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1. INTRODUCTION

Micromobility devices such as electric unicycles and scoot-
ers are rapidly spreading in urban environments as their
compact size is paired with agility and maneuverability.
These properties are so attractive that researchers started
develop and build various types of autonomous unicycles.
Common approaches used inverted pendulums (Zenkov
et al., 2002), flywheels (Vos and von Flotow, 1990; Geist
et al., 2022; Cao et al., 2023), gyroscopes (Brown and Xu,
1996) or the combination of those (Schoonwinkel, 1987)
for controlling the unicycles. Suzuki et al. (2014) even
developed a humanoid-type autonomous unicycle while
the Ringbot (Gim and Kim, 2024) used two robotic arms
for control. Yet, the motion planning and control design
of the underlying nonlinear dynamical systems is barely
understood.

It is challenging to find a simplistic, yet high-fidelity
modeling framework, which enables one to describe the
spatial dynamics of the unicycle, including the yaw, tilt,
and pitch motions, see Fig. 1. While multi-body softwares
can be used, they produce complex models which are not
applicable for control design. The kinematic constraints
for rolling shall be incorporated while the use of Lagrange
multipliers is not desired as those lead to differential
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Fig. 1. Unicycle model (a), kinematic quantities (b)
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algebraic equations which again make control design very
challenging. The designed controllers shall be applicable to
the nonlinear system without large computational burden.

In this work we build on our previous modeling efforts
about the spatial dynamics of an autonomous unicycle
(Vizi et al., 2023) and focus on maneuvering the unicycle
while following a planned path. We control the lateral
motion by means of shifting the center of gravity via
moving a point mass with a single actuator, see Fig. 1.
The dynamics of this nonholonomic system are derived by
using the Appellian approach, which takes into account
the rolling constraints. In this work, the path-following
problem is investigated such that the equations of motion
are transformed from the original Earth fixed coordinates
to a moving path-following reference frame. This way,
the lateral error and the alignment error can directly be
utilized in the control law. Taking into account the velocity
of the unicycle, a linear feedback controller is designed to
follow the path. The control performance is verified via
numerical simulations of the nonlinear equations.

2. GOVERNING EQUATIONS

The unicycle is modeled as a disc with mass m and
radius R that rolls on the horizontal ground, see Fig. 1.
The point mass m0 can be moved along the wheel axle
by the internal force u which is the control input. The
gravitational acceleration is denoted by g.

Without any constraints, the autonomous unicycle that
consists of one rigid body and one point mass, has
N = 6 + 3 = 9 degrees of freedom. The position of the
wheel is described by

rG = [xG yG zG]
T

F0
(1)

of the disc center G for which the vector components
xG, yG and zG are resolved in the earth-fixed frame F0.
The orientation of the disc is given by the yaw, tilt and
pitch angles, ψ, ϑ and ϕ, respectively. The position of the
mass at point A, relative to the wheel center G, is given
by the three coordinates of the vector rGA.

The wheel is assumed to be rolling without slipping; for
the three-dimensional rolling and slipping transition please
see (Antali and Stépán, 2019). The kinematic condition
for rolling is that the point P of the wheel instantaneously
contacting the ground is the velocity pole point for which

vP = 0, (2)

holds. Also, the velocity vP can be expressed via the
transport formula

vP = vG + ω × rGP. (3)

Here vG is the velocity of the center of gravity G which
can be resolved in the ground-fixed frame F0 as

vG = ṙG = [ẋG ẏG żG]
T

F0
, (4)

while the angular velocity ω of the wheel and the relative
position rGP of the contact point P with respect to the
wheel center G is given in the moving frame F2 as

ω =
[
ϑ̇ ϕ̇+ ψ̇ sinϑ ψ̇ cosϑ

]T
F2

,

rGP = [0 0 −R]
T

F2
.

(5)

The kinematic condition (2) of rolling together with
(3)–(5) yield nk = 2 kinematic constraints

ẋG = ω1R sinψ cosϑ+ ω2R cosψ,

ẏG = −ω1R cosψ cosϑ+ ω2R sinψ,
(6)

and one geometric constraint

żG = −ϑ̇R sinϑ ⇒ zG = R cosϑ. (7)

Also, the point mass at point A is allowed to move along
the wheel axle which can be formulated as

rGA = [0 r 0]
T

F2
, (8)

yielding two more geometric constraints, so the system has
ng = 3 geometric constraints in total.

We opt for using the Appellian approach (Appell, 1900) to
derive the equations of motion of the unicycle. This pseudo
velocity based method directly yields a system of first
order ordinary differential equations, which is the most
compact representation of the underlying nonholonomic
mechanical system. Moreover, the appropriate definition
of the pseudovelocities significantly reduces the algebraic
complexity of the equations of motion which further ease
the dynamical analysis and the control design. These ben-
efits render the Appellian approach superior to the well-
known generalized Lagrangian equations in this example.

To describe the system with the minimal number of co-
ordinates after considering the geometric constraints, one
must intuitively choose nq = N − ng = 6 generalized coor-
dinates that unambiguously describe the spatial configura-
tion of the system. We describe the position of the unicycle
with the wheel center positions xG and yG, while the orien-
tation is given by the angles ψ, ϑ, ϕ. Note that the vertical
position zG can be obtained using the geometric constraint
(7). The relative position r determines the location of the
point mass; to sum up, the generalized coordinates are

xG, yG, ψ, ϑ, ϕ, r. (9)

Similarly, due to the pure rolling and the related kinemaic
constraints one should define nσ = 9− ng − nk = 4 pseudo
velocities which are defined as the components of the
angular velocity ω, resolved in frame F2 in (5), and the
velocity component of m0 parallel to the wheel axle:

ω1 := ϑ̇, ω2 := ϕ̇+ ψ̇ sinϑ,

ω3 := ψ̇ cosϑ, σr := ṙ − ϑ̇R.
(10)

The kinematics of the systems is described by (6) and
(10) while the remaining four dynamical equations can be
derived using the Appellian approach as in (Vizi et al.,
2023). Following this method, the equations of motion
become

ω̇1 =
1

5mR2 + 4m0r2
(
− 4ω2

1m0Rr − 8ω1σrm0r

− ω2
3(mR2 tanϑ+ 4m0r

2 tanϑ) + 4mgR sinϑ

+ ω2ω3(6mR2 + 4m0Rr tanϑ)− 4m0gr cosϑ

+ 4Ru
)
,

ω̇2 =
2

3mR2 + 2m0R2 + 12m0r2
(
− 2ω1ω2m0Rr

+ ω1ω3(m0R
2 −mR2 − 4m0r

2) + 2ω3σrm0R
)
,

ω̇3 =
1

3mR2 + 2m0R2 + 12m0r2
(
− 24ω3σrm0r

− ω1ω2(6mR2 + 4m0R
2) + ω1ω3

(
(3mR2

+ 2m0R
2 + 12m0r

2) tanϑ− 20m0Rr
))
,

(11)
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σ̇r = ω2
1r + ω2

3r − ω2ω3R− g sinϑ+
1

m0
u,

ϑ̇ = ω1,

ṙ = ω1R+ σr,

ψ̇ = ω3
1

cosϑ
,

ϕ̇ = ω2 − ω3 tanϑ,

ẋG = ω1R sinψ cosϑ+ ω2R cosψ,

ẏG = −ω1R cosψ cosϑ+ ω2R sinψ.

(11)

3. PATH-FOLLOWING PROBLEM

In case of a path-following task, it is beneficial to define
the problem relative to the desired path such as shown in
Fig. 2. We consider to follow the desired path with the
geometric wheel-ground contact point.

In each time instant, a different material point P of the
wheel contacts the ground as the wheel rolls forward.
This material point P is also called velocity pole since
vP = 0, cf. (2). The point P also frequently called as the
instantaneous center of velocities or the instantaneous
center of rotation. The circumferential points of the wheel
are called the moving polode. On the other hand, the
wheel-ground contact point is a geometric point denoted
by P′ moving on the surface of the ground as the wheel rolls
forward. The trace of P′ can be thought of as a curvilinear
path painted on the ground by the rolling wheel. The path
of the geometric pole P′ is called the fixed polode. During
rolling, the material point P becomes steady for a single
time instance, vP = 0, cf. (2), while the the geometric pole
P′ is moving along the fixed polode with velocity vP′ �= 0.

The position of the geometric pole can be calculated by

rP′ = rG + rGP′ = [xP′ yP′ 0]
T

F0
, (12)

where rGP′ = rGP holds instantaneously. Using (1), (6)
and (12), the pole changing velocity can be obtained as

vP′ = ṙP′ = [ẋP′ ẏP′ 0]
T

F0
, (13)

where
ẋP′ = ω2R cosψ − ω3R tanϑ cosψ,

ẏP′ = ω2R sinψ − ω3R tanϑ sinψ.
(14)

A more detailed discussion about the velocity pole and the
pole changing velocity in case of three dimensional spatial
motions can be found in Csernák (2019).

Instead of the wheel center position (xG, yG), the veloc-
ity pole position (xP′ , yP′) can be used as system states
conforming to the path-following goal. Similarly, the kine-
matic constraints (6) can be replaced by the pole changing
velocity (14) in the last two equations of the dynamical
model (11).

In (Qin et al., 2022), a general method is developed to
transform the original absolute position and orientation
(x, y, ψ) to a moving reference frame (ξ, η, θ) attached to
the desired path. Also, by finding the point of the desired
path closest to P′, see point D in Fig. 2, one can express the
current position using the arc length s along the desired
path and the lateral deviation ε from the path, while the
orientation can be given by the relative yaw angle θ. The
evolution of the variables s, ε and θ can be given as

Fig. 2. Coordinate transformation for path following

ṡ =
1

1− κε

(
ẋP′ cosψdes + ẏP′ sinψdes

)
,

ε̇ = −ẋP′ sinψdes + ẏP′ cosψdes,

θ̇ = ψ̇ − κ

1− κε

(
ẋP′ cosψdes + ẏP′ sinψdes

)
,

(15)

where ψdes(s) is the desired yaw angle and κ(s) = dψdes

ds (s)

[m−1] is the signed curvature at the same point, for which
κ > 0 means a left turn, while κ < 0 is a right turn.

The geometric pole P′ is chosen as the reference point
for path-following. Therefore, one can substitute the cor-
responding pole changing velocity components ẋP′ and
ẏP′ into the transformation (15) through the kinematic
constraints (14) to obtain

ṡ =
1

1− κε

(
ω2R cos θ − ω3R cos θ tanϑ

)
,

ε̇ = ω2R sin θ − ω3R sin θ tanϑ,

θ̇ =
−1

(1− κε) cosϑ

(
ω2Rκ cos θ cosϑ

− ω3 (1− κε+Rκ sinϑ cos θ)
)
.

(16)

where θ = ψ − ψdes. For control design, the equations
related to the original states (xP′ , yP′ , ψ) in the dynamical
model (11) can be replaced by the path-related states s, ε, θ
using (16).

The desired path can be given by the curvature κ(s) as the
function of the arc length s. In this study, a lane change
parallel to the x axis is chosen to be the desired maneuver.
The maneuver start and end with straight sections. The
middle part, i.e., the actual lane change, is divided into 3
clothoid segments (Oh et al., 2023) such that the curvature
κ(s) is a continuous function of the arclenght s along
the desired path. Since clothoid segments are used, the
curvature κ(s) changes linearly with respect to the arc
length s during the segments. The desired paths are shown
in the bottom panels of Fig. 3 as dashed-dotted black
curves.

4. CONTROL DESIGN AND SIMULATIONS

A linear state feedback controller is designed to carry out
maneuvers with the autonomous unicycle. We assume that
the unicycle has a non-zero initial pitch rate |ϕ̇∗| > 0.
Furthermore, we consider only maneuvers which require
sufficiently small yaw rates ψ̇ and tilt angles ϑ. With these
assumptions, we use the straight rolling steady state as the
basis for control design.
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The linearized equations of motion are obtained in the
form:

ω̇1 =
6

5
ω3ϕ̇∗ +

4g

5R
ϑ− 4m0g

5mR2
r +

4

5mR
u,

˙̂ω2 = 0,

ω̇3 = −2ω1ϕ̇∗,

σ̇r = −ω3ϕ̇∗R− gϑ+
1

m0
u,

ϑ̇ = ω1,

ṙ = ω1R+ σr,

ϕ̇ = ω̂2 + ϕ̇∗,

ṡ = ω̂2R+ ϕ̇∗R,

ε̇ = ϕ̇∗Rθ,

θ̇ = ω3,

(17)

by assuming a straight rolling steady state with the pitch
rate ϕ̇∗ in the arbitrary direction ψ∗. This straight line is
considered to be the desired path, that is, so ψdes(s) ≡ ψ∗
and κ(s) ≡ 0 is used for control design.

As one may expect, the linearized equations of motion
(17) is independent of the direction ψ∗. However, the
linearized dynamics strongly depend on the steady state
pitch rate ϕ̇∗, that must be taken into account in control
design. It was shown in (Vizi et al., 2023), in case of the
uncontrolled unicycle, that the stability of straight rolling
depends on the steady state pitch rate ϕ̇∗. Slow unicycles
with |ϕ̇∗| < ϕ̇crit are unstable, while the fast ones with
|ϕ̇∗| > ϕ̇crit are (neutrally) stable, where the critical pitch
rate is

ϕ̇crit =

√
g

2R
. (18)

The linearized equations (17) correspond to the state space
model ẋ = Ax+Bu with states

x = [ω1 ω̂2 ω3 σr ϑ r ϕ s ε θ]
T
, (19)

while the system and input matrices become

A =




0 0 A1,3 0 A1,5 A1,6 0 0 0 0
0 0 0 0 0 0 0 0 0 0

A3,1 0 0 0 0 0 0 0 0 0
0 0 A4,3 0 A4,5 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
R 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 R 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 A9,10

0 0 1 0 0 0 0 0 0 0




,

B =
[

4
5mR 0 0 1

m0
0 0 0 0 0 0

]T
,

(20)

with

A1,3 =
6

5
ϕ̇∗, A1,5 =

4g

5R
, A1,6 = − 4m0g

5mR2
,

A3,1 = −2ϕ̇∗, A4,3 = −Rϕ̇∗, A4,5 = −g,

A9,10 = Rϕ̇∗.

(21)

By engineering intuition, the outputs

y = Cx := [ω1 σr ϑ r ε θ]
T
, (22)

are chosen (with an appropriate output matrix C) to be
the states that are relevant for path-following. The state
ω3 which is related to the yaw rate (ψ̇ or θ̇) is not included
here because it is linearly proportional to the tilt angle ϑ;
further details can be found in Vizi et al. (2023).

It can be shown that the linear system (17) cosider-
ing the control outputs (22) is output controllable with
the single control input u as the output controllability
matrix Moc =

[
CB CAB . . . CA5B

]
has full rank,

i.e., rankMoc = 6.

In order to control the unicycle and carry out maneuvers,
we apply the linear feedback

u := −K(y − ydes) (23)

with the control gains

K = [Dϑ Dr Pϑ Pr Pε Pθ] , (24)

and the desired output ydes ≡ 0.

The characteristic roots λi, i = 1, . . . , 6 of the closed-loop
system

det
(
λI− (A−BKC)

)
= 0 (25)

can be assigned by choosing the control gains as

Dϑ =
5mR

4mg2 + 48ϕ̇2
∗mgR+ 32ϕ̇2

∗m0gR

(
5mR2Λ5

+ 5mgRΛ3 + Λ1(4mg2 − 12ϕ̇2
∗mgR− 8ϕ̇2

∗m0gR)
)
,

Dr = −
5mm0

(
R2Λ5 + gRΛ3 + g2Λ1

)
mg2 + 12ϕ̇2

∗mgR+ 8ϕ̇2
∗m0gR

,

Pϑ = − m

4mg2 + 48ϕ̇2
∗mgR+ 32ϕ̇2

∗m0gR

(
Λ6(25mR3

+ 20R3m0) + Λ4(25mgR2 + 20m0gR
2)

+ 20Λ2((m+m0)g
2R− ϕ̇2

∗(3m− 2m0)g
2R)

− 48ϕ̇4
∗(3m+ 2m0)gR

2 − 24ϕ̇2
∗(4m− 3m0)g

2R

+ (16m+ 20m0)g
3
)
,

Pr =
m0

mg2R+ 12ϕ̇2
∗mgR2 + 8ϕ̇2

∗m0gR2

(
5mR3Λ6

+ 5mgR2Λ4 + 5mg2RΛ2 + 4mg3 − 12ϕ̇2
∗mg2R

− 8ϕ̇2
∗m0g

2R
)
,

Pε =
5mR

8ϕ̇2
∗g

Λ6, Pθ = −5mR2

8ϕ̇∗g
Λ5,

(26)

where

Λ1 =
∑
i

λi, Λ2 =
∑
i<j

λiλj ,

Λ3 =
∑

i<j<k

λiλjλk, Λ4 =
∑
i<j
<k<l

λiλjλkλl,

Λ5 =
∑

i<j<k
<l<m

λiλjλkλlλm, Λ6 = λ1λ2λ3λ4λ5λ6.

(27)

The controlled system can be stabilized by placing the
characteristic roots λi to the left side of the complex plane,
i.e., requiring, Reλi < 0 for i = 1, . . . , 6.

The control gains (26) depend on the steady state pitch
rate ϕ̇∗, thus, the velocity vP′,∗ = Rϕ̇∗ of the unicy-
cle has an essential role in control design. Two cases
are considered in this study, one with subcritical speed
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Fig. 3. Simulation results for lane change maneuver with subcritical and supercritical speeds.
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Table 1. Physical parameters

Quantity Value

Disc mass m 10 kg
Disc radius R 0.3 m
Gravitational acceleration g 9.81 m/s2

Point mass m0 5 kg

Table 2. Control gains

Subcritical speed with
vP′,1 = 1m/s < vP′,crit

Dϑ −1407.64Ns
Dr 2116.86Ns/m
Pϑ −8990.10N
Pr 11942.04N/m
Pε 4509.36N/m
Pθ 3382.02N

Supercritical speed with
vP′,2 = 5m/s > vP′,crit

Dϑ 105.36Ns
Dr 99.52Ns/m
Pϑ 723.17N
Pr 405.60N/m
Pε 180.37N/m
Pθ 676.40N

vP′,1 = 1m/s < vP′,crit and one case with supercritical
speed vP′,2 = 5m/s > vP′,crit, where the critical speed is

vP′,crit = Rϕ̇crit ≈ 1.21m/s, (28)

cf. (18). The numerical values of the physical parameters
m,m0, R and g can be found in Table 1. In both cases,
the characteristic roots are chosen to be λi = −8 s−1

for i = 1, . . . , 6. The resulting control gains are given in
Table 2.

The control performance is tested through simulations in
which the control law (23) is applied to the nonlinear
equations of motion (11). The initial condition for the sub-
critical case is ω2(0) = vP′,1/R, while for the supercritical
case, it is ω2(0) = vP′,2/R, while the rest of the states were
initialized as zeros. The simulation results are shown in
Fig. 3; the autonomous unicycle successfully carries out
the lane change maneuvers in both cases with sufficiently
small error as shown by the panels for the lateral error ε
and orientation error θ.

It is interesting to see that the point mass is located
below the wheel for the lane change with subcritical
speed as sgnϑ = sgn r, while the point mass is mostly
above the wheel sgnϑ = −sgn r during the maneuver with
supercritical speed, see the corresponding panels in Fig. 3.
We also highlight that only small control action is required:
umax ≈ 2.5N with vP′,1 and umax ≈ 15N with vP′,2. We
believe this is due to the fact that the controller utilizes
the exact nonholonomic dynamics of the unicycle.

5. CONCLUSION

The spatial dynamics of autonomous unicycle has been
considered and a control framework is proposed which
enables the unicycle to execute maneuveres while following
a planned path. By using the path-reference frame for
control design, a single linear control law became capable
to control the lateral motion and successfully carry out var-
ious maneuvers with the unicycle. The unicycle was able
to follow the desired path with very small tracking errors
while using small control forces. To further improve the
path-following performance, a more sophisticated path-
planning could be utilized via including the desired yaw
rate through the desired tilt angle, which, for simplicity,
was considered to be zero here.
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