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Graceful Vehicle Collision Avoidance using a
Second-Order Nonlinear Barrier Constraint
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Abstract— This paper examines the problem of preventing
frontal collisions between road vehicles. The paper focuses on
the concept of achieving graceful safety control in the context of
vehicle collision avoidance, in the sense of ensuring safety when
possible, and degrading gracefully otherwise. This is achieved
through a novel nonlinear barrier constraint which provides a
multi-layered safety guarantee: it ensures safe spacing when
possible, and avoids collision even when the safe spacing
constraint is breached. The proposed graceful control approach
is illustrated using a first-order barrier constraint. Then a
second-order version of the constraint is presented that enables
tracking a desired jerk signal while assuring graceful safety.

I. INTRODUCTION

Traffic accidents are among the leading causes of death
worldwide, killing nearly 1.35 million people annually [1].
Approximately 94% of traffic accidents are caused by human
drivers due to factors like drowsiness, distraction, etc. [2] [3].
These facts have historically motivated significant research
on automotive safety control algorithms. Collision avoidance
is an important problem for overall road safety, often ad-
dressed in the literature using control barrier functions. The
use of barrier functions ensures that when a vehicle’s state
is initialized within a safe set (often representing a speed-
dependent safe inter-vehicle distance), it remains within this
set. This raises the question of how a safety algorithm should
react when the above safe set is breached, perhaps due to an
unsafe lane merger by a lead vehicle. This is addressed here
by introducing the novel concept of graceful safety control.

Control barrier functions (CBFs) are widely utilized to
guarantee the safety of dynamical systems. CBF methods
have been applied broadly, including applications to auto-
motive [4], [5], [6], robotic [7], [8], [9], [10], battery [11],
[12], and biomedical systems [13], [14], [15]. CBF methods
have at least two appealing features. First, they provide
rigorous safety guarantees through the concept of forward
invariance of a safe set in state space: the system can be
guaranteed to remain within this set as long as it is initialized
within it. Second, the CBF approach provides significant
freedom in control design by allowing a controller to switch
seamlessly between safety and other objectives, such as
trajectory tracking [16], [17] or energy optimal behavior [18].

At least two types of barriers exist in the literature: recip-
rocal and zeroing CBFs [19], [20], [21]. A reciprocal CBF
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tends to infinity as it approaches the boundary of the safe set,
and remains finite within the interior of the safe set. Hence,
by preventing the function from approaching infinity, one can
guarantee safety. A zeroing CBF, in contrast, defines the safe
set as the superlevel set, meaning that positive, negative, and
zero values of the barrier function denote safety, its absence,
and the boundary between those two conditions, respectively.
Safety is then pursued by constraining the time derivative of
the barrier function to ensure forward invariance [21].

For systems with a relative degree of one, that is, when the
derivative of the CBF contains the control input, the input can
be manipulated directly to satisfy the above constraint. For
systems with a higher relative degree, exponential CBFs [22],
higher-order CBFs [23] and backstepping [24] CBFs can
be utilized. Such approaches have been extensively applied
to guarantee the safety of systems where safety depends
on position, but actuation directly affects acceleration [25],
[26], [27], [28]. Within the automotive field, it is common
to define safety in terms of the satisfaction of a velocity-
dependent inter-vehicle spacing constraint [6], [28]. When
this constraint is used for formulating a barrier function,
vehicle acceleration appears in the time derivative of the
constraint, thereby enabling longitudinal safety control.

The literature on the application of CBF methods to
automotive safety includes collision and obstacle avoid-
ance during racing [29], [30] and traffic congestion [31];
adaptive/connected cruise control with and without input
delay [20], [32], [33]; human-vehicle trust dynamics [34];
lane-keeping control [4], [35]; and collision avoidance using
differentiable and/or higher-order CBFs [25], [36], [37].
Throughout the above literature, the main focus is on ensur-
ing forward invariance, meaning that if a system is initially in
the safe set, then it always remains in the set. Scenarios when
a system accidentally breaches a given safe set are relatively
less explored. Consider, for example, a scenario where a
lead vehicle “cuts off” an ego vehicle by changing lanes
too close to the ego vehicle, as illustrated in Fig. 1. Suppose
this maneuver breaches the ego vehicle’s safe inter-vehicle
spacing constraint. Can the ego vehicle avoid collision and
recover gracefully from such a safety breach? If so, how can
the vehicle’s safety algorithm ensure such graceful control?

To the best of our knowledge, the above fundamental
question — while profoundly important — has received very
little attention in the literature. Our main goal in this paper
is to address this gap by adding five novel contributions:

« First, we present an illustrative scenario in Section II,

where classical CBF-based collision avoidance fails to
react gracefully to a safety constraint breach. More
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Fig. 1. Vehicle safety problem during a “cut off” maneuver.

specifically, we consider a scenario where a zeroing
barrier function represents a minimum speed-dependent
safe inter-vehicle distance. When the ego vehicle is
“cut off” too aggressively, placing the initial condition
outside the safe set, the CBF approach succeeds in
gradually pushing the barrier function h back towards
safety. However, this does not occur fast enough, and
the inter-vehicle spacing drops to zero even as the value
of the barrier function increases. The end result is that
the traditional CBF approach, at least in this illustrative
scenario, fails to prevent vehicle collision once the safe
set is breached.

Second, the paper introduces the novel notion of “grace-
ful safety control”. Specifically, in Section III we define
a controller as graceful if it guarantees safety whenever
possible, but avoids catastrophic safety incidents oth-
erwise. The idea of graceful control has already been
explored in the battery systems domain [12]. However,
to the best of our knowledge, this paper represents
the first application of this broad idea to automotive
collision safety.

Third, the paper develops a nonlinear barrier constraint
that ensures graceful safety, as shown in Section III.
The key idea is to create a multi-layered definition of
safety. This differs from the classical delineation of
safety in terms of the superlevel set of the zeroing
barrier function, which creates a single definition of
what it means to be in an unsafe state. In practice,
safety is a multi-layered concept. For example, a true
collision is clearly an extremely hazardous state that
must be avoided. Excessive proximity to a lead vehicle,
in contrast, is less hazardous and may be briefly tolera-
ble provided the vehicles never collide and the spacing
between them ultimately returns to the safe range. We
define a safety controller as “graceful” if it is able to
tolerate an unavoidable but slight worsening in safety,
provided it avoids more extreme hazard states and is
able to return to a truly safe state eventually.

Fourth, we extend the above multi-layered definition of
graceful safety to a second-order setting in Section IV.
This makes it possible to construct a safety controller
that assures convergence to safe inter-vehicle spacing
while simultaneously attempting to track a smooth jerk
trajectory.

Finally, we demonstrate the above safety control strat-
egy in simulation in Section V and summarize the
conclusions in Section VI.
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II. MOTIVATING EXAMPLE

Consider two vehicles separated by an inter-vehicle dis-
tance D, as shown in Fig. 1. If the longitudinal speeds of
the ego and lead vehicles are v and vy, respectively, then the
dynamics of inter-vehicle distance are given by:

D =y, —v. (D

Now suppose that the spacing between these two vehicles can
be deemed safe if it satisfies the following classical speed-
dependent constraint from the literature (e.g. [20], [25], [28]):

D > Dy + Tyev. )

Here, Dy is the minimum inter-vehicle distance at zero speed
and Ty is a user-defined time headway. This safety constraint
is designed to provide greater inter-vehicle spacing at higher
speeds. It also ensures that vehicle acceleration appears in
the resulting barrier constraint, as shown below. Given the
above definition of vehicle safety, we construct the barrier
function

h=D — Dy — TSfU7 (3)

whose positivity ensures safety.
Next, we pursue safety by imposing the following con-
straint at every instant in time [21]:

h > —ah. 4)
Substituting (1) and (3) into (4) gives
TV < v, — v+ a(D — Dy — Tyev). 5)

We implement this safety constraint within a quadratic pro-
gram, where the goal is to minimize vehicle acceleration v
(i.e., the control input) while ensuring safety:
N
min —v
o 2 (6)
s.t. Ty <o, — v+ a(D — Dy — Typv).

Solving the above optimization problem at every instant in
time provides a classical CBF-based vehicle safety guaran-
tee. We simulate the behavior of the resulting illustrative
benchmark safety controller below.

Consider a scenario where the ego vehicle implementing
the above safety controller is initially traveling on a highway
with speed v(0) = 30 m/s. Suppose that a lead vehicle trav-
eling at a much slower constant speed of vy, = 10m/s cuts
the ego vehicle off. Moreover, suppose that the parameters
of the above safety controller are given by Dy = 2m,
Ty = 2s, and o = 0.5s~ 1. With these parameter values, safe
inter-vehicle distance is set to 2 meters when the ego vehicle
is stationary, and 62 meters at the above highway speed.

Fig. 2 plots the inter-vehicle spacing versus time for three
different values of initial inter-vehicle distance D(0), namely,
10, 30, and 70 meters. Simulation is performed for a 5-
second time window using the MATLAB ode45 function,
with 1ms time step. The simulation stops as soon as the
inter-vehicle distance hits zero, which represents collision.
This occurs in the case where initial inter-vehicle spacing is
D(0) = 10m.



~
o

----- Collision boundary

—~60 —x(0) =10m
3 x(0) = 30m
250 —x(0) = 70m
3
%40
@
© 30
<
[}
720
2
=10

0 2 3 4

Time (s)

Fig. 2. Inter-vehicle distance for baseline controller

30 T -
----- Lead vehicle speed
— —x(0) =10m
L25¢ x(0) = 30m
£ —x(0) = 70m
3
0201
[eN
)
<
[&)
215}
9]
>
)
O 10
5 | | |
0 2 3 4
Time (s)
Fig. 3. Vehicle speed for baseline controller
10
0
E-qof
_5 ------ Safety boundary
B5-2071 —x(0) = 10m 1
§_, x(0) = 30m
=30 | —x(0) = 70m
Q0
@ -40
m
-50 f
-60 ‘ ‘ ‘
2 3 4
Time (s)

Fig. 4. Control barrier function for baseline controller

70

Inter-vehicle spacing (m)
[ w B (42 [«2]
o o o o o

=
o

o

Fig. 5. Inter-vehicle distance vs. speed for baseline controller

15 20 25 30
Ego vehicle speed (m/s)

261

The occurrence of the above collision is clearly an un-
desirable failure. This failure is not a result of physical
limitations on parameters such as maximum vehicle braking
capability. While such limitations do exist in practice, they
are not accounted for in the above simple illustrative study.
Moreover, this failure is not a consequence of the inability
to achieve “safety” in the classical sense from the literature.
As shown in Fig. 3, the ego vehicle does slow down for all
three initial inter-vehicle distances. Furthermore, as shown
in Fig. 4, the CBF does remain positive when it is initially
positive, and does approach zero monotonically when it
is initially negative. In other words, the safety controller
performs as intended, yet the two vehicles collide anyway.

The true culprit behind the collision in this illustrative
example is a fundamental limitation of the safety controller.
This can be seen from Fig. 5, which presents a phase plane
plot of inter-vehicle spacing versus ego vehicle speed. The
dotted line represents the speed-dependent boundary in (2)
between safe and unsafe inter-vehicle distances, hence the
safe set is the domain above this line. When the initial inter-
vehicle distance is above this line (i.e., when the system
is initially safe), it remains above the line throughout the
simulation. This is consistent with the goal of ensuring the
forward invariance of the safe set. Moreover, when the initial
inter-vehicle distance is below the dotted line, representing
a safety violation, this violation diminishes with time, as
desired.

Unfortunately, when the two vehicles are initially too close
to each other, the safety controller does not reduce this safety
violation fast enough to prevent collision. This is a funda-
mental failure arising from the lack of “grace” in the safety
control problem formulation. A graceful controller should
ideally prevent collision from occurring even when the safe
inter-vehicle spacing constraint is breached. However, in this
illustrative example, the controller fails to do so because it
embraces a single-layer definition of safety, as opposed to a
more graceful multi-layer definition.

III. GRACEFUL SAFETY CONTROL

This section presents the key idea behind the proposed
graceful safety control approach. Specifically, this approach
builds on the idea of defining safety as a multi-layer concept.
This makes it possible to simultaneously tolerate and eventu-
ally alleviate hazardous inter-vehicle spacing, while applying
progressively larger control inputs to avoid collision. This
multi-layered approach brings together the core ideas behind
both zeroing and reciprocal CBFs.

We begin by constructing a graceful control barrier func-
tion

D

hg = ; > 1, s= D+ Ty, (7
where s is a speed-dependent safe inter-vehicle distance iden-
tical to the one used in the baseline controller, cf. (2). This
barrier function definition is attractive because it provides
two safety thresholds with distinct and important implica-
tions. A threshold exists at A, = 1, below which inter-vehicle
spacing is deemed unsafe and the recovery of safe spacing is
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desirable. A much more critical threshold exists at hy = 0,
below which collision occurs. Avoiding this latter threshold
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is, therefore, truly essential for collision safety.

Imposing a constraint on the above barrier function can
ensure graceful safety and guarantee the avoidance of the
critical threshold at hy = 0. For example, we propose the
following novel first-order barrier constraint

. 1
tha(hg—1>7 ®)

which provides a “stiffening effect” tailored to ensure the

avoidance of hg = 0. A rigorous proof of this graceful

safety guarantee is intended for presentation in a subsequent

publication, but the core idea behind this proof is that the

proposed graceful control law acts as a zeroing CBF around

he = 1 and as a reciprocal CBF around h, = 0.
Substituting (7) into (8) gives

s
v < (S(UL—U)+a32<1— 5)) , 8= Dy + Tyv.
€))
We implement this constraint within a quadratic program,
where the goal is to minimize vehicle acceleration v (i.e.,

the control input) while ensuring graceful safety:

1
D T’sf

min 5 0*
1
st. v< DTy (S(UL — U) + OéS2 (1 _ %)) , (10)
s = Dy + Tiv.

Implementing the above quadratic program at every time
instant leads to graceful safety control, as shown in the
simulation example below.

The same simulation setup as for the benchmark controller
case is used. Again, the simulation was performed using the
MATLAB ode45 function, with a 1 ms time step, but a longer
time horizon of 15 seconds is used here.

Figure 6 plots the inter-vehicle spacing versus time when
the above graceful controller is used, for the same parameter
values used in the baseline simulation study. The benefits
of graceful control are immediately clear: regardless of
initial inter-vehicle spacing, collision never occurs. The ego
vehicle always slows down sufficiently fast to avoid such a
catastrophe, as shown in Fig. 7.

The above behavior is a direct consequence of graceful
control design. As shown in Fig. 8, the graceful controller
tolerates hazardous inter-vehicle distances, but reduces them
over time by bringing the value of hg closer to the safety
threshold value of 1. In addition, under no circumstances
does the controller allow the value of h, to reach the
catastrophic value of 0. This behavior can also be seen in
the phase plane plot in Fig. 9, where undesirable deviations
from safe inter-vehicle spacing are reduced very quickly. The
speed with which this is done prevents collisions. In fact, the
vehicle brakes harder and decelerates more aggressively for
smaller initial values of inter-vehicle spacing, thereby always
avoiding collisions. Interestingly, once collisions are avoided,
the ego vehicle returns to zero acceleration, and the phase
plane plots become vertical. From this event onward, inter-
vehicle spacing becomes safer as the lead vehicle pulls away.



IV. GRACEFUL CONTROL DESIGN

The above simulation example highlights the power and
importance of graceful control. By intentionally introducing
a two-layer definition of safety, graceful control combines
the power of zeroing and reciprocating CBFs. Like zeroing
CBFs, graceful control slowly returns to safety when the
safe inter-vehicle spacing constraint is breached. Moreover,
like reciprocating CBFs, graceful control ensures that inter-
vehicle collisions never occur. That said, the simulation
example has at least three limitations from a practical per-
spective. First, no constraints are imposed on vehicle decel-
eration in this illustrative example, for simplicity. Second,
the optimization objective in the example is to minimize
acceleration, as opposed to tracking a desired cruise control
trajectory. Finally, no effort is made in the above simple
example to minimize jerk or track a smooth desired jerk
trajectory. This is undesirable given the degree to which
vehicle jerk affects passenger comfort.

The main goal of this section is to extend the idea of
graceful vehicle safety control in a manner that addresses the
above limitations. This furnishes a more practical graceful
controller, one that utilizes a second-order barrier constraint
instead of a first-order constraint.

We begin by creating a baseline cruise controller that
prevents excessive jerk while tracking the lower of the two
velocity values: a desired velocity vyax set by the user and
the lead vehicle’s velocity vr,. That is, we define the speed
policy [28]:

(1)

This policy is not intended to ensure graceful safety control.
Rather, the intent is to provide a reference jerk signal at
every moment in time for the graceful controller to track
if possible. We define the proposed cruise controller as the
solution to the following second-order differential equation

e + 2¢ewet + wZ (v — W(v)) =0, (12)

W (vr,) = min{vr, Umax }-

where ¥, denotes a desired target value for the vehicle’s
jerk. The design parameters are the natural frequency w. > 0
and the damping ratio (. > 0. At equilibrium, this oscillator
converges to the desired vehicle speed vyax Or v, cf. (11).
We assume that there is a known lower bound a,,;, on
vehicle acceleration corresponding to the maximum braking
ability of the ego vehicle. This results in the inequality
constraint
(13)

v Z Gmin-

We honor this constraint in a manner that is analogous to
zeroing CBF theory. Namely, we rewrite the constraint as

H(U) =0 — Amin Z 07 (14)
and impose the CBF-like constraint
H>—yH = > —y(0 — amn), (15)

on the time derivative of the function H. The intent is to
guarantee that if the vehicle deceleration is initially feasible,
it will remain feasible at all subsequent moments in time.
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The minimum acceleration a,;, can be computed from
the vehicle’s longitudinal dynamics as

1 1
Gmin = —— (Fbr + *CdPAfU2 + Crmg> 3
m 2

(16)
where m is the mass of the vehicle, Fj,, > 0 is the largest
braking force applicable, Cy is the air drag coefficient, p is
the air density, A¢ is the vehicle’s frontal area, C; is the
rolling resistance coefficient, and g is the acceleration of
gravity. The values of these parameters are given in Table I.

The final step towards the proposed controller is to extend
the graceful control barrier constraint from first to second
order. One way to achieve this is to construct a graceful
safety constraint of the form

hg + 2(swshg + w? (1 - hl> >0, 7)
g

where the graceful barrier function hg is given in (7), while
the natural frequency ws > 0 and the damping ratio (s > 0
are design parameters. The damping ratio (s does not have
to be greater than or equal to one: a fact that provides greater
freedom in designing the safety controller. The nonlinearity
in w?(1—1/h,) provides a stiffening effect that ensures the
avoidance of hg = 0, see the analogous stiffening term in
the first-order safety constraint (8). In fact, the spirit of both
constraints is to design a safety controller that is analogous to
a zeroing CBF around h, = 1, and analogous to a reciprocal
CBF around hg = 0. This provides the multi-layered safety
mindset that is central to graceful safety control.

The proposed second-order graceful controller assembles
the above equations into the quadratic program
min 1(v — )% + lwaQ
v,€ 2

st e+ 2Cewed + wi (v — W(vr)) =0,
3 2 *’Y(’U - amin)a

.. . 1 18
hg—|—2Cswshg—|—w§(1—h)—i—ezo7 (18)
g
D
hey = ———
& Dsf+Tsf'U7
e > 0.

Here, the main optimization goal is to minimize the deviation
between the actual vehicle jerk and the jerk needed to track
the cruise control law. This optimization is performed subject
to the reference cruise control dynamics, the acceleration
limit, and the condition on the graceful control barrier
function. The latter two are inequality constraints which
both impose bounds on jerk and these may be mutually
conflicting. This is addressed by introducing the positive
slack variable € in the barrier condition, and adding €2 to
the optimization objective with some Pareto weight wy,.
Solving the above quadratic program at every instant
in time furnishes a second-order version of the proposed
graceful safety controller. This controller retains the ability to
achieve graceful safety, with the added benefit of addressing
the practical challenges listed at the beginning of this section.



TABLE I
L1ST OF PARAMETER VALUES

Symbol Definition Value
Cs Graceful controller damping ratio 0.1
Ws Graceful controller frequency 2 rad/s
Ce Jerk equation damping ratio 1.1
We Jerk equation natural frequency 1 rad/s
¥ Jerk barrier function time constant 551
Tt Safe time headway 1.5s
Dygs Minimum inter-vehicle distance 2 m
Fyr Maximum braking force 8436.6 N
p Air density 1.22 kg/m>
Af Car frontal area 2 m?
Cyq Drag coefficient 0.35
Cr Rolling resistance coefficient 0.01
g Gravitational acceleration 9.81 m/s2
Wp Pareto weight 100

V. SIMULATION RESULTS

In this section, we evaluate the proposed graceful safety
controller for two different cut-in scenarios over a 30-second
time horizon. In both scenarios, the ego vehicle drives at the
initial velocity of v(0) = 26.8 m/s. At¢ = 0, the lead vehicle
cuts in front of the ego vehicle at a speed of v, (0) =17
m/s, with an inter-vehicle distance of D(0) = 15 meters.
The initial acceleration of the ego vehicle is set to ©(0) = 0
m/ s®. The desired velocity set by the user is assumed to
be Umax = 24 m/s while the other parameters are listed
in Table I. The time step used is set to 0.01 seconds
and Matlab’s quadprog function is utilized for solving the
quadratic program (18).

In the first scenario, after cutting into the lane of the ego
car, the lead vehicle maintains its speed for 3 seconds. Then,
this vehicle accelerates at the rate of 1 m/ s until it reaches
26.8 m/s. Fig. 10 plots the vehicles’ velocity profiles, inter-
vehicle distance, and barrier function. The desired velocity
curve shows the target velocity W (vr,) of the adaptive cruise
controller, see (11). The safe distance in the middle panel is
obtained by calculating Dy + Tirv, see (7). Fig. 11 depicts
the ego vehicle’s acceleration, jerk, and slack variable over
time. In the middle panel the desired jerk ¥ is also depicted.

The inter-vehicle distance starts below the safe distance.
The graceful barrier function, as a result, starts at a value be-
tween 0 and 1 — the state that is still considered undesirable.
Therefore, the controller decreases the ego car’s acceleration
and jerk to reduce the velocity. The vehicle’s acceleration
rapidly drops to its minimum bound. However, the vehicle
jerk stays above the value of —10 m/ s> This reasonable
jerk drives the graceful barrier function to a value close to
zero. Yet, since the controller maintains the deceleration for
about 4 seconds, the vehicle is able to sufficiently decrease
its velocity, recover the safe inter-vehicle distance, and start
tracking the desired velocity set by the user for the rest of
the time horizon.

In the second scenario, after cutting in, the lead vehicle
maintains its speed for the first 3 seconds, then slows down
at a rate of 1 m/s” until it reaches 10 m/s. Fig. 12 plots the
vehicles’ velocity profiles, inter-vehicle distance, and barrier
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function while Fig. 13 depicts the ego vehicle’s acceleration,
jerk, and slack variable over time. Similar to the previous
scenario, the distance and the barrier function start at an
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undesirable state and then become slightly worse for the first
3 seconds. However, as the car decelerates at its maximum
rate, the system soon becomes safe and starts tracking the

lead car’s velocity, while still maintaining a reasonable jerk
value. These simulation results again highlight the benefits
of the graceful safety controller, particularly its ability to
avoid collision even when starting from unsafe inter-vehicle
distances.

VI. CONCLUSION

Perhaps the most important conclusion from this paper
is a fundamental insight into one of the core limitations
of classical safety control theory, as well as one poten-
tial remedy for this limitation. In classical safety control,
the underlying single-layer definition of safety lacks grace.
When the single dividing line between safe and hazardous
scenarios is breached, recovery from this breach may not be
fast enough to ensure collision avoidance. This is a result of
the speed-dependent definition of safe inter-vehicle spacing,
together with the single-layer definition of the resulting
safety barrier function. By providing a multi-layer approach
to safety, graceful control prevents inter-vehicle collisions
even when safe vehicle spacing constraints are breached.
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