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ABSTRACT 
This paper presents a methodology by which kinematic variables of road vehicles can be 
extracted from unmanned aerial vehicle (UAV) footage. The oriented bounding boxes of the 
vehicles are identified based on the aerial view of the intersection, and the kinematic varia
bles, such as position, longitudinal velocity, lateral velocity, yaw angle and yaw rate, are 
determined. The bounding boxes are converted to the perspective of a roadside camera 
using homography, to generate labeled data sets for training the machine learning-based 
perception systems of smart intersections. Compared to ordinary GPS data-based technol
ogy, the proposed method provides smoother data and more information about the 
dynamics of the vehicles. In the meantime, it does not require any additional instrumenta
tion on the vehicles. The extracted kinematic variables can be used for motion prediction of 
road traffic participants and for control of connected automated vehicles (CAVs) in intelli
gent transportation systems.
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1. Introduction

Unmanned aerial vehicles (UAVs), also referred as 
drones, have attracted increasing attention of research
ers in traffic monitoring and management due to their 
mobility and low cost. Instead of fixed-location sensors, 
such as fixed cameras, radars, and loop detectors, 
which can only collect data from specific perspectives 
at specific locations, UAVs can serve as mobile sensors 
in modern traffic networks. UAVs can be coordinated 
to collect large scale traffic data and the extracted 
vehicle trajectories can be used to investigate safety 
(Zheng et al., 2022) and to study traffic congestion 
(E. Barmpounakis & Geroliminis, 2020). Drones can 
carry different types of sensors, such as video cameras, 
thermal cameras, infrared cameras, LIDAR, and radar 
(Pajares, 2015). Among these, high-resolution video 
cameras are the most popular sensors for traffic moni
toring (Datondji et al., 2016; Husain et al., 2020). 
Probe vehicles equipped with high-precision GPS can 
also be used to collect traffic data, but such instrumen
tation is expensive and only a small fraction of the 
vehicles can be instrumented. Besides traffic surveil
lance, UAVs can also be used in other applications, for 

example, freight delivery and road construction, but 
this is beyond the scope of this paper. The survey by 
Barmpounakis et al. (2016) is listed for the interest of 
the readers.

Puri (2005) gives a comprehensive survey of early 
research activities on using UAVs for traffic surveil
lance. Back then most of the work was still in the 
design stage, and mainly focused on the control and 
operation of UAVs. The related research between 
2005 and 2012 is summarized in (Kanistras et al., 
2013), with real-time algorithms developed for vehicle 
detection, classification and tracking in intelligent 
transportation systems. Liu et al. (2013) review com
puter vision techniques used for vehicle detection and 
tracking. Algorithms are categorized as motion-based 
methods (which compare frames and search for differ
ences or trace the movements of pixels) and feature- 
based methods (which use inherent vehicle features 
such as colors and edges). Tracking algorithms mostly 
follow the motion-based method; namely, vehicles 
that are spatially close in consecutive frames can be 
identified as the same vehicle. Contrarily, machine 
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learning (ML) algorithms use feature-based vehicle 
detection.

Recent advances in ML technologies bring traffic 
monitoring to a new stage. Won (2020) provides a sur
vey on vehicle classification with different sensors where 
ML techniques play an important role. Bouguettaya 
et al. (2022) discuss vehicle detection from UAV images 
using different deep learning methods. Compared to 
hand-crafted image processing or shallow learning meth
ods, deep learning enhances the ability of real-time, 
accurate vehicle detection. Especially, convolutional 
neural networks (CNNs), such as You Only Look Once 
(YOLO) (Redmon et al., 2016) and its variants, exhibit a 
lot of potential in this sense, see e.g., Liu et al. (2023). 
CNNs are often combined with other neural network 
structures, for example, recurrent neural networks 
(RNNs), long short-term memory (LSTM) (Hochreiter 
& Schmidhuber, 1997), and generative adversarial net
works (GANs) (Goodfellow et al., 2020). RNNs feed the 
output from the previous state as an input of the current 
state, and thus, can be used for vehicle tracking. LSTMs 
fix some problems (such as vanishing gradient) of clas
sical RNN methods. GANs can be used to generate new 
images which are similar to the ones in the existing 
data sets. A major challenge for learning-based meth
ods is however the lack of labeled data sets. Namely, 
these methods rely on classical (hand-crafted) image- 
processing techniques in the training stage.

Meanwhile, classical computer vision methods are 
also applied to UAV images in order to study traffic. 
Braut et al. (2012) use a hovering drone at an intersec
tion to recover origin-destination (OD) matrices. In 
order to reduce the large vibration of the drone, they 
use homography to transfer each video frame to a refer
ence image. Guido et al. (2016) present a method to 
extract vehicle positions and speeds from UAV videos, 
and the results are compared with GPS data. To ensure 
accuracy, it uses ground control points to match the 
image with the ground coordinates. Khan et al. (2017) 
propose an automated framework to extract vehicle tra
jectories from UAV-obtained video footage more effi
ciently. Kaufmann et al. (2018) use UAV observations to 
study the moving synchronized flow patterns in down
town areas. Chen et al. (2021) develop an ensemble 
detector for vehicle detection, use a kernelized correl
ation filter for vehicle tracking, and convert the vehicle 
positions from Cartesian coordinates to Frenet coordi
nates along the roadway.

Regardless of the applied methodologies, the main 
goal of the above-mentioned studies is the use of 
UAV videos for vehicle detection, classification, and 
tracking, in order to monitor traffic, study traffic flow, 

and calibrate traffic simulations. The extracted informa
tion typically contain vehicle types and counts, vehicle 
positions and speeds, and traffic flow speeds. For these 
purposes, vehicles are treated as points and their orienta
tions are ignored. There are a few data sets and algo
rithms (Bock et al., 2020; Liu & Mattyus, 2015; 
Razakarivony & Jurie, 2016; Xia et al., 2018; Zheng 
et al., 2022) which consider the orientations (the bound
ing boxes) of vehicles. However, the purpose of these 
research is vehicle (or object) detection and classifica
tion, and not the extraction of vehicle kinematic varia
bles. For example, the inD data set (Bock et al., 2020) 
provides bounding boxes of different types of road users 
with orientation information, but each object is treated 
as a single point (centroid of the bounding box) instead 
of a rigid body. While such trajectory data may be suffi
cient for many transportation applications, the details of 
vehicle kinematics are ignored in prior research.

In the coming era of connected and automated 
vehicles (CAVs) and intelligent transportation systems 
(ITSs), knowing the kinematic variables of both the 
automated vehicles and the surrounding human-driven 
vehicles are crucial for motion planning and vehicle 
control. Instead of on-board sensors of limited range, 
and fixed-location sensors aimed for aggregated data, 
in this paper, a UAV is used to extract kinematic varia
bles. As illustrated in Figure 1, the main contributions 
of this research are:

1. it develops an algorithm to determine true bound
ing boxes with high precision from UAV footage, 
and it generates vehicle kinematic data including 
position, velocity, yaw angle and yaw rate;

2. it establishes a methodology by which labeled data 
sets can be generated for training the machine learn
ing-based visual perception systems of roadside-view 
cameras; for which the auto-generated roadside-view 
bounding boxes can serve as ground truth data.

The rest of the paper is organized as follows. Section 2
introduces the experimental setup. Section 3 explains the 
image processing procedure, the data extraction from 
the processed video, and compares the results with data 
obtained from a GPS-equipped vehicle. In Section 4, the 
bounding boxes obtained from the drone view camera 
are converted to the roadside-view camera image using 
homography. Section 5 concludes the paper and lays out 
future research directions.

2. Experiment setup

In order to show the capabilities of our methodology, 
an experimental demonstration is shown in our paper. 
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The experiments were carried out at the Mcity Test 
Facility at the University of Michigan, Ann Arbor. A 
classical traffic scenario was emulated in the intersec
tion of State Street (north-south) and Main Street 
(east-west), as shown in Figure 2.

The experiment is designed as follows. A truck of 
total length 10.5 m moves toward the intersection 
along the westbound of Main Street, makes a left turn 
to State Street, and leaves the intersection. At the 
same time, a car is standing at the eastbound of inter
section with a fixed camera facing forward. This cam
era plays the role of a roadside camera in the 
experiments. The truck has an onboard GPS of 10 Hz 
sampling frequency installed on top of the cabin. 
There are three other vehicles parked at the intersec
tion to imitate a real urban environment. A DJI 
Phantom 4 Pro drone equipped with a video camera 
with a 3-axis gimbal, capable of recording 60 frames 
per second (fps) in 4K resolution, is sent above the 
intersection and hovers about 75 m (about 250 ft) 
high. The camera is facing down to the intersection 
in order to record the movements of vehicles. The 
movement of the truck is captured by both the drone 
camera (drone view) and the car camera (roadside 
view).

3. Data generation

As detailed below, the data extraction process is divided 
into two parts: image processing and data extraction. 
The data extracted from images are also compared with 
GPS data.

3.1. Image processing

The image processing procedure is illustrated in 
Figure 3. Prior to detection, the first step is the stabil
ization of the image to compensate for the motion of 
the drone during the experiments. A background 
image (drone view) of the intersection is selected 
when the target vehicles are not present, and it is 
defined as the region of interest (ROI); see the red 
frame in Figure 3. During the image processing, the 
ROI is identified in each frame and the unnecessary 
part of the image is cropped. This not only improves 
the computation time by reducing the size of the 
image, but also stabilizes the video obtained from the 
hovering drone.

The second step is to detect moving objects by com
paring each frame of the video with the background. 
Setting a threshold, the comparison results in a binary 
image, and the Matlab morphological operations are 

Figure 1. Using UAVs to track vehicles and to facilitate machine learning algorithms.
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applied to eliminate the small changes of the image 
(due to shadows, leaves moving in the wind, and 
changes of camera perspective) and to merge the 
neighboring patches which belong to the same object. 
We use the Matlab function “bwmorph” to apply mor
phological operations on the binary images. Other func
tions, such as “regionprops” which measures the 
properties of image regions, are also used to facilitate 
the image processing procedure. The outcomes of this 
step are the detection boxes (marked as green squares in 
Figure 3), and the number of objects. Note that the 
detection boxes are square-shaped as they do not con
sider the orientations of the vehicles, and they can be in 
different sizes according to the actual vehicle sizes. The 
goal of this step is to find the rough locations of the 
vehicles and to prepare for precise vehicle detection.

Here, we remark that the parked vehicles are not 
detected since they are also located in our background 
image. Namely, they are not in the interest of our 
experiment. Of course, as long as a vehicle is not in 
the background image, even if it is parked, it can still 
be detected by our algorithm. The background image 
can be updated to accommodate larger changes during 
the day (or different times of the year), but we omit 
these since the time of interest is less than a minute 
in this research.

With the detection boxes obtained from the previous 
step, precise vehicle detection is applied to obtain the 
bounding boxes (marked as yellow rectangles in Figure 3) 
containing the precise location and orientation (yaw 
angle) of each vehicle. Given the drone-view image of 
each vehicle, the area within the detection box is com
pared with the vehicle images rotated by different 
angles, and the most correlated one is selected to draw 
the yellow bounding box. We use the Matlab functions 
“imrotate” and “normxcorr2” to rotate the images and 
to compute the correlations between images. This way, 
the position and yaw angle of each vehicle can be 
determined. The last step is to convert the image coor
dinates to the ground coordinates, and to calculate vel
ocity and yaw rate. The details of this procedure are 
given in the next subsection.

3.2. Data extraction

In this part, the data obtained from the video process
ing is discussed and analyzed. The vehicle is consid
ered as a rigid body, and the position, velocity and 
heading angle at different points of the vehicle are cal
culated. Furthermore, the bicycle model is introduced 
to facilitate the analysis.

Figure 2. Intersection at mcity Test facility. A DJI phantom 4 pro drone with high precision video camera is hovering about 250 
feet above the intersection to record the movements of ground vehicles. A truck arrives from the east, makes a left turn, and 
leaves the intersection to the South; while a car is standing at the west side of the intersection with a camera facing to the east.
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Taking the truck as an example (see Figure 4), 
Point C is the geometric center of the bounding box, 
point T marks the location on the cabin where the 
GPS antenna is installed, and point R is the center of 
the real axle. The position vector

rC ¼
xC
yC

� �

, (1) 

of center point C and the yaw angle w of the vehicle can 
be directly obtained from the bounding box after con
verting the image coordinates to the ground coordinates. 

The distance between point T and center point C is 
dCT ¼ 3:49 m, while the distance between center point C 
and rear axle center point R is dCR ¼ 2:21 m. Thus, the 
positions of point T and point R can be calculated as:

rT ¼
xT

yT

" #

¼
xC

yC

" #

þ dCT
cos w

sin w

" #

,

rR ¼
xR

yR

" #

¼
xC

yC

" #

− dCR
cos w

sin w

" #

:

(2) 

Figure 3. Vehicle detection process.
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Knowing the position information at each time step, 
we can estimate the velocity of point C as:

vC ¼

DxC

Dt
DyC

Dt

2

6
6
6
4

3

7
7
7
5

, (3) 

where DxC and DyC are the changes of the x and y 
coordinates between frames and 1=Dt is the frame 
rate. Then the speed vC, which is the magnitude of 
the velocity, is given by:

vC ¼
DrC

Dt
, (4) 

where DrC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2

C þ Dy2
C

p
: The velocity and speed 

can be defined similarly for points R and T. Figure 4
shows the velocity vectors vT, vC, and vR of points T, 
C, and R, respectively.

However, a direct division by Dt in Eqs. (3) and 
(4) can lead to large errors. One pixel from the image 
corresponds to about 0.0275 m in reality, while the 
time difference is Dt ¼ 1=60 seconds (with a frame 
rate of 60 fps). With these, even an error of one pixel 
can lead to 0:0275� 60 ¼ 1:65 m/s when estimating 
the speed. Thus, rather than computing the speed 
from the raw position data, we first smooth the pos
ition using a moving average. Figure 5(a) shows the 
speed obtained when using a moving average over 21 
data points, which corresponds to a 1/3 s window (1/ 
6 s ahead and 1/6 s behind). Note that this parameter 
can be tuned based on the camera speed (fps). One- 
sided smoothing, which only uses past information, 
can also be adapted when applying the algorithm 
online. When the vehicle is moving straight toward 
the intersection at the beginning of the trip, for about 

2 s, the speed at the three points (T, C and R) are 
very close. However, when the vehicle starts to turn, 
the differences become obvious; point T at the front 
of the vehicle has the largest speed.

The longitudinal and lateral velocities are the vel
ocity components along the vehicle’s symmetry axis 
and perpendicular to it. For example, for point C, 
these can be calculated as

vlon
C ¼

DxC

Dt
cos wþ

DyC

Dt
sin w,

vlat
C ¼ −

DxC

Dt
sin wþ

DyC

Dt
cos w:

(5) 

These are also computed after smoothing the pos
ition and the yaw angle using a 21-point moving aver
age. In Figure 5(b), the black curve is the longitudinal 
velocity and the green, red, blue curves are the lateral 
velocities for the points T, C, and R, respectively. All 
three points have the same longitudinal velocity since 
the vehicle is considered as a rigid body (i.e., the 
length of the vehicle does not change in time) and the 
bounding box also has a fixed length.

The heading angle h of a point is given by the dir
ection of the velocity at that point. For example, at 
the center C of the vehicle, the heading angle hC can 
be defined as the angle between the velocity vC given 
in (3) and the horizontal axis:

hC ¼ arctan
DyC

DxC
, (6) 

see Figure 4. One may observe that heading angle h is 
given by the sum of yaw angle w and slip angle b, 
where the latter one characterizes the direction of the 
velocity with respect to the symmetry axis of the 
vehicle. For example, for point C we have hC ¼

wþ bC: Substituting this into Eq. (6) and utilizing 
trigonometric identities we obtain

bC ¼ arctan
−DxC sin wþ DyC cos w

DxC cos wþ DyC sin w
¼ arctan

vlat
C

vlon
C

,

(7) 

where in the last step we exploited the expressions 
Eq. (5) for the longitudinal and lateral velocities. That 
is, zero lateral velocity corresponds to zero slip angle.

Figure 4 demonstrates the heading and slip angles 
in a kinematic bicycle model, where the lateral vel
ocity (and consequently the slip angle) at the rear axle 
center R is considered to be zero. In other words, the 
yaw angle can be approximated by the heading angle 
at point R. Figure 5(c) depicts the heading angles cal
culated by the velocity directions at points T, C, and 
R. For comparison, the yaw angle w obtained from 
the bounding box is also plotted as a magenta curve. 

Figure 4. Bicycle model at the truck.
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Point T has the largest heading angle, and the heading 
angle at point R is very close to the yaw angle 
(hR � w() bR � 0). Correspondingly, in Figure 5(b)
the lateral velocities are approximately zero at all three 
points during the first 2 s. When the turn starts, the 
lateral velocities at point T and point C increase to 
different magnitudes while it remains close to zero at 
point R. This shows that there is only a small side slip 
at the rear wheels, and validates the assumption of the 
kinematic bicycle model.

The yaw rate can be calculated using the yaw angle 
of the vehicle as:

x ¼
Dw

Dt
(8) 

The smoothed curves of speed and yaw rate and their 
original data are plotted in Figure 3. We emphasize that 

the yaw rate is calculated as the derivative of the yaw 
angle and not as the derivative of a heading angle. The 
heading angle depends on which point of the rigid body 
we consider. Meanwhile, there is a unique yaw angle, 
and consequently, a unique yaw rate, defined for the 
rigid body.

We also analyze the obtained data of the standing 
vehicle (car), as the speed and yaw rate are known to be 
0. The standard deviation of the position components at 
the center point in the x and y directions are within 
0.03 m. After smoothing the position data, the mean val
ues of the computed velocity components of the center 
point in the x and y directions are both below 0.02 m/s, 
while the standard deviations are within 0.09 m/s. The 
standard deviation of the yaw angle is about 0.002 rad. 
The smoothed yaw rate has a mean value very close to 0 
(e-17) rad/s, with a standard deviation of 0.01 rad/s.

Figure 5. Data extraction from the truck bounding box at different points: (a) speeds; (b) longitudinal velocity and lateral veloc
ities; (c) heading angles and yaw angle.
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3.3. Comparison to GPS data

The detection results from the drone view video (60 
Hz) are compared with the GPS data (10 Hz). The 
GPS antenna is installed at point T of the truck (see 
Figure 4). Thus, the position, speed, and heading 
angle are all plotted at point T in Figure 6, where the 
solid green curves are obtained from the drone video 
and the black circles are the GPS coordinates (trans
ferred to the local coordinate system of the intersec
tion). Panels (a), (c) and (e) relate to the test run 
investigated above, while panels (b), (d) and (f) are 
representing another test run.

In Figure 6(a), the GPS and the video data have a 
good fit, while the trajectory from the video is 
smoother. The speed information obtained from the 
drone video in Figure 6(c) is the same as the green 
curve in Figure 5(a), which is smoothed using the 
window size of 1/3 s. The yaw angle cannot be gener
ated from the GPS data directly (at point T), thus it is 
hard to compare with the video process result. 
Instead, the heading angle at point T is compared. 
From the drone view video, the heading angle hT at 
point T is calculated similarly as shown by Eq. (6) for 
point C.

While for the run shown in panels (a), (c) and (e), 
the video-based position and the GPS position match 
well (see panel (a)), for the other run shown in panels 
(b), (d) and (f), the GPS position has more than 4 
meters difference due to the GPS drift (Kim et al., 
2015) (see panel (b)). Panel (d) shows that the vehicle 
runs slower compared to panel (c), with a maximum 
speed of about 9 m/s. Thus, it takes longer to finish 
the turn. The GPS-based speed and heading angle 
show good agreement with the video-based results in 
panels (c,d) and (e,f), respectively.

In summary, the processed video results in 
smoother data in position and yaw angle (or heading 
angle) and provide richer information on the vehicle 
dynamics (heading angles and velocity components at 
different points, yaw rate) compared to the GPS meas
urements, which only give information about the 
motion of a single point.

4. Homography

In order to transform the bounding box from a drone 
view image to a roadside view image (see Figure 2), 
homography (Criminisi et al., 1997) is used in this 
section. This transformation generates bounding boxes 
for a roadside camera together with the ground truth 
data (position, speed, yaw angle, and yaw rate) 
extracted from the drone view image. The obtained 

data set can be utilized for training in machine learn
ing algorithms.

Considering the high vertical position of the drone, 
we can assume that the bounding box in the drone 
view ðx, y, zÞ is a rectangle, corresponding to the rect
angular bounding box on the ground plane ðX, Y , ZÞ:
On the other hand, as illustrated in Figure 7, a rect
angle on the ground plane is deformed from the per
spective of the roadside camera. Correspondingly, the 
bounding box forms a quadrilateral in the roadside 
camera view ðx0, y0, z0Þ: To convert the coordinates of 
an arbitrary point ðx, yÞ on the drone image plane to 
a point ðx0, y0Þ on the roadside image plane, we define 
the transformation:

x0
y0
1

2

4

3

5 ¼
1
w

h11 h12 h13

h21 h22 h23

h31 h32 h33

2

4

3

5

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼H

x
y
1

2

4

3

5, (9) 

where H is the transformation matrix. This matrix 
originates from geometric transformations: a spatial 
shift (3 coordinates) is defined between the camera 
positions; three sequential spatial rotation (3 angles) 
between the coordinate systems of the two cameras; 
center projections to the image planes (2 distances 
between the center points of the projections and 
image planes). All together, these transformations are 
defined by 8 scalar parameters, and w stands for the 
scaling factor related to the optical properties of the 
camera objectives. It is worth to note that homogra
phy does not consider the distortion of the camera 
lens, and it preserves the straight lines.

Consider a point ðx1, y1Þ on the drone image plane, 
and the projected point ðx01, y01Þ on the roadside image 
plane. Then Eq. (9) gives

1
w
ðh11x1 þ h12y1 þ h13Þ ¼ x01, (10a) 

1
w
ðh21x1 þ h22y1 þ h23Þ ¼ y01, (10b) 

1
w
ðh31x1 þ h32y1 þ h33Þ ¼ 1: (10c) 

and Eqs. (10a) and (10c) lead to

x1h11 þ y1h12 þ h13 − x1x01h31 − y1x01h32 − x01h33 ¼ 0:
(11) 

Similarly, Eqs. (10b) and (10c) provide

x1h21 þ y1h22 þ h23 − x1y01h31 − y1y01h32 − y01h33 ¼ 0:
(12) 

As it can be seen, the scaling factor w does not 
show up in these equations, and, for example, the 
assumption h33 ¼ 1 can be used without the loss of 
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generality. As a consequence, eight unknowns remain 
in the matrix H, and four points are needed to iden
tify the homography transformation matrix.

To map from the drone image plane to the roadside 
image plane, more (than four) points can be selected to 
enhance the accuracy of the transformation. The problem 

Figure 6. Comparison with GPS data: (a,b) position; (c,d) speed; (e,f) heading angle. (a,c,e) are from one run of the experiment, 
while (b,d,f) are from another run.
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is converted to finding the matrix H for the best fit pro
jected plane in the fixed-camera view, which can be 
solved using the singular value decomposition.

Rewrite the H matrix as

h ¼ h11, h12, h13, h21, h22, h23, h31, h32, h33
� �T, (13) 

and consider n points. Then Eq. (9) becomes

Ah ¼ 0, (14) 

where

A ¼

x1 y1 1 0 0 0 −x1x01 −y1x01 −x01
0 0 0 x1 y1 1 −x1y01 −y1y01 −y01
x2 y2 1 0 0 0 −x2x02 −y2x02 −x02
0 0 0 x2 y2 1 −x2y02 −y2y02 −y02
::: ::: ::: ::: ::: ::: ::: ::: :::

xn yn 1 0 0 0 −xnx0n −ynx0n −x0n
0 0 0 xn yn 1 −xny0n −yny0n −y0n

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

2n�9

:

(15) 

Vector h can be obtained by the eigenvector of the 
least eigenvalue of ATA, which is the direct result of 
the singular value decomposition of a matrix A:

As shown in Figure 8, n¼ 13 points are selected 
from the drone view and from the roadside view, 
marked as yellow circles. The red crosses on the road
side view are the points mapped from the drone view 
using matrix H, and they are very close to the hand- 
selected points. The panels in the left of Figure 9

show the bounding boxes of the truck in the drone 
view at different positions. These are mapped to the 
roadside camera image on the right. Note that the 
image distortion caused by the roadside camera is cor
rected prior to the projection.

5. Conclusion

Using images from unmanned aerial vehicles (UAVs), 
an algorithm was developed to track ground vehicles 
in an intersection, extract their kinematic data, and 
generate labeled data sets for machine learning algo
rithms. Different from previous studies focusing on 
vehicle detection, classification, and tracking in traffic 
surveillance, we used recorded videos from UAVs to 
draw bounding boxes around the vehicles, and to 
extract and analyze the kinematic variables of vehicles. 
These variables included position, yaw angle, velocity 
(i.e., speed and heading angle), and yaw rate. The pos
ition and yaw angle can be read directly from the 
bounding boxes, while the velocity and yaw rate are 
calculated using numerical differentiation with respect 
to time. Part of the results including position, heading 
angle, and speed were compared with the data from 
the GPS installed on the vehicle; while the yaw angle 
and yaw rate can only be obtained from the UAV 
images. Furthermore, the bounding boxes from the 

Figure 7. The rectangle on the ground plane is projected to the image plane of the drone camera, where its shape closely resem
bles a rectangle due to the high altitude of the drone. The rectangle on the ground plane is realized as a quadrilateral on the 
image plane of the roadside camera.
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drone view image were projected to a roadside view 
image using homography.

The extracted kinematic data can be used in the con
trol and planning of smart intersections, especially in 
environments containing connected automated vehicles 
(CAVs). Knowing the dynamics of other vehicles can 
benefit the CAVs for their decision making and path 
planning. With the obtained data and bounding boxes 
(from roadside camera) as the” ground truth”, this algo
rithm can be used to generate training data for machine 
learning algorithms that can perform more complex 
tasks, for example, online tracking. Note that the UAV 
images are only used for generating labeled data sets. 

After trained, the machine learning algorithms will only 
use images from the roadside camera as input.

In this study, the background image is one frame of 
the drone view video without the target vehicles, which 
may be difficult to obtain in real traffic. This can be 
resolved by taking an average of multiple frames. The 
bounding box size of a certain vehicle is fixed in this 
study, however, the vehicle may deform due to the per
spective of the drone camera, especially close to the edge 
of the image. This deformation may be pre-processed 
before the vehicle detection. Future work will apply the 
proposed framework to train machine learning algo
rithms using the generated high-precision data.

Figure 8. Points selected to map the drone view (upper figure) to the roadside view (lower figure). Yellow circles are hand 
selected points, and red crosses are calculated from the drone view points using matrix H for validation purpose.
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