ξ− I)
∥∥2
F

=
∥∥Y fU4U

⊤
4

∥∥2
F
,

(35)

where U4 = Ξ⊤⊥ is the orthogonal complement of Ξ⊤.
By definition of Ξ, we have U3 = [U4 U⊥]. Notice that
U3U

⊤
3 and U4U

⊤
4 are both orthogonal projection matrices.

Let Y f ∈ range(U⊥), then Ĵ = 0 while J̃ = ∥Y f∥2F. ■

Remark. As N increases, the dimension of U⊥ becomes
larger, then the intersection of the range space of data matrix
Ξ and U⊥ is non-empty with higher probability, so J̃ will
be large with higher probability.
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