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Abstract. Connected automated vehicles (CAVs) have the potential to improve the effi-
ciency of vehicular traffic. In this paper, we discuss how CAVs can positively impact the 
dynamic behavior of mixed traffic systems on highways through the lens of nonlinear 
dynamics theory. First, we show that human-driven traffic exhibits a bistability phenome-
non, in which the same drivers can both drive smoothly or cause congestion, depending 
on perturbations like a braking of an individual driver. As such, bistability can lead to 
unexpected phantom traffic jams, which are undesired. By analyzing the corresponding 
nonlinear dynamical model, we explain the mechanism of bistability and identify which 
human driver parameters may cause it. Second, we study mixed traffic that includes 
both human drivers and CAVs, and we analyze how CAVs affect the nonlinear dynamic 
behavior. We show that a large-enough penetration of CAVs in the traffic flow can elimi-
nate bistability, and we identify the controller parameters of CAVs that are able to do so. 
Ultimately, this helps to achieve stable and smooth mobility on highways.
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1. Introduction
Connected automated vehicles (CAVs) have the prom-
ise of revolutionizing transportation, with the ultimate 
goal of achieving safe, stable, and smooth traffic flows. 
Yet, before the era of fully connected and automated 
mobility, we can expect at least a few decades of mixed 
traffic in which CAVs coexist with human-driven vehi-
cles (HVs) on the road. Therefore, it is crucial to prepare 
CAVs to cooperate with human drivers and to analyze 
how the behavior of CAVs may impact the dynamics of 
mixed traffic systems.

There exist several longitudinal control strategies for 
CAVs that may positively impact the safety and effi-
ciency of mixed traffic. First, adaptive cruise control (ACC) 
systems have been proposed to control automated vehi-
cles (AVs) by responding to the preceding vehicle in a 
safe (Nilsson et al. 2016, Ames et al. 2017) and string sta-
ble manner (Bekiaris-Liberis, Roncoli, and Papageor-
giou 2018; Gunter et al. 2021) with desired driving 
behavior (Wang et al. 2021, Qin 2022). Later on, ACC 
systems have been extended to incorporate information 
from vehicle-to-vehicle (V2V) connectivity that can fur-
ther improve performance. The approach of cooperative 

adaptive cruise control has appeared to regulate platoons 
of communicating and cooperating CAVs (Bertoni et al. 
2017; Turri, Besselink, and Johansson 2017; McAuliffe 
et al. 2018; Wang, Wu, and Barth 2018; van Nunen 
et al. 2019). Although this approach may significantly 
improve the driving behavior of CAVs, it requires full 
connectivity and automation within an entire platoon. 
To control individual CAVs in mixed traffic, the strat-
egy of connected cruise control (CCC) (Orosz 2016, Zhang 
and Orosz 2016) has been proposed, wherein the CAV 
utilizes information from other connected (but not nec-
essarily automated) vehicles. Importantly, there have 
been several works that highlighted that the driving 
behavior of CAVs equipped with the above-mentioned 
controllers can be highly beneficial for the smoothness 
of mixed traffic (Cui et al. 2017; Čičić and Johansson 
2018; Zheng, Wang, and Li 2020; Giammarino et al. 
2021; Hayat et al. 2022; Lichtlé et al. 2022; Wang, Stern, 
and Levin 2022; Yu and Krstic 2022), which was also 
demonstrated by experiments (Ge et al. 2018; Stern et al. 
2018; Avedisov, Bansal, and Orosz 2022).

Although many of these analyses and control designs 
have been established by relying on linear dynamical 
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models, traffic systems exhibit several nonlinear dynam-
ics phenomena that can fundamentally shape the overall 
behavior of vehicles. Some important examples of non-
linearities are the limited acceleration capabilities of 
vehicles that imply saturation-type nonlinearities; the 
relationship between the velocity of vehicles and the dis-
tance that they intend to keep, which is typically non-
linear; and the resistance forces acting on the vehicles 
(from rolling resistance, road grade, and air resistance) 
that are nonlinear functions of the position and speed. 
Importantly, such nonlinearities in dynamical systems 
may cause periodic oscillations (i.e., so-called limit 
cycles) that do not exist in linear systems. In the context 
of vehicular traffic, these periodic motions manifest 
themselves as repeated, large-amplitude accelerations 
and decelerations of vehicles, ultimately leading to traffic 
congestion that is also called a phantom jam.

Phantom jams have been studied extensively in the lit-
erature. The formation of phantom jams in human- 
driven traffic was explained by Orosz and Stépán (2006), 
Orosz et al. (2009), and Orosz, Wilson, and Stépán 
(2010), who used bifurcation analysis tools to study 
the nonlinear traffic dynamics. It was highlighted that 
a so-called bistability phenomenon in the underlying 
dynamics is responsible for the phantom jams and that 
the reaction time of human drivers plays a significant 
role. Kiss et al. (2019) extended these results to analyze 
the nonlinear dynamic behavior of CAVs executing 
CCC. The bistability phenomenon was further analyzed,
and the effects of connectivity and the limited accelera-
tion capabilities of vehicles were described. These results
were established for a three-vehicle scenario: a single
CAV and two HVs. Larger-scale mixed traffic scenarios
including multiple CAVs have not yet been analyzed
from nonlinear dynamics point of view. So far, phantom

jams in such scenarios have been studied only by simu-
lations; for example, Avedisov, Bansal, and Orosz (2022) 
demonstrated the existence of stop-and-go jams in 
mixed traffic with different penetrations of CAVs.

A comprehensive analysis of the nonlinear dynamics of 
mixed traffic, including multiple CAVs (i.e., different pene-
trations thereof), is yet to be conducted. Such an analysis 
is crucial for understanding how CAVs can leverage con-
nectivity and automation to destroy phantom jams. Now, 
we seek to build on the above-mentioned previous works 
to fill this gap. In this paper, we analyze the nonlinear 
dynamics of mixed traffic with different penetrations of 
CAVs. This analysis serves to identify controllers for 
CAVs that provide smooth driving behavior and ulti-
mately mitigate the occurrence of phantom jams. Specifi-
cally, we use numerical bifurcation analysis methods 
to study the nonlinear dynamics of mixed traffic on a 
ring road setting with multiple HVs and multiple CAVs 
executing CCC. We study the occurrence of large- 
amplitude periodic motions corresponding to phantom 
jams, and we show that CAVs with appropriately de-
signed controllers are able to successfully mitigate and 
eliminate these unfavorable phenomena.

The paper is organized as follows. In Section 2, we 
show simulation results to demonstrate the nonlinear 
behavior of vehicular traffic and motivate the upcom-
ing analysis. In Section 3, we discuss a model of mixed 
traffic systems, and in Section 4, we describe the under-
lying linear and nonlinear dynamic behavior. Section 
4.2.1 closes with conclusions.

2. Motivation
As motivation, we first present numerical simulation 
results obtained for the homogeneous human-driven 
traffic shown in Figure 1(a). In particular, the following 

Figure 1. (Color online) Illustration of Vehicular Traffic 

(a)

(b)

(c) (d)

Notes. (a) Homogeneous traffic consisting of human-driven vehicles only. (b) Mixed traffic that includes HVs and connected automated vehicles 
executing connected cruise control. Panels (c) and (d) show the corresponding ring configurations that are used for analyzing the nonlinear 
dynamics of mixed traffic systems.
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scenario is simulated. Identical HVs follow each other 
on a single-lane straight road. Each vehicle is described 
by model (1), (5), and (6) discussed later in Section 3, 
and this is simulated via MATLAB’s built-in delay dif-
ferential equation solver dde23. According to this 
model, each vehicle accelerates based on human driver 
commands subject to a response time τi and accelera-
tion limits amin and amax. The behavior of human dri-
vers is captured by the so-called optimal velocity 
model (OVM) (motivated by Bando et al. 1998; see also 
Kiss et al. 2019 and Avedisov, Bansal, and Orosz 2022). 
This model includes the response of drivers to the 
headway hi ahead of their vehicle, to their speed vi, 
and to the speed difference from the preceding vehicle. 
The model contains the following human driver 
parameters: coefficients αh and βh that weigh the 
responses to headway and speed difference, desired 
standstill headway hst, free-flow headway hgo, and 
speed limit vmax. The details and parameters of 
this model will be further explained in Section 3, 
whereas notations are summarized in Table 1; addi-
tionally, parameter values are listed in Table 2 and 
in the figures.

Figure 2 shows simulation results for a chain of 49 
HVs, where the speed of each vehicle is plotted as a 
function of time (with every 12th vehicle highlighted in 
purple). The simulations imitate a braking event, in 
which the leading vehicle slows down, then accelerates 
to recover its original speed, and continues to cruise 
at that speed, while the subsequent vehicles respond 
to this perturbation. We investigate how such pertur-
bations affect the smoothness of the overall traffic 
flow.

Figure 2(a) shows a so-called string stable scenario, in 
which each driver reduces its speed less than the vehi-
cle ahead of it; hence, the perturbation ultimately dies 
out, and a smooth traffic flow is recovered over time. 
Although this phenomenon is desired, it depends on 
the driving behavior of HVs. Other human drivers 
(e.g., those with larger reaction time) may overreact to 

the perturbation and reduce their speeds more than the 
vehicle ahead of them, resulting in the string unstable 
behavior in Figure 2(b). This leads to large-amplitude 
oscillations in the speeds of vehicles and eventually, 
traffic congestion with stop-and-go motion.

The onset of traffic congestion, however, may be 
hard to predict. Although the two cases in Figure 2, (a) 
and (b)—smooth traffic and congestion, respectively— 
correspond to two different sets of human driver para-
meters, there exist scenarios in which even the same 
drivers can produce these two qualitatively different 
behaviors. This is illustrated in Figure 2, (c) and (d), 
where the same human drivers are simulated but the 
perturbation is different; the lead vehicle reduces its 
speed by 15 and 16 meters per second (m/s), respec-
tively. The simulation highlights that a large-enough 
perturbation triggers traffic congestion, whereas the 
traffic flow smooths out for a small perturbation. This 
phenomenon is called bistability, and the corresponding 
hard-to-predict congestion is a phantom jam.

Clearly, bistability is undesired as it can lead to unex-
pected phantom jams because of events like the braking 
of an individual driver. Importantly, bistability phe-
nomena are unique to nonlinear dynamical systems. 
Thus, nonlinearities—like the saturation of accelera-
tions of vehicles or the nonlinear relationship between 
the desired speed and distance of HVs—have a crucial 
role in shaping the overall traffic behavior. In what 
follows, we seek to mitigate unstable and bistable 
behaviors by injecting CAVs into the traffic flow. We 
analyze the nonlinear dynamics of mixed traffic and 
explain the mechanism of bistability, with the end goal 
of controlling CAVs to achieve globally stable traffic 
without phantom jams.

3. Modeling of Mixed Traffic
First, we formulate a dynamical model for the single- 
lane mixed traffic systems illustrated in Figure 1. Panel 
(a) of Figure 1 shows the reference case of homoge-
neous traffic consisting of human-driven vehicles only.

Table 1. Notations Used Throughout the Paper

Variable Symbol Variable Symbol Variable Symbol

Vehicle index i Time delay τ HV range policy Vh
Time t Saturation function sat HV driver parameter 

(response to headway)
αh

Headway h Braking limit amin
Speed v Acceleration limit amax HV driver parameter 

(response to speed difference)
βh

Desired acceleration u Car-following law f
Number of vehicles N Speed limit vmax CAV range policy V
Net ring length L Standstill headway hst CAV control gain 

(response to headway)
α

Indices of HVs IHV Free-flow headway hgo
Indices of CAVs ICAV Equilibrium speed v∗ CAV control gain 

(response to speed difference)
βj

Number of vehicles that 
CAVs may respond to

m HV equilibrium headway h∗h
CAV equilibrium headway h∗ CAV speed policy W
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Panel (b) of Figure 1 indicates the case of interest: 
mixed traffic that includes HVs and connected auto-
mated vehicles. Such car-following systems are often 
considered on ring roads for the purpose of analyzing 
linear and nonlinear dynamics because the stability 
properties of large rings can approximate the string sta-
bility properties of infinite straight roads (Orosz, Wil-
son, and Stépán 2010; Cui et al. 2017; Giammarino et al. 
2019; von Allwörden and Gasser 2021; Molnár et al. 
2023). The ring configurations corresponding to homo-
geneous and mixed traffic are shown in panels (c) and 

(d) of Figure 1. Note that the same three-vehicle group
is repeated along the ring in panel (d) of Figure 1.

To construct a dynamical model, we use the notations 
summarized in Table 1. Let us number the vehicles with 
index i that increases in the direction of motion, and let 
us denote the set of indices of HVs and CAVs by IHV 
and ICAV, respectively. Furthermore, let vi denote the 
velocity of vehicle i, and let hi be the headway ahead of 
vehicle i. We capture the longitudinal motion of these 
vehicles by delayed double-integrator models:

dhi

dt
(t) � vi+1(t)� vi(t),

dvi

dt (t) � sat(ui(t� τi)): (1) 

Here, ui is the desired acceleration of each vehicle that 
is realized by the human drivers or low-level CAV con-
trollers. This acceleration is saturated if it lies outside 

Figure 2. (Color online) Simulation of Human-Driven Traffic 

(a) (b)

(c) (d)

Notes. (a) String stable scenario where velocity perturbations decay and smooth traffic is attained. (b) String unstable case where perturbations 
amplify along the vehicle chain and a stop-and-go traffic jam is formed. (c and d) Bistable scenario where smooth and oscillatory motions both 
occur, and a phantom jam may be triggered by a large-enough perturbation, like excessive braking of an individual vehicle. Importantly, bistabil-
ity is caused by nonlinearities and cannot be captured by linear models. Model (1), (5), and (6) from Section 3 was simulated with the initial con-
ditions hi(t) � hgo, vi(t) � vmax, t ∈ [�τi, 0] for parameters τi � 0:6 s and (a) αh � 0:1 s�1, βh � 0:8 s�1; (b) αh � 0:2 s�1, βh � 0:4 s�1; and (c and d) 
αh � 0:4 s�1, βh � 0:5 s�1 (related to points S, U, and B in Figure 4(a)).

Table 2. Parameters Used for the Numerical Results

Variable Symbol Value Unit

Braking limit amin, i 7 m/s2

Acceleration limit amax, i 3 m/s2

Speed limit vmax 30 m/s
Standstill headway hst 5 m
Free-flow headway hgo 55 m
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the acceleration limits �amin, i and amax, i of the vehicles, 
as expressed by

sat(ui) �min{max{�amin, i, ui}, amax, i}, (2) 

and this is illustrated in Figure 3(a). Furthermore, the 
time delay τi describes the response time of vehicle i, 
which consists of the actuation (powertrain) delay of 
the vehicles and the reaction time of human drivers or 
the communication and feedback delays of CAVs. Note 
that instead of delays, first-order lags are also often 
used in the literature to capture these response times or 
to approximate the effects of delays. In practice, typi-
cally combinations of lags and delays occur. Mean-
while, time delays are known to give rise to bistability 
in various nonlinear systems (Dombovari, Wilson, and 
Stepan 2008; Saha and Wahi 2011; Molnár et al. 2016; 
Veraszto and Stepan 2017; Beregi, Takacs, and Stepan 
2019; Vörös, Orosz, and Takács 2023). Therefore, here 
we choose to use a single delay for each vehicle in our 
model to simplify the analysis while still being able to 
capture bistability.

In the case of a ring configuration with N vehicles, 
the dynamics (1) are coupled with the periodic bound-
ary condition

v0(t) � vN(t) (3) 

as well as with a constraint that the headways sum up 
to the net ring length L:

XN�1

i�0
hi(t) � L: (4) 

The desired acceleration of human drivers is captured 
by models of the form

ui � fi hi, vi,
dhi

dt

� �

, i ∈ IHV: (5) 

That is, human drivers tend to respond to the headway 
hi, velocity vi, and velocity difference dhi=dt according 
to a selected human driver model fi that is often non-
linear. Hence, the saturation function sat and the human 

driver model fi give rise to nonlinear dynamics that may 
showcase bistability.

Example 1. In the numerical results of this paper (like 
Figure 2), we use the optimal velocity model origi-
nated from Bando et al. (1998), which was shown to 
capture human driver behavior in the experiments of 
Avedisov, Bansal, and Orosz (2022). The OVM reads

fi hi, vi,
dhi

dt

� �

� αh(Vh(hi)� vi) + βh
dhi

dt
, (6) 

∀i ∈ IHV. This model includes response to the velocity 
difference dhi=dt with a coefficient βh and response to 
the headway hi with a coefficient αh. The latter incor-
porates the range policy Vh that captures the speed 
that HVs intend to keep as a nonlinear function of the 
headway, such as

Vh(h)

�

0 if h ≤ hst,

vmax
(3hgo� hst� 2h)(h� hst)

2

(hgo� hst)
3 if hst < h < hgo,

vmax if hgo ≤ h,

8
>>><

>>>:

(7) 

and this is plotted in Figure 3(b). This describes that 
HVs intend to stop if their headway is below the stand-
still headway hst, whereas they increase their speed 
according to a cubic function for larger headways until 
reaching the speed limit vmax at the free-flow headway 
hgo. For simplicity, in numerical examples, we consider 
identical human drivers with the same βh, αh, and Vh 
parameters. Although the upcoming numerical results 
are obtained for the OVM and identical HVs, our frame-
work to analyze the occurrence of phantom jams 
applies to other human driver models and nonidentical 
driver behaviors as well. Bistability can also be observed 
for the intelligent driver model and for nonidentical 

Figure 3. (Color online) Nonlinearities in the Mixed Traffic Model 

(a) (b) (c) (d)

Notes. (a) Saturation of desired acceleration. (b) Range policy of human drivers. (c) Range policy of CAVs. (d) Speed policy of CAVs.
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HVs with the OVM, which is demonstrated by simula-
tions in Online Appendix A.

As opposed to HVs, CAVs are able to respond to 
multiple vehicles if those vehicles are connected to the 
CAV. We assume that CAV i is able to detect the pre-
ceding vehicle i+ 1 (by range sensors or V2V connectiv-
ity) and that it may connect to up to m vehicles in its 
communication range. This leads to connected cruise con-
trol laws for CAVs of the form

ui � fi(hi, vi, vi+1, : : : , vi+m), i ∈ ICAV, (8) 

where if a distant vehicle i+ j (with 1 < j ≤ m) is not 
connected to the CAV, its speed vi+j can be omitted 
from fi. The expression of fi is determined by the 
CAV’s control design. For simplicity, we consider that 
CAVs respond to the velocities vi+j of distant vehicles, 
although more general control laws could contain 
response to positions too.

Example 2. In our numerical results, we adopt the 
CCC strategy from Zhang and Orosz (2016):

fi(hi, vi, vi+1, : : : , vi+m)

� α(V(hi)� vi) +
Xm

j�1
βj(W(vi+j)� vi), (9) 

which is analogous to the OVM (6) with additional 
response to the velocities of multiple preceding vehi-
cles. This controller was implemented on a passenger 
vehicle by Ge et al. (2018), Avedisov, Bansal, and 
Orosz (2022), and Beregi et al. (2023) and on a heavy- 
duty truck by Alan et al. (2024), with successful hard-
ware experiments on both closed test tracks and pub-
lic roads. The corresponding control gains α�and βj can 
be designed, whereas the range policy is chosen to be 
piecewise linear:

V(h) �

0 if h ≤ hst,

vmax
h� hst

hgo � hst
if hst < h < hgo,

vmax if hgo ≤ h,

8
>>><

>>>:

(10) 

as shown in Figure 3(c). Furthermore, the control law 
includes the speed policy W that prevents the CAV 
from speeding if the preceding vehicles exceed the 
speed limit:

W(v) � min{v, vmax}; (11) 

see Figure 3(d). For simplicity, in numerical examples, 
we choose the controller parameters β, α, and V to be 
the same for all CAVs. Furthermore, we use the same 
hst, hgo, and vmax values for all HVs and CAVs, listed in 
Table 2. These parameters, however, could depend on 
the index i.

4. Dynamic Behavior of Mixed Traffic
Now, we analyze the dynamic behavior of mixed traffic 
systems by utilizing model (1)–(11). The analysis is cen-
tered around studying the equilibrium and periodic 
solutions (limit cycles) of this model. For the sake of a 
simple analysis, we focus on the ring configurations in 
Figure 1, (c) and (d). However, further below, we will 
demonstrate via numerical simulations that the identi-
fied nonlinear phenomena can also be observed for 
vehicle chains.

The equilibrium of the mixed traffic system describes 
the scenario where vehicles travel with constant speed, 
denoted by v∗, while maintaining constant headway, h∗h 
for HVs and h∗ for CAVs. That is, the equilibrium solu-
tion is vi(t) ≡ v∗, hi(t) ≡ h∗i with h∗i � h∗h for i ∈ IHV and 
h∗i � h∗ for i ∈ ICAV, where v∗ � Vh(h∗h) � V(h∗) holds (see 
Figure 3, (b) and (c)). The equilibrium represents the 
ideal, smooth flow of traffic. The stability of the equilib-
rium depends on the driving behavior of HVs and 
CAVs. This is demonstrated in panels (a) and (b) of 
Figure 2, which simulate different human driver para-
meters. If the equilibrium is stable, small perturbations, 
like the braking of an individual driver, are attenuated 
as in Figure 2(a), and smooth traffic is attained over 
time as desired. In opposition, unstable equilibrium 
results in amplifying perturbations, like in Figure 2(b). 
The stability of the equilibrium is typically studied via 
linearization (see below).

Periodic solutions, on the other hand, may represent 
congested traffic. If traffic congestion forms on the ring 
configurations of Figure 1, (c) and (d), it typically man-
ifests itself in large-amplitude repeated (periodic) fluc-
tuations in the speeds and headways of vehicles, such 
as stop-and-go motion. In the nonlinear dynamics liter-
ature, such periodic motions are called limit cycles, 
which are defined as isolated closed trajectories in the 
state space. If a limit cycle is stable, then the system 
tends to this motion over time, and large-amplitude 
velocity fluctuations are showcased in traffic. If the 
limit cycle is unstable, then the traffic behavior 
diverges from the corresponding periodic motion (and 
instead, behaviors typically related to a stable equilib-
rium or another stable limit cycle are observed over 
time). The existence and stability of limit cycles are 
studied through the analysis of the nonlinear dynam-
ics as discussed below.

Moreover, a stable equilibrium and a stable limit cycle 
may coexist in certain scenarios (i.e., for certain HV and 
CAV parameters). This is called bistability—defined as 
the coexistence of two stable solutions in a nonlinear 
dynamical system with given parameters. The main sig-
nature of bistable systems is that they may showcase 
two qualitatively different behaviors in experiments 
(related to the two stable solutions) depending on initial 
conditions and perturbations. In the case of bistable 

Molnar and Orosz: Destroying Phantom Jams 
1324 Transportation Science, 2024, vol. 58, no. 6, pp. 1319–1334, © 2024 INFORMS 



traffic, this means that the system converges to the stable 
equilibrium and showcases smooth traffic flow for small 
speed perturbations, whereas it approaches the stable 
limit cycle and exhibits phantom jam for large perturba-
tions (see Figure 2, (c) and (d)). That is, both the equilib-
rium and the limit cycle are locally stable, with a finite 
domain of attraction (DoA) determined by the nonlinear 
dynamics. These properties are quantified for model 
(1)–(11) below.

4.1. Linear Dynamics
Before addressing nonlinear dynamics, we briefly 
revisit linear analysis results that neglect nonlinearities. 
These results were established by linearization of the 
mixed traffic model (1)–(11) around the equilibrium 
and by eigenvalue analysis (i.e., studying whether the 
roots of the corresponding characteristic equation are 
located in the left half of the complex plane). This linear 
stability analysis procedure considers small amplitude 
and arbitrary frequency for the underlying speed per-
turbations. Through this analysis, Ge and Orosz (2014) 
established stability conditions at the linear level for 
the equilibrium of mixed traffic and expressed these 
conditions in terms of the parameters of the human dri-
vers and CAV controllers.

Here, we briefly outline the steps of analyzing the 
linearized dynamics, whereas the remaining details 
are described in Online Appendix B. The linearized 
dynamics are formalized by considering small head-
way and speed perturbations around the equilibrium, 
where these perturbations are defined by h̃i(t) � hi(t)
� h∗i and ṽi(t) � vi(t)� v∗, respectively. Substituting
these perturbations into (1) and (5) and linearizing the
right-hand side results in the following linear dynam-
ics for HVs (i ∈ IHV):

dh̃i

dt (t) � ṽi+1(t)� ṽi(t),

dṽi

dt
(t) � Ai, 1h̃i(t� τi) +Ai, 2ṽi(t� τi) +Ai, 3

dh̃i

dt
(t� τi),

(12) 

where Ai, l (l ∈ {1, 2, 3}) is the partial derivative of fi in (5) 
with respect to its lth argument evaluated at the equilib-
rium. For the OVM Model (6), these coefficients can be 
expressed using the gains αh, βh and the gradient κh �

(dVh=dh)(h∗h) of the range policy; see Online Appendix B.
Similarly, linearizing (1) and (8) leads to the follow-

ing dynamics for CAVs (i ∈ ICAV):

dh̃i

dt (t) � ṽi+1(t)� ṽi(t),

dṽi

dt (t) �Ai, 1h̃i(t�τi) +Ai, 2ṽi(t�τi) +
Xm

j�1
Ai, j+2ṽi+j(t� τi),

(13) 

where Ai, l (l ∈ {1, 2, : : : , m+ 2}) is the partial derivative 
of fi in (8) with respect to its lth argument evaluated at 
the equilibrium. For the controller (9), these coefficients 
can be expressed using the gains α, βj, j ∈ {1, : : : , m} and 
the gradient κ � (dV=dh)(h∗) of the range policy; see 
Online Appendix B.

The linearized dynamics can be transformed to Laplace 
domain. For HVs (i ∈ IHV), we get

Vi(s) � Ti, i+1(s)Vi+1(s), (14) 

whereas for CAVs (i ∈ ICAV), we obtain

Vi(s) �
Xm

j�1
Ti, i+j(s)Vi+j(s), (15) 

where Vi(s) is the Laplace transform of the velocity per-
turbation ṽi(t). Here, Ti, i+j(s) are so-called link transfer 
functions (Zhang and Orosz 2016), which characterize 
the (linearized) response of vehicle i to vehicle i+ j. The 
link transfer functions can be expressed using the coef-
ficients Ai, l; see (20) and (25) in Online Appendix B.

To describe the overall response of multiple vehicles, 
the link transfer functions can be combined into a 
so-called head-to-tail transfer function (Zhang and Orosz 
2016). For example, for CAVs that respond to m vehi-
cles ahead of them (like in Figure 1(b), where m� 3), the 
head-to-tail transfer function Gi, i+m(s) can be used to 
characterize the overall response of the m vehicles by 
establishing the relationship between the motions of 
vehicle i and vehicle i+m:

Vi(s) � Gi, i+m(s)Vi+m(s), (16) 

i ∈ ICAV. The expression of Gi, i+m(s) is given in Online 
Appendix B. Similarly, the notion of head-to-tail trans-
fer function can also be used to capture the overall 
response of the N vehicles traveling along the ring con-
figuration:

V0(s) � G0, N(s)VN(s): (17) 

Ultimately, the transfer function G0, N(s) can be ex-
pressed in terms of the parameters Ai, l and the delays 
τi describing the HVs and CAVs or equivalently, in 
terms of αh, βh, κh, α, βj, κ, and τi; see the details in 
Online Appendix B.

Using the head-to-tail transfer function that charac-
terizes the linearized response, linear stability analysis 
can be conducted to determine whether speed pertur-
bations amplify or decay along the ring. The analysis is 
based on the characteristic equation of the ring configu-
ration:

G0, N(s) � 1, (18) 

which follows from (17) and from V0(s) � VN(s) accord-
ing to the periodic boundary condition (3). The dynam-
ics of the ring configuration are stable, and speed 
perturbations decay if the roots sℓ�of the characteristic 
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Equation (18) are located in the left half of the complex 
plane (i.e., Re(sℓ) < 0 holds for all ℓ ∈ Z). Meanwhile, 
the mixed traffic system is at the boundary of stability 
when Re(sℓ) � 0 for some ℓ ∈ Z. This condition is ana-
lyzed in Online Appendix B, and explicit formulas are 
derived for the stability boundaries in terms of the para-
meters of HVs and CAVs.

The end result of this analysis is the so-called stabil-
ity charts depicted in Figure 4. These charts distinguish 
parameters associated with locally stable and unstable 
equilibria. Figure 4(a) corresponds to human-driven 
traffic. If the human driver parameters lie inside the 
linearly stable region (i.e., the gray-shaded domain 
bounded by the blue curves in Figure 4(a)), the result-
ing stable behavior qualitatively matches the one ob-
served in Figure 2(a), which was simulated for point S 
in Figure 4(a). Parameters outside the linearly stable 
region cause unstable behavior, like in Figure 2(b), 
which was simulated for point U in Figure 4(a). Note, 
however, that linear stability charts are not able to 
explain the bistability phenomenon in Figure 2, (c) and 
(d) associated with point B in Figure 4(a).

Even when human drivers are associated with unsta-
ble parameters, linear stability can be achieved if a 
large-enough number of well-designed CAVs is mixed 
into the traffic flow. Figure 4(b) shows the stability 
chart of mixed traffic, where every third vehicle is a 
CAV (with m� 3), whereas others are HVs associated 
with unstable parameters. Additionally, Figure 4(c)
represents the case where every second vehicle is a 
CAV (with m� 2). Notice that the stable domain grows 
significantly as the penetration of CAVs increases, 
which shows the positive impact of CAVs on traffic.

It is important to highlight that the stability charts 
can be used as a tool for designing the controllers of 
CAVs in a theoretically justified manner. Because the 
charts in Figure 4, (b) and (c) showcase linearly stable 
regions in the space of the CAVs’ controller para-
meters, stable overall mixed traffic can be achieved by 
designing controllers such that their parameters lie in 
the gray-shaded stable domain. This method has been 
successfully implemented, and stability charts have 
been validated by experiments for the case of a single 
HV-CAV pair by Beregi et al. (2023). In what follows, 
we seek to derive stability charts for mixed traffic sys-
tems by taking into account the phenomenon of bist-
ability. The charts will ultimately allow us to design 
efficient controllers for CAVs that are able to destroy 
phantom jams.

4.2. Nonlinear Dynamics
The above-described linear stability charts do not con-
tain information about the bistability phenomenon. 
Now, we investigate the nonlinear dynamics and ana-
lyze bistability. The analysis is conducted numerically 
using a MATLAB tool called DDE-BIFTOOL (Engel-
borghs, Luzyanina, and Roose 2002; Sieber et al. 2014). 
This tool is able to analyze nonlinear dynamical sys-
tems given by delay differential equations, including 
the calculation of equilibria and their stability, as well 
as periodic solutions (limit cycles) and their stability. 
To this end, we implemented model (1)–(11).

4.2.1. Human-Driven Traffic. First, we consider the ref-
erence case of homogeneous human-driven traffic in 
Figure 1(c). Figure 5 shows the corresponding results, 

Figure 4. (Color online) Linear Stability Charts of (a) Human-Driven Traffic on a Ring, (b) Mixed Traffic Where Every Third 
Vehicle Is a CAV, and (c) Mixed Traffic Where Every Second Vehicle Is a CAV 

(a) (b) (c)

Notes. Unfavorable driver behavior may be associated with parameters that yield unstable human-driven traffic. Yet, when a large-enough num-
ber of CAVs is mixed into the traffic flow, linear stability can still be achieved, provided that the controller parameters of CAVs are chosen from 
the stable region (gray). The parameters that yield these results are N � 24 and (a) τi � 0:6 s and (b and c) τi � 1 s (i ∈ IHV), αh � 0:1 s�1, βh �
0:6 s�1, τi � 0:6 s (i ∈ ICAV), and α � 0:4 s�1. The net ring length L is chosen such that the range policy gradient at the equilibrium headway of HVs 
is κh � (dVh=dh)(h∗h) � 0:6 s�1 (see Figure 3(b)).
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where the stability chart in panel (a) of Figure 5 is 
repeated from Figure 4(a). In the linearly stable region 
(the union of the red and gray domains), the linearized 
dynamics suggest that the equilibrium traffic flow is 
stable, and hence, traffic congestion does not occur. 
However, analyzing the nonlinear dynamics reveals 
that large-amplitude oscillatory motions (limit cycles) 
exist for certain parameters. For example, point B (0.5, 
0.4) in Figure 5(a) yields such parameters, and panels 
(d) and (e) of Figure 5 show one period of the corre-
sponding oscillating motion. The motion of one of the

HVs is highlighted in purple in Figure 5, (d) and (e). 
Clearly, the velocity and headway undergo large fluc-
tuations that repeat over time as the HV drives around 
the ring. Remarkably, this stop-and-go phantom jam is 
revealed through the analysis of the nonlinear dynam-
ics; the linearized dynamics could not predict it.

The above-described phantom jam was found sys-
tematically through the following analysis. First, we 
calculated the equilibrium and analyzed its stability 
numerically for various (βh,αh) parameters. This way, 
we reproduced the stability chart in Figure 4(a). We 

Figure 5. (Color online) Nonlinear Dynamics of Human-Driven Traffic in Ring Configuration 

(a)

(d)

(e)

(b)

(c)

Notes. (a) Boundaries (blue) of the linearly stable region (shaded red and gray) associated with linearly stable equilibrium traffic and the bound-
ary (black) of the bistable region (shaded red). In the bistable domain, a stable limit cycle (s.l.c.) coexists with the stable equilibrium; thus, pertur-
bations, like the braking of an individual driver, may trigger oscillatory motions and phantom jams. (b) Amplitude and stability of the arising 
limit cycles. (c) Time period of limit cycles. (d and e) Large-amplitude oscillatory motion corresponding to the s.l.c. at point B, which shows the 
occurrence of a phantom jam. The parameters match those of Figure 4(a) (s.e., linearly stable equilibria; u.e., linearly unstable equilibria; u.l.c., 
unstable limit cycle).
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found that along the blue curves in Figure 5(a), the sta-
bility properties of the equilibrium change as (βh,αh)
are varied. Specifically, a so-called Hopf bifurcation 
happens (that is associated with a complex pair of char-
acteristic roots crossing the imaginary axis and hence, a 
potential change in stability) (see Guckenheimer and 
Holmes 1983).

Second, limit cycles associated with the Hopf bifurca-
tion were computed. For this calculation, we fixed 
parameter αh and varied βh; see the horizontal dashed 
line in Figure 5(a) at αh � 0:4 s�1. Limit cycles are born 
from each Hopf bifurcation point at the intersections of 
the dashed line and blue curves in Figure 5(a). We com-
puted these limit cycles for each βh value numerically. 
This led to branches of limit cycles whose stability 
and amplitude (i.e., the peak-to-peak amplitude of the 
corresponding velocity fluctuations) are indicated in 
Figure 5(b) as a function of βh. In Figure 5(b), we can 
observe the occurrence of linearly unstable equilibria, 
linearly stable equilibria, unstable limit cycles, and sta-
ble limit cycles. The branch of limit cycles responsible 
for the phantom jam is highlighted by thick colored 
lines, whereas other branches are plotted by dashed 
black lines in Figure 5(b). Along the colored branch, 
first the limit cycles are unstable, and their amplitude 
increases as βh is increased. Then, the branch folds, the 
limit cycles become stable, and the amplitude saturates 
around vmax as βh is decreased. These large-amplitude 
stable limit cycles are associated with oscillatory, stop- 
and-go motion—a phantom jam—where the speed 
repeatedly changes between zero and the speed limit 
vmax. The time period of the limit cycles is plotted in 
Figure 5(c), whereas one period of the stop-and-go 
motion is illustrated in Figure 5, (d) and (e) for point B 
of Figure 5(b).

Figure 5(b) reveals that for certain βh parameters— 
between the Hopf bifurcation point and the point where 
the branch of limit cycles folds—a large-amplitude sta-
ble limit cycle coexists with the stable equilibrium (and 
also with an unstable limit cycle). The coexistence of the 
stable equilibrium and the stable limit cycle is called 
bistability—a phenomenon appearing in nonlinear sys-
tems only. It means that in practice, two qualitatively 
different behaviors can be observed for the same human 
drivers; the traffic flow can either be stable and smooth 
(associated with convergence to the equilibrium), or a 
phantom jam can appear (associated with convergence 
to the large-amplitude stable limit cycle) as illustrated 
by Figure 2, (c) and (d).

Whether smooth flow or congestion is observed for a 
bistable traffic system depends on whether perturba-
tions push the system to the domain of attraction of the 
equilibrium or to that of the stable limit cycle. These 
DoAs are determined by the unstable limit cycle, as 
highlighted in Figure 6. Panels (a)–(c) of Figure 6 show 
the stable equilibrium, the unstable limit cycle, and the 

stable limit cycle, respectively, of the human-driven 
traffic for point B of Figure 5(a). Note that the stable 
limit cycle matches the purple curves in Figure 5, (d) 
and (e). Panels (d)–(h) of Figure 6 show simulations of 
the corresponding open chain of vehicles with the same 
parameters (see Figure 2, (c) and (d)). Panels (d)–(f) of 
Figure 6 show a below-threshold (6 m/s) speed pertur-
bation for the lead vehicle. As this perturbation is 
“inside” the unstable limit cycle in the phase portrait of 
panel (f) of Figure 6, convergence to the equilibrium 
is observed, and the traffic flow becomes smooth. 
Meanwhile, an above-threshold (8 m/s) perturbation in 
panels (g)–(i) of Figure 6 goes “outside” the unstable 
limit cycle in panel (h) of Figure 6, and results in con-
vergence to the large-amplitude stable limit cycle asso-
ciated with a stop-and-go traffic jam. Note that limit 
cycles were calculated for the ring configuration with 
N� 24 vehicles, whereas simulations were conducted 
for an open chain of vehicles; hence, the agreement 
between these results is approximate. Furthermore, 
technically, the state space of system (1)–(11) is infinite 
dimensional because of the time delay, and the phase 
portraits in panels (c), (f), and (h) of Figure 6 are low- 
dimensional representations only. In fact, the DoAs 
exist in the infinite-dimensional state space, where 
it is nontrivial to interpret “inside” and “outside” the 
unstable limit cycle. Thus, the amplitude, frequency, 
and shape of perturbation signals all play a role in 
whether a phantom jam is observed. Nevertheless, the 
existence of the unstable limit cycle determines the 
topology of the system and the two DoAs, and ulti-
mately, it leads to the existence of phantom jams.

Importantly, we found that bistability occurs in 
human-driven traffic for a relatively wide range of 
driver behaviors. Specifically, by repeating the limit 
cycle computation of Figure 5(b) for various values of 
αh, we identified a large bistable region in the (βh,αh)
parameter space, as indicated by the red shading in 
Figure 5(a). Meanwhile, the occurrence of the bistabil-
ity phenomenon is undesired in traffic systems as it 
can lead to unexpected phantom jams. Therefore, we 
next investigate the occurrence of bistability in mixed 
traffic, and we seek to mitigate it by CAVs.

4.2.2. Mixed Traffic. We repeated the numerical analy-
sis of equilibria and limit cycles for the case of mixed 
traffic. Figure 7 shows the corresponding results, where 
every third vehicle is a CAV (each responding to the 
CAV m� 3 vehicles ahead), whereas the others are 
HVs. The dynamic behavior is analyzed as a function 
of the CAVs’ controller parameters. Figure 7 shows 
that although a bistable region still exists (see panel (a) 
of Figure 7) where traffic congestion could happen (see 
panels (d) and (e) of Figure 7 associated with point B 
(0.25, 0.1)), a significant part of the linearly stable region 
is not bistable. Thus, by using this chart, one can easily 
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find controller parameters for CAVs that avoid bistabil-
ity and ultimately lead to smooth traffic flow—even 
under nonlinear behavior.

Figure 8 shows the effect of increasing the penetration 
of CAVs in the traffic flow. As opposed to Figure 7, 
where every third vehicle was a CAV (corresponding to 
33% penetration with m� 3), Figure 8 shows the scenario 
in which every second vehicle is a CAV (i.e., 50% pene-
tration with m� 2). Clearly, more CAVs increase the size 
of the linearly stable region and reduce the relative size 
of the bistable region, and these both facilitate smooth, 
congestion-free traffic. Note that Figure 8 reveals an 

additional phenomenon that is common for larger num-
bers of vehicles: the occurrence of period-doubling 
bifurcation that gives rise to a limit cycle with doubled 
time period (see panel (b) of Figure 8, which is plotted 
for β2 � 0:1 s�1). These additional period 2 limit cycles 
were also considered when analyzing bistability.

Importantly, Figures 7 and 8 provide a theoretically 
justified way to select the parameters of the CAVs’ con-
trollers. In particular, the control gains associated with 
globally stable traffic are located inside the gray regions 
of Figures 7(a) and 8(a). Thus, these stability charts offer 
stable gains for implementation, like the gains in point 

Figure 6. (Color online) Behavior of Bistable Human-Driven Traffic 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Notes. Equilibrium, unstable limit cycle, and stable limit cycle coexist for the nonlinear dynamics in ring configuration (panels (a)–(c)). Corre-
sponding simulations of an open vehicle chain show that the traffic flow becomes smooth when responding to a small speed perturbation (panels 
(d)–(f)), whereas it converges to stop-and-go motion for a large perturbation (panels (g)–(i)). The smooth flow is associated with the equilibrium, 
and the stop-and-go motion is related to the stable limit cycle, whereas the corresponding domains of attraction (that determine which one 
of these two behaviors is observed under perturbation) are affected by the unstable limit cycle. Panels (a), (d) and (g) show speeds, panels (b), (e) 
and (h) plot headways, whereas panels (c), (f) and (i) depict phase portraits. The parameters are the same as in Figure 2 and at point B in Figure 
5(a), whereas the speed perturbation of the lead vehicle differs from that in Figure 2. The initial conditions are hi(t) � h∗h, vi(t) � v∗, t ∈ [�τi, 0]
(l.c., limit cycle; perturb., perturbation).
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S. To demonstrate this, we chose the stable point S (0.3,
0.3), and we conducted numerical simulations. The
simulations are shown in Figure 9 for 17%, 25%, 33%,
and 50% penetration of CAVs (with m� 6, m� 4, m� 3,
and m� 2, respectively). Although the human drivers
behave string unstably (see the growing perturbations
for the gray curves in Figure 9), the CAVs (blue in
Figure 9) are able to overcome this and smooth out the
traffic as desired.

The ability of CAVs to smooth out mixed traffic flows, 
however, is limited by their penetration. Stable traffic 
may no longer be achievable if the CAV penetration is 

too low. The minimum penetration required for stable 
traffic depends on the human driver behavior. In 
Figure 9, every human driver has a large reaction time 
(τi � 1 s) and hence, behaves in a highly string unstable 
manner, making this a “worst-case scenario.” For this 
particular example, instability is observed below 15% 
penetration (i.e., for m ≥ 7).

It important to remark that the connectivity between 
the CAVs plays crucial role in achieving globally stable 
mixed traffic. Specifically, connectivity allows CAVs 
to obtain information from connected vehicles farther 
ahead, beyond the line of sight. This information 

Figure 7. (Color online) Nonlinear Dynamics of Mixed Traffic in Ring Configuration Where Every Third Vehicle Is a CAV (with 
m � 3) 

(a)

(b)

(c)

(d)

(e)

Notes. The same properties are shown with the same notations as in Figure 5. (a) Stability chart (and a zoom in shown by the inset), (b) amplitude 
and stability of limit cycles, (c) time period of limit cycles, (d and e) large-amplitude oscillatory motion corresponding to the s.l.c. at point B. 
Observe that the bistable region is small, thanks to the CAVs. Although a phantom jam with large-amplitude oscillatory motion could still occur, 
the controller parameters of CAVs can be tuned using this chart to avoid it. The rest of the parameters match those of Figure 4(b) (s.e., linearly sta-
ble equilibria; s.l.c., stable limit cycle; u.e., linearly unstable equilibria; u.l.c., unstable limit cycle).
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provides a look ahead of the upcoming velocity per-
turbations, which enables CAVs to respond to pertur-
bations early and thereby, compensate for the time 
delays involved in their dynamics that would other-
wise give rise to the linear instability and nonlinear 
bistability phenomena.

The importance of connectivity is also highlighted 
by the stability charts presented above. Globally stable 
behavior is achievable only if the CAVs respond to the 
information from connectivity: that is, if β3 ≠ 0 in 
Figure 7 and β2 ≠ 0 in Figure 8. Note, however, that 
information from connectivity is available only if the 

CAVs travel in each other’s communication range, 
which is a few hundred meters with current vehicle- 
to-vehicle connectivity technology. If the penetration 
of CAVs is very low and they are distributed sparsely 
in traffic, they may be too far from each other to com-
municate. However, a higher penetration increases 
the chance of CAVs to communicate and helps elimi-
nate instability or bistability phenomena.

The benefit of connectivity is further emphasized in 
Figure 10, where the scenario of Figure 9 is simulated 
without connectivity considering nonconnected auto-
mated vehicles instead of CAVs. The AVs execute 

Figure 8. (Color online) Nonlinear Dynamics of Mixed Traffic in Ring Configuration Where Every Second Vehicle Is a CAV 
(with m � 2) 

(a)

(b)

(c)

(d)

(e)

Notes. (a) Stability chart (and a zoom in shown by the inset), (b) amplitude and stability of limit cycles, (c) time period of limit cycles, (d and e) 
large-amplitude oscillatory motion corresponding to the s.l.c. at point B. Compared with Figure 7, the higher penetration of connectivity and 
automation increases the size of the linearly stable region and decreases the relative size of the bistable region. This helps to eliminate traffic con-
gestion phenomena and gives a large amount of freedom to select the controller parameters of CAVs. The rest of the parameters match those of 
Figure 4(c). (PD, period doubling; s.e., linearly stable equilibria; s.l.c., stable limit cycle; u.e., linearly unstable equilibria; u.l.c., unstable limit cycle).
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adaptive cruise control, obtained from the CCC strat-
egy (9) with βj � 0, j>1 (i.e., without response to the 
vehicles farther ahead of the AVs). The remaining con-
trol gains α�and β1 are tuned to the best values found 
by the experiments in Beregi et al. (2023). According to 
Figure 10, AVs without connectivity fail to achieve sta-
ble mixed traffic unless the penetration of automation 
is very high (such as 50%). However, moderate pene-
trations (such as 17%) of CAVs leveraging connectiv-
ity successfully smoothed out the traffic in Figure 9. 
These results show the promise of CAVs and the 
importance of connectivity to mitigate congestion in 
mixed traffic—ultimately leading to a more stable, 
smooth, and safe future of mobility on highways.

5. Conclusions
In this paper, we analyzed the nonlinear dynamics 
of mixed traffic systems on highways, consisting of 
human-driven vehicles and connected automated vehi-
cles. We showed that homogeneous human-driven traf-
fic is susceptible to phantom jams and bistability—an 
undesired phenomenon in which the same human dri-
vers can both exhibit smooth driving behavior or cause 
a severe traffic congestion, depending on perturbations 
like an unexpected braking of an individual driver. 

To remedy this, we demonstrated that bistability and 
congestion can be mitigated by the positive impact of 
CAVs on mixed traffic, and we identified controller 
parameters for CAVs that are able to do so. Moreover, 
we highlighted that connectivity between CAVs plays 
a crucial role in mitigating the phantom jams caused 
by time delays and nonlinearities in the dynamics, 
whereas smooth mixed traffic is more challenging to 
achieve by automated vehicles without connectivity. 
Finally, we demonstrated that increasing the penetra-
tion of CAVs in mixed traffic further improves the non-
linear dynamic behavior and helps to avoid phantom 
jams caused by bistability.

Throughout this paper, we limited our discussion to a 
specific car-following model to describe human drivers 
and a specific connected cruise controller to regulate the 
motion of CAVs. We also restricted our numerical case 
studies to identical human drivers and identical CAVs 
to reduce the number of underlying parameters. Never-
theless, our framework to explain congestion phenom-
ena in mixed traffic—with the notions of bistability and 
phantom jams and the tools of stability charts and bifur-
cation analysis—is applicable to other car-following 
models, other control strategies, and nonuniform driv-
ing behaviors as well. The detailed analysis of these 

Figure 9. (Color online) Simulation of Mixed Traffic Where Every mth Vehicle Is a CAV (Corresponding to 100=m% Penetration 
of Connectivity and Automation) 

(a) (b)

(c) (d)

Notes. Stable traffic flow is achieved despite the string unstable human driver behavior thanks to CAVs—even considering nonlinear dynamics. 
The parameters are (a) m � 6, (b) m � 4, (c) m � 3, (d) m � 2, and β1 � 0:3 s�1, βm � 0:3 s�1 (related to point S in Figures 7(a) and 8(a)). The rest of 
the parameters match those in Figures 7 and 8. (a) 17% penetration. (b) 25% penetration. (c) 33% penetration. (d) 50% penetration.
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cases is left for future work. Future research directions 
also include analytical calculations to support the 
numerical analysis of bistability and the extension of 
this work to multilane traffic scenarios and urban 
environments.
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Figure 11 Simulation of human-driven traffic with the intelligent driver model. Similar to Figure 2(c,d),

bistability is observed: smooth traffic and phantom jam are both possible for the same human drivers. The

model (1), (5) and (19) was simulated with a= 2m/s2, b= 8m/s2, vmax = 36m/s and T = 1.2 s, while setting the

delay to τi = 0.9 s. The remaining parameters and the initial conditions are the same as in Figure 2(c,d).

Appendix A Bistability with Various Human Driver Models
Figure 2(c,d) demonstrate bistable behavior and the occurrence of a phantom jam in human-driven traffic

for a case where each HV is identical and described by the optimal velocity model (OVM). In this appendix,

we highlight that bistability also occurs in case of other human driver models as well as in heterogeneous

traffic where the HVs are nonidentical.

First, we demonstrate simulation results with the intelligent driver model (IDM) from Treiber et al.

(2000):

fi

(
hi, vi,

dhi

dt

)
= a

1−
(

vi
vmax
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−

H
(
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dhi
dt

)
hi

2
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H
(
vi,
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)
= hst +Tvi −

dhi

dt

vi√
ab

,

(19)

where the parameters hst and vmax have the same meaning as in the OVM, while a, b and T are additional

driver parameters. Figure 11 shows the results of simulating the dynamics (1) and (5) of human-driven traffic

with the IDM (19). Clearly, the same qualitative behavior is observed as in Figure 2(c,d): smooth traffic

flow is recovered for a small speed perturbation, while a phantom jam occurs for a large one, indicating that

the traffic system is bistable.

Next, we highlight that bistability and phantom jams occur for heterogeneous human-driven traffic. Fig-

ure 12 plots simulation results for the dynamics (1) and (5), considering nonidentical HVs described by

the OVM (6) with driver parameters chosen randomly for each HV. The three rows of the figure show-

case scenarios with three different sets of human driver parameters. Bistability arises in each case similar

to Figure 2(c,d), and we observed this phenomenon consistently for several other random parameter sets

too.
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Figure 12 Simulation of heterogeneous human-driven traffic with three different sets of driver parameters.

Bistability and phantom jams are observed in each case, similar to the homogeneous traffic with identical

HVs in Figure 2(c,d). The driver parameters are chosen for each HV randomly, from the intervals

αh ∈ [0.2,0.6] 1/s, βh ∈ [0.25,0.75] 1/s and τi ∈ [0.3,0.9] s based on uniform distribution. The remaining parameters

and the initial conditions are the same as in Figure 2(c,d).

These results highlight that, although the main body of the paper presents examples for identical human

drivers described by the OVM, the phenomena of bistability and phantom jams are generic and occur for

various human driver models and even for nonidentical HVs.
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Appendix B Linear Stability Analysis
In this appendix, we discuss stability analysis for the linearized dynamics of mixed traffic, and we describe

the analytical calculation of the linear stability charts in Figure 4.

B.1 Human-driven Traffic

First, we consider human-driven traffic on a ring, as illustrated by Figure 1(c). We consider N identical

human drivers with delay τi = τ for all i∈ IHV and with behavior governed by (1) and the OVM in (6).

Within the saturation limits of sat and Vh, the corresponding linearized dynamics in (12) have the coeffi-

cients Ai,1 = αhκh, Ai,2 =−αh and Ai,3 = βh, where κh =
dVh
dh

(h∗
h). By the Laplace transformation of (12),

we obtain the link transfer function in (14) in the form:

Ti,i+1(s) =
Ai,3s+Ai,1

s2esτ +(Ai,3 −Ai,2)s+Ai,1

=
βhs+αhκh

s2esτ +(αh +βh)s+αhκh

, (20)

for all i∈ IHV.

Since the ring consists of N identical HVs, the head-to-tail transfer function in (17) reads:

G0,N(s) =
∏

i∈IHV

Ti,i+1(s) = Ti,i+1(s)
N . (21)

Therefore, the characteristic equation (18) of the ring becomes:

Ti,i+1(s) = e−j 2kπN , (22)

where k ∈ {0,1, . . . ,N − 1} is called the wave number. After substituting (20), this leads to:

s2esτ +(αh +βh)s+αhκh − (βhs+αhκh)e
j 2kπN = 0. (23)

For each value of k, this equation can be solved for s and characteristic roots can be calculated, denoted

by sℓ, ℓ∈Z. These roots must lie in the left half of the complex plane to achieve stability. Note that for

k= 0 we have the root s0 = 0, which represents the ring’s translational symmetry. Hence we consider the

remaining roots only and determine whether Re(sℓ)< 0 holds.

More precisely, we calculate the stability boundaries where Re(sℓ) = 0 holds for some ℓ∈Z\{0}. These

boundaries are formulated as curves in the space (βh, αh) of parameters. To obtain these boundaries, we

substitute s= jω into (23), where j2 =−1 and ω≥ 0. For ω= 0, we obtain αh = 0 as stability boundary.

For ω > 0, we decompose (23) into real and imaginary parts, and solve the resulting two equations for βh

and αh. For k= 0, this yields αh = (−1)q (2q+1)π

2τ
, q ∈Z. For k > 0, this leads to stability boundaries that

are parameterized by ω > 0:

αh =
ω2

(
cos(ωτ)− cos

(
ωτ − 2kπ

N

))
−ω sin 2kπ

N
+2κh

(
1− cos 2kπ

N

) ,
βh =

−ω2 cos(ωτ)+κhω
(
sin(ωτ)− sin

(
ωτ − 2kπ

N

))
−ω sin 2kπ

N
+2κh

(
1− cos 2kπ

N

) .

(24)

The stability boundaries are plotted in Figure 4(a) for each value of k, resulting in the blue curves bounding

the linearly stable parameter region.
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B.2 Mixed Traffic

Next, we consider mixed traffic on a ring with N vehicles where every mth vehicle is CAV while the others

are HVs; see Figure 1(d). That is, a group of m vehicles (one CAV and m− 1 HVs) is repeated N/m times

along the ring, where N/m is considered to be an integer. Each HV is assumed to be identical, as described

above. Furthermore, the CAVs are also identical, executing the CCC (9) with delay τi = σ for all i∈ ICAV.

Within the saturation limits of sat, V and W , the linearized dynamics (13) have the coefficients Ai,1 = ακ,

Ai,2 =−α−
∑m

j=1 βj and Ai,j+2 = βj , where κ= dV
dh

(h∗). The link transfer functions describing the CAVs

in (15) read:

Ti,i+1(s) =
Ai,3s+Ai,1

s2esσ −Ai,2s+Ai,1

=
β1s+ακ

s2esσ +
(
α+

∑m

j=1 βj

)
s+ακ

,

Ti,i+j(s) =
Ai,j+2s

s2esσ −Ai,2s+Ai,1

=
βjs

s2esσ +
(
α+

∑m

j=1 βj

)
s+ακ

, j ∈ {2, . . . ,m},
(25)

for all i∈ ICAV. The link transfer functions describing HVs are still given by (20) for all i∈ IHV.

We assume that each CAV responds to the vehicle immediately ahead of them and to the preceding CAV

m vehicles ahead, that is, β1 and βm are nonzero while βj = 0 for j ∈ {2, . . . ,m− 1}. Then, the response of

the m-vehicle group, that comprises the CAV and the m−1 preceding HVs, is described by the head-to-tail

transfer function:

Gi,i+m(s) = Ti,i+1(s)

m−1∏
j=1

Ti+j,i+j+1(s)+Ti,i+m(s), (26)

for all i∈ ICAV.

Since the group of m vehicles is repeated N/m times along the ring, the head-to-tail transfer function of

the overall ring configuration in (17) becomes:

G0,N(s) =
∏

i∈ICAV

Gi,i+m(s) =Gi,i+m(s)
N/m. (27)

Therefore, the characteristic equation (18) takes the form:

Gi,i+m(s) = e−j 2kπm
N , (28)

with k ∈ {0,1, . . . ,N/m− 1}. After substituting (25), this leads to:

s2esσ +(α+β1 +βm)s+ακ−
(
(β1s+ακ)Gi+1,i+m(s)+βms

)
ej

2kπm
N = 0, (29)

where Gi+1,i+m(s) =
∏m−1

j=1 Ti+j,i+j+1(s) denotes the overall response of the m− 1 HVs. The stability of

the ring configuration can be analyzed by investigating the roots of the characteristic equation (29). Again,

notice that for k= 0 we have the root s0 = 0 (since Gi+1,i+m(0) = 1 holds), which represents the ring’s

translational symmetry and is disregarded for the subsequent analysis.
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We calculate the stability boundaries as curves in the space (β1, βm) of control gains. To this end, we

substitute s= jω into (29). For ω= 0, we obtain α= 0 as stability boundary which does not show up as a

curve in the (β1, βm) space. For ω > 0, we decompose (29) into real and imaginary parts, and solve it for

β1 and βm. For k= 0, we get:

β1 =
ω2 cos(ωσ)−ακ(1−ΓR)

ωΓI

, (30)

where ΓR =Re(Gi+1,i+m(jω)), ΓI = Im(Gi+1,i+m(jω)) and ω is the solution of:

−ω2 ((1−ΓR) cos(ωσ)−ΓI sin(ωσ))+ακ
(
(1−ΓR)

2 +Γ2
I

)
−αωΓI = 0. (31)

For k > 0, we obtain the following stability boundaries parameterized by ω > 0:

β1 =
ω2

(
cos(ωσ)− cos

(
ωσ− 2kπm

N

))
+αωS−ακ ((ΓR +1) (1−C)+ΓIS)

ω ((ΓR − 1)S−ΓI (1−C))
,

βm =
−ω2

(
cos(ωσ)−ΓR cos

(
ωσ− 2kπm

N

)
−ΓI sin

(
ωσ− 2kπm

N

))
ω ((ΓR − 1)S−ΓI (1−C))

+
−αω (ΓRS+ΓIC)+ακ (1− 2ΓRC +2ΓIS+Γ2

R +Γ2
I )

ω ((ΓR − 1)S−ΓI (1−C))
,

(32)

where S = sin 2kπm
N

and C = cos 2kπm
N

. The stability boundaries are plotted as the blue curves in Fig-

ure 4(b,c) for each value of k, considering m= 3 and m= 2.
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