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ABSTRACT

This paper presents a methodology by which kinematic variables of road vehicles can be
extracted from unmanned aerial vehicle (UAV) footage. The oriented bounding boxes of the
vehicles are identified based on the aerial view of the intersection, and the kinematic varia-
bles, such as position, longitudinal velocity, lateral velocity, yaw angle and yaw rate, are
determined. The bounding boxes are converted to the perspective of a roadside camera
using homography, to generate labeled data sets for training the machine learning-based
perception systems of smart intersections. Compared to ordinary GPS data-based technol-
ogy, the proposed method provides smoother data and more information about the
dynamics of the vehicles. In the meantime, it does not require any additional instrumenta-
tion on the vehicles. The extracted kinematic variables can be used for motion prediction of
road traffic participants and for control of connected automated vehicles (CAVs) in intelli-
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gent transportation systems.

1. Introduction

Unmanned aerial vehicles (UAVs), also referred as
drones, have attracted increasing attention of research-
ers in traffic monitoring and management due to their
mobility and low cost. Instead of fixed-location sensors,
such as fixed cameras, radars, and loop detectors,
which can only collect data from specific perspectives
at specific locations, UAVs can serve as mobile sensors
in modern traffic networks. UAVs can be coordinated
to collect large scale traffic data and the extracted
vehicle trajectories can be used to investigate safety
(Zheng et al, 2022) and to study traffic congestion
(E. Barmpounakis & Geroliminis, 2020). Drones can
carry different types of sensors, such as video cameras,
thermal cameras, infrared cameras, LIDAR, and radar
(Pajares, 2015). Among these, high-resolution video
cameras are the most popular sensors for traffic moni-
toring (Datondji et al, 2016; Husain et al, 2020).
Probe vehicles equipped with high-precision GPS can
also be used to collect traffic data, but such instrumen-
tation is expensive and only a small fraction of the
vehicles can be instrumented. Besides traffic surveil-
lance, UAVs can also be used in other applications, for

example, freight delivery and road construction, but
this is beyond the scope of this paper. The survey by
Barmpounakis et al. (2016) is listed for the interest of
the readers.

Puri (2005) gives a comprehensive survey of early
research activities on using UAVs for traffic surveil-
lance. Back then most of the work was still in the
design stage, and mainly focused on the control and
operation of UAVs. The related research between
2005 and 2012 is summarized in (Kanistras et al.,
2013), with real-time algorithms developed for vehicle
detection, classification and tracking in intelligent
transportation systems. Liu et al. (2013) review com-
puter vision techniques used for vehicle detection and
tracking. Algorithms are categorized as motion-based
methods (which compare frames and search for differ-
ences or trace the movements of pixels) and feature-
based methods (which use inherent vehicle features
such as colors and edges). Tracking algorithms mostly
follow the motion-based method; namely, vehicles
that are spatially close in consecutive frames can be
identified as the same vehicle. Contrarily, machine
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learning (ML) algorithms use feature-based vehicle
detection.

Recent advances in ML technologies bring traffic
monitoring to a new stage. Won (2020) provides a sur-
vey on vehicle classification with different sensors where
ML techniques play an important role. Bouguettaya
et al. (2022) discuss vehicle detection from UAV images
using different deep learning methods. Compared to
hand-crafted image processing or shallow learning meth-
ods, deep learning enhances the ability of real-time,
accurate vehicle detection. Especially, convolutional
neural networks (CNNs), such as You Only Look Once
(YOLO) (Redmon et al., 2016) and its variants, exhibit a
lot of potential in this sense, see e.g., Liu et al. (2023).
CNNs are often combined with other neural network
structures, for example, recurrent neural networks
(RNNs), long short-term memory (LSTM) (Hochreiter
& Schmidhuber, 1997), and generative adversarial net-
works (GANSs) (Goodfellow et al., 2020). RNNs feed the
output from the previous state as an input of the current
state, and thus, can be used for vehicle tracking. LSTMs
fix some problems (such as vanishing gradient) of clas-
sical RNN methods. GANs can be used to generate new
images which are similar to the ones in the existing
data sets. A major challenge for learning-based meth-
ods is however the lack of labeled data sets. Namely,
these methods rely on classical (hand-crafted) image-
processing techniques in the training stage.

Meanwhile, classical computer vision methods are
also applied to UAV images in order to study traffic.
Braut et al. (2012) use a hovering drone at an intersec-
tion to recover origin-destination (OD) matrices. In
order to reduce the large vibration of the drone, they
use homography to transfer each video frame to a refer-
ence image. Guido et al. (2016) present a method to
extract vehicle positions and speeds from UAV videos,
and the results are compared with GPS data. To ensure
accuracy, it uses ground control points to match the
image with the ground coordinates. Khan et al. (2017)
propose an automated framework to extract vehicle tra-
jectories from UAV-obtained video footage more effi-
ciently. Kaufmann et al. (2018) use UAV observations to
study the moving synchronized flow patterns in down-
town areas. Chen et al. (2021) develop an ensemble
detector for vehicle detection, use a kernelized correl-
ation filter for vehicle tracking, and convert the vehicle
positions from Cartesian coordinates to Frenet coordi-
nates along the roadway.

Regardless of the applied methodologies, the main
goal of the above-mentioned studies is the use of
UAV videos for vehicle detection, classification, and
tracking, in order to monitor traffic, study traffic flow,
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and calibrate traffic simulations. The extracted informa-
tion typically contain vehicle types and counts, vehicle
positions and speeds, and traffic flow speeds. For these
purposes, vehicles are treated as points and their orienta-
tions are ignored. There are a few data sets and algo-
rithms (Bock et al, 2020; Liu & Mattyus, 2015;
Razakarivony & Jurie, 2016; Xia et al, 2018; Zheng
et al,, 2022) which consider the orientations (the bound-
ing boxes) of vehicles. However, the purpose of these
research is vehicle (or object) detection and classifica-
tion, and not the extraction of vehicle kinematic varia-
bles. For example, the inD data set (Bock et al., 2020)
provides bounding boxes of different types of road users
with orientation information, but each object is treated
as a single point (centroid of the bounding box) instead
of a rigid body. While such trajectory data may be suffi-
cient for many transportation applications, the details of
vehicle kinematics are ignored in prior research.

In the coming era of connected and automated
vehicles (CAVs) and intelligent transportation systems
(ITSs), knowing the kinematic variables of both the
automated vehicles and the surrounding human-driven
vehicles are crucial for motion planning and vehicle
control. Instead of on-board sensors of limited range,
and fixed-location sensors aimed for aggregated data,
in this paper, a UAV is used to extract kinematic varia-
bles. As illustrated in Figure 1, the main contributions
of this research are:

1. it develops an algorithm to determine true bound-
ing boxes with high precision from UAV footage,
and it generates vehicle kinematic data including
position, velocity, yaw angle and yaw rate;

2. it establishes a methodology by which labeled data
sets can be generated for training the machine learn-
ing-based visual perception systems of roadside-view
cameras; for which the auto-generated roadside-view
bounding boxes can serve as ground truth data.

The rest of the paper is organized as follows. Section 2
introduces the experimental setup. Section 3 explains the
image processing procedure, the data extraction from
the processed video, and compares the results with data
obtained from a GPS-equipped vehicle. In Section 4, the
bounding boxes obtained from the drone view camera
are converted to the roadside-view camera image using
homography. Section 5 concludes the paper and lays out
future research directions.

2. Experiment setup

In order to show the capabilities of our methodology,
an experimental demonstration is shown in our paper.
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Figure 1. Using UAVs to track vehicles and to facilitate machine learning algorithms.

The experiments were carried out at the Mcity Test
Facility at the University of Michigan, Ann Arbor. A
classical traffic scenario was emulated in the intersec-
tion of State Street (north-south) and Main Street
(east-west), as shown in Figure 2.

The experiment is designed as follows. A truck of
total length 10.5m moves toward the intersection
along the westbound of Main Street, makes a left turn
to State Street, and leaves the intersection. At the
same time, a car is standing at the eastbound of inter-
section with a fixed camera facing forward. This cam-
era plays the role of a roadside camera in the
experiments. The truck has an onboard GPS of 10 Hz
sampling frequency installed on top of the cabin.
There are three other vehicles parked at the intersec-
tion to imitate a real urban environment. A DJI
Phantom 4 Pro drone equipped with a video camera
with a 3-axis gimbal, capable of recording 60 frames
per second (fps) in 4K resolution, is sent above the
intersection and hovers about 75m (about 250 ft)
high. The camera is facing down to the intersection
in order to record the movements of vehicles. The
movement of the truck is captured by both the drone
camera (drone view) and the car camera (roadside
view).

3. Data generation

As detailed below, the data extraction process is divided
into two parts: image processing and data extraction.
The data extracted from images are also compared with
GPS data.

3.1. Image processing

The image processing procedure is illustrated in
Figure 3. Prior to detection, the first step is the stabil-
ization of the image to compensate for the motion of
the drone during the experiments. A background
image (drone view) of the intersection is selected
when the target vehicles are not present, and it is
defined as the region of interest (ROI); see the red
frame in Figure 3. During the image processing, the
ROI is identified in each frame and the unnecessary
part of the image is cropped. This not only improves
the computation time by reducing the size of the
image, but also stabilizes the video obtained from the
hovering drone.

The second step is to detect moving objects by com-
paring each frame of the video with the background.
Setting a threshold, the comparison results in a binary
image, and the Matlab morphological operations are
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Figure 2. Intersection at mcity Test facility. A DJI phantom 4 pro drone with high precision video camera is hovering about 250
feet above the intersection to record the movements of ground vehicles. A truck arrives from the east, makes a left turn, and
leaves the intersection to the South; while a car is standing at the west side of the intersection with a camera facing to the east.

applied to eliminate the small changes of the image
(due to shadows, leaves moving in the wind, and
changes of camera perspective) and to merge the
neighboring patches which belong to the same object.
We use the Matlab function “bwmorph” to apply mor-
phological operations on the binary images. Other func-
tions, such as “regionprops” which measures the
properties of image regions, are also used to facilitate
the image processing procedure. The outcomes of this
step are the detection boxes (marked as green squares in
Figure 3), and the number of objects. Note that the
detection boxes are square-shaped as they do not con-
sider the orientations of the vehicles, and they can be in
different sizes according to the actual vehicle sizes. The
goal of this step is to find the rough locations of the
vehicles and to prepare for precise vehicle detection.

Here, we remark that the parked vehicles are not
detected since they are also located in our background
image. Namely, they are not in the interest of our
experiment. Of course, as long as a vehicle is not in
the background image, even if it is parked, it can still
be detected by our algorithm. The background image
can be updated to accommodate larger changes during
the day (or different times of the year), but we omit
these since the time of interest is less than a minute
in this research.

With the detection boxes obtained from the previous
step, precise vehicle detection is applied to obtain the
bounding boxes (marked as yellow rectangles in Figure 3)
containing the precise location and orientation (yaw
angle) of each vehicle. Given the drone-view image of
each vehicle, the area within the detection box is com-
pared with the vehicle images rotated by different
angles, and the most correlated one is selected to draw
the yellow bounding box. We use the Matlab functions
“imrotate” and “normxcorr2” to rotate the images and
to compute the correlations between images. This way,
the position and yaw angle of each vehicle can be
determined. The last step is to convert the image coor-
dinates to the ground coordinates, and to calculate vel-
ocity and yaw rate. The details of this procedure are
given in the next subsection.

3.2. Data extraction

In this part, the data obtained from the video process-
ing is discussed and analyzed. The vehicle is consid-
ered as a rigid body, and the position, velocity and
heading angle at different points of the vehicle are cal-
culated. Furthermore, the bicycle model is introduced
to facilitate the analysis.
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Taking the truck as an example (see Figure 4),
Point C is the geometric center of the bounding box,
point T marks the location on the cabin where the
GPS antenna is installed, and point R is the center of
the real axle. The position vector

ol

of center point C and the yaw angle \ of the vehicle can
be directly obtained from the bounding box after con-
verting the image coordinates to the ground coordinates.

The distance between point T and center point C is
dcr = 3.49 m, while the distance between center point C
and rear axle center point R is dcg = 2.21 m. Thus, the
positions of point T and point R can be calculated as:

Xr Xc cosy
rr = = +dcr| | ,

y| e sin

XR xc cosy

-
=
|
Il
|
@)
%

(2)
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Figure 4. Bicycle model at the truck.

Knowing the position information at each time step,
we can estimate the velocity of point C as:

AXC
At
Ve = , (3)
C Aye
At

where Axc and Ayc are the changes of the x and y
coordinates between frames and 1/At is the frame
rate. Then the speed vc, which is the magnitude of
the velocity, is given by:

ve=—— (4)

where Arc = \/Ax% + Ayk:. The velocity and speed
can be defined similarly for points R and T. Figure 4

shows the velocity vectors vy, v¢, and vy of points T,
C, and R, respectively.

However, a direct division by At in Egs. (3) and
(4) can lead to large errors. One pixel from the image
corresponds to about 0.0275 m in reality, while the
time difference is At =1/60 seconds (with a frame
rate of 60 fps). With these, even an error of one pixel
can lead to 0.0275 x 60 = 1.65 m/s when estimating
the speed. Thus, rather than computing the speed
from the raw position data, we first smooth the pos-
ition using a moving average. Figure 5(a) shows the
speed obtained when using a moving average over 21
data points, which corresponds to a 1/3s window (1/
6s ahead and 1/6s behind). Note that this parameter
can be tuned based on the camera speed (fps). One-
sided smoothing, which only uses past information,
can also be adapted when applying the algorithm
online. When the vehicle is moving straight toward
the intersection at the beginning of the trip, for about

JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS . 571

2s, the speed at the three points (T, C and R) are
very close. However, when the vehicle starts to turn,
the differences become obvious; point T at the front
of the vehicle has the largest speed.

The longitudinal and lateral velocities are the vel-
ocity components along the vehicle’s symmetry axis
and perpendicular to it. For example, for point C,
these can be calculated as

A
vlc"n* xC lﬂ—l——smlp

(5)

A
vlcat xC i zp+ cosw

These are also computed after smoothing the pos-
ition and the yaw angle using a 21-point moving aver-
age. In Figure 5(b), the black curve is the longitudinal
velocity and the green, red, blue curves are the lateral
velocities for the points T, C, and R, respectively. All
three points have the same longitudinal velocity since
the vehicle is considered as a rigid body (i.e., the
length of the vehicle does not change in time) and the
bounding box also has a fixed length.

The heading angle 0 of a point is given by the dir-
ection of the velocity at that point. For example, at
the center C of the vehicle, the heading angle 0c can
be defined as the angle between the velocity v¢ given
in (3) and the horizontal axis:

Ayc

6
Axc’ (6)
see Figure 4. One may observe that heading angle 0 is
given by the sum of yaw angle y and slip angle f,
where the latter one characterizes the direction of the
velocity with respect to the symmetry axis of the
vehicle. For example, for point C we have 0c =
W + fc. Substituting this into Eq. (6) and utilizing
trigonometric identities we obtain
—Axc sinyy + Ayc cos vt

= arctan
Axc cos + Ayc siny vlc

(7)

where in the last step we exploited the expressions
Eq. (5) for the longitudinal and lateral velocities. That
is, zero lateral velocity corresponds to zero slip angle.
Figure 4 demonstrates the heading and slip angles
in a kinematic bicycle model, where the lateral vel-
ocity (and consequently the slip angle) at the rear axle
center R is considered to be zero. In other words, the
yaw angle can be approximated by the heading angle
at point R. Figure 5(c) depicts the heading angles cal-
culated by the velocity directions at points T, C, and
R. For comparison, the yaw angle { obtained from
the bounding box is also plotted as a magenta curve.

0c = arctan—

fc = arctan
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Figure 5. Data extraction from the truck bounding box at different points: (a) speeds; (b) longitudinal velocity and lateral veloc-

ities; (c) heading angles and yaw angle.

Point T has the largest heading angle, and the heading
angle at point R is very close to the yaw angle
(0r =y <= B =~ 0). Correspondingly, in Figure 5(b)
the lateral velocities are approximately zero at all three
points during the first 2s. When the turn starts, the
lateral velocities at point T and point C increase to
different magnitudes while it remains close to zero at
point R. This shows that there is only a small side slip
at the rear wheels, and validates the assumption of the
kinematic bicycle model.

The yaw rate can be calculated using the yaw angle
of the vehicle as:

_AY

o= (8)

The smoothed curves of speed and yaw rate and their
original data are plotted in Figure 3. We emphasize that

the yaw rate is calculated as the derivative of the yaw
angle and not as the derivative of a heading angle. The
heading angle depends on which point of the rigid body
we consider. Meanwhile, there is a unique yaw angle,
and consequently, a unique yaw rate, defined for the
rigid body.

We also analyze the obtained data of the standing
vehicle (car), as the speed and yaw rate are known to be
0. The standard deviation of the position components at
the center point in the x and y directions are within
0.03 m. After smoothing the position data, the mean val-
ues of the computed velocity components of the center
point in the x and y directions are both below 0.02 m/s,
while the standard deviations are within 0.09m/s. The
standard deviation of the yaw angle is about 0.002rad.
The smoothed yaw rate has a mean value very close to 0
(e-17) rad/s, with a standard deviation of 0.01 rad/s.



3.3. Comparison to GPS data

The detection results from the drone view video (60
Hz) are compared with the GPS data (10Hz). The
GPS antenna is installed at point T of the truck (see
Figure 4). Thus, the position, speed, and heading
angle are all plotted at point T in Figure 6, where the
solid green curves are obtained from the drone video
and the black circles are the GPS coordinates (trans-
ferred to the local coordinate system of the intersec-
tion). Panels (a), (c) and (e) relate to the test run
investigated above, while panels (b), (d) and (f) are
representing another test run.

In Figure 6(a), the GPS and the video data have a
good fit, while the trajectory from the video is
smoother. The speed information obtained from the
drone video in Figure 6(c) is the same as the green
curve in Figure 5(a), which is smoothed using the
window size of 1/3s. The yaw angle cannot be gener-
ated from the GPS data directly (at point T), thus it is
hard to compare with the video process result.
Instead, the heading angle at point T is compared.
From the drone view video, the heading angle 01 at
point T is calculated similarly as shown by Eq. (6) for
point C.

While for the run shown in panels (a), (c) and (e),
the video-based position and the GPS position match
well (see panel (a)), for the other run shown in panels
(b), (d) and (f), the GPS position has more than 4
meters difference due to the GPS drift (Kim et al,
2015) (see panel (b)). Panel (d) shows that the vehicle
runs slower compared to panel (c), with a maximum
speed of about 9m/s. Thus, it takes longer to finish
the turn. The GPS-based speed and heading angle
show good agreement with the video-based results in
panels (c,d) and (e,f), respectively.

In summary, the processed video results in
smoother data in position and yaw angle (or heading
angle) and provide richer information on the vehicle
dynamics (heading angles and velocity components at
different points, yaw rate) compared to the GPS meas-
urements, which only give information about the
motion of a single point.

4. Homography

In order to transform the bounding box from a drone
view image to a roadside view image (see Figure 2),
homography (Criminisi et al, 1997) is used in this
section. This transformation generates bounding boxes
for a roadside camera together with the ground truth
data (position, speed, yaw angle, and yaw rate)
extracted from the drone view image. The obtained
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data set can be utilized for training in machine learn-
ing algorithms.

Considering the high vertical position of the drone,
we can assume that the bounding box in the drone
view (x,y,z) is a rectangle, corresponding to the rect-
angular bounding box on the ground plane (X,Y,Z).
On the other hand, as illustrated in Figure 7, a rect-
angle on the ground plane is deformed from the per-
spective of the roadside camera. Correspondingly, the
bounding box forms a quadrilateral in the roadside
camera view (x,y,2'). To convert the coordinates of
an arbitrary point (x,y) on the drone image plane to
a point (x/,y) on the roadside image plane, we define
the transformation:

X/ hi hiy o his X
)/ :; hyy hy hos y > (9)
1 o hs ke | [

=H

where H is the transformation matrix. This matrix
originates from geometric transformations: a spatial
shift (3 coordinates) is defined between the camera
positions; three sequential spatial rotation (3 angles)
between the coordinate systems of the two cameras;
center projections to the image planes (2 distances
between the center points of the projections and
image planes). All together, these transformations are
defined by 8 scalar parameters, and w stands for the
scaling factor related to the optical properties of the
camera objectives. It is worth to note that homogra-
phy does not consider the distortion of the camera
lens, and it preserves the straight lines.

Consider a point (x;,y;) on the drone image plane,
and the projected point (x},y]) on the roadside image
plane. Then Eq. (9) gives

1
- (huxi + hioyr + his) = x|, (10a)
1
" (ha1x1 + hooyr + has) = ¥}, (10b)
1
;(h_’»lxl + haoy1 + hs3z) = 1. (10¢)
and Egs. (10a) and (10c) lead to

x1hin + yihi + his — x5, b3 — yix|hsy — X has = 0.
(11)
Similarly, Egs. (10b) and (10c) provide
x1ha1 + y1has + has — xl)/thI —}’1}/1}132 - )/lh33 =0.
(12)
As it can be seen, the scaling factor w does not

show up in these equations, and, for example, the
assumption h33 =1 can be used without the loss of
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Figure 6. Comparison with GPS data: (a,b) position; (c,d) speed; (e,f) heading angle. (a,c,e) are from one run of the experiment,

while (b,d,f) are from another run.

generality. As a consequence, eight unknowns remain
in the matrix H, and four points are needed to iden-

tify the homography transformation matrix.

To map from the drone image plane to the roadside
image plane, more (than four) points can be selected to
enhance the accuracy of the transformation. The problem
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Figure 7. The rectangle on the ground plane is projected to the image plane of the drone camera, where its shape closely resem-
bles a rectangle due to the high altitude of the drone. The rectangle on the ground plane is realized as a quadrilateral on the

image plane of the roadside camera.

is converted to finding the matrix H for the best fit pro-
jected plane in the fixed-camera view, which can be
solved using the singular value decomposition.

Rewrite the H matrix as

h = [hiy b s oy b hos bbb )T, (13)

and consider n points. Then Eq. (9) becomes

Ah =0, (14)
where
(xp 1 1 0 0 0 —xix{ —-yx; —x|]
0 0 0 x y» 1 —xy =y N
X ¥y 1 0 0 0 —xx, —px, —x
A=10 0 0 x » 1 —x34 =y ¥
Xn Yo 1 0 0 0 —xux, —yux, —x|
L 0 0 0 x, yo 1 _-xny/n —)’nJ’/n _y/n 1 2nx9
(15)

Vector h can be obtained by the eigenvector of the
least eigenvalue of ATA, which is the direct result of
the singular value decomposition of a matrix A.

As shown in Figure 8, n=13 points are selected
from the drone view and from the roadside view,
marked as yellow circles. The red crosses on the road-
side view are the points mapped from the drone view
using matrix H, and they are very close to the hand-
selected points. The panels in the left of Figure 9

show the bounding boxes of the truck in the drone
view at different positions. These are mapped to the
roadside camera image on the right. Note that the
image distortion caused by the roadside camera is cor-
rected prior to the projection.

5. Conclusion

Using images from unmanned aerial vehicles (UAVs),
an algorithm was developed to track ground vehicles
in an intersection, extract their kinematic data, and
generate labeled data sets for machine learning algo-
rithms. Different from previous studies focusing on
vehicle detection, classification, and tracking in traffic
surveillance, we used recorded videos from UAVs to
draw bounding boxes around the vehicles, and to
extract and analyze the kinematic variables of vehicles.
These variables included position, yaw angle, velocity
(i.e., speed and heading angle), and yaw rate. The pos-
ition and yaw angle can be read directly from the
bounding boxes, while the velocity and yaw rate are
calculated using numerical differentiation with respect
to time. Part of the results including position, heading
angle, and speed were compared with the data from
the GPS installed on the vehicle; while the yaw angle
and yaw rate can only be obtained from the UAV
images. Furthermore, the bounding boxes from the
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Figure 8. Points selected to map the drone view (upper figure) to the roadside view (lower figure). Yellow circles are hand
selected points, and red crosses are calculated from the drone view points using matrix H for validation purpose.

drone view image were projected to a roadside view
image using homography.

The extracted kinematic data can be used in the con-
trol and planning of smart intersections, especially in
environments containing connected automated vehicles
(CAVs). Knowing the dynamics of other vehicles can
benefit the CAVs for their decision making and path
planning. With the obtained data and bounding boxes
(from roadside camera) as the” ground truth”, this algo-
rithm can be used to generate training data for machine
learning algorithms that can perform more complex
tasks, for example, online tracking. Note that the UAV
images are only used for generating labeled data sets.

After trained, the machine learning algorithms will only
use images from the roadside camera as input.

In this study, the background image is one frame of
the drone view video without the target vehicles, which
may be difficult to obtain in real traffic. This can be
resolved by taking an average of multiple frames. The
bounding box size of a certain vehicle is fixed in this
study, however, the vehicle may deform due to the per-
spective of the drone camera, especially close to the edge
of the image. This deformation may be pre-processed
before the vehicle detection. Future work will apply the
proposed framework to train machine learning algo-
rithms using the generated high-precision data.
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