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Abstract— Trajectory tracking with an autonomous unicycle
is considered in three-dimensional space. It is shown that
with the appropriate choice of pseudo-velocities the lateral
and longitudinal dynamics and control can be decoupled at
the linear level. Linear state feedback controllers are designed
separately for lateral and longitudinal subsystems and these
controllers are tested simultaneously for the nonlinear model
via numerical simulations.

I. INTRODUCTION

Micro-mobility devices, such as electric unicycles and
electric scooters, offer a convenient and efficient solution for
short-distance commutes as an alternative to traditional forms
of transportation. Consequently, these compact vehicles are
quickly gaining popularity in urban environments and we can
expect further increase in their presence.

The properties of these vehicles are also attractive for
researchers in robotics where several autonomous unicycle
designs have been developed in the last decades. Various
approaches were taken to control the unicycles, for example
using inverted pendulums [1], flywheels [2], [3], [4], gyro-
scopes [5] or combinations of those [6]. Even robotic arms
were applied [7] and humanoid-type unicycles [8] were also
developed. Nevertheless, the dynamical description of the
nonholonomic mechanical systems, combined with motion
planning and control design are still largely missing in the
literature.

In this work, we extend our previous modeling efforts
about the spatial dynamics of an autonomous unicycle [9],
[10] to control not only the lateral but also the longitudinal
dynamics while simultaneously balancing the payload, see
Fig. 1. The lateral motion control is designed similarly to
our previous work [9], [10], namely, the center of gravity is
shifted sideways by moving a single point mass along the
axle of the wheel. For the longitudinal motion control, the
model is now extended by an (inverted) pendulum that is
assumed to be a point mass at the end of a massless fork.
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The equations of motion are derived using the Appellian
approach [11], which incorporates the kinematic (nonholo-
nomic) constraints of rolling and yields a system of first-
order ordinary differential equations for the configuration
coordinates and pseudo-velocities. This provides the most
compact representation of our nonholonomic mechanical
system. For further details on the Appellian methodology, an
interested reader may refer to [12], [13].

Fig. 1. Mechanical model and physical quantities
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Our goal is to track a predefined path with the autonomous
unicycle, so the model is transformed into a reference frame,
which is moving along the path. Thus, the longitudinal, lateral,
and alignment errors become system states; these are used in
the control algorithm. It is shown that, with the appropriate
choice of pseudo-velocities, the lateral and longitudinal
dynamics can be decoupled when the system is linearized
around the straight rolling steady state. Consequently, lateral
and longitudinal feedback controllers can be developed
independently. However, the lateral controller takes into
account the velocity of the unicycle, which is a key factor
due to its self-stabilizing effect [9]. Numerical simulations of
the nonlinear system show that the designed controllers have
good path-tracking performance and are able to balance the
payload with small errors too.

II. GOVERNING EQUATIONS

The unicycle is modeled as a wheel (disc) with mass m
and radius R, and two additional mass actuators. The point
mass with mass m1 can be moved perpendicularly to the
wheel by the internal force

F =
[
0 F 0

]T
F2
, (1)

acting at the wheel center G, while the counter force −F acts
at the point mass actuator.

Here the subscript Fi means that a vector is resolved in the
coordinate frame Fi of coordinate axes (xi, yi, zi), see Fig. 1.
Briefly, frame F0 is fixed to the ground; frame F1 travels and
yaws with the wheel; F2 is attached to the axle and yaws and
tilts with the wheel; while F3 is attached to the pendulum
and it yaws, tilts and pitches with the fork.

The payload is modeled as an inverted pendulum comprised
of a massless fork (mf ≈ 0) and a point mass of m2. The
pendulum can be rotated around the y2 axis. The internal
torque

M =
[
0 M 0

]T
F2
, (2)

acts at the wheel, while −M acts at the fork. The internal
force F and torque M are considered to be control inputs for
the lateral and longitudinal control objectives, respectively.
The unicycle system consisting of the wheel and two actuators
would have N = 6 + 3 + 3 = 12 degrees of freedom if we do
not take into account the constraints.

The position of the wheel is given by its center point G:

rG =
[
xG yG zG

]T
F0
, (3)

while its orientation is characterized by the yaw ψ, tilt ϑ
and pitch ϕ angles, see Fig. 1. When the wheel rolls on the
horizontal ground, the velocity of the contact point P is zero,
that is,

vP = 0. (4)

This velocity can also be expressed by the transport formula
vP = vG + ω × rGP, where the velocity vG of the center point
G, the angular velocity ω of the wheel, and the relative

position rGP of the contact point P with respect to G are
given by

vG = ÛrG =
[
ÛxG ÛyG ÛzG

]T
F0
, rGP =

[
0 0 −R

]T
F2

ω =
[
Ûϑ Ûϕ + Ûψ sin ϑ Ûψ cos ϑ

]T
F2
.

(5)

Equations (4)–(5) lead to two kinematic (nonholonomic)
constraints

ÛxG = ÛψR cosψ sin ϑ + ÛϑR sinψ cos ϑ + ÛϕR cosψ ,
ÛyG = ÛψR sinψ sin ϑ − ÛϑR cosψ cos ϑ + ÛϕR sinψ ,

(6)

and one geometric (holonomic) constraint

ÛzG = − ÛϑR sin ϑ ⇒ zG = R cos ϑ. (7)

The positions of the point masses m1 and m2 can be
calculated by means of rA = rG + rGA and rB = rG + rGB,
respectively. The relative positions are

rGA =
[
0 r 0

]T
F2
, rGB =

[
0 0 h

]T
F3
, (8)

where r(t) is the (time dependent) position of the point mass
m1 along the wheel axle, while h is the (constant) length
of the pendulum. These yield 2 + 2 = 4 additional geometric
constraints.

Overall, we have ng = 5 geometric and nk = 2 kinematic
constraints, so the unicycle forms a nonholonomic mechanical
system. The Appellian approach is chosen for deriving the
equations of motion due to its benefits shown in our previous
works [9], [10].

First, nq = N − ng = 7 generalized coordinates qk , with
k = 1, . . . ,nq are selected, which can be used to unambigu-
ously characterize the spatial configuration of the mechanical
system; let these be:

xG, yG, ψ, ϑ, ϕ, γ, r. (9)

The next step is to define nσ = N − ng − bk = 5 pseudo-
velocities σj, j = 1, . . . ,nσ , which can be used to unambigu-
ously express the derivatives of the generalized coordinates.
These pseudo-velocities are denoted by

ω1, ω2, ω3, σr , σγ . (10)

The nontrivial pseudo-velocity definitions

ω1 := Ûϑ, ω2 := Ûϕ + Ûψ sin ϑ,
ω3 := Ûψ cos ϑ, σr := Ûr − ÛϑR,
σγ := Ûγh + ÛϕR cos γ + Ûψ (R cos γ + h) sin ϑ

(11)

are used as these significantly reduce the algebraic complexity
of the resulting equations of motion. The pseudo-velocities ω1,
ω2, and ω3 are the angular velocity components of the wheel
resolved in frame F2. The pseudo-velocity σr is the velocity
component of the point mass m1 along the axle (i.e., in the y2
direction). Similarly, σγ is the velocity component of the point
mass m2 in the x3 direction. Note that, the pseudo-velocities
are the linear combinations of the generalized velocities.
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From (6) and (11) the derivatives of the generalized
coordinates (9) can be expressed as the linear combinations
of the pseudo-velocities (10), these became

ÛxG = ω1R sinψ cos ϑ + ω2R cosψ,
ÛyG = −ω1R cosψ cos ϑ + ω2R sinψ,
Ûψ = ω3/cos ϑ,
Ûϑ = ω1,

Ûϕ = ω2 − ω3 tan ϑ,
Ûr = ω1R + σr ,

Ûγ = −ω2(R/h) cos γ − ω3 tan ϑ + σγ/h.

(12)

The horizontal rest position ϑ = ±π/2 of the wheel leads to
singularity, but this state is excluded from the analysis.

The next step is to calculate the acceleration energy of the
unicycle:

S = Sw + Sm1 + Sm2, (13)

where the acceleration energies of the wheel, of the point
mass m1 at point A, and of the point mass m2 at point B are
calculated as

Sw =
1
2

ma2
G +

1
2
α · JGα +α · (ω × JGω) ,

Sm1 =
1
2

m1a2
A, Sm2 =

1
2

m2a2
B.

(14)

The acceleration of the wheel center G is

aG =


R( Ûω2 + ω1ω3)
−R( Ûω1 − ω2ω3)

−R(ω2
1 + ω2ω3 tan ϑ)

 F2

, (15)

the angular acceleration of the wheel is

α =


Ûω1 − ω2ω3 + ω

2
3 tan ϑ

Ûω2
Ûω3 + ω1ω2 − ω1ω3 tan ϑ

 F2

, (16)

and the mass moment matrix of inertia of the wheel about
the center of gravity is

JG =
mR2

4


1 0 0
0 2 0
0 0 1

 F2

. (17)

The velocity and acceleration of point A are

vA =
[
ω2R − ω3r σr ω1r

]T
F2
,

aA =


Ûω2R − Ûω3r + ω1ω3 (r tan ϑ − R) − 2ω3σr

Ûσr − ω
2
1r − ω2

3r + ω2ω3R
Ûω1r + ω2

1R + 2ω1σr + (ω
2
3r − ω2ω3R) tan ϑ

 F2

,
(18)

while the velocity and acceleration of point B are expressed
as

vB =


σγ

−ω1(R − h cos γ) + ω3h sin γ
ω2R sin γ

 F3

,

aB =
[
aBx aBy aBz

]T
F3
,

(19)

where the vector components are

aBx =
1
h
(
Ûσγh + ω2

1(R + h cos γ)h sin γ − ω2
2R2 sin γ cos γ

− ω2
3h2 sin γ cos γ + ω2σγR sin γ

+ ω1ω3(R cos γ + 2h cos2 γ − h)h
)
,

aBy = − Ûω1(R + h cos γ) + Ûω3h sin γ − ω2
3h cos γ tan ϑ

− 2ω1ω2R sin γ cos γ − ω1ω3h sin γ tan ϑ
+ ω2ω3(1−2 cos2 γ)R + 2ω1σγ sin γ + 2ω3σγ cos γ,

aBz =
1
h
(
Ûω2Rh sin γ − ω2

1(R + h cos γ)h cos γ − σ2
γ

− ω2
2R2 cos2 γ − ω2

3 sin2 γh2 − ω2ω3Rh cos γ tan ϑ
+ 2Rσγω2 cos γ + ω1ω3(R sin γ + 2 sin γ cos γ)h

)
.

(20)

The last remaining step is to calculate the pseudo-forces
Πj , j = 1, . . . ,nσ . These can be obtained from the virtual
power of the active forces:

δP = G · δvG +GA · δvA +GB · δvB + F · δvG

− F · δvA +M · δω −M · δΩ =
nσ∑
j=1
Πj δσj ,

(21)

where G, GA, GB are the gravitational forces, δvG, δvA, δvB
are the virtual velocities of the respective points, δω is the
virtual angular velocity of the wheel, and

δΩ =
[
δω1

1
h (δσγ−δω2R cos γ) δω3

]T
F2
, (22)

is the virtual angular velocity of the pendulum. The resulting
pseudo-forces are expressed as

Π1 = −FR + mgR sin ϑ − m1gr cos ϑ
+ m2g (R + h cos γ) sin ϑ ,

Π2 = M (R cos γ + h) /h − m2gR sin γ cos γ cos ϑ ,
Π3 = −m2gh sin γ sin ϑ ,
Π4 = −F − m1g sin ϑ ,
Π5 = −M/h + m2g sin γ cos ϑ .

(23)

Finally, the equations of motion are formulated as

∂S
∂ Ûσj
= Πj, j = 1, . . . ,nσ ,

Ûqk =
∑nσ

j=1 fk j Ûσj, k = 1, . . . ,nq ,
(24)

where the coefficients fk j are identified from (12). The equa-
tions of motion consist of nσ + nq = 12 first-order ordinary
differential equations, which contains nσ = 5 dynamical and
nq = 7 kinematic equations (12).

III. TRAJECTORY TRACKING FORMULATION

Our goal is to follow a trajectory on the ground with
the wheel-ground contact point P′. The position of the
wheel-ground contact point is described as

rP′ = rG + rGP′ =
[
xP′ yP′ 0

]T
F0
, (25)

where rGP′ = [0 0 −R]T
F2

.
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Note that the wheel-ground contact point P′ is a geometric
point that is located at the same position as the velocity
pole (also called instantaneous center of velocities) P for a
single time instance, that is rP′ = rP. The velocity pole P
is the material point of the wheel for which the kinematic
constraint of rolling vP = 0 holds; see (4). However, using (3),
(6), (12) and (25) the velocity of the wheel-ground contact
point can be calculated as vP′ = ÛrP′ =

[
ÛxP′ ÛyP′ 0

]T
F0
, where

ÛxP′ = ω2R cosψ − ω3R tan ϑ cosψ,
ÛyP′ = ω2R sinψ − ω3R tan ϑ sinψ,

(26)

which are generally non-zeros. More details about this pole
changing velocity can be found in [14].

In order to properly formulate the path tracking control
tasks, we follow the approach in [13], so the unicycle system
is transformed into the reference frame (s, ε, θ) attached to
the path, where s is the arc length along the trajectory, ε is
the lateral error, and θ is the angular error shown in Fig. 2.

As explained in [10], the evolution of the variables s, ε,
and θ can be given as

Ûs =
1

1 − κε
(
ω2R cos θ − ω3R cos θ tan ϑ

)
,

Ûε = ω2R sin θ − ω3R sin θ tan ϑ,

Ûθ =
−1

(1 − κε) cos ϑ
(
ω2Rκ cos θ cos ϑ

− ω3 (1 − κε + Rκ sin ϑ cos θ)
)
,

(27)

where κ(s) is the signed curvature of the path. Zero curvature
corresponds to a straight trajectory, while positive or negative
values mean left or right turns, respectively.

The unicycle system can be transformed to the trajectory
reference frame (s, ε, θ) by replacing the equations correspond-
ing to ÛxG, ÛyG, and Ûψ in (12) with (27).

IV. CONTROL DESIGN

We suppose that we can control the unicycle and track
various paths by the slight perturbation of the straight rolling
steady state, so we linearize the equation of motion about
this state while considering a steady state pitch rate Ûϕ∗ = ω2.

Fig. 2. Coordinate transformation to path coordinates

The linearized equation of motion has the form[
Ûxlat
Ûxlon

]
=

[
Alat 0
0 Alon

] [
xlat
xlon

]
+

[
Blat 0
0 Blon

] [
ulat
ulon

]
, (28)

that is, the lateral and longitudinal dynamics are decoupled.
The corresponding state variables and the control inputs are

xlat =
[
ω1 σr θ ϑ r ω3 ε

]T
, ulat = F,

xlon =
[
ω̃2 σ̃γ γ ϕ̃ s̃

]T
, ulon = M,

(29)

where the tildes indicate perturbations for variables whose
steady state values are not zero. Note that, this lateral-
longitudinal decomposition does not necessarily hold for
turning-rolling type steady states.

The system and input matrices related to the lateral
dynamics are

Alat =



0 0 0 a1 a2 a3 0
0 0 0 −g 0 −R Ûϕ∗ 0
0 0 0 0 0 1 0
1 0 0 0 0 0 0
R 1 0 0 0 0 0
−2 Ûϕ∗ 0 0 0 0 0 0

0 0 R Ûϕ∗ 0 0 0 0


, Blat =



b1
1
m1
0
0
0
0
0


, (30)

where
a1 = 4g (mR + m2 (R + h))/c1, a2 = −4m1g/c1,

a3 = 2R Ûϕ∗ (3mR + m2 (2R + 2h))/c1, b1 = 4R/c1,

c1 = 5mR2 + m2

(
4R2 + 8Rh + 4h2

)
.

(31)

Similarly, the system and input matrices related to the
longitudinal dynamics are

Alon =


0 0 a4 0 0
0 0 g 0 0
−R

h
1
h 0 0 0

1 0 0 0 0
R 0 0 0 0


, Blon =


b2
1

m2h

0
0
0


, (32)

where
a4 = −2m2g/(3mR + 2m1R),

b2 = −2 (R + h)/
(
3mR2h + 2m1R2h

)
.

(33)

The structure of system matrix Alat shows that the lateral
system states are not linearly independent. Similarly, the
longitudinal system states are also not linearly independent.
Let us choose the two sets of output states to be

ylat = Clatxlat :=
[
ω1 σr θ ϑ r ε

]T
,

ylon = Clonxlon :=
[
ω̃2 σ̃γ γ s̃

]T
,

(34)

with appropriate output matrices Clat and Clon.
It can be shown that the lateral and longitudinal systems

are output controllable with the control inputs F and M,
respectively, as the output controllability matrices

Moc,l =
[
ClBl ClAlBl ClA2

l
Bl . . .

]
(35)

have full ranks, i.e., rank Moc,lat = 6 and rank Moc,lon = 4.
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Fig. 3. Simulation results for a lane change maneuver
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TABLE I
PARAMETER VALUES

Quantity Value
Disc mass m 10 kg
Disc radius R 0.3 m
Fork length h 0.3 m
Gravitational acceleration g 9.81 m/s2

Point mass m1 10 kg
Point mass m2 10 kg

In order to control the unicycle and to successfully track a
predefined path with a prescribed velocity profile, we apply
the linear feedback laws:

F := Dϑω1 + Drσr + Pθθ + Pϑϑ + Prr + Pεε ,

M := Dϕω̂2 + Dγσ̂γ + Pγγ + Ps ŝ, ,
(36)

where the errors are defined as

ω̂2 = ω2 − ω2,des, σ̂γ = σγ − σγ,des, ŝ = s − sdes, (37)

and sdes(t) is the desired position along the trajectory, while

ω2,des(t)=R Ûsdes(t),

σγ,des(t)=ω2,des(t)R cos γ(t)+ω3(t)h tan ϑ(t).
(38)

The control gains in (36) are chosen such that the resulting
systems have all identical eigenvalues λi = −12 s−1.

V. SIMULATION RESULTS

The performance of the designed controller is tested via
numerical simulation where the linear control laws (36) are
applied to the nonlinear system (24). The simulation results
are shown in Fig. 3, where the desired states and the desired
path are shown by the dashed black curves, while the realized
ones are depicted by the blue curves.

The desired trajectory is a lane change maneuver, which is
divided into 3 sections. The first section is the acceleration
phase: the unicycle starts at standstill, i.e., vP′ = 0 m/s, and
reaches vP′ = 5 m/s in 5 seconds, while running along the x0
axis. The second section is the lane change, which consists
of 3 clothoid segments to ensure continuous curvature κ(s)
along the trajectory. The third section is a straight line parallel
to the x0 axis. These sections are highlighted by different
background colors in Fig. 3: acceleration with light green,
lane change with light yellow, and the final straight section
with light red.

The designed controller is capable to carry out the desired
lane change maneuver with sufficiently small errors. The
power requirements for this maneuver are below 30 W for the
lateral actuator and below 200 W for the longitudinal actuator.
These are in the realistic range for such a device, so input
constraints do not need to be factored in. However, wheel
slip and excessive tilt may occur, so state constraints will be
important to consider in the future.

VI. CONCLUSION

The path-tracking control of an autonomous unicycle
is considered in this work. A new mechanical model is
introduced with two actuators for the lateral and longitudinal

control. The governing equations are derived using the pseudo-
velocity based Appellian approach.

It is shown that the lateral and longitudinal dynamics can
be decoupled. The three key factors to achieve this are: (a)
utilizing ‘smart’ pseudo-velocity selections, (b) transforming
the system to the trajectory reference frame, and (c) applying
linearization around the straight line steady state motion.

Consequently, the lateral and longitudinal controls can be
designed independently. Linear feedback laws were proposed
for trajectory tracking. One limitation of the current work
is that the desired states along the path were not planned.
Generally, it is difficult to maneuver with the vertical wheel
or accelerate with the vertical pendulum. Regardless, the
proposed controller successfully performed the prescribed
maneuver. The design of more feasible trajectories for the
unicycle is the topic of future research.
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