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Abstract— Intent sharing is a class of cooperation enabled
by vehicle-to-everything (V2X) communication, which allows for
information exchange between road users about their intended
future behaviors. In this paper, we propose a generalized rep-
resentation of vehicles’ motion intent from a dynamical systems
viewpoint. Based on this, we extend the framework of conflict
analysis such that intent information can be interpreted in real
time to assist the decision-making of intent-receiving vehicles
and ensure conflict-free maneuvers. We create intent messages
using commercially available V2X radios, and demonstrate
experimentally the benefits of sharing intent in cooperative
maneuvering. Experiments are performed on a test track where
intent-based on-board decision assistance is provided to human
drivers in merge scenarios. The experimental results reveal
significant benefits of intent sharing in enhancing vehicle safety
and time efficiency. Furthermore, we test intent messages on
public roads and evaluate the performance in terms of packet
delivery ratio. The data collected on public highways are fed
into numerical simulations to investigate the effects of intent
transmission conditions on conflict resolution.

Index Terms— V2X communication, intent sharing, connected
and automated vehicles, conflict analysis.

I. INTRODUCTION

RECENT advances in vehicular automation, on-board
sensing, and vehicle-to-everything (V2X) communica-

tion exhibit great potential to improve the efficiency and safety
of transportation systems by resolving conflicts between road
users in a cooperative manner [1]. Envisioning an environ-
ment consisting of fully automated agents, prior studies show
that V2X communication can allow the negotiation between
vehicles about their future maneuvers using maneuver coordi-
nation messages [2], [3]. A plethora of control strategies may
be applied to realize such cooperative maneuvers, including
virtual platooning [4], optimal control [5], [6], [7], reachability
analysis [8], [9], [10], and reinforcement learning [11].

In the near future, however, having a fully automated
environment looks unrealistic. Traffic environments in the
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forthcoming decades are expected to be dominated by mixed-
autonomy, where vehicles of different automation degrees and
cooperation classes share the roadways [12], [13]. In such
mixed environments, negotiating future trajectories may often-
times be infeasible, and the cooperation between vehicles may
stay within two classes: status sharing and intent sharing.
In status sharing, connected vehicles share status information
such as position and velocity, whereas in intent sharing,
the information regarding future motion is exchanged (e.g.,
velocity and acceleration bounds over a time horizon). Status
sharing is well-standardized. Examples include basic safety
messages (BSMs) [14] and cooperative awareness messages
(CAMs) [15]. Although status information allows a vehicle
to understand its instantaneous surroundings, it can lead to
overly conservative decisions and abrupt actions due to the
absence of foresight into the future. On the other hand,
intent sharing, an emerging form of cooperation, is attract-
ing increasing attention. Intent information can benefit a
vehicle’s decision making and control design by provid-
ing a more accurate prediction for the evolution of future
environments.

A. Related Work

In the literature of intent-enhanced maneuver coordination,
many works focus on scenarios where driving intent of other
vehicles is estimated from the available status information,
while the exact intent is not shared directly via communication.
Estimation techniques include optimization [16], statistical
inference [17], and learning based strategies [18]. However,
such estimation can be inaccurate and may not always be
completed in a timely manner due to large computational load.
Instead of estimating intent, we focus on V2X communication-
based intent sharing, which enables more detailed and precise
interpretation of vehicle intent.

Standardization of intent sharing is currently in progress.
For example, the Society of Automotive Engineers (SAE) is
establishing maneuver sharing and coordination service [19],
while the European Telecommunications Standards Institute
(ETSI) is standardizing maneuver coordination service [20].
These standards are still under development, and intent mes-
sages have not been created and field-tested so far. On the
other hand, a noticeable amount of theoretical research has
been triggered by the ongoing standardization. For instance,
[21] and [22] studied maneuver coordination messages which
contained the planned and desired trajectories (as polynomi-
als of time) for automated vehicles. From a communication
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perspective, [23] studied generation rules of such messages,
while [24] evaluated the impact of maneuver coordination
in large-scale traffic via simulations. Also, a framework is
proposed in [25] where vehicles’ intended trajectories are com-
municated with B-spline representation in a fully automated
car-following scenario. Considering mixed traffic, a tool called
conflict analysis was developed in our previous works [26],
[27], [28] to resolve maneuver conflicts. A vehicle’s intent
was defined as restricted bounds of kinematic variables (e.g.,
acceleration and velocity) over a future time horizon. Such
conflict analysis tool interprets the received V2X information
using a conflict chart, where the state space is partitioned into
domains of qualitatively different behaviors in terms of conflict
prevention.

These prior studies on intent sharing are limited to theory,
and a clear gap exists on evaluating the benefits of intent in the
real world. To the best of our knowledge, no previous work
has evaluated experimentally the benefits of intent sharing
in conflict resolution, and the corresponding communication
requirements for intent-sharing messages have been unclear.
This paper provides a first effort to address this gap.

B. Contributions of This Paper

We first propose a generalized representation of vehicle
intent from the perspective of input/output relationship in
dynamical systems. Such representation allows us to describe
the intent of vehicles possessing different automation lev-
els. We then implement, test, and systematically evaluate
intent sharing using commercially available V2X communi-
cation devices on real production vehicles. We extend the
aforementioned conflict analysis framework such that the
information encoded in status and intent messages can be
tailored for both automated and human-driven vehicles. This
enables personalized decision-making assistance that considers
user-based preferences for conflict prevention during cooper-
ative maneuvers.

Using merge scenarios as an application example, we test
intent sharing for conflict resolution at a closed test track
where a main road vehicle approaches a merge zone while
sending both status and intent messages. These V2X messages
are received by a human-driven vehicle seeking to join the
main road. We use the extended conflict analysis to assist the
decision-making of the merging vehicle. Through experiments,
we validate an on-board warning system for human drivers
that enhances maneuver safety. Results show that compared
to status sharing, receiving additional intent messages can
substantially mitigate a human driver’s decision inefficiency,
leading to more time-efficient, yet still safe, maneuvers. Such
merits are quantified by a proposed metric. To further investi-
gate intent sharing in the real world, we test intent messages
on public highways. Performance is evaluated via the packet
delivery ratio, i.e., the percentage of intent packets received
out of those have been sent. We feed the collected data into
numerical simulations to study the effects of communication
conditions (e.g., intent message sending rate, intent horizon,
and packet drops) on the benefits of intent sharing in conflict
resolution.

Fig. 1. Modeling vehicle intent from dynamical systems viewpoint.
(a) Diagram showing the input/output representation of a vehicle’s motion.
(b) Conceptual illustration of a vehicle’s longitudinal motion intent.

This paper extends the initial results reported in our con-
ference paper [29]. Compared to it, major contributions of
this paper are threefold. (i) We generalize the representation
of vehicle intent from a dynamical systems viewpoint and
establish the corresponding framework of conflict analysis.
(ii) We perform test-track experiments on intent-based conflict
analysis to demonstrate personalized on-board decision assis-
tance. (iii) We collect and utilize real highway data to evaluate
the benefits of intent sharing under different transmission
conditions and imperfect communication. Insights from this
analysis may benefit the on-going standardization and future
real-world deployment.

The remainder of this paper is organized as follows.
In Section II we define vehicle motion intent. In Section III
we establish the extended conflict analysis framework.
In Section IV we implement intent messages and test
intent-based conflict analysis experimentally. In Section V,
highway data is used to investigate the benefits of sharing
intent. Section VI concludes the paper and discusses future
directions.

II. DEFINING MOTION INTENT OF VEHICLES

To provide a rigorous definition of vehicle intent, we con-
sider a vehicle’s motion from a dynamical systems viewpoint.
As shown in Fig. 1(a), the vehicle’s behavior may be described
by some observable quantities that we refer to as outputs,
for example, the vehicle’s velocity and the heading angle.
Such outputs are influenced by some other quantities called
inputs that are applied to the vehicle. Examples of inputs are
the throttle/brake and steering angle applied by the human
driver or set by the autonomous driving system. Note that
depending on the fidelity of the model describing the vehicle’s
motion, different quantities may be considered as inputs and
outputs. Based on this, we represent the vehicle’s motion
intent by the bounded domains of inputs and outputs over
a time horizon; see Fig. 1(b) for a conceptual illustration
using the acceleration as input and the velocity as output.
Note that the domains specified in intent are more restricted
than the vehicle’s physical behavior limits since uncertainties
are reduced when anticipating the vehicle’s future maneuver.
A formal definition of such vehicle intent is given below.

Definition 1: A vehicle’s motion intent is represented by the
restricted domains u(t) ∈ [u(t), u(t)] and y(t) ∈ [y(t), y(t)] of
the input and output over the time period t ∈ [t̂, t̂ + T ], where
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t̂ is the time when the intent is generated, and T is the intent
horizon. The vectors u, u, y, and y collect the lower and upper
bounds of the input vector u and the output vector y, and these
bounds can be time-dependent. ■

It is emphasized that according to Definition 1, a vehi-
cle’s intent can be compactly encoded into the input/output
bounds, enabling an efficient implementation of intent sharing
communication. Note that such intent information does not
specify the intent sender’s vehicle dynamics; see Fig. 1(a).
However, the encoded input bounds and output constraints
can be interpreted by an intent receiver using an appropriately
chosen dynamical model, which allows the calculation of
possible future trajectories of the intent sender in continuous
time. We remark that Definition 1 is kept general such that one
can describe a vehicle’s intent for different scenarios under
a unified framework, by selecting appropriate input/output
quantities. Below we provide a more specific definition for
a vehicle’s longitudinal motion intent based on Definition 1,
which considers acceleration as input and velocity as output
along a planned path; see Fig. 1(b) for an illustration.

Definition 2: A vehicle’s longitudinal motion intent is
represented by a lane index I, a restricted accelera-
tion (input) domain u(t) ∈ [a(t), a(t)] and velocity (output)
domain v(t) ∈ [v(t), v(t)] over the time period t ∈ [t̂, t̂ + T ],
where t̂ is the time when this intent is generated, T
is the intent horizon. Also, amin ≤ a(t) ≤ a(t) ≤ amax and
vmin ≤ v(t) ≤ v(t) ≤ vmax where amin, amax, vmin, and vmax
denote the physical acceleration and velocity limits. ■

For instance, in a highway driving scenario, an intent
message may convey the information that for the next
T = 8 [s], the vehicle will be traveling on the left-
most lane (i.e., I = 1) while having its velocity between
v(t) ≡ 29 [m/s] and v(t) ≡ 32 [m/s], and acceleration
between a(t) ≡ −0.7 [m/s2

] and a(t) ≡ 0.9 [m/s2
]. It will

be demonstrated below experimentally that the intent given
by Definition 2 can be decoded to predict the intent sender’s
future behaviors using a simple first-principle model of longi-
tudinal dynamics.

We remark that the intent of an automated vehicle may
be given by specifying its future trajectory [21], [22], [25].
However, a major advantage of our representation is the capa-
bility of encoding uncertainties into motion intent (through
input/output bounds) in an easy-to-interpret fashion. Thus,
Definitions 1 and 2 can be implemented for vehicles possess-
ing various automation degrees. For a connected automated
vehicle, such intended input bounds and output constraints
may be extracted from its on-board motion planner that pre-
scribes the vehicle’s future behaviors. On the other hand, for
a connected human-driven vehicle, the intent bounds may be
determined in a data-driven manner for a specific human driver
involved in similar traffic scenarios. Section IV discusses in
detail the implementation of intent sharing communication.
We also remark that Definition 2 can be easily extended to
include lane changes by specifying lane indices that corre-
spond to different time periods. Alternatively, lateral motion
can be incorporated into the definition of intent, by specifying
the steering angle as an input, in accordance with Definition 1.

Fig. 2. Schematic diagram of on-board conflict analysis that provides
real-time decision assistance to the ego vehicle based on the remote vehicles’
status and intent messages.

With the definition of vehicle intent, the next section
provides theoretical preparation for the application of intent
sharing for conflict resolution in cooperative maneuvering.

III. CONFLICT ANALYSIS

In this section, we generalize the framework of conflict
analysis, originally proposed in our previous work [26],
by considering multiple vehicles with general dynamical mod-
els and general cooperative driving scenarios. Under this
extension, the received V2X messages can be interpreted in
a personalized manner for both automated and human-driven
vehicles considering their user-determined behavior prefer-
ences. Fig. 2 shows an illustration of the intent-based conflict
analysis that we develop in this section. This generalized
framework is then applied to investigate conflicts in a merge
scenario.

A. Intent-Based Conflict Analysis

Consider a cooperative maneuver involving an ego vehicle
indexed 0, and N remote vehicles indexed 1, . . . , N , whose
dynamics are modeled by:

ẋi (t) = fi (xi (t), ui (t)),

yi (t) = gi (xi (t)), i = 0, 1, . . . , N . (1)

Here the dot denotes time derivative, xi ∈ �i ⊆ Rn is the state
of vehicle i , ui ∈ Rm is the input, yi ∈ Rq is the output, and
fi : �i × Rm

→ �i , gi : �i → Rq are continuous functions.
Each vehicle i ∈ {0, 1, . . . , N } is subject to

ui (t) ∈ [umin,i , umax,i ], yi (t) ∈ [ymin,i , ymax,i ], ∀t, (2)

where umin,i , umax,i ∈ Rm and ymin,i , ymax,i ∈ Rq contain the
(constant) lower and upper bounds for the input and output,
imposed by the vehicle’s physical behavior limits.

From the perspective of the ego vehicle 0, the remote vehi-
cles 1, . . . , N are not controllable. That is, we cannot prescribe
the inputs u1, . . . , uN , nor do we have the knowledge about
their exact values. However, the remote vehicles’ physical
behavior limits in (2) are assumed to be known to the ego
vehicle based on general knowledge of vehicle capabilities and
traffic rules. Moreover, the remote vehicles may share their
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status xi and intent (cf. Definition 1) with the ego vehicle
at given time instants. For example, knowing the intent of a
remote vehicle i ∈ {1, . . . , N } generated at time t̂ , in addition
to (2), imposes the following input and output bounds:

ui (t)∈[ui (t), ui (t)], yi (t)∈[y
i
(t), yi (t)], t ∈[t̂, t̂+T ], (3)

where the conditions umin,i ≤ ui (t) ≤ ui (t) ≤ umax,i and
ymin,i ≤ y

i
(t) ≤ yi (t) ≤ ymax,i hold (element-wise). Given the

remote vehicle’s current status xi , its future evolution can be
predicted from (1) under the constraints (2)-(3). We leave the
details of communication setups for the next subsection, while
here we present the main idea of conflict analysis.

We define the overall state of the system (1) as

X :=


x0
x1
...

xN

 ∈ � := �0 × �1 × . . . × �N , (4)

where � contains the states of interest when reasoning
about conflicts between vehicles. We formally describe a
conflict-free maneuver using the proposition

P := {∀t, X(t) /∈ �∗
⊆ �}, (5)

where �∗ is the set that the states X(t) must avoid for all time t
to ensure that a conflict never occurs during the maneuver.
Note that encoding conflict conditions in the set �∗ is a general
representation which can be used to describe conflicts in a
multitude of traffic scenarios.

Our goal is to ensure that the proposition P holds, by assist-
ing the maneuver of the ego vehicle 0 while considering
the environmental uncertainty coming from the remote vehi-
cles. Such assistance may be provided at the decision level
(e.g., whether the ego vehicle is able to merge ahead of an
approaching remote vehicle without a conflict) and/or at the
control level (e.g., what control input u0(t) should be used to
execute the corresponding decision). In this study, we focus on
providing decision-level assistance to the ego vehicle (which
may be either automated or human-driven), while leaving
the control-level assistance for future work. To provide a
personalized decision assistance, we consider the ego vehicle’s
user-based behavior preferences, modeled as input bounds and
output constraints:

u0(t) ∈ [u0(t), u0(t)], y0(t) ∈ [y
0
(t), y0(t)], (6)

similar to the intent Definition 1. We assume that these bounds
cover the whole time span of the ego vehicle’s maneuver.

For an automated ego vehicle, such preference may be
preset according to different metrics (e.g., passenger comfort
and energy efficiency). When the ego vehicle is human-driven,
these preference bounds may be extracted from specific human
drivers’ historical data when they were involved in similar
maneuvers. Notice that for an automated ego vehicle, the
behavior preference (6) represents the constraints in designing
control strategies for completing a given maneuver. For the
human-driven case, however, such preference represents the
uncertainty in a human driver’s behavior when performing
the maneuver. In this case we assist the human driver’s
decision, but the vehicle is maneuvered by the driver.

With the ego vehicle’s behavior preference and the remote
vehicles’ behavior uncertainty in mind, proposition P in (5)
can be decomposed into three cases:
(i) No-conflict case: Independent of the motion of remote

vehicles 1, . . . , N , the ego vehicle 0 is able to perform a
conflict-free maneuver under its behavior preference.

(ii) Uncertain case: Depending on the motion of remote vehi-
cles 1, . . . , N , the ego vehicle 0 may be able to perform
a conflict-free maneuver under its behavior preference.

(iii) Conflict case: Independent of the motion of remote vehi-
cles 1, . . . , N , the ego vehicle 0 is not able to perform a
conflict-free maneuver under its behavior preference.

These three cases correspond to three pairwise disjoint sets
within the set �. Depending on whether the ego vehicle 0 is
automated or human-driven, different expressions are required
for these sets. For an automated ego vehicle, we have

PA
g :={X ∈ �|∀u1(t), . . . , uN (t), ∃u0(t), P}, (7)

PA
y :={X ∈ �|(∃u1(t), . . . , uN (t), ∀u0(t), ¬P) ∧

(∃u1(t), . . . , uN (t), ∃u0(t), P)}, (8)

PA
r :={X ∈ �|∀u1(t), . . . , uN (t), ∀u0(t), ¬P}, (9)

where the symbol ¬ means “negation” and ∧ means “and”.
The inputs u0, u1, . . . , uN are subject to their corresponding
bounds imposed by the physical behavior limits (2), the
intent (3) of remote vehicles, and the behavior preference (6)
of ego vehicle. The superscript “A” corresponds to the ego
vehicle being automated, while the subscripts “g”, “y”, and
“r” correspond to the convention of using green, yellow, and
red colors to visualize the no-conflict, uncertain, and conflict
sets [26]. If the ego vehicle is human-driven, we have

PH
g :={X ∈ �|∀u1(t), . . . , uN (t), ∀u0(t), P}, (10)

PH
y :={X ∈ �|(∃u1(t), . . . , uN (t), ∃u0(t), ¬P) ∧

(∃u1(t), . . . , uN (t), ∀u0(t), P)}, (11)

PH
r :={X ∈ �|∀u1(t), . . . , uN (t), ∃u0(t), ¬P}, (12)

where the superscript “H” is used for the human-driven case.
We emphasize that the no-conflict set PA

g in (7) requires the
existence of an input for the automated ego vehicle (i.e., ∃u0),
which steers the system state X such that the proposition P
remains true. In contrast, the no-conflict set PH

g in (10) requires
the proposition P to hold for any input of the human-driven
ego vehicle (i.e., ∀u0) under the behavior preference (6). Such
difference accounts for the behavior uncertainty associated
with the ego vehicle’s human driver, while considering that an
automated counterpart can execute a prescribed input without
significant uncertainty. One may observe similar difference in
the conflict sets PA

r and PH
r . These yield the relationships

PA
g ⊇ PH

g , PA
r ⊆ PH

r . (13)

That is, under the behavior uncertainty of ego vehicle’s human
driver, the no-conflict set shrinks while the conflict set enlarges
compared to the automated case. We remark that for both the
automated and human-driven cases, the two predicates of the
uncertain set P∗

y negate those of the no-conflict set P∗
g and
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Fig. 3. Visualizing packet receiving timing of V2X messages. (a) When
intent packet has sufficient horizon. (b) When intent packet has short horizon
while being sent with a low rate or when packet drops occur.

conflict set P∗
r (where “∗” denotes either “A” or “H”). For

human-driven case (10)-(12), we have

(∃u1(t), . . . , uN (t), ∃u0(t), ¬P)

⇐⇒ ¬(∀u1(t), . . . , uN (t), ∀u0(t), P), (14)
(∃u1(t), . . . , uN (t), ∀u0(t), P)

⇐⇒ ¬(∀u1(t), . . . , uN (t), ∃u0(t), ¬P), (15)

which explains why the sets PH
g , PH

y , and PH
r are mutually

disjoint and PH
g ∪PH

y ∪PH
r = �. Similar relationships hold for

the sets PA
g , PA

y , and PA
r .

By checking which subset of � the system state X is cur-
rently located at, one can assist the ego vehicle to identify the
opportunity in completing a conflict-free maneuver, resulting
in safe and efficient decision. Note that such checking is made
possible by the status and intent of the remote vehicles shared
via V2X communication. The corresponding communication
setup is provided in the next subsection.

B. Communication Setup

We consider that all vehicles are equipped with V2X
devices. The ego vehicle may acquire information regard-
ing the remote vehicles’ motion via status sharing and
intent sharing. In status sharing, the ego vehicle 0 receives
status information from the remote vehicles 1, . . . , N at
discrete time moments tk , k = 0, 1, . . ., i.e., it obtains
[x1(tk)⊤, . . . xN (tk)⊤]

⊤. Here, for simplicity, we assume that
the reception of status messages from all N remote vehicles
is synchronized at each tk . Due to the discrete nature of
status information, the ego vehicle has the accurate knowledge
of system state X at times tk only. In intent sharing, the
remote vehicles transmit their intent messages at discrete
time moments according to Definition 1. Similar to status
sharing, we assume that the reception of intent messages are
synchronized for all N remote vehicles.

For both status and intent packets, the transmission time
delay is assumed to be negligible such that a message is
delivered immediately to the ego vehicle once generated from
the remote vehicle. For analysis with time delays, we refer the
readers to our previous work [28]. However, the two types of
messages (status and intent) may be transmitted with different
sending rates, and therefore, they may not arrive at the ego
vehicle’s V2X port in a synchronized fashion. A conceptual
visualization of the message reception timing is shown in
Fig. 3(a). For simplicity of notation, we avoid introducing a

new index of intent messages, but simply use t̂k ≤ tk to denote
the latest time when the intent packets were received by the
ego vehicle, at the status receiving time tk . This corresponds
to the notation used in (3) if one substitutes t̂ with t̂k for all
remote vehicles.

At each time tk , the available intent information, that the
ego vehicle may use to predict the remote vehicle’s future
trajectory, covers the time horizon [tk, t̂k + T ]; see Fig. 3(a).
If intent packets are designed with a short horizon T , while
subject to low sending rate and/or to packet drops, then
tk ≥ t̂k + T may occur; see Fig. 3(b). In this case, the infor-
mation in the latest intent packet already expires at tk and
may not be used to facilitate the ego vehicle’s prediction.
This suggests that a sufficient intent horizon together with
appropriate communication conditions are needed to secure a
satisfactory performance of intent sharing. Detailed evaluation
of these communication factors are given in Section V via real
highway data.

With this communication setup, one is able to check the
system state X at each time tk while using the latest (available)
intent information. If X(tk) ∈ PA

g or X(tk) ∈ PH
g (depending on

whether the ego vehicle is automated or human-driven), then a
conflict is guaranteed not to happen, and the ego vehicle may
confidently initiate such a maneuver according to its behavior
preference. Otherwise, the ego vehicle should not execute the
maneuver to prevent potential conflicts caused by the behavior
uncertainties of the remote and the ego vehicles. In the next
subsection, we apply this conflict analysis framework to a
merge scenario and develop an efficient algorithm to check
whether X(tk) ∈ PA

g or X(tk) ∈ PH
g .

C. Conflict Analysis for a Merge Scenario

As an application of intent-based conflict analysis, we focus
on the example of a merge scenario illustrated in Fig. 4(a).
This maneuver is selected because it is one of the most
challenging driving scenarios that frequently involves conflicts.
Nevertheless, the results of the following analysis can be
applied to a much broader set of conflict scenarios, such as
intersections, unprotected left/right turns, and roundabouts.

In Fig. 4(a), the blue remote vehicle 1 is approaching
a merge zone (yellow rectangle) while traveling along the
main road. In the meantime, the white ego vehicle 0 is
attempting to merge onto the main road. The conflict zone
(red rectangle) is located towards the end of the merge zone.
A conflict occurs when the two vehicles appear simultaneously
inside the conflict zone, even partially. Fig. 4(b) shows a
generalized model for this scenario, while considering the
vehicles’ longitudinal dynamics only. We place the origin at
the entry point of the conflict zone and use L to denote the
conflict zone length. The front bumper positions of the vehicles
are denoted by r0 and r1, and the corresponding velocities are
v0 and v1. The same vehicle length ℓ is assumed for both
vehicles and we define the variable s := L + ℓ.

For simplicity, we model the vehicles’ longitudinal dynam-
ics while neglecting rolling resistance and air drag:

ṙi (t) = −vi (t),

v̇i (t) = ui (t), i = 0, 1. (16)
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Fig. 4. Validating intent sharing cooperation in a merge scenario using
real vehicles at Mcity test track. (a) Experiments where intent-based conflict
analysis provides on-board decision assistance to an ego vehicle attempting to
merge. The rear mirror views of the ego vehicle are shown in the left column.
(b) A generalized model of the merge scenario.

TABLE I
PARAMETER VALUES USED IN THE EXPERIMENTS AT MCITY

Here, ui is the control input (acceleration) of vehicle i , and
the negative sign in front of the velocity corresponds to
the fact that vehicles travel towards the negative direction
(towards the conflict zone); see Fig. 4(b). The state and output
of vehicle i are defined as xi = [ri vi ]

⊤ and yi = vi . The
physical behavior limits of both vehicles, in terms of the input
(acceleration) bounds and output (velocity) constraints, are
given as

ui (t) ∈ [amin,i , amax,i ], vi (t) ∈ [vmin,i , vmax,i ], ∀t, (17)

cf. (2). Table I gives the corresponding values drawn
from the experiments performed at a closed test track;
see more details in Section IV. For vehicle i , the set
�i = [−s, ∞) × [vmin,i , vmax,i ] in state space is used to rea-
son about conflict. Hence the overall state of the system (16)
is X := [x⊤

0 x⊤

1 ]
⊤

∈ � := �0 × �1.
We are interested in whether the ego vehicle is able to

merge ahead of the remote vehicle without a conflict. Such
a conflict-free merge ahead is given by the proposition

P := {∃t, r0(t) < −s ∧ r1(t) = 0}, (18)

which states that by the time the remote vehicle enters the
conflict zone, the ego vehicle has passed it; see Fig. 4(b).
Here, we exploited the fact that vehicles only move forward
during the merge (i.e., r0 and r1 are non-increasing functions
of time t). Proposition (18) can be converted to the general

form (5):

P = {∀t, ¬ (r0(t) ≥ −s ∧ −s ≤ r1(t) ≤ 0)}, (19)

see the proof in Appendix A. That is, to ensure a conflict-free
merge ahead, the set

�∗
=[−s,∞)×[vmin,0,vmax,0]×[−s,0]×[vmin,1,vmax,1], (20)

must be avoided by the system state X. Here, X ∈ �∗
⊂ �

describes the scenario when the remote vehicle 1 is inside the
conflict zone while the ego vehicle 0 has not yet exited it: it is
either in the conflict zone, or has not yet reached the conflict
zone. In this case a conflict-free merge ahead is not possible.

Following the communication setup given in the previous
subsection, the ego vehicle has access to the system state
X(tk) at status message receiving times tk . The available
intent information at tk is encoded in the latest intent message
received from the remote vehicle 1 at t̂k :

u1(t)∈[a1(t),a1(t)], v1(t)∈[v1(t),v1(t)], t ∈[tk,t̂k +T ];

(21)

cf. Definition 2 and Fig. 3. For the ego vehicle 0, the behavior
preference

u0(t) ∈ [a0(t), a0(t)], v0(t) ∈ [v0(t), v0(t)], (22)

holds until it exits the conflict zone, cf. (6). Fig. 6(a)-(b)
show an example of such preference bounds associated with
a human driver performing a merge maneuver.

Using the available intent (21) and behavior preference (22),
if X(tk) is in the set PA

g or in the set PH
g then the ego vehicle

shall pursue the merge ahead opportunity; otherwise it shall
yield to the approaching remote vehicle to avoid potential
conflicts. This is summarized in the decision-making rule

decision =

{
merge ahead, if X(tk) ∈ PA

g or X(tk) ∈ PH
g ,

yield, otherwise.

(23)

The following two Theorems provide criteria to check
X(tk) ∈ PA

g (for an automated ego vehicle) and X(tk) ∈ PH
g

(for a human-driven ego vehicle), respectively.
Theorem 1: Given the dynamics (16)-(17), the current

system state X(tk), the remote vehicle’s latest available
intent (21), and the behavior preference (22) of an automated
ego vehicle, we have

X(tk) ∈ PA
g ⇐⇒ T A

0 < T1, (24)

where T A
0 is the time such that r0(T A

0 ) = −s under

u0(t) ≡ a0(t), t ≥ tk, (25)

and T1 is the time such that r1(T1) = 0 under

u1(t) =

{
a1(t), if t ∈ [tk, t̂k + T ],

amax,1, otherwise.
(26)

Proof: See Appendix B. □
Theorem 2: Given the dynamics (16)-(17), the current

system state X(tk), the remote vehicle’s latest available
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intent (21), and the behavior preference (22) of a human-
driven ego vehicle, we have

X(tk) ∈ PH
g ⇐⇒ T H

0 < T1, (27)

where T H
0 is the time such that r0(T H

0 ) = −s under

u0(t) ≡ a0(t), t ≥ tk, (28)

while T1 is the same as in Theorem 1.
Proof: See Appendix C. □
As depicted in Fig. 4(b), T A

0 in Theorem 1 calculates the
time of an automated ego vehicle 0 exiting the conflict zone
under its best-case behavior (input upper bound). In com-
parison, T H

0 in Theorem 2 corresponds to the time when a
human-driven ego vehicle exits the conflict zone under its
worst-case behavior (input lower bound) due to the uncertainty
in human behavior. On the other hand, T1 gives the time
of the remote vehicle 1 entering the conflict zone under its
worst-case future behavior, that is, when using the input upper
bound in its intent (21) and in its physical behavior limits (17).
As indicated by (26), with intent information, the ego vehicle
can estimate the evolution of its environment with reduced
uncertainty. It will be shown later experimentally that sharing
intent significantly improves the efficiency in decision making.
Notice that if tk ≥ t̂k + T happens due to short intent horizon
and/or improper communication conditions, then the intent is
no longer available at tk and (26) degrades to u1(t) ≡ amax,1
for t ≥ tk .

Based on Theorems 1 and 2, examining X(tk) ∈ PA
g or

X(tk) ∈ PH
g (i.e., whether a conflict-free merge ahead is guar-

anteed for an automated or a human-driven ego vehicle)
reduces to calculating the time parameters T A

0 , T H
0 , and T1.

Such calculation can be done efficiently by performing numeri-
cal integration for the corresponding dynamics model using the
indicated (deterministic) control inputs while satisfying output
constraints. In the next section, we implement this intent-based
conflict analysis algorithm on production vehicles to provide
real-time decision assistance to human drivers.

IV. EXPERIMENTS AT THE MCITY TEST TRACK

In this section, we first discuss the implementation of
vehicle intent (defined in Section II) in V2X messages. Then
we present the experimental results obtained on a closed test
track. These experiments validate the intent-based conflict
analysis using connected vehicles. Experimental data is used
to quantify the benefits of receiving intent messages.

A. Creating Intent Messages

We encode the longitudinal motion intent of Definition 2
into wireless messages using commercially available V2X
communication devices; see Fig. 5(a). For simplicity, we focus
on constant intent bounds for both acceleration (input) and
velocity (output). The vehicle’s longitudinal intent is packaged
into a few parameters, which requires small data space to store
and transmit, and uses communication resources efficiently.
For time-dependent intent bounds, one may still parameterize
them as functions of time to enable compact representation.
Such implementation is left as future work.

Fig. 5. Implementing intent messages using the V2X protocol WSMP.
(a) Commercially available V2X Onboard Unit (OBU). (b)-(c) Examples of
intent messages transmitted in the experiments.

To implement intent messages, we adopt the WAVE Short
Message Protocol (WSMP) [30], an efficient network layer
messaging protocol that is able to transmit custom messages
with standardized security [31]. Using the V2X Onboard Units
(OBUs) shown in Fig. 5(a), we create secured intent messages
in C language via the OBU supplier’s application program-
ming interface (API). We design appropriate data structures
to store the intent parameters and specify the sending rate
of intent packets. By running the developed C program on a
computer connected to the OBU via Ethernet, intent messages
can be sent/received by the OBU at a user-determined rate.

Two of intent message examples, corresponding to two
different driving scenarios in our experiments are shown in
Fig. 5(b)-(c). They were transmitted from a vehicle during a
driving test whose details are given in the next subsection.
The vehicle’s current GPS information and its intent over
a future horizon of 10 [s] are included in each message.
Note that the intended velocity bounds are expressed rel-
ative to the current velocity of the vehicle. For instance,
the intent message in Fig. 5(b) encodes a velocity range
of [13.38 − 0.55, 13.38 + 0.437] [m/s]. Examples of such
intent bounds can be seen in Fig. 6(c)-(d). Thanks to the
data-compact description of vehicle intent, the messages are
contained in small packets of the size 51 bytes. One may
further downsize intent packets by using data types that occupy
less storage. Such lightweight design is important since smaller
packet size contributes to less packet drops in real traffic [32].

B. Experiments at Mcity

Having implemented intent messages, we test intent shar-
ing for conflict resolution using two human-driven vehicles
equipped with V2X OBUs; see Fig. 5(a). Each OBU is
equipped with a GPS unit, gyroscope, accelerometer, and
magnetometer. Our OBUs communicate in a peer-to-peer
manner through V2X antennas, using Cellular-V2X (C-V2X)
direct communications [33]. Such C-V2X adopts an efficient
wireless access technology – single carrier frequency division
multiple access (SC-FDMA) at the medium access control
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Fig. 6. Benefits evaluation of intent sharing in Mcity experiments where the
ego vehicle performed on-board conflict analysis while maintaining standstill.
(a)-(b) Ego vehicle’s behavior preference. (c)-(d) Remote vehicle’s maneuvers
while using cruise control and when the human driver decreases the speed.
Examples of intent bounds are highlighted as blue shadings. (e)-(f) Evolution
of estimated times T H

0 and T1 under the aforementioned two different
behaviors of the remote vehicle. The warning issuance times Tw highlight
the benefits of intent sharing in mitigating false positive decisions.

(MAC) layer [34], contributing to good communication range
and reliability. During the tests, our OBUs operated at the
5.9 GHz frequency band with 20 dBm transmit power.

The experiments were performed at the Mcity test track of
the University of Michigan. Fig. 4(a) shows the experimental
setup, in which the ego vehicle (white) intends to merge onto
the main road inside a 50 [m] long merge zone as the remote
vehicle (blue) approaches on the main road. Notice that the
merge zone does not exactly correspond to that of the actual
on-ramp. Such design allows a longer section of the main
road to be used by the remote vehicle to perform the required
maneuvers (as specified below) before the ego vehicle merges.
We define a conflict zone of length 20 [m]. To avoid danger
to the experiment participants while studying conflicts, the
second to the rightmost lane was used by the remote vehicle
when approaching on the main road.

We define the initial time of each merge experiment as the
moment when the distance between the remote vehicle and the
conflict zone’s entry point is 150 [m]. The ego vehicle’s initial
position is set at the entry point of the merge zone (30 [m] in
front of the entry of the conflict zone), while its initial speed
is set as zero; see Fig. 4(a). Such experimental setup replicates
one of the most challenging merge scenarios where a merge
has to be initiated from standstill; see Fig. 10(a)-(b) for a
public road example that is often seen on US expressways.

Note, however, that our methodology and qualitative results
can be extended to many other traffic scenarios.

Two different behaviors were exhibited by the remote
vehicle when driving along the main road: (i) cruise control
with speed set to 30 [mi/hr] ≈ 13.4 [m/s]; (ii) human driving
with speed decreasing from 30 [mi/hr]. Accordingly, we cre-
ated intent messages for these two scenarios with the intent
parameters given in the examples in Fig. 5(b)-(c). Examples
of the remote vehicle’s speed and acceleration profiles when
performing such maneuvers are shown in Fig. 6(c)-(d). Blue
shadings indicate the intent bounds which were determined
based on data collected while the vehicle repeatedly performed
such maneuvers. Indeed in practice, the parameters of human
driving intent may be determined based on such historical
data. The consideration of different remote vehicle behaviors
allow us to demonstrate personalized decision assistance while
responding to different intent information. The sending rate
of intent messages was set to 1 [message/s]. Meanwhile,
we used standard BSMs to transmit the remote vehicle’s status
information (position r1 and velocity v1) in every 0.1 [s].

In our experiments, the ego vehicle was human driven.
We extracted the human driver’s behavior preference before-
hand by collecting data of the driver performing merge
maneuvers multiple times at the test track. The cumulative
min/max values of the speed and acceleration profiles yield the
lower/upper bounds of the driver’s preferred behavior shown in
Fig. 6(a)-(b). The uncertainty in human driving is highlighted
by the gray region between the bounds. Inside the ego vehicle,
we used a computer to manage the reception of status and
intent messages. The conflict analysis algorithm in Theorem 2
was implemented through MATLAB real-time. Decision assis-
tance to the ego vehicle’s human driver was provided on-board
based on the decision rule (23) and Theorem 2, that is,

decision
assistance=

{
no warning, if T H

0 (tk) < T1(tk),
warning issued, if T H

0 (tk) ≥ T1(tk),
(29)

where tk is status receiving time. Warning was issued from the
computer running conflict analysis as audible beep sounds with
a corresponding warning message displayed on the screen.

We performed experiments in two different ways. In the first
case, highlighted in Figs. 4(a) and 6(e)-(f), on-board conflict
analysis was performed while the ego vehicle stayed stationary
at its initial position. These experiments were used to demon-
strate the utility of intent sharing in resolving conflicts, and to
quantify the benefits of intent. In the second case, shown in
Fig. 7, on-board conflict analysis was performed while the ego
vehicle’s driver was asked to initiate the merge maneuver with
different timings before/after the issuance of warning. These
experiments enabled the validation of the intent-based conflict
analysis for real human drivers’ merge maneuvers. The results
of these two categories of experiments are presented in detail
in the next two subsections.

C. Evaluating Benefits of Intent Sharing

An experiment performed with stationary ego vehicles is
illustrated in Fig. 4(a) through the ego vehicle’s rear view
camera images. With the remote vehicle being far away, the
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Fig. 7. Two examples of Mcity experiments where the remote vehicle
approaches with cruise control and the ego vehicle driver merges after
the issuance of warning. (a)-(c) A scenario where the warning disappeared
automatically during the maneuver based on the ego vehicle’s actual behavior
and the updated V2X messages. No conflict happened after all as illustrated
in panel (b). (d)-(f) A scenario where the warning persisted after being issued.
Here an actual conflict happened as shown in panel (e).

on-board conflict analysis did not predict a conflict upon the
ego vehicle merging ahead, and accordingly, no warning was
issued. As the remote vehicle approached the ego vehicle
from behind, a potential conflict between the two vehicles
was predicted for the merge. Thus, a warning was generated,
which continued until the remote vehicle passed the ego
vehicle. Fig. 6(e)-(f) visualize the conflict analysis of two such
experiments under the aforementioned two different behaviors
of the remote vehicle (cruise control and human driving). Each
time when a status update was received, the time parameters
T H

0 and T1 were calculated utilizing the ego vehicle’s behavior
preference and the remote vehicle’s latest intent and status
information. The small jumps (appearing every 1 [s]) in T1 in
Fig. 6(f) correspond to receiving new intent messages.

In what follows, we discuss the benefits quantification of
intent sharing based on experimental results. To start, note that
an ideal decision assistance shall (i) avoid false negative deci-
sions, i.e., a conflict happens while a warning is not provided
in time; (ii) minimize false positive decisions, i.e., a warning
is provided while the ego vehicle can still confidently merge
ahead without a conflict. Since our framework considers the
worst-case behaviors of the remote and ego vehicles (see
Theorem 2), the absence of false negative decisions is guaran-
teed theoretically, and this is also demonstrated empirically in
the next subsection. Thus, mitigating false positive decisions
is of our main interest. This is related to the warning issuance
time, which is the time when the warning first appears after
the experiment is initiated. A too early warning can lead
to the human driver missing the opportunity to pursue a
non-conflicting merge ahead, making the driver wait longer
than necessary. Such unnecessary delays compromise the
efficiency of the on-ramp.

According to (29) warnings are issued when T H
0 ≥ T1. Thus,

to quantify the benefits, we use the warning issuance time

Tw = min tk ∈ {t0, t1, . . .}, s.t. T H
0 (tk) ≥ T1(tk), (30)

where tk are the times when status are received.
In Fig. 6(e) and (f) we have Tw = 3.4 [s] for the cruise
control scenario and Tw = 5.0 [s] for the human-driving
scenario, respectively.

To highlight the benefits of intent sharing, we compare the
warning issuance time Tw with a baseline case: when only
status sharing messages are used. Suppose that intent mes-
sages had not been transmitted, the time parameter T1 would
be calculated with smaller values due to more conservative
prediction on the remote vehicle’s future behavior; see green
curves in Fig. 6(e)-(f). In both cases, the warning issuance
times shrink (to Tw = 2.7 [s] and 2.8 [s], respectively). There-
fore, intent sharing indeed mitigates false positive decisions in
conflict resolution compared to status sharing.

Notice that for status sharing only, the difference between
the warning issuing times associated with the cruise control
and human driving cases is small. This is because of the similar
status of remote vehicle at the beginning of both maneuvers.
In contrast, with the anticipation of future motion encoded
in the intent messages, different remote vehicle behaviors
(intentions) were distinguished by our framework through the
different warning issuing times.

D. Validating Intent-Based Conflict Analysis

Here we describe the experiments when the ego vehi-
cle’s human driver started to merge with designated timings
before/after the issuance of the warning, while conflict anal-
ysis was performed. These experiments demonstrate that our
framework enhances the safety of the ego vehicle by providing
on-board warnings with no false negative decision and that
the algorithm can self-correct the false positive decision in
real-time during a merge.

In the experiment shown in Fig. 7(a)-(c), the remote vehicle
was using cruise control while the ego vehicle’s driver initiated
the merge after the warning started. As panel (c) depicts,
the value of T H

0 dropped at around 5.4 [s] when the ego
vehicle began to move (whose actual behavior was better
than the worst-case input used for conflict analysis). Then
the on-board warning automatically disappeared during the
maneuver at around 6.3 [s] based on the updated status
and intent information. As shown in panel (b) conflict did
not happen after all. Such self-adjustment of the warning
showcased our framework’s capability of real-time decision
assistance. Another experiment is shown in Fig. 7(d)-(f), where
the remote vehicle attempted to merge ahead amid the warning
(which persisted throughout the maneuver), and this led to
an actual conflict under the behavior uncertainty of the ego
driver. We emphasize again that the warning was tailored to
the specific driver’s behavior preference.

By varying the ego vehicle’s merge initiation timing, the
experiments were repeated multiple times. For the case of
cruise control, the experimental results are summarized in
Fig. 8(a), depicting the ego vehicle’s merge starting time and
the remote vehicle’s corresponding position, and representing
the merge results by colors. As shown by the blue points, the
ego vehicle was always able to merge ahead without a conflict
when initiating a merge before the warning was issued, i.e.,
no false negative decision was observed. On the other hand,
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Fig. 8. Experimental results validating the on-board decision assis-
tance enabled by intent-based conflict analysis. Each data point marks an
experiment, showing the merge starting time of the ego vehicle and the
corresponding position of the remote vehicle. Colors indicate different merge
results. (a) Remote vehicle used cruise control. (b) Remote vehicle was
human-driven.

the yellow points correspond to false positive decisions, which
stem from using the ego drivers’ worst-case behaviors when
dealing with the uncertainties in human driving. Intent sharing
indeed reduces such false positive decisions as highlighted by
the larger average warning issuance times, compared to the
status sharing only case. Such false positive warnings were
self-corrected in real-time during the maneuver based on the
updated information; see Fig. 7(a)-(c). The necessity of having
conservatism in conflict analysis is, however, justified by a
segment of data points with mixed yellow and red colors in
Fig. 8(a), that is, conflicts could occur depending on the ego
driver’s actual behavior. With the remote vehicle being closer,
merge ahead was no longer achievable without a conflict,
as shown by the red points. Finally, the green points indicate
that, by following the warning, a conflict-free merge behind
was always realizable.

As shown in Fig. 8(b), when the remote vehicle was
operated by a human driver, the experimental results remained
qualitatively similar. In fact, the on-board warning system
was also tested under a different human driver of the ego
vehicle, who drove more aggressively (with higher values
of the preferred velocity and acceleration bounds). While
the detailed results of such experiments are omitted in this
paper due to qualitative similarity, we observed larger warning
issuance times due to a more aggressive behavior preference.
These experiments validated the capability of the conflict anal-
ysis in providing personalized decision assistance tailored to
different ego drivers under different remote vehicle intentions.
We demonstrated that the real-time on-board warning provided
a sufficient safety margin in alerting the human driver of
the ego vehicle of a potential conflict. At the same time our
intent-based warning leads to a significant reduction in false
positives compared to a status-based warning.

Fig. 9. Testing packet delivery ratio of intent messages (a) on a rural section
of highway US-23, and (b) on an urban section of highway I-275. (c) The
corresponding packet delivery ratios as a function of distance between intent
sender and receiver.

V. EVALUATING INTENT SHARING USING HIGHWAY DATA

So far we validated intent sharing at the Mcity test track.
In this section we bring intent sharing to public roads. We first
test intent messages on real highways. Then we perform
numerical simulations to investigate the effects of communi-
cation conditions on the benefits of intent sharing.

A. Packet Delivery Ratios on Public Highways

The transmission of intent messages was tested using con-
nected human-driven vehicles on two different highways in
southeast Michigan: on a rural section of highway US-23; and
on an urban section of highway I-275.

The experimental setup used on highway US-23 is depicted
in Fig. 9(a). While traveling along the highway, the blue
vehicle sent status messages via BSMs and intent messages
as described in Section IV-A, both at a rate of every 0.1 [s];
see the blue trajectory for the route taken. The white vehicle
received the messages while staying next to the highway at a
rest area. The collected data allowed for the calculation of
intent packet delivery ratio, i.e., the percentage of packets
received versus those have been sent, under different inter-
vehicle distances. Note that here we are interested in testing the
intent packet reception on public roads, while the exact intent
parameter values in each message are not important. Similar
experimental setup is shown in Fig. 9(b) for the experiments
conducted on an urban section of highway I-275.

The reception of intent packets was indeed affected by
the distance and the environment in which the vehicles were
operating; see data points in Fig. 9(c). To capture the trend
of decreasing packet delivery ratio as a function of the
inter-vehicle distance d , we fit the sigmoid function

S(d) = 1 −
1

1 + e−p1(d−p2)
, (31)
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to the data where parameter p1 describes the decreasing rate
(steepness) while parameter p2 corresponds to the d value at
the function’s midpoint. Such function has been widely used in
the literature for evaluating wireless messages’ packet delivery
ratios [35]. To fit the function (31) to the data, we minimize
the root mean square error

RMSE =

√√√√ 1
M

M∑
k=1

(
S(dk) − Ŝk

)2
, (32)

where d1, . . . , dM represent distances where packet delivery
ratio data Ŝ1, . . . , ŜM are available. The fitted functions are
depicted as solid curves in Fig. 9(c) with the corresponding
parameter values shown on the right.

For the rural highway section on US-23, relatively high
packet delivery ratio is maintained until 200 [m], while gradual
drops appeared for larger distances. Notice that intent packets
could be received up to 1000 [m]. For the urban highway
environment on I-275, the packet delivery ratio drops earlier
and more sharply as inter-vehicle distance increases; see
larger p1 and smaller p2 values. This deterioration is due to
obstructions such as dense traffic, buildings and overpasses.
We remark that these observations are representative – our
further tests revealed more intent packet drops on urban roads
compared to urban highways, due to more obstacle-related
communication interruptions. The qualitative trend, however,
remains similar. On the other hand, the packet delivery ratio
in the Mcity experiments (Fig. 7) was almost 100% due to the
small size of the test track.

These data-based results of packet delivery ratio will be used
in the next subsection to evaluate the effects of communica-
tion conditions on the benefits of intent sharing in resolving
conflicts for cooperative maneuvers.

B. Effects of Communication Conditions

In this subsection, we study the benefits of intent sharing
under imperfect communication where intent packet drops
exist, while considering different intent sending conditions
(e.g., rate and horizon). To this aim, we perform numerical
simulations for a highway merge scenario in a real-world
road configuration using real human driving data. We select
the on-ramp of highway M-14 near Barton Drive in Ann
Arbor, Michigan, as our simulation example, which requires a
highway merge to be initiated from a stop sign with zero initial
speed; see Fig. 10(a)-(b). For this highway merge section,
we define a conflict zone shown as the red rectangle in
Fig. 10(a). The entry point of the conflict zone is where
the lane width of the on-ramp shrinks to 1.2 [m], which is
narrower than a typical vehicle and a conflict with adjacent
lane vehicles becomes apparent. The conflict zone ends at
the end of the ramp. This yields a conflict zone size of
24.5 [m]. We remark that when choosing a slightly different
start/end points for the conflict zone the simulation results
remain similar.

We consider the scenario that a human-driven ego vehicle
attempts to merge from standstill at the highway entrance,
while a remote vehicle is approaching along the rightmost
lane. To obtain behavior preference of a human driver’s

Fig. 10. Data-based simulation of a merge scenario at the on-ramp of highway
M-14 near Barton Drive, Ann Arbor, Michigan. (a)-(b) Simulation setup where
the ego vehicle merges from a stop sign. (c)-(d) The ego vehicle’s behavior
preference and remote vehicle’s speed profile (extracted from a real human
driver data). (e) Conflict analysis showing the estimated times T H

0 and T1. The
warning issuance times are highlighted for different intent sending conditions.

merge maneuver, we collected data from a driver who merged
multiple times from the M-14 entrance. Similar to the Mcity
experiments, we extracted the lower/upper bounds of preferred
speed and acceleration shown in Fig. 10(c)-(d). The initial
position of the ego vehicle (at the stop sign) is 111.4 [m]

away from the entry point of the conflict zone. To represent
the remote vehicle’s behavior for the simulation, we use data
collected by a human-driven vehicle; see the blue curves in
Fig. 10(c)-(d). The initial position of remote vehicle is selected
as 450 [m] from the conflict zone. That is, the two vehicles
are (roughly) 338.6 [m] apart at the initial time, enabling the
exchange of intent messages (with packet drops); cf. Fig. 9(c).

In the simulation, the remote vehicle shares its status
(position and speed) every 0.1 [s], while the intent information
(of Definition 2) is shared with different sending rates and
intent horizons. At any intent sharing time, the bounds of
the intended speed and acceleration are extracted from the
remote vehicle’s data. The blue shadings in Fig. 10(c)-(d)
illustrate an example of intent shared at 1 [s] with a horizon
of 10 [s], where the min/max values of the corresponding
data segment yield the bounds. Note that in reality intent
may not be generated this way as one does not know exactly
the future profile, but simulations with such “accurate” intent
allow us to focus on investigating the effects of communication
conditions.
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Fig. 11. Evaluating the effects of communication conditions (intent horizon,
sending rate, and packet delivery ratio) on the benefits of intent sharing via
simulations. The warning issuance time is plotted as a function of packet
delivery ratio with the indicated intent horizons and sending rates. The dots
mark mean values while the error bars show the standard deviations.

As the remote vehicle approaches, the ego vehicle performs
on-board conflict analysis while staying at the stop sign. Cor-
responding to highway driving, the speed limits of the remote
vehicle are set as vmin,1 = 20 [m/s] and vmax,1 = 32 [m/s],
while its acceleration limits are the same as in Table I. The
simulation results in Fig. 10(e) show the estimated times T H

0
and T1 calculated via conflict analysis. Here, we incorporated
the intent packet delivery ratio of the rural highway US-23
(orange curve in Fig. 9(c)) into the simulation. Namely, the
reception of intent packets is modeled by a Bernoulli process
such that the probability of receiving a packet is given by
the packet delivery ratio corresponding to the current distance
between vehicles.

Three different intent sharing conditions are simulated for
the remote vehicle. Without intent sharing (green curve), the
warning starts at Tw = 3.1 [s]. When intent is sent every
0.1 [s] with horizon 5 [s] (purple curve), the warning starts
later at Tw = 4.3 [s], giving more opportunity for the ego
vehicle to pursue merge ahead. As the intent horizon is
increased to 10 [s] while maintaining the same sending rate,
the warning issuance time is pushed to Tw = 5.2 [s]. Such
improvement is because longer intent horizon enables a more
accurate (less conservative) prediction of the remote vehicle’s
future maneuver; cf. (26). Thus, longer intent horizon boosts
the time efficiency of the ego vehicle (and those queuing
behind it). Simulations with a worse packet delivery ratio
associated with the urban highway I-275 (green curve in
Fig. 9(c)) yield slightly smaller warning issuance times, but
the qualitative trend remains similar.

To further quantify the effects of communication conditions,
we repeat the simulations for different values of packet deliv-
ery ratio under different sending rates and intent horizons.
Here we adopt the simplification that packet delivery ratio is
independent from the inter-vehicle distance. Fig. 11(a) plots
the warning issuance time Tw as a function of packet delivery
ratio for intent horizon 5 [s] with the three sending rates as

indicated. Each dot marks the mean value of 500 simulations
while error bars represent standard deviations. The latter are
calculated separately above and below the mean to reflect more
accurate distribution. For sending rate 0.1 [s] (blue curve),
the warning issuance time remain almost constant between
20 − 100% packet delivery ratios, indicating that intent sharing
has good tolerance against packet drops. For lower sending
rates (orange and green curves), the system becomes less
resilient to packet loss as shown by the lower mean values
and higher variance. Having higher sending rate boosts the
chance of the ego vehicle obtaining an intent packet, which
can provide information regarding its future environment.

The intent horizon also affects the merge performance
significantly. When the horizon is increased to 10 [s] as
in Fig. 11(b), the warning issuance times witness a signif-
icant increase, while the qualitative trends remain similar.
As the horizon is increased further to 15 [s] as in Fig. 11(c),
we observe further (but moderate) increase in warning issuance
times and improved tolerance to packet drops. These benefits
eventually saturate as shown in Fig. 11(d) for horizon 20 [s]
which is long enough to cover the rest of the merge maneuver.

The above data-based simulations enable a systematic evalu-
ation of communication factors in intent sharing. These results
provide insights into designing efficient generation rules of
intent messages. For instance, an adaptive transmission rate
may be imposed such that under reliable communication,
long-horizon intent is sent with lower rate to save commu-
nication channels while maintaining comparable performance;
cf. Fig. 11(c)-(d). Our studies are expected to benefit standard-
ization and future deployments.

VI. CONCLUSION

In this paper, we proposed a generalized representation of
vehicle motion intent from a system dynamics viewpoint.
We extended conflict analysis to incorporate intent infor-
mation for conflict resolution for an ego vehicle (which
may be either automated or human-driven), while considering
user-determined behavior preference. We implemented and
tested intent messages using real vehicles equipped with
commercially available V2X devices. An on-board decision
assistance system was developed and validated through experi-
ments at a test track to facilitate the decision-making of human
drivers in merge scenarios. It was shown that such system can
provide individualized assistance to human drivers while utiliz-
ing intent information. Experimental results demonstrated that
receiving intent messages, in addition to status information,
can significantly improve a vehicle’s safety and time efficiency
in cooperative maneuvers, by mitigating the uncertainty of
its future environments. Furthermore, highway data was used
together with numerical simulations to investigate the effects
of communication conditions (e.g., intent sending rate, hori-
zon, and packet drops) on the obtained benefits.

In the future, we will design intent messages containing
more sophisticated motion information. We will also imple-
ment intent messages in an adaptive manner, where a vehicle’s
intent will be updated online according to real-time traffic and
communication conditions. Moreover, our intent-based con-
flict analysis will be extended to accommodate the existence
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of non-connected vehicles. In the absence of connectivity,
vehicles’ status and intent information may be estimated
through perception, which is expected to be less accurate and
computationally more expensive than V2X-based status and
intent information. The corresponding impact on traffic safety
and efficiency will be investigated. Our experimental study
will also be extended to automated vehicles and higher levels
of cooperation.

APPENDIX A
PROOF OF THE RELATIONSHIP (19)

For simplicity of notation, we define a proposition

Q := {r0(t) ≥ −s ∧ −s ≤ r1(t) ≤ 0}, (33)

then (19) becomes P ⇐⇒ {∀t, ¬Q}.
We first prove P H⇒ {∀t, ¬Q}. If P = true, then accord-

ing to definition (18), one can find such a time t = t̄
that r0(t̄) < −s ∧ r1(t̄) = 0 holds. This yields immediately
¬Q = true at such t̄ . Since the vehicles do not move back-
ward, for any given t > t̄ , r0(t) < −s still holds, while for
any given t < t̄ , one has r1(t) > 0. Therefore, ¬Q = true also
holds for any t ̸= t̄ . These lead to {∀t, ¬Q}.

To show P ⇐H {∀t, ¬Q}, we prove its
contrapositive, i.e., ¬P H⇒ {∃t, Q}. From (18) we
have ¬P = {∀t, r0(t) ≥ −s ∨ r1(t) ̸= 0}. Since r1(t)
monotonically decreases along t with ṙ1 ≤ −vmin,1 < 0,
there must exist a time t̃ , such that r1(t̃) = 0. If
¬P = true, then at such t̃ we have r0(t̃) ≥ −s. Hence,
¬P H⇒ {∃t = t̃, r0(t̃) ≥ −s ∧ r1(t̃) = 0} H⇒ {∃t, Q}.
These complete the proof of (19).

APPENDIX B
PROOF OF THEOREM 1

The relationship (24) is shown below.
( H⇒ ). We prove its contrapositive, i.e., X(tk) /∈ PA

g ⇐H

T A
0 ≥ T1. If T A

0 ≥ T1, then for any admissible input u0,
we have T̄ A

0 ≥ T A
0 ≥ T1, where T̄ A

0 represents the time such
that r0(t) = −s under the given u0. Thus, ∃u1 in (26), ∀u0,
r0(T1) ≥ r0(T̄ A

0 ) ≥ −s ∧ r1(T1) = 0, implying {∃t = T1, Q},
where proposition Q is defined by (33) in Appendix A. Based
on (19), we have ∃u1, ∀u0, ¬P , that is, X(tk) /∈ PA

g .
( ⇐H ). If T A

0 < T1, then for any admissible input u1,
we have T A

0 < T1 ≤ T̄1, where T̄1 represents the time such
that r1(t) = 0 under the given u1. Thus, ∀u1, ∃u0 in (25),
r0(T̄1) < r0(T A

0 ) = −s ∧ r1(T̄1) = 0. That is, ∀u1, ∃u0, P ,
i.e., X(tk) ∈ PA

g .

APPENDIX C
PROOF OF THEOREM 2

Below we prove the relationship (27).
( H⇒ ). If x(tk) ∈ PH

g , then for the inputs u0 and u1 in (28)
and (26), we have ∃t, r0(t) < −s ∧ r1(t) = 0. Such t must be
unique since r1(t) is monotonic along t , yielding t = T1. Thus,
T H

0 < T1 holds obviously.
( ⇐H ). If T H

0 < T1, then for the inputs u0 and u1 in (28)
and (26), we have r0(T1) < −s ∧ r1(T1) = 0. For any admis-
sible u0 and u1 other than (28) and (26), let T̄ H

0 and

T̄1 be the times such that r0 = −s and r1 = 0. We have
T̄ H

0 < T H
0 < T1 < T̄1. Thus, r0(T̄1) < −s ∧ r1(T̄1) = 0. These

imply x(tk) ∈ PH
g .
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