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1. INTRODUCTION

In modern urban transportation, micromobility vehicles
offer a compact, sustainable solution for short-distance
commutes and delivery tasks of food or lighter goods.
With their high maneuverability, electric unicycles (EUCs)
provide efficient transportation through congested streets,
bypassing traffic jams and thereby reducing travel time.
Also, their portability allows for seamless integration with
other types of transportation.

Electric unicycles require special design and development
due to the complexity of their dynamics. The unstable na-
ture of their motion can be attributed to the large ratio of
the mass of the rider to the mass of the vehicle itself. EUCs
give the riders high level of agility, however, they also make
motion predictions difficult for the developers. The rider
acts as an inverted pendulum on the moving EUC, and the
dynamics of the system are mostly determined by the lean-
ing and turning of the human body. While human-powered
unicycles were investigated in (Sheng and Yamafuji, 1995;
Nielaczny et al., 2019), the dynamics of human-ridden
electric unicycles are mostly unexplored. Seated EUCs can
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be modeled in a simpler way since the human body and the
frame of the device can be considered as a single body (Li
et al., 2012; Chen et al., 2016), and sometimes standing
EUCs are assumed to behave similarly (Tsai et al., 2015).

In this study, a more sophisticated model representing the
longitudinal dynamics is introduced, in which the human
can lean forward and backward independent of the EUC
body. This extension may shed light on the interaction
between the rider and the vehicle. By separating the
longitudinal and lateral dynamics, the complicated spa-
tial motion is simplified to planar cases. Another major
contribution of this work is the experimental investigation
of various maneuvers of a human-ridden EUC. Detailed
experimental tests provide relevant information about the
motion control performed by human riders. Using our
simplified model and the collected data, the driving torque
is estimated based on the measured kinematic variables
of the longitudinal motion, and the system parameters
are identified. This research leads to better understanding
of how riders control their electric unicycles. The results
may be helpful for developing rider assist features which
can improve the safety of these micromobility vehicles
while being seamlessly integrated into the control units
of electric unicycles.

The rest of the paper is organized as follows. We first
present our experimental setup and data extraction in
Section 2. Then we present the mechanical model for
the longitudinal and pitch motion of the EUC with the
rider, and derive the corresponding mathematical model in
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Section 3. In Section 4, we identify the model parameters
using the experimental data. We summarize the results
and discuss future research directions in Section 5.

2. EXPERIMENTAL INVESTIGATION OF EUC
DYNAMICS

To investigate the dynamics of the human-ridden EUC we
generated an experimental dataset using a high-precision
motion capture system. This dataset consists of 34 record-
ings, covering 8 maneuvers, accomplished by two riders of
different riding levels; see Table 1. The maneuvers were
selected such that both longitudinal and lateral balancing
were required while riders were facing different levels of
difficulties in executing the maneuvers. In this study, we
focus on the constant speed, acceleration, deceleration,
and figure-eight maneuvers.

Table 1. Different maneuvers and recordings

Maneuver number of recordings

Constant speed 7
Acceleration 3
Deceleration 2

Circling 6
U-turn 8
Slalom 5

Figure-eight 2
Riding on one leg 1

Total 34

To collect motion data, an OptiTrack motion capture
system was utilized. The experimentally observed volume
of approximately 6× 4× 2 meters was covered by 12 cam-
eras. The accuracy of detection is ±0.20 mm in position
and ±0.5◦ in rotational angles. This sensor apparatus
provides position and orientation data at a frequency of
120 Hz for all rigid bodies listed in Table 2. The body
segments were selected with the consideration that they
play significant roles in the dynamics of the human while
riding the unicycle. Note that for paired body segments,
the last letters of the abbreviations refer to right (R) and
left (L); see also Fig. 1.

Table 2. Defined rigid bodies and pivot points

Abbreviation Body segment Pivot point

H Head Top of the helmet
CHR, CHL Chest Shoulder
UAR, UAL Upper arm Elbow
LAR, LAL Lower arm Wrist
HR, HL Hip Hip
TR, TL Thigh Knee
LR, LL Leg Ankle

E EUC Top of the EUC

Each rigid body was defined using at least four markers
in the motion tracking system, including a pivot point
for each body. These pivot points were traced in time,
and the spatial orientations of the rigid bodies were also
detected. Namely, the positions are given in the ground-
fixed coordinate system (X,Y, Z), while the rotational
data are described by Euler angles for which we use the
sequence of yaw-tilt-pitch. In the case of the EUC, these
angles are shown in Fig. 2 by ψ, ϑ and γ.

Based on the captured data related to the human body seg-
ments, we reconstructed our skeleton model and calculated
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Fig. 1. Skeleton model of the human standing on the EUC.
Blue curves illustrate trajectories of pivot points re-
lated to different body segments.
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Fig. 2. The longitudinal (red) and frontal (blue) planes of
the EUC body rotated by the yaw angle ψ and tilt
angle ϑ. The pitch angles of the EUC body and rider
are denoted by γ and ϕ, respectively.
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Fig. 3. Trajectories of a figure-eight maneuver in the
ground-fixed frame (X,Y, Z) showing the motion of
the wheel’s center point C, the EUC’s pivot point E,
and the rider’s center of gravity G.

Fig. 4. Trajectories of a figure-eight maneuver in the
moving frame (x, y, z) showing the motion of the
EUC’s pivot point E and the rider’s center of gravity
G. The projections of the trajectories are shown (a)
in the longitudinal plane (x, z) and (b) in the frontal
plane (y, z).

the rider’s center of gravity G. The masses of the body
segments were estimated based on (Ramachandran et al.,
2016) and the rider’s known overall mass. The position of
the EUC’s wheel center point C was determined by using
the measured position of the pivot point E, the measured
yaw, tilt and pitch angles of the EUC body, and the known
constant distance between C and E. Hence, the vector
RCG = [XCG, YCG, ZCG]

⊤ which gives the position of the
rider’s center of gravity G relative to the wheel center C
can be calculated in the ground-fixed coordinate system
(X,Y, Z).

For instance, the position data of a figure-eight maneuver
are presented in Fig. 3, where the trajectories of the
EUC’s pivot point E, the wheel’s center point C and the
rider’s center of gravity G are plotted in the ground-
fixed coordinate system (X,Y, Z). Note that the time
signals were smoothed using the Savitzky–Golay method,
by which the derivatives of the smoothed signal were
calculated analytically for the parameter identification
carried out in Section 4.
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Fig. 5. Mechanical model representing the longitudinal and
pitch dynamics of the EUC–rider system. Parameters
are collected and explained in Table 3.

The position vector rCG = [xCG, yCG, zCG]
⊤ of the rider’s

center of gravity G can also be determined in the moving
frame (x, y, z); see Fig. 2. This frame is fixed to the wheel
center point C, and its yaw and tilt angles correspond to
the yaw ψ and tilt ϑ angles of the EUC. The transfor-
mation between the ground-fixed frame (X,Y, Z) and the
moving frame (x, y, z) is carried out by

rCG = T⊤
ϑT

⊤
ψRCG , (1)

where the transformation matrices read

Tψ =

[
cosψ − sinψ 0
sinψ cosψ 0
0 0 1

]
, Tϑ =

[
1 0 0
0 cosϑ − sinϑ
0 sinϑ cosϑ

]
. (2)

The longitudinal plane (x, z) and the frontal plane (y, z)
of the EUC body are defined as shown in red and blue
in Fig. 2, respectively. In Fig. 4, the relative motion of
the EUC’s pivot point E and the rider’s center of gravity
G is shown in these planes for the figure-eight maneuver.
Later on, we will use the location of G projected into the
longitudinal plane to approximate the rider’s pitch angle
as

ϕ = arctan
xCG

zCG
. (3)

This way, we can use the experimental data to identify
model parameters according to the model of Section 3.

The longitudinal velocity and acceleration of the wheel
center point C are calculated by transforming the velocity
vector vC = ṘC and acceleration vector aC = R̈C into
the moving frame (x, y, z) and taking their longitudinal
components vCx and aCx, respectively; see Fig. 2. These
correspond to the speed ẋ and acceleration ẍ in the model
presented in Section 3.

3. MODELING THE LONGITUDINAL AND PITCH
DYNAMICS

In this section, to simplify the analysis, we assume that
the effect of the lateral dynamics is small and we focus
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Table 3. Model parameters

Parameters Value

Wheel radius R 0.2 m
Human body’s mass m 65 kg
EUC total mass (m0 +mw) 16 kg
EUC body’s mass m0 13 kg
EUC wheel’s mass mw 3 kg
Human body’s mass moment of inertia 16.6 kg·m2

EUC wheel’s mass moment of inertia 0.12 kg·m2

EUC body’s mass moment of inertia 0.5 kg·m2

Distance (C–G0) h0 0.075 m
Distance (A–C) l0 0.05 m
Distance (A–G) h to be identified

on the longitudinal dynamics only. We derive a detailed
mechanical model to describe the longitudinal and pitch
dynamics of the EUC–rider system.

We describe the longitudinal and pitch dynamics by the
three-degree-of-freedom (3 DoF) mechanical model shown
in Fig. 5, where the pitch motion of the EUC and that of
the rider are separated. The pitch angles are denoted by γ
and ϕ for the EUC body and for the human body, respec-
tively. These serve as (positional) generalized coordinates
for our system. The third (cyclic) generalized coordinate
x is the longitudinal position of the wheel’s center point
C, where the EUC body and wheel are coupled via a joint.
Point G represents the rider’s center of gravity, and point
G0 is the EUC’s center of gravity. The hinge point A
models the connection between the EUC and the rider.
Since the rider’s feet are fixed to the pedals of the EUC
during the rides, the hinge point corresponds to the rider’s
ankle. Point P is the wheel-ground contact point, whose
velocity is zero in case of pure rolling, i.e., vP = 0.

The other parameters of the model are the distance h
measured between the center of gravity G and the hinge
point A; the distance h0 between the EUC’s center of
gravity G0 and the wheel’s center C; and the distance l0 is
measured from the hinge point A to the wheel’s center C.
Masses and mass moments of inertia are denoted by m and
J , distinguished by the subscripts as follows: the human
body (without subscript), the EUC body (subscript 0),
and the wheel (subscript w). The radius of the wheel is
denoted by R. The parameters with their numerical values
are collected in Table 3.

There are two actuating efforts in the model: the electric
motor’s driving torque Md and the human control torque
Mh. Note that both torques are internal, i.e., the driving
torque acts between the wheel and the EUC body, while
the human control torque acts between the EUC body and
the human body. Accordingly, the torques and counter-
acting torques are shown in Fig. 5. Note that the driving
torque is commanded by the EUC’s inner controller, and
the embedded control law is likely based on the pitch angle
γ and pitch rate γ̇ but unknown to us.

3.1 Equations of motion

The governing equations are derived using the Lagrange
equations of the second kind

d

dt

∂T

∂q̇
− ∂T

∂q
= Q , (4)

where the vector q = [x γ ϕ]⊤ contains the generalized
coordinates. The expression of the kinetic energy T and
the identification of the generalized force vector Q via the
virtual power is detailed in Appendix A. The equations of
motion can be arranged in the form

M(q) q̈+ h(q̇,q) = Q(q). (5)

The elements of the mass matrix M = [mij ] are

m11 = m+m0 +mw + Jw/R
2 ,

m12 = m21 = −(ml0 −m0h0) cos γ ,

m13 = m31 = mh cosϕ ,

m22 = J0 +m0h
2
0 +ml20 ,

m23 = m32 = −mhl0 cos
�
ϕ− γ


,

m33 = J +mh2.

(6)

The vector h contains the nonlinear terms not related to
the generalized accelerations:

h =



−mhϕ̇2 sinϕ+ (ml0 −m0h0)γ̇

2 sin γ

mhl0ϕ̇
2 sin

�
ϕ− γ


−mhl0γ̇

2 sin
�
ϕ− γ




 . (7)

The generalized force vector containing the active forces is

Q =


Md/R

Mh −Md + (m0h0 −ml0)g sin γ
mgh sinϕ−Mh


. (8)

One can express the driving torque Md from (5), if all
the states x, γ and ϕ are measured and their first and
second derivatives are numerically calculated. Since there
are three equations in (5) and two unknowns (Md, Mh),
one can determine two independent expressions for the
driving torque Md. For example, from the first row of (5)
the driving torque reads as

Md = Md,1(γ, ϕ, γ̇, ϕ̇, γ̈, ϕ̈, ẍ) (9)

On the other hand, using all three rows of (5) and
eliminating ẍ, the driving torque can also be calculated
by a different expression:

Md = Md,2(γ, ϕ, γ̇, ϕ̇, γ̈, ϕ̈). (10)

If the actual driving torque Md was measured, one can
identify all model parameters (see Table 3) by minimizing
the difference between the measured Md and the model-
based expression (9) or (10). However, the driving torque
was not measurable in our experiments. Therefore, we
use nominal parameters based on prior knowledge and
only identify h, the distance between the riders’s center
of gravity G and the hinge point A, through minimizing
the difference between Md,1 and Md,2.

3.2 Reduced model

The model constructed above is also compared to a simpler
one developed by Molnár et al. (2023). The reduced model
can be obtained by neglecting the mass moment of inertia
of the EUC body and coinciding the wheel’s center, the
EUC body’s center and the hinge points (A ≡ C ≡ G0),
i.e., considering J0 = 0, h0 = 0 and l0 = 0. With these
assumptions the model (5)–(8) simplifies to

M =



m+m0 +mw + Jw/R

2 0 mh cosϕ
0 0 0

mh cosϕ 0 J +mh2


 , (11)
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Fig. 6. Processed data of deceleration maneuvers (10 runs).
(a) Yaw angle ψ of the EUC. (b) Tilt angle ϑ of the
EUC. (c) Pitch angle γ of the EUC. (d) Pitch angle
ϕ of the human rider. (e) Driving torque of the EUC
given by the 3 DoF model with the optimized height
h = 0.61 m. The root-mean-squared error (RMSE)
between Md,1 and Md,2 is 4.7599 Nm.

h =


−mhϕ̇2 sinϕ

0
0


 , Q =


Md/R

Mh −Md

mgh sinϕ−Mh


. (12)

Note that the second equation gives Md = Mh, that is, the
3 DoF model is simplified to a 2 DoF model. Moreover, the
expressions (9)–(10) of the driving torque provide

Md,1 =−mhR sinϕϕ̇2 +meqRẍ+mhR cosϕϕ̈ ,

Md,2 =
meqmghR sinϕ

mh cosϕ+meqR
− m2h2R sinϕ cosϕ

mh cosϕ+meqR
ϕ̇2

+
m2h2R cos2 ϕ−meqR(J +mh2)

mh cosϕ+meqR
ϕ̈ ,

(13)

where meq = m+m0 +mw + Jw/R
2.

4. PARAMETER IDENTIFICATION

In this section, we identify the height h of the human
center of gravity from the experimental data presented
in Section 2 while using the model (5)–(8). Although the
value of h may change with the rider’s motion during the
maneuver, we still consider it as a constant to maintain
simplicity. The models can be improved by considering
the time-varying parameters in the future studies. We also
compare the results to those given by the simplified model
(5),(11)–(12).

We present the processed data of deceleration and figure-
eight maneuvers in Fig. 6 and Fig. 7, respectively. The

Fig. 7. Processed data for a figure-eight maneuver (1 run).
(a) Yaw angle ψ of the EUC. (b) Tilt angle ϑ of the
EUC. (c) Pitch angle γ of the EUC. (d) Pitch angle
ϕ of the human rider. (e) Driving torque of the EUC
given by the 3 DoF model with the optimized height
h = 0.28 m. The RMSE between Md,1 and Md,2 is
13.5626 Nm.

yaw angle ψ and tilt angle ϑ of the EUC are plotted
in panels (a) and (b), respectively. These show dynamics
that are not captured by the models of Section 3. Note
that the yaw angle alternates between values around 0
and −180◦ because the direction of the straight running
motion changes thanks to U-turns performed outside the
area of recording.

In Fig. 6(c) and Fig. 7(c), one can observe that the pitch
angle γ of the EUC body remains small for both cases. In
the deceleration case, observe that the pitch angle ϕ of the
human is negative as the rider leans back to reduce the
speed; see Fig. 6(d). Correspondingly, the pitch angle γ of
the EUC also decreases in Fig. 6(c).

By minimizing the difference betweenMd,1 andMd,2 using
(9)–(10), we obtain the optimal h for the 3 DoF model.
The driving torque given by (9) and (10) are plotted
in Fig. 6(e) and Fig. 7(e) for the optimal h in each
maneuver. The driving torques obtained from the different
expressions match well in the case of the deceleration
maneuver. For the figure-eight maneuver, Md,1 and Md,2

are also consistent, although the difference is larger due to
the ignored lateral and tilt dynamics. These results show
that the first-principle-based in-plane model of our study
captures the longitudinal and pitch dynamics well when
the lateral motion and tilt angle are small, and can be used
to calculate the driving torque from experimental data.
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Fig. 8. Comparison of the error of the two models on four
different recordings

The root-mean-squared error (RMSE) between Md,1 and
Md,2 is plotted as a function of h in Fig. 8 for four different
maneuvers: constant speed, acceleration, deceleration, and
figure-eight. The driving torques are calculated for the
3 DoF model using (9)–(10) and for the 2 DoF model
using (13). Although the difference between these two
models is not significant due to the small pitch angle of
the EUC body, the 3 DoF model has smaller errors at the
minima and identifies a larger (more realistic) height h.

The identified value of h varies for the four different
recordings. On the one hand, the vertical position of the
rider’s center of gravity may depend on the maneuver
type. On the other hand, our model may describe the
real system with different precision in case of different
maneuvers. Among the four recordings, the deceleration
dataset provides the smallest error at the optimal h, while
the figure-eight dataset gives the largest. This shows that
the developed model captures the longitudinal and pitch
dynamics well for the deceleration maneuver (which has
negligible yaw, lateral and tilt motion), but the yaw,
lateral, and tilt dynamics play a more relevant role in the
figure-eight case (where the tilt angle and yaw rate are
significantly larger).

For the constant-speed and figure-eight maneuvers the
error curves in Fig. 8(c)–(d) are relatively flat (a large
range of h gives similar torque values). This indicates
that those two data sets are not sensitive to the height
h, making it difficult to infer this parameter. This is
because the constant-speed maneuver is operated around
the equilibrium of the system, while the figure-eight data
includes significant lateral dynamics that is not captured
by the models developed in this paper.

5. CONCLUSION

In this paper, we analyzed the motion of an electric uni-
cycle with a human rider using a series of experiments.
We constructed a mechanical model for the longitudinal
and pitch motion and used this model to obtain the EUC
driving torque from high-precision motion capture data.
Then, we identified the height of the rider’s center of grav-

ity. It was shown that our model yields smaller errors and
more realistic parameters compared to a simplified model
of the literature. We also showed that the longitudinal
model performs well for straight running motions, and it
can also be used for more complex maneuvers. With the
developed models and the driving torque calculations, the
EUC’s torque controller may be identified in the future.
We plan to carry out more extensive experiments and
study human motion control with the longitudinal models.
Comparing the current first-principle-based model to data-
driven models is also a possible topic of future research.
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Appendix A. KINETIC ENERGY AND VIRTUAL
POWER

The kinetic energy of the mechanical system in Fig. 5 can
be calculated as

T =
1

2

(
m+m0 +mw +

Jw
R2

)
ẋ2

+
1

2

(
J0 +ml20 +m0h

2
0

)
γ̇2 +

1

2

(
J +mh2

)
ϕ̇2

−(ml0 −m0h0)ẋγ̇ cos γ +mhẋϕ̇ cosϕ

−mhl0γ̇ϕ̇ cos(ϕ− γ) .

(A.1)

The virtual power of the active forces can be expressed as

δP =
Md

R
δẋ+ (mgh sinϕ−Mh)δϕ̇

+ (Mh −Md + (m0h0 −ml0)g sin γ) δγ̇ .
(A.2)

Then the generalized force vector can be identified from
the coefficients of the virtual generalized velocities, i.e.,
δP = Q · δq̇ where · refers to the dot product.


