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Abstract 

We investigate the effects of latencies on performance of teleoperated driving. A dimensionless vehicle 

dynamics model with a scaled delay is analyzed to reduce the number of parameters. We study the control 

performance through stability analysis, i.e., whether the vehicle converges to a given path and the convergence 

speed. We demonstrate that the velocity, the time delay in the control loop and the path curvature all affect 

performance. Furthermore, increasing the product of the velocity and overall time delay degrades the 

performance and the vehicle may fail to follow the reference path. Selecting control gains based on the fastest 

convergence rate provides sufficient robustness against delay and velocity changes and the stability analysis can 

be extended to scenarios with curved paths. Numerical simulations of the vehicle following curved paths in a 

realistic parking scenario based on real-life measurements are provided to demonstrate the negative effects of 

large curvature on performance. 
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1. Introduction  

Alongside the rise of automated driving [1], where vehicles control their motion using on-board computation 

units; remote driving, where control commands are given through a communication network, is also rising a 

supplement to automated driving [2, 3]. The architecture of a remote driving control loop is shown in Fig. 1(a). 

The controller on the remote end can be either an experienced human operator or an intelligent algorithm 

running in the remote center. The status of the vehicle and the surrounding environment are sent to the remote 

controller via the uplink part of the network. The control commands are sent back to the vehicle via the downlink 

part of the network and then executed by the vehicle’s actuators. One of the biggest challenges introduced by 

such a communication structure is latency (also called time delay) [4]. 

Such latency originates from multiple sources: 

1. Time needed to encode, send, receive and decode data packets. 
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2. Loss of data packets due to the network traffic. 

3. Processing time of the remote operator. 

4. Actuation delay of the vehicle. 

While researchers and engineers have been working on designing low-latency communication networks and 

reducing latency in video streaming [5, 6] to address the problem caused by the first three latency sources, the 

overall latency cannot be eliminated. For example, an automated vehicle with internal combustion engine can 

have an actuation delay in the longitudinal dynamics around 0.6 seconds which is not negligible [7]. The overall 

latency in the control loop also varies stochastically in time, due to the stochasticity of packet loss in the 

communication network [8, 9], while the average latency may be estimated for given network conditions and 

the effect of stochasticity may be neglected when the packet loss ratio is low. It is crucial to account for the 

latency when evaluating the controller’s performance [10]. In this work, we approximate the stochastic time-

varying latency by a constant value and perform the analysis and simulations accordingly. 

 
Figure 1 - Block diagram for the teleoperated driving system 

The rest of this paper is organized as follows. In Section 2, we first introduce the vehicle model and the steering 

controller with delay when following a straight path. Then we reduce the number of parameters by 

nondimensionalization and linearize the dimensionless model to perform stability analysis. We analytically 

obtain stability boundaries and the control gains corresponding to the fastest convergence rate. The robustness 

of the fastest-convergence gains against the change of delay and velocity in the system is investigated. In Section 

3, we present numerical simulations to illustrate the effect of path curvature on the path following stability. 

Lastly, we conclude the results in Section 4 and provide insights for future study. 

 

2. Vehicle models and steering controller for following a straight path 

2.1 Bicycle model with rigid wheels 

In this paper, we use a bicycle model [11] with rigid wheels to represent the teleoperated vehicle as illustrated 

in Fig. 2 (a). This bicycle model provides high enough fidelity which captures most of the daily-driving 

maneuvers and also simplifies the analysis significantly. That is, the rear axle is simplified to a single wheel and 

the front wheels are also merged as a single wheel. The center point R of the vehicle’s rear axle has the 

coordinates (𝑥R, 𝑦R) while the yaw angle 𝜓 describes the orientation of the vehicle. The longitudinal velocity 

𝑣 at point R aligns with the symmetry axis of the vehicle according to the rigid wheel assumption and the 

steering angle 𝛾 is assigned by the controller. The wheelbase is denoted by 𝑙. Thus, the model [12] can be 

expressed by the delay differential equations 
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d𝑥R
d𝑡
(𝑡) =  𝑣 cos𝜓(𝑡) , 

d𝑦R
d𝑡
(𝑡) = 𝑣 sin𝜓(𝑡) , 

d𝜓

d𝑡
(𝑡) =

𝑣

𝑙
tan𝛾(𝑡 − 𝜏), 

(1) 

where 𝜏 denotes the overall latency in the teleoperated system (Fig. 1). Initially we consider the control goal 

to be following the straight path 𝑦 = 0, 𝜓 = 0  (Fig 2(c)). To achieve this, we consider the controller 𝛾 =

arctan(−𝑘𝜓𝜓− 𝑘𝑦𝑦R), see [13,14] for similar applications. Thus, for a given initial position and yaw angle, 

one can obtain the trajectory of the point R and orientation of the vehicle as a function of time by integrating 

(1). The lateral position 𝑦R is plotted as a function of time in Fig. 2(b) for different velocities 𝑣 and delays 𝜏, 

such that the scaled product 
𝑣𝜏

𝑙
 is kept constant; see Scenario A and B in Table 1. The corresponding trajectories 

of point R are visualized in the (𝑥, 𝑦) plane in panel (c) and the two simulations give the same trajectory. That 

is, increasing the velocity of vehicle has the same effect on the trajectory as increasing the delay in the system. 

This motivates the nondimensionalization of the system to reduce the number of parameters for stability analysis 

in the next section. 

Scenario Speed (𝑣) Delay (𝜏) Scaled delay (𝜏̂ =
𝑣𝜏

𝑙
) 

A 2.73 [m/s] 0.4 [s] 
0.4 

B 5.46 [m/s] 0.2 [s] 

Table 1 - Parameters for scenario A and B shown in Figure 2, such that speeds and delays are different but the  

scaled delay is the same. The same wheelbase 𝒍 = 𝟐. 𝟕𝟑 [m] is used for both scenarios. 

 

Figure 2 – (a) Bicycle model with steering control. (b) Lateral position of the vehicle as a function of time for 

simulated scenarios A and B (Table 1). (c) Trajectories of the vehicle for the same simulations. The simulations are 

based on system (1). 

 

2.2 Nondimensionalization and linearization 

We rescale the time and space in system (1) using 𝑡̂ =
𝑣

𝑙
𝑡, 𝜏̂ =

𝑣

𝑙
𝜏 , 𝑥R =  

𝑥R

𝑙
 ,  𝑦̂R =  

𝑦R

𝑙
  which results in 

system (2), and then linearize system (2) around the straight running motion 𝑥R
∗ = 𝑡̂, 𝑦̂R

∗ = 0,𝜓∗ = 0 to obtain 

system (3): 
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System (1) 
rescale
→     

d𝑥R
d𝑡̂
= cos 𝜓(𝑡̂) , 

d𝑦̂R
d𝑡̂
= sin𝜓(𝑡̂) , 

d𝜓

d𝑡̂
= −𝑘𝜓𝜓(𝑡̂ − 𝜏̂) − 𝑘𝑦𝑙𝑦̂R(𝑡̂ − 𝜏̂). 

(2) 
linearize
→       

d𝑥̃

d𝑡̂
= 0, 

d𝑦̃

d𝑡̂
= 𝜓̃, 

d𝜓̃

d𝑡̂
= −𝑘𝜓𝜓̃(𝑡̂ − 𝜏̂) − 𝑘𝑦𝑙𝑦̃(𝑡̂ − 𝜏̂), 

(3) 

where we define 𝑥̃ = 𝑥R − 𝑥R
∗ , 𝑦̃ = 𝑦̂R − 𝑦̂R

∗ , 𝜓̃ = 𝜓 −𝜓∗. Notice that the first equation in (3) is decoupled 

from the second and third equation, i.e., the stability of the lateral dynamics only depends on the second and 

third rows. We can rewrite the last two delay differential equations into the matrix form 

[

d𝑦̃

d𝑡̂
(𝑡̂)

d𝜓̃

d𝑡̂
(𝑡̂)
] = 𝐀 [

𝑦̃(𝑡̂)

𝜓̃(𝑡̂)
] + 𝐁[

𝑦̃(𝑡̂ − 𝜏̂)

𝜓̃(𝑡̂ − 𝜏̂)
] ,     with 𝐀 = [

0 1
0 0

] , 𝐁 = [
0 0
−𝑘𝑦𝑙 −𝑘𝜓

]. 

 

(4) 

In this dimensionless linear system, the velocity only appears in the scaled delay 𝜏̂ =
𝑣𝜏

𝑙
. This implies that the 

velocity has the exact same effect on stability as the original delay 𝜏 and explains the overlap of the trajectories 

in Fig. 2(c) where the product 𝑣𝜏 is the same in both scenarios. 

 

2.3 Linear stability analysis and the fastest-convergence gain 

The characteristic equation for system (4) is given by det(𝜆𝐈 − 𝐀 − 𝐁𝑒−𝜆𝜏̂) = 0 and the stability boundary 

can be obtained by substituting the roots 𝜆 = j𝜔 (𝜔 ≥ 0)  and solving for 𝑘𝑦𝑙  and 𝑘𝜓 . This leads to the 

stability boundaries 𝑘𝜓 = 𝜔sin(𝜔𝜏̂) , 𝑘𝑦𝑙 = 𝜔
2 cos(𝜔𝜏̂) , 𝜔 > 0 and 𝑘𝑦𝑙 = 0which are shown for the scaled 

delay value 𝜏̂ = 0.4  in the (𝑘𝜓, 𝑘𝑦𝑙)  plane as shown in Fig. 3 (b). The region enclosed by these two 

boundaries is the stable region. If the control gains are selected from the stable region, the vehicle converges to 

the straight path 𝑦 =  0.  Still, when different control gains selected from the stable domain the control 

performance may vary significantly. These differ in how fast the vehicle converges to the straight path. 

Simulations of the system (1) with different gains are shown in Fig. 3 (b). Although all three gains are selected 

from the stable region in Fig. 3 (a), they result in significantly different behaviors in terms of convergence.  

 

Figure 3 – (a) Stability chart for 𝝉̂ = 𝟎. 𝟒; the shaded area indicates the stable region. Three sets of gains are 

marked as these are used in simulations to compare the control performance. The star indicates the gains with the 

fastest convergence rate. (b) Simulations of the lane change with different control gains corresponding to (a). The 

simulations are based on the system (3). 
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One may substitute the roots 𝜆 = 𝜌 + 𝑗𝜔 (𝜔 ≥ 0) into the characteristic equation to obtain the performance 

contours for different 𝜌 values. For 𝜌 < 0, the dimensionless system is stable and the vehicle converges to the 

straight path exponentially with rate 𝜌. The smaller the 𝜌 is, the faster the system converges to 𝑦 = 0. The 

closed form expression for the fastest convergence rate (smallest possible 𝜌) and the corresponding control 

gains can be derived analytically as 

𝜌fast =
√2−2

𝜏̂
,  

𝑘𝜓
fast = −

𝑎

𝜏̂
,  

𝑘𝑦
fast𝑙 =

𝑏

𝜏̂2
,  

(5) 

where 𝑎 =  −𝑒√2−2(2 − 2√2) and 𝑏 = 𝑒√2−2(10√2 − 14). Observe that the formulae in (5) only depend on the 

scaled delay 𝜏̂. The control gains with the fastest convergence rate (for 𝜏̂ = 0.4) are indicated by a red star in Fig. 

3(a). Fig. 3(b) visualizes the corresponding trajectories when the vehicle is doing a lane change with different control 

gains selected from the stable region. The fastest-convergence gains (case A) indeed make the system converge to 

the desired path quickly without any oscillation. 

 

Figure 4 – (a) Stability boundaries for different 𝝉̂ values. Note: the set of fastest-convergence gains for 𝝉̂ = 𝟎. 𝟒 

is located near the boundary of 𝝉̂ = 𝟏. (b) Simulations of a lane change maneuver using the fastest-convergence 

gains from Fig. 3(a), while using different 𝝉̂ values. The simulations are based on the system (3). 

When the scaled delay increases, the stable region shrinks as in Fig. 4(a). The previously chosen gain 

combination for 𝜏̂ = 0.4 can lead to oscillatory or diverging trajectory if it is located too close to the new 

stability boundary or outside the stable region for larger delays. For example, the brown stability boundaries for 

𝜏̂ = 1  still enclose the fastest-convergence gains for 𝜏̂ = 0.4  but the same gain now leads to significant 

oscillations as shown by the brown trajectory in Fig. 4(b). If we further increase the scaled delay to 𝜏̂ = 1.4, 

the corresponding green stability boundaries no longer enclose the selected gain combination, resulting an 

unstable trajectory (green) in the panel (b). Fig. 4 illustrates that the fastest-convergence gain combination 

selected for a given 𝜏̂ is at the stability boundary for a larger critical delay 𝜏̂cr. The relationship between the 

critical delay 𝜏̂cr and 𝜏̂ is given by 

𝜏̂cr =
sin−1 (

𝑎
𝑐)

𝑐
 𝜏̂    

𝑐=√
𝑎2+√𝑎4+4𝑏2

2
⇒              𝜏̂cr ≈ 2.52 𝜏̂, 

(6) 
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which is linear and does not depend on any parameter. This relationship also implies that if the fastest-

convergence gain combination is selected for a certain latency and driving velocity, the system will still be stable 

even when the latency or the velocity increases up to 2.5 times of its original value. 

 

3. Teleoperated driving on a curved path 

In this section, we study the remote driving task using numerical simulations when the vehicle aims to follow a 

curved path [13], and we investigate the effect of curvature of the reference path on the steering performance. 

We consider the case where the remote controller needs to move the vehicle from a starting position on the right 

to a finishing position on the left within the parking lot, as shown in Fig. 5(a) and (b). Different paths are planned 

for different destinations. The desired curvature and the desired velocity along the paths can be expressed as 

functions of the path arclength. Fig. 5(c) and (d) define the different references paths A and B shown in (a) and 

(b), with maximum curvatures 0.0125 m−1 and 0.1245 m−1, respectively. The vehicle first accelerates from 

a standstill to the maximum velocity of 4 m/s, then coasts at this velocity in the middle segment and finally 

decelerates to a full stop at the end. Fig. 5(e) and (f) depict the numerical simulation results of the vehicle 

following reference path A (dashed magenta line) and reference path B (dashed black line) with same control 

gains, same overall latency τ = 0.341 second and similar velocity plans. The trajectory of point R on the vehicle 

is plotted as a blue solid curve for each scenario and the area covered by the vehicle along the trajectory (swept 

volume) is covered by orange rectangles at discretized time moments. The vehicle can follow path A and park 

straight into the closest spot on the other side without noticeable deviations from the designed path. However, 

it fails to deliver the same performance along path B and violates the parking spot boundaries. Indeed, the 

control performance degenerates as the curvature increases.  

 

Figure 5 – (a-b) The desired paths A and B for moving the vehicle from the start to different finish positions (c) 

The desired curvature along the reference paths. (d) The desired velocity along the reference paths. (e-f) 

Simulations of the vehicle following paths A and B. Reference paths are the same as paths in (a-d), but indicated in 

dashed lines for better visibility. 

 



The effects of latency on teleoperated driving maneuvers  

7 

4. Conclusion 

In this paper, we demonstrated the effect of network latency on teleoperated driving. We studied the performance 

of given controllers analytically and numerically for the case of following a straight path and presented 

numerical simulations for the case of following a curved path. We showed that there are three key factors which 

affect the linear stability and the control performance for any state feedback controllers: the overall latency in 

the control loop, the longitudinal velocity of the vehicle, and the curvature of the path. The velocity of the 

vehicle has the same effect on the stability as the latency while considering paths with larger curvature can also 

make the system less stable when following the path. The presented analytical and numerical methods help in 

evaluating controllers with latency, and further facilitate the motion planning unit to make better decisions. If 

the controller is designed for a nominal delay with desired performance, but the actual overall latency in the 

loop doubles, the motion planner can simply half the suggested velocity to ensure the stability and similar 

performance. Moreover, the motion planner can suggest a path with less curvature to have higher tolerance to 

increases in latency. In the future, nonlinear stability analysis will be employed and more complex vehicle 

models will be considered for high velocity scenarios.  
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