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Abstract— This manuscript presents a control barrier func-
tion based approach to shared control for preventing a vehicle
from entering the part of the state space where it is unre-
coverable. The maximal phase recoverable ellipse is presented
as a safe set in the sideslip angle–yaw rate phase plane
where the vehicle’s state can be maintained. An exponential
control barrier function is then defined on the maximal phase
recoverable ellipse to promote safety. Simulations demonstrate
that this approach enables safe drifting, that is, driving at the
handling limit without spinning out. Results are then validated
for shared control drifting with an experimental vehicle in a
closed course. The results show the ability of this shared control
formulation to maintain the vehicle’s state within a safe domain
in a computationally efficient manner, even in extreme drifting
maneuvers.

I. INTRODUCTION

Expanding the operational range of (semi-)autonomous
vehicles can increase the feasible action space available
to safety systems in emergencies. Indeed, current safety
systems, such as electronic stability control (ESC), operate
on a small subset in the state space where open-loop stability
is preserved. Yet, skilled drivers can precisely maneuver
a vehicle in a continued state of oversteer when drifting.
Having advanced safety systems capable of similar levels of
maneuverability could improve safety in practical scenarios
such as a vehicle oversteering when encountering a snow
patch.

One successful approach for autonomous vehicles exe-
cuting maneuvers at and beyond the stable handling limits
in racing and drifting is nonlinear model predictive control
(NMPC) [1]–[3]. Recent works have demonstrated how these
control techniques can amplify the driver’s abilities in a
shared control setting through parallel autonomy and keep
the system safe even when the vehicle is operating in extreme
situations [4], [5]. While these works have shown the ability
to control a vehicle at the handling limits, transitioning
these methods from research to broader deployment remains
challenging due to potentially limited onboard compute
on broadly available production vehicles, and due to local
minima and infeasibility of nonconvex optimization.

Control barrier functions (CBFs) show particular promise
for ensuring safety in a computationally efficient manner as
they can be formulated through quadratic programming (QP)
[6]. By imposing forward invariance of a set in state space,
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Fig. 1: Segment of figure 8 maneuver from experimental validation
with the CBF based controller turned on.

safety can be guaranteed [7]–[11]. Unifying CBFs with
control Lyapunov funcions (CLFs) can enable safety and
performance objectives to be met simultaneously. Notably,
a QP can ensure that safety is prioritized through the CBF
while stability is achieved through the CLF [6]. In the
automotive domain, such approaches have been demonstrated
for guaranteeing safety via minimal intervention for adaptive
cruise control (ACC), lane keeping [7], [8], [12], and emer-
gency braking of connected automated vehicles (CAVs) [13].

While these works have demonstrated success in ensuring
safety in simple driving scenarios, they do not address the
problem of ensuring safety at and beyond the stable handling
limits that would require one to account for the strong
nonlinearities in vehicle dynamics. Also, these works do
not consider the problem of shared control. Racing and
drifting are particularly interesting examples to probe CBF
approaches for vehicle safety as the vehicle is operating right
at the edge of its capabilities and is at the verge of losing
control authority.

This work proposes an approach to mitigate a vehicle
violating safety bounds that would lead to unrecoverable
motion. The maximal phase recoverable ellipse (MPREl)
is presented as a safe set in the sideslip angle–yaw rate
phase plane where the vehicle remains in a recoverable
state. Specifically, the MPREl extends upon [14] by applying
a smooth approximation to the maximal phase recoverable
envelope and developing a closed form, analytical solution.
Next, in contrast to previous approaches developed for racing
and drifting, a control barrier function is placed on this
ellipse to filter driver commands in a shared control setting.
In order to handle the higher relative degree of the control
system, an exponential control barrier function (ECBF) is
utilized in the safety filter. We demonstrate the utility of this
approach with full scale shared control drifting experiments
where the vehicle safely operates in the open loop unstable
region; see Fig. 1.
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The rest of the paper is structured as follows. Sec. II pro-
vides mathematical background on CBFs and states our main
safety result. The vehicle dynamics, the maximum phase
recoverable ellipse based CBF design, and the quadratic
program are introduced in Sec. III. The experimental val-
idation with supporting numerical simulations are presented
in Sec. IV. Finally concluding remarks are in Sec. V.

II. BACKGROUND ON CONTROL BARRIER FUNCTIONS

Barrier functions have drawn interest to enable the design
of controllers that certify safety of a system through condi-
tions on forward invariance of a given set. Here we give a
brief overview while more details can be found in [6], [15].

Consider a system with control affine dynamics

ẋ = f(x) + g(x)u, (1)

with state x ∈ Rn, input u ∈ Rm, and locally Lipschitz
functions f(x) and g(x). The notion of safety can be
characterized through forward invariance of a set in state
space for a dynamical system.

Definition 1. Forward invariance [6]: The set S ⊂ Rn is
forward invariant if x(0) ∈ S ⇒ x(t) ∈ S,∀t ≥ 0 for the
solutions of (1). Then we say that the set S is safe w.r.t. (1).

Specifically, we consider the set S to be the 0-superlevel
set of a continuously differentiable function h : Rn → R:

S = {x ∈ Rn : h(x) ≥ 0}. (2)

Therefore the forward invariance of the set S can be char-
acterized by maintaining the non-negativity of the func-
tion h. That is, to certify safety, one needs to show that
h(x(0)) ≥ 0 ⇒ h(x(t)) ≥ 0, ∀t ≥ 0. This leads to the fol-
lowing definition.

Definition 2. Control barrier function (CBF) [6]: The con-
tinuously differentiable function h : Rn → R is a CBF for (1)
on S defined by (2), if there exists α0 > 0 such that ∀x ∈ S

sup
u∈Rm

[
ḣ(x, u)

]
= sup

u∈Rm

[
Lfh(x) + Lgh(x)u

]
> −α0 h(x),

(3)
where Lfh(x) = ∇h(x)f(x) and Lgh(x) = ∇h(x)g(x) are
the Lie derivatives of h along f and g.

To be more general, one may use a class-K function of h
on the right hand side instead of the linear function with
gradient α0, but in most practical applications the above
setup is adequate. With Definition 2 we can state a theorem
which can be used to synthesize safe controllers.

Theorem 1. [6]: If h is a CBF for (1) on S defined
by (2), then any locally Lipschitz continuous controller
ξ : Rn → Rm, with u = ξ(x) satisfying

ḣ(x, u) = Lfh(x) + Lgh(x)u ≥ −α0 h(x), (4)

∀x ∈ S renders set S safe w.r.t. (1).

Condition (4) can be used as a constraint when syn-
thesizing controllers via quadratic programming (QP) if
Lgh(x) ̸= 0. However, in many practical cases this condition

does not hold. Such systems still admit controllers leveraging
CBFs to ensure forward invariance, and are based on the
concept of relative degree.

Definition 3. The k times continuously differentiable func-
tion h : Rn → R has relative degree k ≥ 2 for (1) if ∀x ∈ Rn

we have Lgh(x) = LgLfh(x) = . . . = LgL
k−2
f h(x) = 0

and LgL
k−1
f h(x) ̸= 0.

For systems with dynamics (1) with a higher relative
degree, safety conditions of type (4) can be imposed using
an exponential CBF (ECBF) [6], [9], [16]. Define the system

η̇(x) = Fη(x) +Gµ,

h(x) = Cη(x), (5)

where

F =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
0 0 0 . . . 1
0 0 0 . . . 0

 , G =


0
...
0
1

 , η(x) =


h(x)

Lf (h(x))
...

Lk−1
f (h(x))

 ,

C =
[
1 0 · · · 0

]
. (6)

Furthermore, define the sets Si ⊂ Rn as 0-superlevel sets of
the functions νi(x) : Rn → R as

ν0(x) = h(x), S0 = {x ∈ Rn : ν0(x) ≥ 0},
ν1(x) = ν̇0(x) + α0ν0(x), S1 = {x ∈ Rn : ν1(x) ≥ 0},

... (7)
νk(x) = ν̇k−1(x) + αk−1νk−1(x), Sk = {x ∈ Rn : νk(x) ≥ 0},

where S0 = S by definition. The constants −αi ∈ R,
i = 0, . . . , k − 1 are the (real) roots of the characteristic
polynomial of F −GP⊤. That is, we have

(λ+ α0)(λ+ α1) · · · (λ+ αk−1) (8)

= λk + pk−1λ
k−1 + · · ·+ p1λ+ p0 = 0,

with coefficients pi ∈ R, i = 0, . . . , k − 1. These coefficients
can be used to construct the state feedback

µ = −P⊤η(x), where P⊤ = [ p0 p1 · · · pk−1 ].

Then, the ECBF is defined as follows.

Definition 4. Exponential control barrier function (ECBF)
[6]: Given a set S ⊂ Rn defined as the 0-superlevel set of a k
times continuously differentiable function h : Rn → R, then
h is an ECBF if there exists P ∈ Rk such that ∀x ∈ Int(S),

sup
u∈Rm

[
Lk
fh(x) + LgL

k−1
f h(x)u

]
> −P⊤η(x), (9)

results in h(x(t)) ≥ Ce(F−GP⊤)tη(x(0)) ≥ 0 whenever
h(x(0)) ≥ 0.

The gain matrix P can be chosen to satisfy the ECBF
conditions in Definition 4 using the following result.

Theorem 2. [6], [9]: Suppose P ∈ Rk is chosen such that
the control system F −GP⊤ has negative real eigenvalues
which satisfy −αi ≤ ν̇i(x(0))/νi(x(0)) for i = 0, . . . , k − 1.
Then, µ ≥ −P⊤η(x) guarantees that h(x) is an ECBF.
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Fig. 2: Bicycle model used in this paper.

We then state the following theorem which leverages
arguments in [17] to show the forward invariance of the set
S ∩ S1 ∩ · · · ∩ Sk−1.

Theorem 3. (Main Result) If h is a ECBF for (1) with sets
Si, i = 0, . . . , k defined by (7), then any locally Lipschitz
continuous controller ξ : Rn → Rm, with u = ξ(x) satisfy-
ing

Lk
fh(x) + LgL

k−1
f h(x)u ≥ −Pη(x), (10)

∀x ∈ Sk−1 renders set S ∩ S1 ∩ · · · ∩ Sk−1 safe w.r.t. (1).

Proof: If a controller satisfies the condition (10) then
it renders Sk−1 forward invariant according to Theorem 2.
Then, following the argument in Corollaries 1 and 2 in
[17], Sk−2 ∩ Sk−1 is forward invariant. Using the same
logic yields that Sk−3 ∩ Sk−2 ∩ Sk−1 is forward invariant
and applying this approach successively yields the forward
invariance of S ∩ S1 ∩ · · · ∩ Sk−1. ■

Condition (10) can be utilized as a constraint in a QP when
synthesizing controllers as will be applied below for the
vehicle model. Again, one may use class-K functions instead
of the linear ones with gradients αi ∈ R, i = 0, . . . , k − 1
and construct a so-called extended CBF [15], [18]. This may
provide one with more flexibility in control design but the
linear functions already give formal safety guarantees. Below
we demonstrate that using an ECBF can indeed render the
vehicle safe in real experimental scenarios.

III. CONTROL BARRIER FUNCTIONS FOR VEHICLE
SAFETY

Here we present the nonlinear vehicle model used for con-
trol design. We introduce the maximum phase recoverable
ellipse on the sideslip angle–yaw rate phase plane which the
control barrier function is designed with. Finally, a quadratic
programming safety filter is designed.

A. Vehicle Dynamics

To construct a candidate CBF that can operate in ex-
treme safety maneuvers, a suitable vehicle model is needed.
Works [2], [3] have shown that a 3 degree-of-freedom single
track model (depicted in Fig. 2) describes vehicle behavior
adequately even in extreme situations such as racing and
drifting. Since we focus on vehicle handling, we omit the
configuration coordinates and describe the vehicle using the

velocity states, namely, the yaw rate r, the slideslip angle
β of the center of mass, and the speed V of the center of
mass. The steering angle δ and the torque τ applied at the
rear wheel are also added to the system state by assuming
that we command the steering rate δ̇ and the torque rate τ̇ .

Defining the state x = [ r β V δ τ ]⊤ and the input
u = [ δ̇ τ̇ ]⊤ yields the control affine form (1) with functions

f(x) =


a(Fx,f sin δ+Fy,f cos δ)−bFy,r

Iz
Fx,f sin(δ−β)+Fy,f cos(δ−β)−Fx,r sin β+Fy,r cos β

mV − r
Fx,f cos(δ−β)−Fy,f sin(δ−β)+Fx,r cos β+Fy,r sin β

m
0
0

 ,

g(x) =

[
0 0 0 1 0
0 0 0 0 1

]⊤
, (11)

where a and b are the distances between the center of mass
and front and rear axles, m is the mass of the vehicle, and
Iz is the moment of inertia about center of mass.

The lateral tire forces are given by the tire model in [2]:

Fy =


−Cc tanα+

C2
c

3Fy,max
| tanα| tanα− C3

c

27F 2
y,max

tan3 α

if |α| < αsl,

−Fy,max sgnα if |α| > αsl,

(12)

with αsl = atan
(

3Fy,max

Cc

)
and Fy,max =

√
(µFz)2 − γF 2

x .
Here Cc is the cornering stiffness, µ is the coefficient of
friction, Fz is the normal force, while γ = 0.99 is a tuning
parameter to ensure numeric stability as longitudinal force
Fx approaches the friction limit. Note that (12) is identical
to the brush model in [19] when considering that the sticking
and sliding friction coefficients are equal (µ0 = µ).

The normal forces for the front and the rear tires are
calculated based on the static weight distribution:

Fz,f =
mgb

a+ b
, Fz,r =

mga

a+ b
. (13)

Considering rear wheel drive, the longitudinal forces are

Fx,f = 0, Fx,r =
τ

rw
, (14)

where τ is wheel torque and rw is the wheel radius. Finally,
the front and rear slip angles can be calculated from the
vehicle kinematics, namely, from the velocity of the wheel
centers as

αf = arctan

(
V sinβ + ar

V cosβ

)
− δ,

αr = arctan

(
V sinβ − br

V cosβ

)
.

(15)

Observe that (1),(11),(12),(13),(14),(15) give a highly non-
linear set of equations which may possess multiple equilibria
making the control design a very challenging task.
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(a) Negative steering (b) Positive steering.

Fig. 3: Phase portrait for constant speed V = 7m/s when applying the steering angle δ = δmax = 0.71 rad and zero axle torque τ = 0
for the MPRE (black and purple) and the MPREl (red).

B. Maximum Phase Recoverable Ellipse and CBF Design
The CBF candidate is defined on the maximum phase

recovery ellipse (MPREl) which is constructed as a subset
of the maximum phase recovery envelope (MPRE) defined
in [14]. While other representations could be considered,
such as the intersection of four half planes [20], the MPREl
captures a large portion of the MPRE in a single constraint.
Briefly, the MPRE bounds the set where a vehicle remains
in an open loop unstable yet still recoverable state. Beyond
the MPRE, the vehicle loses control authority and can no
longer be stabilized, leading to a spin out. In constructing the
set, it is useful to visualize the phase portrait corresponding
to maximum countersteer δ = ±δmax and zero axle torque
τ = 0, as this is an input that captures nearly all recoverable
states [14] by maximizing the tire force needed to balance the
yaw moment. Fig. 3 depicts the phase portrait for negative
countersteer (panel (a)) and positive countersteer (panel (b))
at zero axle torque. An elliptical approximation, namely the
MPREl, is also shown (red).

As in [21], the MPRE is constructed for desired sideslip
angles β = ±βmax by obtaining a point on the beta nullcline
β̇ = 0:{

r =
µFz,f cos(−δmax−βmax)+µFz,r cos βmax

mV if δ ≤ 0,

r =
−µFz,f cos(δmax−βmax)−µFz,r cos βmax

mV if δ ≥ 0,
(16)

where we considered that at the handling limit Fy = µFz .
Then the MPRE is obtained by forward (purple) and reverse
(black) simulating the dynamics. Then fitting the largest
ellipse within these trajectories gives the MPREl (red); see
Fig. 3. Notably, trajectories are observed to converge even
outside of the ellipse thus making it a conservative estimate
should the barrier be breached, e.g., due to model mismatch
or actuation limits.

To mitigate a loss of control, the states are constrained
to remain inside the MPREl. Then the candidate ECBF
becomes

h(x) = d− (aβ2 + bβr + cr2), (17)

where a, b, c, and d parameterize the control barrier function
and these are all positive in our case. One may show that
Lgh(x) ≡ 0 but LgLfh(x) ̸= 0, ∀x ∈ Rn, and thus h(x) is
of relative degree 2. That is differentiation is needed for the
control inputs, i.e., the steering rate δ̇ and torque rate τ̇ to
appear, and motivates the use of an ECBF of Sec. II. For the
function (17) we have

Lfh(x) = −(2aββ̇ + bβ̇r + bβṙ + 2crṙ), (18)

where β̇ and ṙ are obtained from (11). Differentiating yields

L2
fh(x) + LgLfh(x)u (19)

= −
(
2aβ̇2 + 2bβ̇ṙ + 2cṙ2 + β̈(2aβ + br) + r̈(bβ + 2cr)

)
,

where the control inputs, δ̇ and τ̇ , appear in r̈ and β̈.

C. Quadratic Programming CBF Design

A control barrier function quadratic program (CBF-QP)
can then be formulated to prevent the driver from moving the
vehicle to unrecoverable states. We assume that the driver
commands the desired steering angle δd and the desired
torque τd. Then, applying (10) as the constraint one may
utilize the ECBF framework established above to filter the
driver input and ensure safety.

We construct the quadratic program

uQP(x) = argmin
u∈Rm+1

1

2
u⊤Hu+ F⊤u, (20)

s.t. L2
fh(x) + LgLfh(x)u+ p0h(x) + p1Lfh(x) + ϵ ≥ 0,
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Fig. 4: Experimental platform.

where u = [u⊤ ϵ ]⊤ = [ δ̇ τ̇ ϵ ]⊤ and ϵ is a slack variable
used to ensure numeric feasibility and counteract uncertain-
ties in the experiments; see [13], [22], [23] for robustification
of CBFs. Here the characteristic equation of F −GP⊤ takes
the form

(λ+ α0)(λ+ α1) = λ2 + p1λ+ p0 = 0, (21)

cf. (8), yielding p0 = α0α1, p1 = α0 + α1. To formulate the
shared control approach, the matrices in (20) are given as

H = diag([wδ, wτ , wϵ]), F = −[wδ δ̇d wτ τ̇d 0 ]⊤, (22)

which, apart from the weights incorporate the steering rate
δ̇d and driving torque rate τ̇d requested by the driver.

We remark that the experimental vehicle’s hardware inter-
faces through the steering angle δ and torque τ for measured
signals and expected commands. To address this, finite
differences were used on the vehicle to obtain [ δQP τQP ]
from [ δ̇QP τ̇QP ]. Additionally, input constraints could be
added to the QP, but in practice we found this was not
necessary due to the fast actuation of the vehicle.

IV. EXPERIMENTAL VALIDATION

Here we present the experimental results that were ob-
tained with a real vehicle on a test track. The vehicle was
operated by a human driver whose inputs were filtered by
the CBF based controller. After describing the experimental
platform we present simulation results which is followed by
the experimental results.

A. Experimental Platform

Experiments are performed on a large skidpad. The ex-
perimental vehicle (GRIP) is a custom made drive by wire
platform shown in Fig. 4. The vehicle has 4 independent
in hub Elaphe IWM M700 VD4 motors, and two axle
steering with a range of up to 0.71 rad at the front and
rear axle. A dual antenna Oxford Technical Systems (OxTS)
RT3003 RTK-GPS/IMU system provides state information
at 200 Hz, and the CBF-QP is implemented on a RAVE
ATC8110-F ruggedized computer with an Intel Xeon E-
2278GE processor. All experiments were performed on a
closed course.

The vehicle uses dynamics emulation [24] to exploit the
extra degrees of freedom in the steering and in hub motors
to replicate the dynamics of a vehicle driving on a low

friction (µ = 0.3) surface. Briefly, the inputs are mapped
through a nonlinear single-track model with a coupled slip
Fiala tire model parameterized by a friction coefficient of
µ = 0.3. This yields the desired yaw rate, sideslip angle,
and speed of the emulated model. A dynamics inversion
mapper then determines the combination of front and rear
steering, independent motor torques, and independent brake
torques, such that the physical vehicle’s dynamics matches
the emulated dynamics.

B. Simulation Results

Simulations are performed to demonstrate the ability of the
CBF-QP of Sec. III-C to mitigate entering an unrecoverable
part of the state space. Three shared control cases are con-
sidered: 1) the driver initiates a drift, 2) the driver attempts
a counterclockwise stable drift, and 3) the driver attempts
a transition in a figure 8 maneuver. These three cases
assess various aspects of vehicle control. Specifically, 1)
assesses transitions from grip driving to sliding, 2) assesses
stabilizing a slide, and 3) assesses dynamic transitions. In
all simulation cases, the driver applies excessive torque and
reduced countersteer, motivating the use of the proposed
safety filter as these inputs would lead to a loss of control.
For brevity, we demonstrate the results for the upper half of
the MPREl (counterclockwise drifting), but the simulations
are also performed for the bottom half (clockwise drifting)
and, as expected, yield a mirrored steering response. In all
discussion, results are presented for the rear axle torque and
steering angle at the handwheel. A linear map with a steering
ratio of 1/15 can be used to convert to roadwheel angle.

1) Drift Initiation: To test the drift initiation, the vehicle
starts near the origin, while the driver applies a steering input
of 1.5 rad (measured at the handwheel) and torque input
856Nm. Figs. 5a and 5d show the β − r phase plane with
the difference between the CBF-QP commands and driver
request for steering angle and torque, respectively. A grey
color means the CBF is accepting the driver input, whereas
a blue color means the CBF is reducing the driver input.

The driver’s commands cause the vehicle to evolve in
a counterclockwise direction towards the boundary of the
safe set (red ellipse), while the CBF-QP prevents the vehicle
from losing control. Notably, the CBF-QP reduces the torque
by a maximum of 678Nm (at β = −0.41 rad) while the
steering is augmented by −11.4 rad at the handwheel. These
actions prevent the vehicle from losing control as reducing
the torque allows for a larger allocation of rear tire force to
go to the stabilizing lateral force and increasing countersteer
increases the lateral force on the front axle which balances
the yaw moment of the vehicle, preventing a loss of control.
The CBF begins to return to the driver commands as the
vehicle evolves along the safe set boundary and stabilizes at
a point around [β, r] = [−0.61 rad, 0.96 rad/s]. The mean
solve time for simulation is 38.7µs, demonstrating real time
applicability.

2) Drift Equilibrium: Next, the vehicle starts at a
drift equilibrium [β, r] = [−0.44 rad, 0.44 rad/s], while
the driver applies a steering input of −1.5 rad and torque
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(b) Drift equilibrium steering difference.
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(c) Drift transition steering difference.
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(e) Drift equilibrium torque difference.
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(f) Drift transition torque difference.

Fig. 5: Phase plane plots for simulation validation. The top row shows the difference between the steering angle commanded by the driver
and realized by the vehicle after the safety filter is applied. The bottom row shows this difference for the driving torque.

input 700Nm. The open-loop inputs to maintain a drift at
this equilibrium are a steering input of −4.5 rad and torque
input 364Nm. Figs. 5b and 5e show the difference between
the CBF-QP commands and driver request for steering angle
and torque, respectively.

The vehicle evolves in a counterclockwise direction and
the driver’s commands cause the vehicle to evolve towards
the boundary of the safe set (red ellipse). The CBF-QP pre-
vents a loss of control by reducing the torque by 272.6Nm
(at β = −0.73 rad) while the steering is augmented by
−10.3 rad at the handwheel. Increasing countersteer and
reducing torque in turn increases the lateral force on the
the front and rear axles which balances the yaw moment of
the vehicle, preventing a loss of control. The CBF-QP then
begins to match the driver inputs as the trajectory progresses
along the barrier boundary before returning toward the origin.
The mean solve time for simulation is 40µs, demonstrating
real time applicability.

3) Drift Transition: Next, the vehicle starts at a
point corresponding to a figure 8 drift transition
from a clockwise drift to a counterclockwise drift at
[β, r] = [−0.98 rad, 0.15 rad/s], while the driver applies a
steering input of 1.5 rad and torque input 800Nm. Figs. 5c
and 5f show the difference between the CBF-QP commands
and driver request for steering and torque, respectively.

The vehicle evolves in a counterclockwise direction and
the driver’s commands cause the vehicle to evolve towards
the boundary of the safety set (red ellipse). The CBF-QP
prevents the vehicle from losing control by reducing the
torque by 613Nm (at β = −0.38 rad) while the steering
is augmented by −11 rad at the handwheel. Increasing
countersteer and reducing torque in turn increases the lateral
force on the the front and rear axles which balances the
yaw moment of the vehicle, preventing a loss of control.

As the vehicle evolves along the boundary, the CBF-QP
begins to return to matching the driver commands. The mean
solve time for simulation is 39.8µs, demonstrating real time
applicability.

C. Experimental Results

Next, the experiments performed on the GRIP platform are
described for minimally invasive shared control. As depicted
in Fig. 1, the driver is performing circular clockwise, coun-
terclockwise, and transition drifts. The results are shown in
Figs. 6a and 6b where the same notation is used as in Fig. 5.

The trajectory evolves in counterclockwise loops, and the
phase portrait can be divided into four parts. In quadrant I
(β > 0, r > 0) the vehicle is transitioning from a clock-
wise to counterclockwise drift (e.g., figure 8 transition).
In quadrant II (β < 0, r > 0) the vehicle is performing a
counterclockwise drift. In quadrant III (β < 0, r < 0) the
vehicle is transitioning from a counterclockwise to clockwise
drift. Finally, in quadrant IV (β > 0, r < 0) the vehicle is
performing a clockwise drift.

Different aspects of the CBF-QP behavior are exhib-
ited throughout the experiment. The small counterclock-
wise loops contained fully in quadrant II represent a stable
counterclockwise drift. As the driver is drifting in a stable
manner, minimal intervention occurs in the steering (Fig.
6a) and torque (Fig. 6b) when far from the boundary.
However, as the vehicle approaches the boundary the CBF-
QP augments countersteer by up to −5.5 rad and reduces
torque by 226Nm to prevent a breach of safety.

The larger loops that transition from quadrant II (coun-
terclockwise drift) through quadrant III and to quadrant IV
(clockwise drift) occur during transitions from counterclock-
wise to clockwise loops. A successful transition often re-
quires the torque to be released and the steering to transition
from a negative countersteer to a positive countersteer, which
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Fig. 6: Phase plane plots for experimental validation. Panel (a) shows the difference between the steering angle commanded by the driver
and realized by the vehicle after the safety filter is applied. Panel (b) shows this difference for the driving torque.
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Fig. 7: Experimental trace for sideslip angle (top), steering angle
(middle), and driving torque (bottom). The CBF-QP output and
resulting vehicle state are shown in blue while the requested driver
input and simulated vehicle response are shown in green.

is needed to stabilize the clockwise drift. These behaviors
are observed where a reduction in torque of 323Nm first
occurs in Fig. 6b around [β = −0.62 rad, r = −0.2 rad/s],
as the driver was applying maximum torque at this point.
The torque then gradually returns to the driver com-
mands and the CBF-QP helps transition the driver from
negative countersteer to positive countersteer. Particularly,
around [β = 0.65 rad, r = −0.5 rad/s] the CBF-QP inter-
venes through augmenting steering at the handwheel by
5.1 rad, guiding the driver in this steering transition from
negative countersteer to positive. Next, as the vehicle
transitions from clockwise to counterclockwise drifts the
phase portrait transitions from quadrant IV (clockwise drift)
through quadrant I to quadrant II (counterclockwise drift). A
similar behavior is observed where a large torque reduction
of 407Nm occurs at [β = 0.41 rad, r = 0.71 rad/s], fol-
lowed by a steering augmentation of −5.5 rad of countersteer
at [β = −0.65 rad, r = 0.6 rad/s]. These actions save the
vehicle from breaching the barrier in the upper left corner
which would lead to a loss of safety.

To highlight the impact of these interventions, Fig. 7
shows the CBF-QP commands in blue and the measured
driver inputs in green (bottom two plots). A forward sim-
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Fig. 8: Trajectory from CBF-QP experiment (blue) and forward
simulation of model using the driver’s inputs (green).

ulation of sideslip assuming the driver’s commands were
applied directly is shown in green (top) starting from
[β, r] = [−0.3 rad, 1.04 rad/s]. The CBF-QP follows the
driver’s intentions in a safe manner: as the driver adds or
removes torque, so does the CBF-QP, and similarly for the
steering input. This consistency among the driver and CBF-
QP commands ensures the drivers intentions are matched, in
this case allowing for a transition from positive to negative
sideslip (i.e., a figure 8 transition) just as the driver intends.
However, not only does the CBF-QP follow the driver
intentions, but it does so in a safe manner by significantly
reducing the driver torque by 210Nm (bottom) and augment-
ing countersteering at the handwheel by −1.85 rad (middle)
from t = 72 to 74 s. These actions maintain stability of the
vehicle as shown by the measured sideslip not exceeding
−0.71 rad. In contrast a post-hoc simulation which applies
the driver’s inputs to the single track model of Sec. III leads
to a large sideslip indicative of a spin out. Once the vehicle is
in a safe state (74.4 s), the CBF-QP begins to match the driver
inputs. This is also highlighted in Fig. 8 where the CBF-QP
(blue) evolves in a safe manner whereas the unfiltered driver
inputs (green) lead to a breach of the safety. These results
demonstrate the utility of proposed approach to maintain
vehicle stability in real world experiments.
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V. CONCLUSION

This paper presented a minimally invasive shared control
approach to maintaining vehicle safety in a computationally
efficient manner by leveraging exponential control barrier
functions. The maximal phase recoverable ellipse was uti-
lized as a safe set in the sideslip angle–yaw rate phase
plane and an ECBF was placed on the MPREl. Simulations
demonstrated the CBF-QP at various drifting maneuvers, and
experiments performed on a full scale vehicle validated the
approach in a shared control setting for figure 8 drifting
maneuvers. These experiments demonstrate the CBF-QP
matches driver inputs if safe, and, if needed, augments
steering and torque to balance the yaw moment of the vehicle
and prevent a breach of the barrier. The designed safety
filter prevents a vehicle from entering unrecoverable states
with a mean computation time less than 50 µs. These results
represent an important step in transitioning research on au-
tonomous vehicles operating at the limits of their capabilities
to broader, potentially production-oriented, designs.

Future work could improve the robustness of the safety
filter by explicitly accounting for or adapting to model
uncertainty in the CBF formulation. Future work could also
explore the impact of actuation constraints, although we
found this work achieved good performance despite this
thanks to the fast actuators on the vehicle.
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