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Abstract— In this paper, we propose models with explicit
trainable delays for learning teleoperated driving (ToD) be-
havior from limited vehicle trajectory data. The data-driven
model is integrated with physics-based nonlinear vehicle dy-
namics and formulated as a neural delay differential equation
(NDDE). The model can be analyzed using the same tools
as developed for classical delay differential equations. The
physics-based nonlinearity built into the data-driven model
reduces the model complexity, enables training with limited
data, and provides good generalizations. An overall latency
in the loop is learned and a generic steering controller that
characterizes the remote operator is identified at the same
time through the training process. This information could be
used to evaluate the performance of ToD in the presence of
communication latency. We provide examples of learning from
simulation data generated by a kinematic vehicle model and
from experimental data generated by a human operator driving
in a high-fidelity simulation environment. The same data-driven
model and training algorithm is used in both cases, which
demonstrates the generalizability of the proposed approach.

Index Terms— Teleoperated driving, delayed lateral dynam-
ics, data-driven models

I. INTRODUCTION

Latency is an important component in vehicle dynamics
and control [1], [2]. The reaction time of the driver and the
actuation time of the powertrain systems both contribute to
the overall latency in the closed-loop vehicle dynamics [3].
These latencies may lead to unstable behaviors, which in
turn compromise safety, energy efficiency, and passenger
comfort [4]. It was conjectured that vehicle automation
will reduce latency, but recent experimental tests suggest
that highly automated vehicles in fact respond slower than
attentive human drivers [5], [6]. This is because on-board
sensors and computation units introduce new sources of
latency [7], [8]. Teleoperated driving (ToD) can act as a
supplement to automated driving in a variety of scenarios.
In teleoperated driving, a communication network is used to
transmit sensor data from the vehicle to a remote center and
to relay control commands back to the vehicle [9], [10]. This
introduces communication latency into the control system,
in addition to the vehicle actuation latency and the remote
operator processing time, as illustrated in Fig. 1(a).
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Fig. 1. (a) Latency components in the teleoperated control loop. (b) A
flow chart of learning and evaluating the teleoperated driving behaviors. The
physics-enhanced data-driven model is in form of neural delay differential
equations (NDDE) with trainable delay.

These inevitable latencies take place in the ToD control
loop in a sequential manner, therefore, one may model the
cumulative effect using the overall latency, i.e., the sum of the
three latency components. Since the overall latency impacts
the control performance [4], it is important to estimate its
value. Additionally, the latency and the behavior of the
remote operator can change over time and the ToD model
should adapt to such changes while relying on limited data.

Latencies can be estimated using least squares method [11]
or using Bayesian inference [12]. Sparse identification of
nonlinear dynamics (SINDy) can also be extended for time
delay systems [13], [14] to estimate the model parameters
including the delay. With the knowledge of the delay, many
mitigation strategies can be applied to improve control per-
formance [15]–[17]. The time delays are also considered
implicitly in recurrent neural network models, as long as
the model provides good predictions [18]. Typically, models
without prior-knowledge are more flexible but they require
more training data and the simulations are time-consuming.

We implement a learning framework which features a
model with an explicit representation of the overall latency.
The overall latency and model parameters are learned simul-
taneously from limited trajectory data. The learning process
is illustrated in Fig. 1(b), where an explicit latency is incorpo-
rated in a neural delay differential equation (NDDE), which
is a data-driven model in the form of a delay differential
equation [19], [20]. The inputs to the NDDE are the current
and delayed states of the ToD system while the output is
the prediction of the state derivative at the current time. We
format the NDDE as a neural network integrated with the
physics-based nonlinear vehicle dynamics. Having trainable
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Fig. 2. Kinematic bicycle model utilized to describe the vehicle dynamics.

delay instead of discretizing history simplifies the structure
of the neural networks; provides physical meaning to the
delay and allows detailed analysis of the model.

Integrating physics-based nonlinearity into a data-driven
model reduces the model complexity, and thus, the delayed
dynamics can be learned from limited data while the model
generalizes well. The learned model characterizes the dy-
namics of the vehicle and the remote operator, and can
be potentially viewed as a digital twin of the teleoperated
vehicle-operator system [21], [22]. While the goal of digital
twins typically is to create high-fidelity simulation environ-
ments, our goal is to establish the simplest nontrivial model
for delayed ToD dynamics with the remote operator in the
loop. This model shall enable the evaluation of the ToD
performance (without further simulations) after the model
is trained. This provides insights into ToD performance and
may facilitate real-time adjustments for the communication
network or the remote operator.

The rest of the paper is organized as follows. In Section II,
we introduce the physics-based nonlinear vehicle model for
ToD with a generic steering angle controller and establish the
stability and performance analysis. In Section III we design
the data-driven model and introduce the training algorithm
for learning the overall latency and the control law. We pro-
vide examples of learning the delayed dynamics from limited
vehicle trajectory data in Section IV, including experimental
data with a human operator driving in the TELECARLA
simulation environment. In the end, we summarize the results
and provide future directions in Section V.

II. TELEOPERATED DRIVING SYSTEM

In this section, we model the teleoperated driving (ToD)
system in the presence of latency and provide stability
and performance analysis while utilizing a simple nonlinear
vehicle model [23]. This will help the construction of the
data-driven model in Section III and lays the foundation of
quantifying ToD performance with a human operator in the
loop in Section IV.

Consider the single track model of a vehicle depicted
in Fig. 2, where v is the longitudinal velocity and l is
the wheelbase. The coordinates of the rear axle center are
denoted by (x, y), while ψ is the yaw angle of the vehicle,
and γ is the steering angle. The dynamics of the vehicle are

ẋ(t) = v cos(ψ(t)),

ẏ(t) = v sin(ψ(t)),

ψ̇(t) =
v

l
tan

(
γ(t)

)
.

(1)

Fig. 3. (a) Contours for different convergence rates ρ when τ̂ = 0.5. (b)
Stability boundaries for different scaled delays τ̂ .

For the scenario of following a straight path y∗ ≡ 0,
ψ∗ ≡ 0, a generic steering controller is given by

γ(t) = sat
(
− kyy(t− τ)− kψψ(t− τ)

)
, (2)

where the control gain ky represents the sensitivity to the
lateral error and the control gain kψ represents the sensitivity
to the yaw error. The delay τ is the overall latency in the
loop and the saturation function sat(·) = 1

π arctan(π·) limits
the steering angle between ±28.65 degrees, same as in [24].

One can nondimensionalize time and space in (1)-(2) using
t̂ = tv/l, τ̂ = τv/l, ŷ = y/l, x̂ = x/l, and then linearize
around the steady state x̂∗ ≡ t̂+ x̂(0), ŷ∗ ≡ 0, ψ∗ ≡ 0,
see [15] for details. The stability of lateral dynamics is given
by the characteristic equation

λ2 + kψe
−λτ̂λ+ l kye

−λτ̂ = 0, (3)

which has infinitely many solutions for the characteristic
roots λ. The real part ρ of the rightmost roots λ = ρ± jω are
used to determine stability and the convergence rate. When
ρ < 0, the steady state motion is stable, that is, the vehicle
converges to straight-running motion. The more negative
value the ρ is, the faster the vehicle converges.

Substituting λ = ρ (i.e., ω = 0) into equation (3) yields

l ky = −ρeρτ̂ (ρ+ kψe
−ρτ̂ ), (4)

which is a straight line in the (kψ, l ky) plane. When ω > 0,
we obtain

kψ = −eρτ̂
(
(ρ2 − ω2) sin(ωτ̂) + 2ρω cos(ωτ̂)

)
/ω, (5)

l ky = −eρτ̂
(
(ρ2 − ω2) cos(ωτ̂)− 2ρω sin(ωτ̂)

)
− kψρ,

which describes a curve in the (kψ, l ky) plane that is pa-
rameterized by the angular frequency ω. If the control gains
are selected such that (kψ, l ky) is on the curves, then the
system will converge to the equilibrium with corresponding
convergence rates ρ. These curves are plotted for different ρ
values in Fig. 3(a) when using the scaled latency τ̂ = 0.5.
The region enclosed by the curves shrinks as ρ decreases and
it disappears when the slopes of the two curves coincide at
the bottom left corner. Correspondingly, there exists a fastest
convergence rate

ρfast =

√
2− 2

τ̂
, (6)

2131



Fig. 4. Structure of the NDDE. The trainable parameters are indicated in
red. As the trainable delay in the NDDE updates, the delayed input to the
NDDE changes accordingly.

which depends only on the scaled latency τ̂ = τv/l. The
corresponding control gains are given by

kψ,fast =
e
√
2−2

(
2
√
2− 2

)
τ̂

,

l ky,fast =
e
√
2−2

(
10
√
2− 14

)
τ̂2

,

(7)

indicated by the black star in Fig. 3(a).
For the special case ρ = 0, the curves correspond to the

stability boundaries
l ky = 0, (8)

and

kψ = ω sinωτ̂ ,

l ky = ω2 cosωτ̂ .
(9)

The system is stable only if the control gains are inside the
region enclosed by stability boundaries. The stable region
shrinks as τ̂ increases, as shown in Fig. 3(b).

Therefore, the performance of ToD can be characterized
by the scaled latency and the steering control gains. The
scaled latency determines the stability boundaries and the
fastest convergence rate of the system. The location of the
actual control gains with respect to the stability boundaries
and to the fastest-convergence gains characterizes the actual
performance in convergence.

The data-driven model introduced in Section III is con-
structed in the form (1)-(2), so that the neural network
parameters learned from data are interpretable. We will show
that if the training data is generated by (1)-(2), the equivalent
data-driven model can exactly recover all the parameters,
including the latency. Then we will train the same model
using experimental data generated by a human operator
driving in a high-fidelity vehicle simulation environment to
demonstrate that such interpretability can be retained. This
also allows us to evaluate the performance of the ToD system,
including the remote operator.

III. DATA-DRIVEN MODEL FOR DELAYED DYNAMICS

In this section, we utilize the physics-based form (1)-(2)
to construct a neural delay differential equation (NDDE).
Then we apply the algorithm for learning the dynamics of the
vehicle and the remote operator, including the overall latency.
The learned weights and biases carry physical meanings, like
the longitudinal velocity and the steering control gains.

Consider the following neural delay differential equation

ẋ(t) = NDDE
(
x(t),x(t− τest)

)
, (10)

with x = [x, y, ψ]⊤ and

NDDE :=

 w2 cos (x3(t))
w2 sin (x3(t))

w2

l tan
(
sat

(
W1x2:3(t− τest) + b1

))
 , (11)

where the wheelbase l is assumed to be known and the
rest of the NDDE parameters are the weights w2 ∈ R,
W1 = [w11, w12] ∈ R1×2, the bias b1 ∈ R, and the overall
latency τest ∈ R. This model is built based on the kinematic
model (1)-(2) and thus the NDDE parameters have physi-
cal meanings. For example, w2 represents the longitudinal
velocity, −W1 represents the control gains in the steering
controller and τest represents the overall latency in the loop.
The bias b1 represents the lateral offset of the straight path
y∗ = −b1/w11, which may not be zero when the remote
operator is a human (who may follow the straight path with
some constant lateral deviation). The structure of NDDE (11)
is visualized in Fig. 4. The input data is the state trajectory
and the output is the time derivative of the state, which
can be estimated by numerical differentiation. The learning
algorithms developed for NDDEs [20], [25] can be adopted.

Here the derivative loss function

L =
1

Nn

N∑
j=1

n∑
i=1

(
˜̇xi(tj)− ẋi(tj)

)2

, (12)

is applied in training where N is batchsize (the number of
samples used for one update) and n is the dimension of the
NDDE state x(t), in our case n = 3. The predicted state
derivative

˜̇x(tj) = NDDE
(
x(tj),x(tj − τest)

)
, (13)

is directly calculated from data. The gradients of the loss with
respect to the parameters can be used for parameter update,
see [25] for detailed derivations. One may also simulate the
NDDE in the training process and use simulation error in
the loss function [20]. Here, for the sake of computation
efficiency, we use the derivative loss (12).

We follow a parallel-training algorithm developed in [25]
and use the adaptive moment estimation adamupdate from
MATLAB Deep Learning Toolbox for the parameter update.
Multiple initializations balance the exploration and exploita-
tion of parameter space, which is helpful when there exist
multiple local minima. (This can happen when the data is not
rich enough in terms of dynamics for training the model). All
parameters, including the delay, are continuous, although the
data is only provided at discrete time instances. Therefore,
linear interpolation is used to obtain the delayed state at these
time instances. Moreover, positivity and maximum value
constraints are imposed on the delay parameter τest.
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IV. LEARNING THE DELAYED TOD DYNAMICS FROM A
SINGLE TRAJECTORY

In this section, we provide two examples of using NDDE
to learn the ToD behavior from a single trajectory. In each
example, the data-driven model has the same form (11),
while the trajectory data are generated differently.

A. Learning from simulation data of the kinematic model

We generate a 10-second-long training trajectory using
the kinematic model (1)-(2) with l = 2.9 m, ky = 0.2 m−1,
kψ = 1 and constant velocity v = 2 m/s. The overall latency
is τ = 1 s and the vehicle aims to follow the straight path
y∗ ≡ 0, ψ∗ ≡ 0. The sampling time is 0.1 second and thus
only 100 data points are available for training, see Fig. 5.
In the training algorithm, the number of attempts is 6, the
learning rate for delay is ητ = 0.1, the learning rate for
other parameters is η = 0.01, the batch size is N = 30, the
maximum iteration number is qmax = 3000, and the early
stop iteration number is smax = 500.

The iterations of the loss and the NDDE parameters
are shown in Fig. 6 for the attempt which gives the best
training loss. For this attempt, the training process ter-
minates before the maximum iteration because the loss
stops decreasing for a while. The minimum loss appears
around 1000 iteration and the corresponding parameters
are recorded and used in the final trained NDDE. As we
can see from panels (b), (c) and (d), the NDDE param-
eters indeed approach the ground truth in the simulation
data. The learned latency is τest = 1.01 s and the corre-
sponding weights are W1 = [−0.1964,−0.9977]. The bias
b1 = 0.0002 is also learned and it corresponds to the offset
−b1/w11 = −0.0012 m. These are all within 1% of the true
values. This example shows that the proposed NDDE model
and algorithm are capable of learning the overall latency
and the ToD parameters simultaneously, from very limited
trajectory data.

B. Learning from human-operator-in-the-loop experiments

We utilize experimental driving data where a human
operator drives in a high-fidelity simulation environment.
In particular, we establish a remote driving simulator using
TELECARLA [26], in which we can introduce an additional
delay as the communication latency. As shown in Fig. 7,
the experimental setup consists of three parts: the client
computer, the Ethernet wire connection, and the server
computer. The CARLA simulations are running on the server
computer and the data is transmitted to the client computer
via the Ethernet wire with a network emulation Web-GUI.
The network emulation introduces a constant delay ∆τ to
represent the communication latency. The client computer
shows a driver’s view to the remote operator and the steering
commands generated by the operator are recorded and sent
back to the server for execution.

In the experiments, the human operator performs a lane
change maneuver after the vehicle reaches an equilibrium
speed. The speed is maintained at a constant value around
4 m/s by a controller during the lane-changing maneuver and

Fig. 5. Training data obtained from simulating the kinematic model.

Fig. 6. Evolution of the loss and the equivalent parameters along the
training iterations when learning from simulation data.

Fig. 7. TELECARLA setup used for collecting experimental data.

the human operator is only controlling the steering wheel.
Multiple experiments are conducted under different values of
the communication latency ∆τ = 0, 0.15, 0.3, 0.4 s. Each
set of experiments contains three runs. The trajectory data
are presented in Fig. 8 under different introduced latency
∆τ . It can be observed that when ∆τ ≥ 0.4 s, the human
operator starts losing control of the vehicle.

When training the neural networks, we do not combine the
data from multiple runs since human behavior may differ
even under the same driving conditions. Fig. 9(a) and (c)
depict runs under ∆τ = 0 and ∆τ = 0.4 s, respectively. The
NDDE (11) is utilized to learn from individual trajectories,
each containing 24-seconds of data with sampling time 0.05
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Fig. 8. Experimental data of a lane-change maneuver with a human remote
operator in the loop. Different network latencies ∆τ were introduced in the
experiments and three runs of data were collected under each condition.

Fig. 9. Simulations of the trained NDDE are compared to the experimental
data on the left. Stability charts for the learned parameters of the human
operator are shown on the right. (a)-(b) a run of data collected under
∆τ = 0 s. (c)-(d) a run of data collected under ∆τ = 0.4 s

second (480 data points), see the segment until second
vertical black line. The maximum allowed latency is set to
be 3 seconds, so the training data until the first vertical black
line is not included in the loss (12).

After training, the NDDE is simulated to predict the
trajectory from the given history, beyond the training data.
This allows us to examine how this simplest nontrivial model

Fig. 10. Stability charts extracted from the TELECARLA experiments.

Fig. 11. The overall latency in the loop estimated from individual
trajectories for different values of the communication latency ∆τ .

captures the complex dynamics of the human-operator-in-
the-loop TELECARLA experiments, under different laten-
cies. Since the simulation error is not considered in the loss
function during training, it is necessary to examine the simu-
lations even on the training data. When the latency is small,
as in Fig. 9(a), the NDDE aligns well with the data. When
the latency is larger and the trajectory is unstable, as shown
in Fig. 9(b), the NDDE still captures the unstable behavior
qualitatively, while the prediction accuracy decreases.

Stability and performance analysis can be done for the
trained NDDE in the same way as for classical delay differ-
ential equations, since the data-driven model is in the form
(1)-(2). Fig. 9(b) and (d) show the stability boundaries and
the fastest-convergence gains (blue stars) under the learned
scaled latency τ̂ = τestw2/l where τest is the learned overall
latency and w2 is the learned speed. The equivalent control
parameters ky, kψ can also be extracted from the learned
weight W1, which are indicated as blue circles. When the
human gains are close to the fastest-convergence gains, the
trajectory of the teleoperated vehicle converges to the straight
line quickly without oscillations. When the learned human
gains are located outside the stability boundary, the ToD
trajectory is indeed oscillatory and unstable.

We plot the stability charts and the learned human gains
of all runs in Fig. 10. When the introduced latency is 0, the
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overall latency in the loop is small. Then the stable region
is large and the human can perform close to the fastest-
convergence gains. However, when the introduced latency is
large, the stable area is small, and the human gains are lo-
cated outside or near the stability boundaries. We remark that
similar behavior is observed in balancing problems where
human reaction delay also plays an important role [27].

We show the correlation between the learned latency and
the communication latency for all experiments in Fig. 11.
The learned delay τest increases with the introduced com-
munication latency ∆τ and it varies under same ∆τ . This
indicates that the human reaction time may differ in individ-
ual experiments, under the same network conditions.

V. CONCLUSION

In this paper, we built a bridge between physics-based
and data-driven modeling of teleoperated driving (ToD)
with time delays in the control loop by using neural delay
differential equations (NDDEs). We designed a NDDE based
on a kinematic vehicle model, so that the embedded neural
networks can be trained with limited data and the parameters
are interpretable. The learning algorithms developed for
NDDEs enabled us to estimate the overall latency and to
characterize the remote operator at the same time. Stability
and performance analysis was carried out on the trained
NDDE. We demonstrated the benefits of learning the ToD
dynamics with a simple NDDE using simulation data as well
as experimental data collected when a human operator was
driving in a high-fidelity simulation environment.

As future directions, we will implement the training algo-
rithm online and provide the performance evaluation in real-
time. Different NDDE models will be designed and evaluated
based on physics-based models incorporating steering and
tire dynamics in a large variety of maneuvers. We also
plan to study the behaviors of different remote operators
under varying communication latency. Adding time-varying
characteristics, such as dynamic weather and road surface
conditions, is also an interesting future direction.
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