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Abstract. This study investigates the dynamics of a human-driven
vehicle (HV) following an automated vehicle (AV) when the latter per-
forms a guidance of the former one. After performing linear stability anal-
ysis, the relevant nonlinearity in the range policy of the human driver is
taken into account, and the string stability of the system is analysed for
different excitation amplitudes of the reference velocity. The results show
that applying small positive values for the cruise control gain is advisable,
while the backward-looking gain should somewhat be increased when the
nonlinear effects are relevant.
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1 Introduction

Automated vehicles (AVs) are gaining popularity, but human-driven vehicles
(HVs) are expected to continue dominating traffic in the coming years. Still,
the presence of AVs has the potential to significantly influence the dynamics
of traffic, particularly in terms of reducing the risk of accidents and decreasing
energy consumption also for the vehicles behind them [6,7,18].

If there is no vehicle ahead of the AV then it can follow a predefined reference
velocity, for which a conventional cruise control is satisfactory. However, in real-
world scenarios, this free road condition cannot be assured, therefore, an adaptive
cruise control (ACC) is needed. Furthermore, AVs have the potential to get
information from connected human-driven vehicles (CHVs), which are located
further away in the traffic. In case of connected cruise control (CCC) [20,23],
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the CHV is ahead, while in case of connected traffic control (CTC) [18,28], this
CHV is behind the AV. Finally, the scenario, when a pair of AVs is connected
through traffic, is analyzed in [10].

String stability is a key measure for traffic dynamics, which assesses how the
velocity fluctuations of a vehicle affect the velocity fluctuations of the following
vehicles [3,22,26]. At the linear level, this can be described by a transfer function
between the reference velocity and the velocity of a selected vehicle in the traffic
(practically the last vehicle in a chain) [29]. However, transfer functions are
used for linear systems, while the traffic dynamics is fundamentally nonlinear.
There are various approaches for the calculation of the corresponding nonlinear
frequency response functions including the harmonic balance method (HBM)
[4,14,16], the Volterra series approach [13,21,24], the method of multiple scales
[1,15,19], and the projection of the dynamics onto spectral submanifolds [5,11].

In this paper, the simplest traffic control scenario is considered, when an AV
is driving in front of an HV. A reference velocity is provided to the AV which is
utilized in its cruise controller. In the meantime, the AV also senses the velocity
of the HV behind, which allows the AV to perform a guidance for the human
driver. While previous studies have primarily focused on the string stability of
linearized systems, here, we take into account the nonlinear range policy of the
human driver, and present string stability charts for the nonlinear guidance of
the HV.

The paper is organized as follows. Section 2 introduces the simplified car
following model together with the corresponding control. In Sect. 3, the linearized
system is analysed, which is followed by the investigation of the effect of the
nonlinearities in Sect. 4. The nonlinear frequency response function is calculated
with the harmonic balance method, and string stability charts are presented for
certain large excitation amplitudes in the plane of the control gains of the AV.
Finally, Sect. 5 includes some concluding remarks.

2 Modeling

Fig. 1. Panel (a) presents the model of the guidance of a human-driven vehicle, while
panel (b) shows the nonlinear range policy of the human driver.

Let us consider the simple car-following scenario when an AV is driving in front
of an HV; the distance headway between the two vehicles is h−1(t), while the
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velocities of the AV and the HV are denoted by v(t) and v−1(t), respectively (see
Fig. 1(a)). A possibly time-varying reference velocity vref(t) is provided to the
AV that also senses the velocity difference between the two vehicles. Utilizing
the translational symmetry of the system, the dynamics can be described by
three first order differential equations:

ḣ−1 = v − v−1, (1)
v̇−1 = α(V (h−1) − v−1) + β(W (v) − v−1), (2)

v̇ = β̂(vref − v) + β−1(W (v−1) − v). (3)

Here, β̂ and β−1 are the cruise control gain and the backward-looking gain of
the automated vehicle, respectively; while W (v) = min(v, vmax) is the velocity
saturation function. Furthermore, we assume that the human driver is respond-
ing to the HV’s relative velocity with respect to the AV with a control gain β,
and also considers the so-called range policy V (h−1) with the control gain α.
Note that the saturation function W (v) is non-smooth, which is a coarse approx-
imation of human behavior, but this breakpoint is not reached in our domain of
interest.

Figure 1(b) presents the nonlinear range policy function that determines the
relation between the distance headway h and the corresponding desired velocity.
We assume that if h gets smaller than the critical value hstop, then the human
driver intends to stop; while if the vehicle ahead is sufficiently far away, that
is, h > hgo, then the driver aims to travel with a comfortable vmax velocity.
Finally, if the headway takes a value in between hstop and hgo, then the driver is
responding according to a strictly monotonically increasing function F (h). Thus,
the range policy function assumes the form

V (h) =

⎧
⎪⎨

⎪⎩

0, if h < hstop,

F (h), if hstop ≤ h < hgo,

vmax, if hgo ≤ h.

(4)

Here, we approximate F (h) with the third-degree polynomial

F (h) = vmax
(3hgo − hstop − 2h)(h − hstop)2

(hgo − hstop)3
, (5)

which introduces the relevant nonlinearity into the system.
This model of the human driver is called optimal velocity model, which is

widely used in the literature [9,12,17,25]; moreover, the typical numerical values
of the human gains α and β have already been measured and estimated in [2].

3 Linear Analysis

First, let us investigate the linearized dynamics to provide a basis of comparison
for nonlinear studies.
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In case of constant reference velocity vref(t) = v̄ref < vmax, the governing
equations (1)-(3) yield the steady state motion v�

−1 = v� = v̄ref , while the
inverse of the range policy determines the distance between the two vehicles:
h�

−1 = V −1(v̄ref). As Fig. 1(b) presents, the slope of the range policy at the steady
state is denoted by κ = V ′(h�

−1).
Let us introduce the time varying reference velocity vref(t) = v̄ref + ṽref(t)

and the shifted state vector x = [h̃−1 ṽ−1 ṽ]T with

h̃−1 = h−1 − h�
−1, ṽ−1 = v−1 − v̄ref , and ṽ = v − v̄ref , (6)

which leads to the linearized state space model

ẋ = Ax + Bṽref, (7)
y = Cx. (8)

Here, the velocity of the HV is selected as the output y, and the coefficient
matrices assume the form

A =

⎡

⎣
0 −1 1

ακ −(α+β) β

0 β−1 −(β̂+β−1)

⎤

⎦, B =

⎡

⎣
0
0
β̂

⎤

⎦, C =
[
0 1 0

]
. (9)

The stability of the linearized system can be analysed in two ways. On one
hand, the system is called plant stable if it is stable at constant reference velocity
vref = v̄ref ; on the other hand, the system is called string stable if the oscillations
in the input ṽref(t) do not lead to increased oscillations in the output y.

3.1 Plant Stability

The plant stability is determined by the roots of the characteristic function
D(s) = det(sI − A) which leads to the characteristic equation

s3 + (α + β + β̂ + β−1)s2 + (αβ̂ + αβ−1 + ββ̂ + ακ)s + ακβ̂ = 0. (10)

The system is stable if and only if all the characteristic roots have negative
real parts. Because of Rouche’s theorem, the location of the roots is a continuous
function of the control gains. Thus, varying the parameters, the system may
loose its stability in two ways: either a root crosses the imaginary axis through
the origin of the complex plane leading to static loss of stability (steady-state
bifurcation); or a pair of complex conjugate roots crosses the imaginary axis
with nonzero imaginary part, which leads to dynamic loss of stability (Hopf
bifurcation).

Thus, the static stability boundary can be determined by substituting s = 0
into Eq. (10), which yields

ακβ̂ = 0. (11)

Similarly, the dynamic stability boundary can be calculated by substituting
s = jΩ into the characteristic equation, where Ω is the angular frequency, with
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which the system starts oscillating when it loses stability. This leads to a complex
equation, the real and imaginary parts of which have to be 0 at the same time.
From the system of the corresponding two scalar algebraic equations, the critical
control gains of the AV can be expressed as the function of Ω:

β−1(Ω) = −Ω4 + ((α + β)2 − 2ακ)Ω2 + α2κ2

βΩ2 + α2κ
, (12)

β̂(Ω) =
Ω4 + α(α + β − κ)Ω2

βΩ2 + α2κ
. (13)

Figure 2 presents a stability chart in the plane of the AV control gains β−1

and β̂, while the control gains of the human driver are fixed (see [2]). The static
and dynamic stability boundaries are denoted by dashed and solid red lines,
respectively; both the dark and the light gray regions are plant stable. This
means that the cruise control gain β̂ has to be positive, while the backward-
looking gain β−1 may also be tuned to negative values.

Fig. 2. Linear stability chart (α = 0.3 s−1, β = 0.4 s−1, κ = 0.6 s−1). Both the light
gray and the dark gray regions are plant stable, while the dark gray region is also
string stable. The inlets display typical frequency response curves at the corresponding
control gain combinations.

3.2 String Stability

The string stability is defined by the transfer function between the input and
the output of the system, which are now the reference velocity and the velocity
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of the HV. The corresponding transfer function takes the form

T (s) = C(sI − A)−1B =:
N(s)
D(s)

, (14)

where D(s) is the same characteristic function as it was used in the plant stability
calculations, while the numerator assumes the form

N(s) = sββ̂ + ακβ̂. (15)

The system is called string stable if

|T (jω)| < 1, for all ω > 0. (16)

Again, two types of string instability may occur: in case of the string insta-
bility at ω = 0, the norm of the transfer function goes above 1 immediately after
ω = 0; while in case of the string instability at an ω > 0, the norm of the transfer
function first decreases but it has a peak later, at which it exceeds 1.

As it is derived in [27], the ω = 0 string instability boundary is located at

β̂ = −β−1
α + β − κ

α + 2β − 2κ
±

√
β2

−1(α + β − κ)2 − α(α + 2β − 2κ)(β−1 + κ)2

α + 2β − 2κ
. (17)

The closed-form expression of the ω > 0 string instability boundary has a
lengthy expression that is not manageable in the present format here.

In Fig. 2, the dashed and solid blue curves correspond to the ω = 0 and to the
ω > 0 string stability boundaries, respectively. Therefore, the dark gray region
is both plant and string stable. Furthermore, the inlets present some typical
transfer functions at three different control gain configurations. At point A, the
system is string stable and (16) is satisfied. At point B, the norm of the transfer
function goes beyond 1 immediately after ω = 0. Finally, point C is close to an
ω > 0 string stability boundary, that is, |T (jω)| first decreases then it exceeds 1
later, as shown in the inlet.

4 Effect of Nonlinearities

Taking into account the relevant nonlinearities of the range policy modifies both
the plant dynamics and the string stability. Assuming constant reference veloc-
ities, stable or unstable self-excited oscillations will occur close to the dynamic
stability boundaries, which originate from super- or subcritical Hopf bifurca-
tions. Considering the nonlinear string stability, the corresponding nonlinear
frequency response function (FRF) is a function of the perturbation amplitude
and includes not only the basic harmonics but also higher ones. Moreover, in the
case of asymmetric nonlinearites, it also contains a shift term. The actual paper
focuses on the string stability and the corresponding nonlinear FRFs of the car
following model.
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Let us assume that the reference velocity is subjected to a sinusoidal pertur-
bation ṽref(t) = ε cos(ωt) leading to vref(t) = v̄ref + ε cos(ωt). In this case, the
equation of motion will take the form of the nonlinear non-autonomous differ-
ential equation

ẋ = Ax + g(x) + Bε cos(ωt), (18)

where g = g2 + g3 contains the second- and third-degree nonlinearities, respec-
tively, which now assume the form

g2(Φ,Ψ) =

⎡

⎣
0

α
2 V ′′(h�

−1)Φ1Ψ1

0

⎤

⎦ , g3(Φ,Ψ,Λ) =

⎡

⎣
0

α
6 V ′′′(h�

−1)Φ1Ψ1Λ1

0

⎤

⎦ . (19)

Subscript 1 denotes the first element of the 3-dimensional vectors Φ, Ψ, or Λ.
The nonlinear equation of motion (18) can not be solved in closed form,

however, there are various approaches to approximate the solution analytically.
In this paper, we apply the harmonic balance method [4,14,16].

4.1 Harmonic Balance

Since it is easier to work with exponential functions, let us substitute cos(ωt)
with the Euler’s formula in (18):

ẋ = Ax + g(x) +
1
2
Bε

(
ejωt + e−jωt

)
. (20)

In what follows, assume that the linear unexcited system is stable. In the
case of small excitation amplitudes, it can be assumed that the O(ε) terms of
the solution do not depend on the nonlinearities, that is, these form the solution
of the excited linearized system. So, the solution is approximated as

x(t) = ε
(
a10ejωt + a01e−jωt

)
+ O(ε2). (21)

Substituting (21) into the equation of motion (20), the coefficients of εejωt

can be balanced:
jωa10 = Aa10 +

1
2
B, (22)

which results in the solution

a10 =
1
2

(jωI − A)−1 B. (23)

Looking for the coefficients of εe−jωt yields that a01 = ā10, where overbar
denotes the complex conjugate. This is consistent with the requirement that the
solution x(t) has to be a real function of time. The higher-order terms can be
calculated successively by substituting the actual approximation of x(t) in the
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nonlinear equation of motion (20). The second- and third-order nonlinearities
yield that the particular solution assumes the form

x(t) = ε
(
a10ejωt + a01e−jωt

)
+ ε2

(
a20e2jωt + a11 + a02e−2jωt

)

+ ε3
(
a30e3jωt + a21ejωt + a12e−jωt + a03e−3jωt

)
+ . . . .

(24)

Note, that ejωt terms appear not only in the coefficients of ε, but also in the
coefficients of ε3 and all higher-order terms with odd order. Thus, applying the
harmonic balance method, the coefficients of ε2e2jωt yield that

a20 = (2jωI − A)−1 g2(a10,a10), (25)

while, again, a02 = ā20.
As it can be expected from the presence of the second-degree nonlinearities,

there will be a shift in the solution. This corresponds to the ε2e0 terms, which
yields

a11 = −2A−1g2(a10,a01). (26)

One can also calculate the a30 and a21 vectors from the balance of the coef-
ficients of ε3e3jωt and ε3ejωt. These take the form

a30 = (3jωI − A)−1 (2g2(a10,a20) + g3(a10,a10,a10)) , (27)

a21 = (jωI − A)−1 (2g2(a01,a20) + 2g2(a10,a11) + 3g3(a10,a10,a01)) ; (28)

and finally, a03 = ā30 and a12 = ā21.
Note that neglecting the nonlinearity, the response will only be determined

by a10 = ā01; so, Eq. (23) together with Eq. (8) yield the transfer function (14).

Fig. 3. Comparison of the nonlinear frequency response M(ω) calculated with 3rd and
5th order harmonic balance method and with the DDE-BIFTOOL package for excita-
tion amplitudes ε = 1 m/s and ε = 3 m/s (α = 0.3 s−1, β = 0.4 s−1, β−1 = −0.3 s−1,
β̂ = 0.18 s−1, vmax = 30 m/s, v̄ref = 26.55 m/s, hstop = 5 m, hgo = 55 m).

Let M(ω) denote the nonlinear magnification between the amplitude of oscil-
lation of the reference velocity and that of the HV. Figure 3 compares this non-
linear magnification calculated with harmonic balance method up to 3rd and
5th order with the results of the DDE-BIFTOOL package in MATLAB [8] (see



Nonlinear Guidance of a Human Driver via an Automated Vehicle 413

details in the Appendix). As it can be observed, the frequency response depends
on the amplitude of the excitation. If ε = 1 m/s, then the three curves run exactly
on each other and the response is string stable; while in case of ε = 3 m/s, there
is a slight difference between the responses. In this case, the 5th order harmonic
balance method approximates the continuation-based solution better, but all
the three results show string unstable property. This comparison demonstrates
the accuracy of the harmonic balance method, which is computationally more
efficient than the continuation based solvers, making it a good candidate for
performing multi-dimensional parameter analysis.

Figure 4 presents stability charts in the plane of the control gains of the
AV, which are colored according to the maximum of the norm of the nonlinear
frequency response. The linear string stability limit is recovered for small exci-
tation amplitudes (cf. Fig. 2), while the string stable domain shrinks for small
and extends for large values of β̂, respectively, as the excitation amplitude is
increased. Note, that the large values of β̂ might lead to unrealistic large acceler-
ations of the AV. Panel (c) of Fig. 4 shows the change of the transfer functions for
the gains β−1 = −0.3 s−1 and β̂ = 0.18 s−1 as the excitation amplitude increases;
this specific case was analysed in Fig. 3. Here, it can be observed in more detail
how the nonlinear system loses its string stability as the excitation amplitude
increases. Note that these figures are created using the 5th order harmonic bal-
ance method, which still does not take into account either the saturation of the
range policy function or the velocity saturation W (v). However, in case of the
string stable and the slightly string unstable solutions, these saturation scenarios
do not occur.

Fig. 4. Panels (a) and (b) present stability charts in case of differ-
ent excitation amplitudes colored according to the maximum of the
norm of the frequency response function (α = 0.3 s−1, β = 0.4 s−1,
vmax = 30 m/s, v̄ref = 26.55 m/s, hstop = 5 m, hgo = 55 m). The green region is

plant and string stable, while the blue dashed and continuous lines refer to linear
string stability boundaries. Panel (c) shows the change of the frequency response curves
as the excitation amplitude increases (for the parameter combination β−1 = −0.3 s−1,
β̂ = 0.18 s−1, marked with magenta crosses in the stability charts).
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5 Conclusion

In this study, we investigated the dynamics of an HV following an AV equipped
with a backward-looking control. The results of the linear analysis showed that
it is advisable to apply small positive values for the cruise control gain, while
the backward-looking gain can take both positive and negative values. However,
taking into account the nonlinearities in the range policy function, we found
that the backward looking gain should be increased. Measurements are to be
performed in the future to tune the model of the human driver and verify the
theoretical results. This will enable us to design control systems for automated
vehicles and guide the dynamics of the traffic flow in mixed traffic scenarios.

Appendix

The DDEBIFTOOL MATLAB package is a continuation based solver primar-
ily developed for the analysis of delay differential equations but it can also
work with autonomous systems without delay [8]. Although, our system is
non-autonomous, it can be transformed to an autonomous ODE by extend-
ing it with a two dimensional subsystem, the periodic solution of which is
[y(t), z(t)]T = [sin(ωt + γ), cos(ωt + γ)]T. The extended ODE takes the form

⎡

⎣
ẋ
ẏ
ż

⎤

⎦ =

⎡

⎣
A 0 εB
0 1 ω
0 −ω 1

⎤

⎦

⎡

⎣
x
y
z

⎤

⎦ +

⎡

⎣
g(x)

−y(y2 + z2)
−z(y2 + z2)

⎤

⎦ , (29)

the periodic solution of which is the same as that of the original system (18).
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