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Abstract: In this paper, we demonstrate the detrimental effects of latency in remote driving
with an example of straight-path following. To address the instability and performance
degradation caused by the latency in the remote driving control loop, we propose to use an
act-and-wait strategy on top of the existing controller. This strategy can potentially stabilize
the system under large latency using the original control gains, and achieve dead-beat control
with modified control gains. Stability and performance analysis is conducted for the act-and-
wait strategy to provide insights on modulating the control input under large latency.
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1. INTRODUCTION

Recently, remote driving has become an appealing topic
due to developments of wireless communication technolo-
gies. It is an important supplement to automated driving,
and can be integrated into self-driving vehicles (Kang
et al, 2018). As illustrated in Fig. 1(a), a remotely-
driven (teleoperated) vehicle transmits/receives informa-
tion through wireless communication networks to/from
the remote operator, which is either a robot or a human —_— ’ '
driver located in a remote center. The remote operator \

may take over the vehicle and ensure safety when there is E o i
a failure of the on-board autonomy algorithms or a critical 2 w/o act-and-walt, 7 = 0.5 5
(e.g., health-related) situation occurs for the human driver. _:,/tnl,qfft:::i‘?:t:ill y
Other advantages include the possibility of offloading com- 0 2 4 6 8 10
putational power from the vehicle to a remote server and Act-and-wait signal
making a driverless car, equipped with the right sensors
and actuators, to operate without having onboard auton-

omy software. ’ g jjjjj

One big challenge of remote driving is that the communica- ’ ’ * 4 ls] ’ ’ "

tion networks between the operator and the vehicle intro-
duce significant delays in delivering the information, e.g., Fig. 1. (a) The framework of remote driving with de-

| I network
: delay

G(t)
=3

video streaming, sensor data, actuation commands (Liu lays. (b) Using act-and-wait strategy on top of ex-
et al., 2017; Yang and Yang, 2020). The communica- isting remote operator to stabilize the system under
tion delays may vary, depending on the location, network large delay. Top: Simulations of a vehicle following a
congestion and even the weather. In case of a human straight line y = 0 under different delays. The nominal
operator at the remote center, additional reaction time control gains chosen for delay 7= 0.5 s (black) lose
delay appears which could be different per operator and stability when the delay increases to 1 s (grey). After
change under different situations. Even with automatic applying the act-and-wait signal on top the nominal
control, the perception unit also can introduce nonneg- controller (without changing the control gains), the
ligible delay (Oliveira et al., 2016; Pendleton et al., 2017; system becomes stable again. Bottom: The periodic
Fayyad et al., 2020) and vehicles may possess significant act-and-wait signal used in the simulation.

actuation delays (Ji et al.,, 2021). These delays cannot
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simply be eliminated and this requires the system to be
robust against (changes in) the delays.

To address the negative effects of the overall delay in the
remote-driving control loop, some researchers have been
trying to reduce the delays (Willars et al., 2021; Brunello
et al., 2021). Others tried to work with the inevitable delay.
For example, a predictive display system (Sharma and
Rajamani, 2024) was developed to compensate the com-
munication latency in teleportation using model-based ex-
tended Kalman filter. The Smith predictor (Najafi, 2021)
can be used to achieve delay-free performance if the delay
and the plant model are accurately known. Intermittent
control (Gawthrop and Wang, 2007; Liu et al., 2023) re-
duces the infinite-dimensional time delay system to finite
dimension, by utilizing predictive control intermittently.
Other methods include optimal control (Cacace et al.,
2016) and Hs control (Zhong, 2006; Ma et al., 2023).
These methods result in standalone controllers and are
not applicable on top of an existing automatic controller
or on a human operator.

In this work, we propose to use act-and-wait algo-
rithms (Insperger, 2006; Gawthrop, 2010; Michiels and
Zhou, 2020; Zhou et al., 2021). Compared to the mitigation
methods mentioned above, act-and-wait algorithms can be
directly implemented as an add-on to the existing con-
troller. By switching the control on and off periodically, the
original infinite-dimensional delay system can be reduced
to a finite-dimensional system. As illustrated in Fig. 1(b),
when the act-and-wait signal G(t) is used on top of the
remote operator the systems achieves supreme control per-
formance. For large enough delay, the original controller
may lose stability (gray curve). With the act-and-wait
algorithm applied on the same controller (same control
gains), the system converges to the steady state much
faster (red curve). Besides addressing the delays in the
control loop, one also needs to evaluate the robustness of
the controller against the changes in the delay. Methods for
examining the stability and the performance of time delay
systems are well established (Insperger and Stépan, 2011)
and these can be generalized to study the robustness of
stability against changes in system parameters, including
the delay.

The main contributions of this work are summarized as
follows. First, the effect of the delay and velocity on
remote driving is studied analytically in terms of stability
and convergence rate without and with the act-and-wait
algorithm. Second, we derive the robustness coefficient
that represents how much delay the system may tolerate
before losing stability. Third, the advantages of using the
act-and-wait algorithm on top of a nominal controller are
demonstrated.

The rest of the paper is organized as follows. In Section 2,
we perform stability analysis on a dimensionless model
and derive a closed-form expression for the control gains
that guarantee the fastest-convergence. In Section 3, we
introduce the act-and-wait algorithm and derive the dead-
beat control gains. In Section 4 we demonstrate the effects
of the delay and velocity, as well as the advantage of
applying the act-and-wait algorithm, through numerical
simulations. We summarize the results and discuss the
future directions in Section 5.

2. REMOTE DRIVING UNDER LATENCY

In this work, we consider a scenario of a remote-controlled
vehicle following a straight line, for example, a lane-
changing maneuver guided by the remote operator. More-
over, we assume that the overall latency in the control
loop mostly comes from the delays prior to the controller,
i.e., uplink latency due to the video streaming and the
image processing/perception delay. For a static controller,
the location of delay in the control loop only affects the
simulation results via the initial history, while the stability
is only influenced by the magnitude of the overall delay.

We consider the kinematic vehicle model (Qin et al., 2022)
(t) = veos(y(t)),
y(t) = vsin(y(t)), (1)
. v
9(0) = ¥ tan(3(1),
shown in Fig. 1(a) with controller
v(t) = arctan ( — kyy(t — 7) — kytp(t — 7)), (2)
aiming to stabilize the rectilinear motion y =0, ¢ = 0.
Here (x,y) are the coordinates of the center of the rear
axle, ¢ is the yaw angle, and ~ is the steering control

input. The parameters are the longitudinal velocity v, the
wheelbase, [, the time delay 7, and the control gains &, k.

We first nondimensionalize the system using the dimen-
sionless quantities t =tv/l, 7 =71v/l, §=y/l, & =x/l,
1 = ¢ which yields
#'(f) = cos(t(D)),
7' (f) = sin(4(@), (3)
V() = —lkyi(t = 7) — k(= 7),
where the prime represents derivative with respect to the
dimensionless time ¢. Then we linearize the system around
the steady state #* = £ + x(0), §* = 0, ¢* = 0. By defining
the perturbations z =& —x*, g =9y —y*, ¥ = ¢ — Y*, we
obtain the linear and dimensionless system
#(t) =0,
g'(#) = ¥(), (4)
() = —lkyg(t — 7) — kypto(t — 7).
The stability of lateral dynamics is given by the charac-
teristic equation
AN 4 kype A+ kyle™™ =0, (5)
that is obtained from the second and third rows of (4).
The state g* = 0, ¥* = 0 is exponentially stable if and only
if all characteristic roots of (5) have negative real parts,
ie, Re(\;) < 0,i=1,2,.... Substituting A = 0 yields the
stability boundary
lky, =0, (6)
and using A = jw, w > 0 results in the stability boundary

(7)

which is parameterized by the angular frequency w. The
stability boundaries related to different levels of the di-
mensionless delay are shown in Fig. 2(a). The stable re-
gion shrinks as the dimensionless delay 7 increases. Since
7 = v7/l, increasing the velocity or increasing the actual
delay in the system has the same effect on stability.

ky = wsinwf,

Ik, = w? cos w,
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Fig. 2. (a) Stability boundaries for different dimension-
less delays 7. (b) Performance curves for different
convergence rates p values when 7 = 0.5. (¢) The
fastest convergence rate ppmin as a function of 7. (d)
The control gains which give ppyi, are plotted as the
black dashed-dotted curve. This curve intersects the
stability boundary of 7., = 1.2616 (grey solid curve)
when 7 = 0.5.

The real parts of the characteristic roots indicate how
fast the system converges to the steady state given an
initial error. By substituting A = p + jw, p < 0,w > 0 into
the characteristic equation (5), one can solve for the curves
with respect to each p. For w = 0, we have

Lk, = —pe?™ (p+ kye 7), (8)
and for w > 0, we obtain
ky = —e”" (p* — w?) sin(w?) + 2pw cos(w?)) Jw,

9)

These so-called performance curves are plotted for differ-
ent p values in Fig. 2(b) when 7 = 0.5. The curves (9) are
parameterized by the angular frequency w such that w — 0
locates at the left corner of the performance domain.

lky = —epf'((p2 — w?) cos(wt) — 2pw sin(w?)) — kyp.

Indeed, the performance curve for p =0 is the stability
boundary. As the p decreases, the region enclosed by per-
formance curves shrinks and eventually disappears at pmin,
which gives the fastest convergence rate. This happens
when the slope of (8) and the slope of (9) for w—0
become equal. This yields

V2 -2

Pmin — < 5

(10)

which only depends on the dimensionless delay 7, as
depicted in Fig. 2(c). Substituting this into (9) and using
w — 0, we obtain the gains corresponding to pmin as
functions of 7:

p
kw,min = ;a
11
lky min — Aiv ( )
, 72

where p = _eV2-2 (2 — 2\/5) and ¢ = eV2-2 (10\/5 — 14).
This is plotted as a dotted-dashed curve in Fig. 2(d).

This curve intersects all stability boundaries, which means

that the fastest-convergence gains designed for a given

delay 7 are located on the stability boundary of another

(larger) delay 7.,. We can derive the analytical relationship

between 7 and 7., by equating (7) and (11):
kw,min('f_) = ku} (wcra %cr)a

l ky,min('f_) =1 ky (wcra %Cr)a (12)

which yields

Wer =

(13)

— |

g

2 /4 2
where g = 1/ %. Observe that the coefficient giv-

ing the linear relationship between 7 and 7., does not
depend on any parameter. In Fig. 2(d), we mark the
gains that give the fastest convergence for 7 = 0.5 (black
star), which is indeed located on the stability boundary
for 7o, = 2.52327 ~ 1.2616 (gray curve).

Fop = —sin~! (p) 7252327
g

These results quantify the robustness of the fastest-
convergence gains against the change of the dimensionless
delay 7 = v7/l, i.e., against the change of the velocity v
and actual delay 7 in the remote-driving control loop. If
the fastest-convergence gains are chosen, the system can
maintain stability even when either the velocity or the
delay or their product increases up to 2.5 times. Note that,
in case of human operator, the fastest-convergence gains
may not be achieved and stability may not be guaranteed
for larger delays. Below we introduce the act-and-wait
strategy to mitigate the effect of the delay and improve
the performance.

3. REMOTE DRIVING WITH ACT-AND-WAIT

In this section, we describe the act-and-wait control strat-
egy, and utilize it in the context of the remote driving task.
Control gains are derived analytically to achieve dead-beat
(DB) transient performance even in case of large delays.
The robustness of the DB gains are also examined against
the change of delay and/or velocity.

8.1 Act-and-wait algorithm

Consider a generic linear system with feedback control
based on the delayed state
X(t) = AX(t) + BU(t),
U(t)=Gt)KX(t—rT1),
where X is the state, U is the control input, K contains
the control gains, and G(t) is defined as
0, it0< (tmodT) < ty,
t) = 1
G(t) {17 ifty <(tmodT)<T. (15)
Here, T =ty + t, is the period, ty and t, are the waiting
and acting time. The closed-loop dynamics are given by
X(t) = AX(t)+ GH)A X (t— 1), (16)
where A, = BK.

(14)

With the assumptions t, > 7 and 0 < t, < ty, one can
convert the continuous-time system (16) into a discrete-
time map linking the state at the beginning of the act-
and-wait interval to the state at the end of that interval:

X(kT+T)=®XKkT), k=0,1,.., (17)
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where the monodromy matrix ® is derived as

T
o = AT —|—/ AT A A=),
t

w

(18)

The stability of the discrete-time linear system (17) is
determined by the eigenvalues of the monodromy matrix
®, also known as the characteristic multipliers.

3.2 Act-and-wait steering control

In the remote-driving application (1), (2), we apply the
act-and-wait signal G(t) to the argument of the “arctan”
function in the controller. We further assume t, = 7 and
use the act-wait ratio a = t,/ty, 0 < a <1, to tune the
act-and-wait signal. The closed-loop dynamics becomes

i(t) = veos(b (1)),

y(t) = vsin(¥(t)),

b(t) = *G( )( = kyy(t = 7) = kyptp(t — 7).
After nondlmenslonahzamon and linearization, the stabil-

ity of the lateral dynamics (given by the last two rows
n (19)) are characterized by the monodromy matrix

(19)

~

. T
D — (AT +/ AT A, Al—T)gs.
i

w

WhereA:[OI}A%:[ 0 0

(20)

], T =(1+a)? and

00 —lky —ky
tw = 7. The analytical form of the monodromy matrix is
1— L kya?7? (a+1)7— kya?t?  lkya®?3
®= 2 a2e2® |- (2D
—lkyat 17k¢a%fyT

The eigenvalues fi1, p2 of this matrix can be obtained ana-
lytically and the discrete-time system (17) with X = [, ¥] "
is exponentially stable if and only if |u;| < 1 and |us| < 1.
As shown by Belyakov and Seyranian (2020), this is equiv-
alent to satisfying inequalities |tr(®)| — 1 < det(®) and
det(®) < 1, which result in the stability conditions

1 1 1 2

k¢<ﬂa7(lk) iarlky—kirlk:y—kﬁ,
1,

bu > 25 a3 (1k,)2 + F Lk, (22)

Lk, > 0.

The stable regions enclosed by these three boundaries are
shown in Fig. 3(a) and (b) for different values of the
dimensionless delay 7 and different choices of the act-
wait ratio a. Comparing these to the chart in Fig 2(a),
one may observe that applying the act-and-wait strategy
significantly increases the stable region. The stable region
still shrinks as 7 increases, and it expands as a decreases.
Therefore, adjusting the act-and-wait signal could help to
stabilize the system under large delay.

Moreover, if g1 = pa = 0, the solution converges to zero
after two periods (since ®? = 0), which we refer to as dead-
beat (DB) control. The corresponding control gains can be
calculated analytically:

—6a — 6+ 2v12a2 +18a + 9

kyap, =
v a*7? (23)
8a 46 — 2v/1242 1 18a + 9
ky,ab =

a7

7=05 a 1
7T=1 a=0.7
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Fig. 3. (a) Stability boundaries for different values of
the dimensionless delay 7 when a = 1. (b) Stability
boundaries for different values of the act-wait ratio
a when 7 = 1. (¢) The control gains which give the
dead-beat (DB) control are plotted as a red dashed-
dotted curve for a = 1. The DB curve intersects the
stability boundary of 7., = 0.6731 (red solid curve)
at 7=0.5. (d) The DB curve (red dashed-dotted
curve) for a = 0.7 intersects the stability boundary
of 7y = 0.6865 (red solid curve) at 7 = 0.5.

and these depend on a and 7 only. The DB control gains
are shown in Fig. 3(c) and (d) as red dashed-dotted
curves for a =1 and a = 0.7, respectively. Similar to the
continuous-time system, these curves intersect the stability
boundaries. The DB gains for 7 = 0.5 are marked by red
starts and these are located at the stability boundary
of the critical delay value 7... However, the relationship
between 7 and 7., now depends on the choice of a.

From (22), the right boundary is given by
2

aTcr

1 1
a*73 (1ky)? — 5 Oerl by + Tcrlk? + =

24
Therefore, substituting (23), we obtain the fourth-order
equation

4a = 0,

72 [ For 4 9ar—2r Ter 2 Ter
— =] +— =) —da+4r)—+
3a \ T a T T
(25)

where 7 = 3a + 3 — v/12a? + 18a + 9. This can be solved
numerically, for 7., /7 and the solution is plotted in Fig. 4
as a function of a. The coefficient 7.,/7 decreases with
a, changing from 2 to 1.3463. Recall that this coefficient
is a constant around 2.5 for the continuous-time system
without act-and-wait, cf. (13). Although the robustness co-
efficient is smaller, applying act-and-wait greatly increases
the absolute stability region and significantly improves the
performance. This will be demonstrated in the next section
through numerical simulations.

ky = (24)
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Fig. 4. Robustness coefficient 7.,/7 as a function of the
act-wait ratio a.
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Fig. 5. (a) Stability boundaries and selected control gains
for scenarios with and without act-and-wait algorithm
shown by red and black colors, respectively. (b) and
(¢) Simulation results for different choices of control
gains with and without act-and-wait algorithms.

4. SIMULATION RESULTS WITH AND WITHOUT
ACT-AND-WAIT ALGORITHM

In this section, we simulate nonlinear system (1), (2)
and the nonlinear system (19) with different choices of
control gains and relate the linear stability charts with
the nonlinear behaviors. In the simulation, we use the
constant longitudinal velocity v = 2.5 m/s, the wheelbase
Il =2.5m, and the delay 7 =1 s, which give the dimen-
sionless delay 7 = 1. For the act-and-wait algorithm, we
select ¢ = 1 and ¢y, = 7. This means that the acting period
is the same as the waiting period, as well as the delay in
the system. Although the system is nonlinear, the effect of
the nonlinearity is small as we consider small yaw angles.

First, we compare the performance of the original system
without act-and-wait control to the one with act-and
wait. In Fig. 5(a), we compare the stable domain of the
original system (bounded by the black curves) to that
of the system with act-and-wait on the top of the same
controller when using a = 1 (bounded by the red curves).
Observe the significant expansion of the stable domain
due to act-and-wait. The black star corresponds to the
fastest convergence rate pmin = —0.5858 for the original
controller, and the red star corresponds to the dead-
beat control gains for act-and-wait enhanced controller.
The lateral error and the control input are shown in
Fig. 5(b) and (c¢), when the “best-performance” gains are
chosen in both scenarios. Despite the late start of the

(a) 2

............. O A&W gains 1
@ Original gains

y [m]

U [rad]

t[s]
(¢) 2 —
A - = =.0 A&W gains 2
— 1t N
=5 N
N
EI e S -
-1
0 2 4 6 8 10

(d) 1 .

=

y [m]

U [rad]

Fig. 6. Simulations when using the act-and-wait algorithm
with different amplifications of the control gains. (a)-
(b) No amplification of the control gains. (c)-(d) Am-
plification with coefficient 1.2. (d)-(e) Amplification
with coeflicient 1.4.

action and the non-smooth control input caused by the
waiting periods, the system with act-and-wait algorithm
can converge faster. As demonstrated in panel (b), the
system converges in 4 seconds (two periods) with the DB
gains, while the fastest convergence without act-and-wait
takes around 10 seconds.

The system may lose stability for some control gains, see,
for instance, the gains marked by the black dot just outside
the stability boundary in Fig. 5(a). One can apply act-and-
wait on top of the current controller to stabilize the system.
Additionally, the final control input can be amplified by
multiplying a coefficient to achieve better performance
while exploiting the larger stable region under act-and-
wait. This is equivalent to increasing control gains along
the dotted black line. We amplify the control input by
different coefficients 1, 1.2 and 1.4 as indicated by the red
circle, square and diamond, respectively. In Fig. 6, we show
the simulation results for those three gains with act-and-
wait (red curves) and compare the results to the original
system without act-and-wait (black curves) to highlight
the performance improvements in terms of convergence
time. These highlight the benefits of modulating the con-
trol signal without changing the original controller, which
can potentially be applied on top of a human remote
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operator to assist remote driving. Note that the location
of the original gains also influences the performance of the
algorithm. Thus, to achieve the best performance, it may
be necessary to tune the two gains individually.

5. CONCLUSION

We demonstrated the effects of delay in remote driving
both analytically and numerically. We proposed to apply
the act-and-wait algorithm on top of the original controller
to achieve better control performance. We studied the lin-
ear stability and the performance in terms of convergence
rate for both systems and demonstrated the advantages
of using act-and-wait systems under large delays. The
“best-performance” control gains, which give the fastest
convergence rate and dead-beat control performance, are
derived in closed-form as functions of dimensionless delays,
i.e., a combination of longitudinal velocity and end-to-end
delay in the loop. The robustness coefficient is derived to
demonstrate how much change of the dimensionless delay
the system can endure before loosing the stability, when
the “best-performance” gains are chosen.

With act-and-wait algorithm, the stable region in the pa-
rameter space increases while the robustness coefficient de-
creases. The system with act-and-wait algorithm also con-
verges much faster at its best performance. It means that
the act-and-wait could potentially stabilize the system and
achieve better control performance, but the performance
is also more sensitive to the change of delay and velocity.
As future directions, we will improve the act-and-wait
algorithm to generate smoother and more realistic input
signals and compare the results to other delay mitigation
methods. We will apply the act-and-wait algorithm on
other maneuvers such as following a curved path. We also
plan to study the robustness of using act-and-wait strategy
when the delay in the system is unknown.
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