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Abstract: A reduced-order model based on spectral submanifolds is derived for a car-following
scenario where an automated vehicle leads a human driver. The automated vehicle utilizes cruise
control while also monitoring the velocity of the following vehicle, enabling itself to provide
smooth guidance to the human driver. The infinite-dimensional dynamics is approximated by
a large but finite-dimensional system of ordinary differential equations. Spectral submanifold
calculations are then applied to extract the system’s essential dynamics. The results match those
obtained by delayed spectral submanifold calculations.
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1. INTRODUCTION

In the literature, it is known that human-driven vehicle
chains are string unstable, that is, velocity fluctuations
of the leading vehicle imply increased speed fluctuations
of subsequent vehicles. The development of driver assis-
tance systems opens up the possibility of traffic control:
a properly tuned automated vehicle that receives infor-
mation from some connected human-driven vehicles be-
hind/ahead, can optimize its own performance such that
the surrounding vehicles also benefit. For example, it can
mitigate phantom traffic jams (Molnar and Orosz, 2024),
or minimize energy consumption (Shen et al., 2024).

Traffic dynamics is strongly influenced by the time delay of
human drivers and that of automated vehicles, which are
both in the range of 0.5−1.5 s according to the experiments
in (Ge and Orosz, 2018; Ciuffo et al., 2021). The corre-
sponding governing equations take the form of delay differ-
ential equations (DDEs), which have infinite-dimensional
state space representation (Hale and Verduyn Lunel, 1993;
Stepan, 1989). The analysis of the underlying dynamics
is challenging, especially in the presence of relevant non-
linearities. Therefore, it is worth applying model-order
reduction techniques, which can be used to identify the
essential dynamics of the system.
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Here, we apply the concept of spectral submanifolds
(SSMs), which was introduced by Haller and Ponsioen
(2016), based on the research of Haro and de la Llave
(2006) and Cabré et al. (2003). The algorithm was initially
proposed for ordinary differential equations (ODEs) and it
was successfully applied to obtain the essential dynamics
of various dynamical systems (Breunung and Haller, 2018;
Jain and Haller, 2022; Opreni et al., 2023). In addition, it
was generalized to the infinite-dimensional cases of partial
differential equations (Kogelbauer and Haller, 2018; Buza,
2024) and delay differential equations (Szaksz et al., 2024,
2025).

In this paper, we consider the traffic scenario where an au-
tonomous lead vehicle (AV) aims to provide smooth guid-
ance to a subsequent human-driven vehicle (HV) (Szaksz
et al., 2023b,a). While the corresponding delayed SSM
calculation was carried out in (Szaksz et al., 2024), now, we
discretize the governing DDE in time, and apply the SSM
calculation for the corresponding high-dimensional system
of ODEs. This allows one to obtain a good approximation
of the system’s essential dynamics without the nonlinear
analysis of the intricate operator differential equations
required for the exact delayed SSM calculation. This can
provide a fast and reliable way to extract the essential
dynamics of infinite-dimensional dynamical systems.

The paper is organized as follows. In Sec. 2, the car-
following scenario is introduced taking into account the
nonlinearities in the control of the HV. In Sec. 3, the
discretization of DDEs is discussed, which is followed
by the SSM calculations for one- and two-dimensional
spectral subspaces in Sec. 4. Finally, we discuss the results
and future goals in Sec. 5.
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differential equations (Kogelbauer and Haller, 2018; Buza,
2024) and delay differential equations (Szaksz et al., 2024,
2025).

In this paper, we consider the traffic scenario where an au-
tonomous lead vehicle (AV) aims to provide smooth guid-
ance to a subsequent human-driven vehicle (HV) (Szaksz
et al., 2023b,a). While the corresponding delayed SSM
calculation was carried out in (Szaksz et al., 2024), now, we
discretize the governing DDE in time, and apply the SSM
calculation for the corresponding high-dimensional system
of ODEs. This allows one to obtain a good approximation
of the system’s essential dynamics without the nonlinear
analysis of the intricate operator differential equations
required for the exact delayed SSM calculation. This can
provide a fast and reliable way to extract the essential
dynamics of infinite-dimensional dynamical systems.

The paper is organized as follows. In Sec. 2, the car-
following scenario is introduced taking into account the
nonlinearities in the control of the HV. In Sec. 3, the
discretization of DDEs is discussed, which is followed
by the SSM calculations for one- and two-dimensional
spectral subspaces in Sec. 4. Finally, we discuss the results
and future goals in Sec. 5.
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1. INTRODUCTION

In the literature, it is known that human-driven vehicle
chains are string unstable, that is, velocity fluctuations
of the leading vehicle imply increased speed fluctuations
of subsequent vehicles. The development of driver assis-
tance systems opens up the possibility of traffic control:
a properly tuned automated vehicle that receives infor-
mation from some connected human-driven vehicles be-
hind/ahead, can optimize its own performance such that
the surrounding vehicles also benefit. For example, it can
mitigate phantom traffic jams (Molnar and Orosz, 2024),
or minimize energy consumption (Shen et al., 2024).

Traffic dynamics is strongly influenced by the time delay of
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both in the range of 0.5−1.5 s according to the experiments
in (Ge and Orosz, 2018; Ciuffo et al., 2021). The corre-
sponding governing equations take the form of delay differ-
ential equations (DDEs), which have infinite-dimensional
state space representation (Hale and Verduyn Lunel, 1993;
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is challenging, especially in the presence of relevant non-
linearities. Therefore, it is worth applying model-order
reduction techniques, which can be used to identify the
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(2006) and Cabré et al. (2003). The algorithm was initially
proposed for ordinary differential equations (ODEs) and it
was successfully applied to obtain the essential dynamics
of various dynamical systems (Breunung and Haller, 2018;
Jain and Haller, 2022; Opreni et al., 2023). In addition, it
was generalized to the infinite-dimensional cases of partial
differential equations (Kogelbauer and Haller, 2018; Buza,
2024) and delay differential equations (Szaksz et al., 2024,
2025).

In this paper, we consider the traffic scenario where an au-
tonomous lead vehicle (AV) aims to provide smooth guid-
ance to a subsequent human-driven vehicle (HV) (Szaksz
et al., 2023b,a). While the corresponding delayed SSM
calculation was carried out in (Szaksz et al., 2024), now, we
discretize the governing DDE in time, and apply the SSM
calculation for the corresponding high-dimensional system
of ODEs. This allows one to obtain a good approximation
of the system’s essential dynamics without the nonlinear
analysis of the intricate operator differential equations
required for the exact delayed SSM calculation. This can
provide a fast and reliable way to extract the essential
dynamics of infinite-dimensional dynamical systems.

The paper is organized as follows. In Sec. 2, the car-
following scenario is introduced taking into account the
nonlinearities in the control of the HV. In Sec. 3, the
discretization of DDEs is discussed, which is followed
by the SSM calculations for one- and two-dimensional
spectral subspaces in Sec. 4. Finally, we discuss the results
and future goals in Sec. 5.
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Fig. 1. Panel (a) presents the car-following model, while
panel (b) shows the nonlinear range policy function
of the human driver.

2. PROBLEM STATEMENT

Consider the simple car-following scenario where an auto-
mated vehicle (AV) aims to provide smooth guidance for
the subsequent human-driven vehicle (HV) (see Fig. 1(a)).
The velocity of the AV and that of the HV are denoted by
v(t) and v−1(t), respectively, while the headway between
the two vehicles is indicated by h−1(t).

Assume that the AV is equipped with a cruise control with
reference velocity vref , while it also takes into account the
velocity of the subsequent HV. The corresponding forward

and backward looking control gains are β̂ and β−1.

The human driver controls the second vehicle considering
the velocity difference between the two cars with the
control gain β, while also taking into account the dis-
tance headway through the nonlinear range policy function
V (h−1) (see Fig. 1(b)) with the corresponding gain α.

Assuming equal time delay τ for the HV and for the AV
(Ge and Orosz, 2018; Ciuffo et al., 2021), the equations of
motion assume the form

ḣ−1(t) =v(t)− v−1(t) , (1)

v̇−1(t) =α(V (h−1(t− τ))− v−1(t− τ))

+ β(v(t− τ)− v−1(t− τ)) ,
(2)

v̇(t) =β̂(vref − v(t− τ))

+ β−1(v−1(t− τ)− v(t− τ)) .
(3)

Let us assume that the range policy function is zero for
small headways h < hstop, it saturates at vmax for h > hgo,
while in between, it takes the form of a smooth cubic
function, that is,

V (h) =




0, if h < hstop ,

F (h), if hstop ≤ h < hgo ,

vmax, if hgo ≤ h ,

(4)

with

F (h) = vmax
(3hgo − hstop − 2h)(h− hstop)

2

(hgo − hstop)3
. (5)

In the case of steady state motion, both vehicles travel
with the reference velocity v⋆ = vref , while the steady
headway h⋆ is determined by the range policy function
(5). Introducing the new variables

h̃−1 = h−1 − h⋆, ṽ−1 = v−1 − v⋆−1, ṽ = v − v⋆, (6)

the corresponding state vector takes the form

x =

h̃−1 ṽ−1 ṽ

⊤
. (7)

Then, the equations of motion (1)-(3) can be written in
the form of the nonlinear DDE

ẋ(t) = A0x(t) +Aτx(t− τ) +Nd(x(t− τ)) , (8)

with

A0 =


0 −1 1
0 0 0
0 0 0


, Aτ =




0 0 0
ακ −α−β β

0 β−1 −β̂−β−1


, (9)

and

Nd(Φ) =
1

2
g2(Φ,Φ) +

1

6
g3(Φ,Φ,Φ) . (10)

Here, the second- and third-order nonlinearities assume
the forms

g2(Φ(−τ),Λ(−τ)) =




0
αV ′′(h⋆

−1)Φ1(−τ)Λ1(−τ)
0


 , (11)

g3(Φ(−τ),Λ(−τ),Γ(−τ)) =

=




0
αV ′′′(h⋆

−1)Φ1(−τ)Λ1(−τ)Γ1(−τ)
0


 ,

(12)

where prime denotes the derivative of the range policy
function with respect to the headway and subscript 1 refers
to the first component of the vectors Φ, Λ, and Γ.

The state of the DDE (8) at time t is a function of time over
the interval [t − τ, t]; this implies the infinite-dimensional
nature of time delay systems. Here, we approximate the
DDE with a large-dimensional system of ordinary differen-
tial equations (ODEs), for which the classical SSM theory
can be applied (Haller and Ponsioen, 2016).

3. DISCRETIZATION OF DELAY DIFFERENTIAL
EQUATIONS

There are several methods for the approximation of DDEs,
which lead either to maps (Insperger and Stepan, 2011),
or to a system of ODEs (Breda et al., 2016). In this paper,
we consider the simplest approach, when the state of the
system is sampled in an equidistant mesh of M ≥ 2 points
in [t− τ, t].

Accordingly, let us introduce the discretized state vector

y(t) =




x(t)
x(t+ ϑ1)
x(t+ ϑ2)

...
x(t+ ϑM )



, (13)

with the discrete time shifts ϑi = −ih for i = 0, 1, . . . ,M
and h = τ/M . Note that ϑ0 = 0. Introducing the notation
yi(t) = x(t+ ϑi), the time derivative at the i-th sampling
instance can be approximated with the forward Euler
technique:

ẏi(t) = ẋ(t− ih) =
x(t− (i− 1)h)− x(t− ih)

h
. (14)

By using the discretized state y = [y⊤
0 y⊤

1 . . . y⊤
M ]⊤ , the

DDE (8) can be approximated with the ODE

ẏ(t) = Ay(t) +N(y(t)) , (15)

where

A =




A0 0 Aτ
1

h
I − 1

h
I 0

. . .
. . .

0
1

h
I − 1

h
I



, N(y(t)) =




Nd(yM (t))
0
...
0


 ,

(16)
Here, the identity matrix is denoted by I ∈ R3×3.
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Fig. 1. Panel (a) presents the car-following model, while
panel (b) shows the nonlinear range policy function
of the human driver.
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Consider the simple car-following scenario where an auto-
mated vehicle (AV) aims to provide smooth guidance for
the subsequent human-driven vehicle (HV) (see Fig. 1(a)).
The velocity of the AV and that of the HV are denoted by
v(t) and v−1(t), respectively, while the headway between
the two vehicles is indicated by h−1(t).

Assume that the AV is equipped with a cruise control with
reference velocity vref , while it also takes into account the
velocity of the subsequent HV. The corresponding forward

and backward looking control gains are β̂ and β−1.

The human driver controls the second vehicle considering
the velocity difference between the two cars with the
control gain β, while also taking into account the dis-
tance headway through the nonlinear range policy function
V (h−1) (see Fig. 1(b)) with the corresponding gain α.

Assuming equal time delay τ for the HV and for the AV
(Ge and Orosz, 2018; Ciuffo et al., 2021), the equations of
motion assume the form

ḣ−1(t) =v(t)− v−1(t) , (1)

v̇−1(t) =α(V (h−1(t− τ))− v−1(t− τ))

+ β(v(t− τ)− v−1(t− τ)) ,
(2)

v̇(t) =β̂(vref − v(t− τ))

+ β−1(v−1(t− τ)− v(t− τ)) .
(3)

Let us assume that the range policy function is zero for
small headways h < hstop, it saturates at vmax for h > hgo,
while in between, it takes the form of a smooth cubic
function, that is,

V (h) =


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
0, if h < hstop ,

F (h), if hstop ≤ h < hgo ,

vmax, if hgo ≤ h ,

(4)

with

F (h) = vmax
(3hgo − hstop − 2h)(h− hstop)
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(hgo − hstop)3
. (5)

In the case of steady state motion, both vehicles travel
with the reference velocity v⋆ = vref , while the steady
headway h⋆ is determined by the range policy function
(5). Introducing the new variables

h̃−1 = h−1 − h⋆, ṽ−1 = v−1 − v⋆−1, ṽ = v − v⋆, (6)

the corresponding state vector takes the form

x =

h̃−1 ṽ−1 ṽ
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. (7)

Then, the equations of motion (1)-(3) can be written in
the form of the nonlinear DDE

ẋ(t) = A0x(t) +Aτx(t− τ) +Nd(x(t− τ)) , (8)

with

A0 =
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0 −1 1
0 0 0
0 0 0
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, Aτ =
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0 0 0
ακ −α−β β

0 β−1 −β̂−β−1


, (9)

and

Nd(Φ) =
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2
g2(Φ,Φ) +

1
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g3(Φ,Φ,Φ) . (10)

Here, the second- and third-order nonlinearities assume
the forms

g2(Φ(−τ),Λ(−τ)) =
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0
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0


 ,
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where prime denotes the derivative of the range policy
function with respect to the headway and subscript 1 refers
to the first component of the vectors Φ, Λ, and Γ.

The state of the DDE (8) at time t is a function of time over
the interval [t − τ, t]; this implies the infinite-dimensional
nature of time delay systems. Here, we approximate the
DDE with a large-dimensional system of ordinary differen-
tial equations (ODEs), for which the classical SSM theory
can be applied (Haller and Ponsioen, 2016).

3. DISCRETIZATION OF DELAY DIFFERENTIAL
EQUATIONS

There are several methods for the approximation of DDEs,
which lead either to maps (Insperger and Stepan, 2011),
or to a system of ODEs (Breda et al., 2016). In this paper,
we consider the simplest approach, when the state of the
system is sampled in an equidistant mesh of M ≥ 2 points
in [t− τ, t].

Accordingly, let us introduce the discretized state vector

y(t) =




x(t)
x(t+ ϑ1)
x(t+ ϑ2)

...
x(t+ ϑM )



, (13)

with the discrete time shifts ϑi = −ih for i = 0, 1, . . . ,M
and h = τ/M . Note that ϑ0 = 0. Introducing the notation
yi(t) = x(t+ ϑi), the time derivative at the i-th sampling
instance can be approximated with the forward Euler
technique:

ẏi(t) = ẋ(t− ih) =
x(t− (i− 1)h)− x(t− ih)

h
. (14)

By using the discretized state y = [y⊤
0 y⊤

1 . . . y⊤
M ]⊤ , the

DDE (8) can be approximated with the ODE

ẏ(t) = Ay(t) +N(y(t)) , (15)

where

A =




A0 0 Aτ
1

h
I − 1

h
I 0

. . .
. . .

0
1

h
I − 1

h
I



, N(y(t)) =




Nd(yM (t))
0
...
0


 ,

(16)
Here, the identity matrix is denoted by I ∈ R3×3.

4. SSM CALCULATION

The matrixA in (16) has n = 3(M + 1) eigenvalues, which
we denote by λi (i = 1, 2, . . . , n). Let us assume that all of
them are in the left hand-side of the complex plane, and
sort them in ascending order with respect to their real
parts:

Reλn ≤ Reλn−1 ≤ · · · ≤ Reλ2 ≤ Reλ1 < 0 . (17)

Note that the dominant ones approximate the relevant
eigenvalues of the original DDE, while some of them
are phantom roots resulting from the discretization. The
exclusion of these phantom roots is not in the scope of the
current paper since they do not influence the main results.

One can select the first m ∈ N+ dominant eigenvalues and
calculate the corresponding eigenvectors vi, i = 1, . . . ,m;
these span the relevant tangent subspace

E = span{v1,v2, . . . ,vm} , (18)

at the origin, for which the SSM calculation is carried out.

In addition, we introduce the absolute spectral quotient

Σ(E) = Int


minλ∈Spect(A) Reλ

maxλ∈Spect(A|E) Reλ


, (19)

which in our case simplifies to Σ(E) = Int(Reλn/Reλ1).

Then, Theorem 3 in (Haller and Ponsioen, 2016) states
that under the non-resonance conditions

m
i=1

kiλi ̸= λj , j = m+ 1, . . . , n, 2 ≤
m
i=1

ki ≤ Σ(E),

(20)
for ki ∈ N, there exists a unique smoothest invariant man-
ifold tangent to the spectral subspace E at the fixed
point y = 0. Close to the fixed point, this so-called spec-
tral submanifold (SSM) W : Cm → Rn can be repre-
sented as a polynomial in the parametrization variable
η = [η1, η2, . . . , ηm]⊤:

W(η) =


k, |k|≥1

Wkη
k , (21)

with the notations Wk ∈ Cn, ηk = ηk1
1 ηk2

2 · · · · · ηkm
m ∈ C,

k = [k1, k2, . . . , km] and |k| = k1 + k2 + · · ·+ km .

The dynamics on the SSM is governed by

η̇ = R(η) , (22)

the right-hand-side R : Cm → Cm of which can again be
approximated as a polynomial in the parametrization
variable, i.e.,

R(η) =


k, |k|≥1

Rkη
k , (23)

where Rk ∈ Cm. Then, substituting x(t) = W(η(t)) into
the ODE (15) yields the homological equation

(DW)R = AW +N(W) , (24)

where D refers to the differential operator, such that,

DW = [∂W/∂η1 ∂W/∂η2 . . . ∂W/∂ηm] . (25)

Finally, the coefficients of the SSM and those of the
reduced dynamics are determined by applying polynomial
balance in the parametrization variables.

4.1 Treatment of nonlinearities

For the easier treatment of the nonlinearities, let us
separate them into second and third order terms:

N(Φ) =
1

2!
b(Φ,Φ) +

1

3!
c(Φ,Φ,Φ) , (26)

where b and c are n-dimensional multilinear vectors. In
case of the above discussed car-following model, these
vectors take the forms

b(Φ,Λ) =




g2(ΦM ,ΛM )
0
...
0


 , (27)

c(Φ,Λ,Γ) =




g3(ΦM ,ΛM ,ΓM )
0
...
0


 , (28)

where ΦM ,ΛM ,ΓM ∈ C3 contain the last three compo-
nents of the corresponding n-dimensional vectors Φ,Λ,Γ,
and so, they refer to the delayed state of the system.

4.2 One-dimensional reduced dynamics

Consider that λ1 is the real dominant eigenvalue of matrix
A such that Reλ2 < Reλ1. Then, the corresponding SSM
and reduced dynamics can be approximated with

W(η) = W1η +W2η
2 +W3η

3 +O
�
η4

, (29)

and
η̇ = λ1η + β2η

2 + β3η
3 , (30)

respectively. Note that in this paper, graph-style reduced
dynamics is assumed, which allows one to obtain intricate
dynamics at the cost of somewhat lengthier expressions.

In this case, the homological equation (24) takes the form

∂W(η)

∂η
η̇ = AW(η) +N(W(η)) , (31)

the expansion of which yields

λ1W1η + 2λ1W2η
2 + β2W1η

2 + 3λ1W3η
3

+ 2β2W2η
3 + β3W1η

3 +O(η4)

= AW1η +AW2η
2 +AW3η

3 +
1

2
b(W1,W1)η

2

+ b(W1,W2)η
3 +

1

6
c(W1,W1,W1)η

3 +O(η4) .

(32)

Applying polynomial balance for the different powers of
the parametrization variable η, one obtains

λ1W1 = AW1 , (33)

(2λ1I−A)W2 =
1

2
b(W1,W1)− β2W1 , (34)

(3λ1I−A)W3 = b(W1,W2) +
1

6
c(W1,W1,W1)

− 2β2W2 − β3W1 .
(35)

Equation (33) is an eigenvalue-eigenvector problem imply-
ing that

W1 = v1 , (36)

where the eigenvector v1 is defined up to a scalar multi-
plier. Here, the first component of v1 is selected as 1.

We should emphasize that the solution of (34) and (35)
is not unique, that is, the SSM coefficients W2 and
W3 depend on the selection of the reduced dynamics
coefficients β2, β3. Still, as it was presented by Haller
and Ponsioen (2016), although, the parametrization of the
SSM is not unique, the SSM itself is.
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Fig. 2. Panel (a) presents the normalized error of the discretization based eigenvalues as a function of the discretization
numberM . Panels (b) and (c) show the convergence of a particular trajectory towards the SSM. The initial condition

of the trajectory is ṽ−1(t) ≡ 1m/s, ṽ(t) ≡ 0m/s, h̃−1(0) = 2m, and h̃−1(t) = h̃−1(0)− ṽ−1(0)t for t ∈ [−τ, 0]. The
nonlinear part of the second coordinate of the SSM and the corresponding velocity of the HV are presented in panel
(b) over the space of the parametrization variable, while in panel (c), the SSM and the trajectory are displayed in
the plane of the headway and the HV’s velocity.

To restrict the reduced dynamics coefficients, let us intro-
duce the left eigenvector u1 of A corresponding to the
dominant eigenvalue λ1. Moreover, considering u1 as a
row vector, apply the normalization of the left and right
eigenvectors as

u1v1 = 1 . (37)

Then, assume that u1W2 = 0, and multiply (34) with u1

from the left. This yields that the coefficient of the second
order term in the reduced dynamics takes the form

β2 =
1

2
u1b(W1,W1) . (38)

As β2 is already fixed, one can solve (34) for W2 under
the non-resonance condition 2λ1 ̸= λi, i = 2, 3, . . . , n. This
leads to

W2 = ∆−1(2λ)

(
1

2
b(W1,W1)− β2W1

)
, (39)

where
∆(λ̃) = λ̃I−A (40)

is the characteristic matrix of the system.

Similarly, considering u1W3 = 0 and multiplying (35)
with u1 from the left yields

β3 = u1

(
b(W1,W2) +

1

6
c(W1,W1,W1)

)
, (41)

and so

W3 = ∆−1(3λ)

(
b(W1,W2) +

1

6
c(W1,W1,W1)

− 2β2W2 − β3W1

)
.

(42)

The SSM and the reduced dynamics coefficients can be
obtained in a similar recursive manner for higher orders
leading to even more accurate reduced-order models. How-
ever, this is not within the scope of the present paper.

Consider the ODE approximation of the car-following

system and fix the parameters τ = 0.8 s, β̂ = 0.15 s−1,
β−1 = 0.3 s−1, α = 0.3 s−1, β = 0.4 s−1, vmax = 30m/s,

vref = 26.55m/s, hgo = 55m, hstop = 5m. The exact val-
ues of the corresponding dominant eigenvalues were ob-
tained with the semi-discretization technique (Insperger
and Stepan, 2011) and a subsequent Newton-Raphson
iteration yielding λ1 = −0.1039 and λ2 = −0.4405 in SI
units.

Let λi,est denote the i-th eigenvalue determined by the
discretization discussed in Sec. 3. Figure 2(a) presents the
normalized eigenvalue error |λi|err = |λi,est − λi|/|λi| as a
function of the discretization variable M . As expected, the
increase of M leads to a decrease in the error.

Panel (b) shows the SSM approximation and an example
trajectory (obtained with the dde23 solver of MATLAB)
in the plane of the parameterization variable η. Along
the vertical axis, the second coordinate of the manifold
is depicted, which refers to the velocity of the HV. Note
that only that part of the SSM is presented, which is
orthogonal to the tangent space at the fixed point. This
is why w2 is written in lowercase. In this case, even a
small discretization number is enough for a reasonable
approximation of the SSM.

Finally, panel (c) displays the invariant manifold and the
trajectory in the plane of the headway and the velocity of
the HV. In both panels (b) and (c), after a short transient,
the trajectory tends to the SSM and approaches the origin
along that.

4.3 Two-dimensional reduced dynamics

After the one-dimensional SSM calculation, let us present
how it is carried out in a two-dimensional case. Note that
the two dominant eigenvalues can either form a complex
conjugate pair or both can be real.

In this case, the SSM takes the form

W = W10η1 +W01η2 +W20η
2
1 +W11η1η2 +W02η

2
2+

W30η
3
1 +W21η

2
1η2 +W12η1η

2
2 +W03η

3
2 +O

(
η4
)
,

(43)
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Fig. 2. Panel (a) presents the normalized error of the discretization based eigenvalues as a function of the discretization
numberM . Panels (b) and (c) show the convergence of a particular trajectory towards the SSM. The initial condition

of the trajectory is ṽ−1(t) ≡ 1m/s, ṽ(t) ≡ 0m/s, h̃−1(0) = 2m, and h̃−1(t) = h̃−1(0)− ṽ−1(0)t for t ∈ [−τ, 0]. The
nonlinear part of the second coordinate of the SSM and the corresponding velocity of the HV are presented in panel
(b) over the space of the parametrization variable, while in panel (c), the SSM and the trajectory are displayed in
the plane of the headway and the HV’s velocity.

To restrict the reduced dynamics coefficients, let us intro-
duce the left eigenvector u1 of A corresponding to the
dominant eigenvalue λ1. Moreover, considering u1 as a
row vector, apply the normalization of the left and right
eigenvectors as

u1v1 = 1 . (37)

Then, assume that u1W2 = 0, and multiply (34) with u1

from the left. This yields that the coefficient of the second
order term in the reduced dynamics takes the form

β2 =
1

2
u1b(W1,W1) . (38)

As β2 is already fixed, one can solve (34) for W2 under
the non-resonance condition 2λ1 ̸= λi, i = 2, 3, . . . , n. This
leads to

W2 = ∆−1(2λ)

(
1

2
b(W1,W1)− β2W1

)
, (39)

where
∆(λ̃) = λ̃I−A (40)

is the characteristic matrix of the system.

Similarly, considering u1W3 = 0 and multiplying (35)
with u1 from the left yields

β3 = u1

(
b(W1,W2) +

1

6
c(W1,W1,W1)

)
, (41)

and so

W3 = ∆−1(3λ)

(
b(W1,W2) +

1

6
c(W1,W1,W1)

− 2β2W2 − β3W1

)
.

(42)

The SSM and the reduced dynamics coefficients can be
obtained in a similar recursive manner for higher orders
leading to even more accurate reduced-order models. How-
ever, this is not within the scope of the present paper.

Consider the ODE approximation of the car-following

system and fix the parameters τ = 0.8 s, β̂ = 0.15 s−1,
β−1 = 0.3 s−1, α = 0.3 s−1, β = 0.4 s−1, vmax = 30m/s,

vref = 26.55m/s, hgo = 55m, hstop = 5m. The exact val-
ues of the corresponding dominant eigenvalues were ob-
tained with the semi-discretization technique (Insperger
and Stepan, 2011) and a subsequent Newton-Raphson
iteration yielding λ1 = −0.1039 and λ2 = −0.4405 in SI
units.

Let λi,est denote the i-th eigenvalue determined by the
discretization discussed in Sec. 3. Figure 2(a) presents the
normalized eigenvalue error |λi|err = |λi,est − λi|/|λi| as a
function of the discretization variable M . As expected, the
increase of M leads to a decrease in the error.

Panel (b) shows the SSM approximation and an example
trajectory (obtained with the dde23 solver of MATLAB)
in the plane of the parameterization variable η. Along
the vertical axis, the second coordinate of the manifold
is depicted, which refers to the velocity of the HV. Note
that only that part of the SSM is presented, which is
orthogonal to the tangent space at the fixed point. This
is why w2 is written in lowercase. In this case, even a
small discretization number is enough for a reasonable
approximation of the SSM.

Finally, panel (c) displays the invariant manifold and the
trajectory in the plane of the headway and the velocity of
the HV. In both panels (b) and (c), after a short transient,
the trajectory tends to the SSM and approaches the origin
along that.

4.3 Two-dimensional reduced dynamics

After the one-dimensional SSM calculation, let us present
how it is carried out in a two-dimensional case. Note that
the two dominant eigenvalues can either form a complex
conjugate pair or both can be real.

In this case, the SSM takes the form

W = W10η1 +W01η2 +W20η
2
1 +W11η1η2 +W02η

2
2+

W30η
3
1 +W21η

2
1η2 +W12η1η

2
2 +W03η

3
2 +O

(
η4
)
,

(43)

Fig. 3. Panel (a) presents the normalized error of the discretization based eigenvalues as a function of the discretization
number M . Panels (b) and (c) show the convergence of a particular trajectory towards the SSM for M = 30. The

initial condition of the trajectory is ṽ−1(t) ≡ 3m/s, ṽ(t) ≡ 0m/s, h̃−1(0) = −3m, and h̃−1(t) = h̃−1(0)− ṽ−1(0)t
for t ∈ [−τ, 0]. The nonlinear part of the second coordinate of the SSM and the corresponding velocity of the
HV are presented in panel (b) over the space spanned by the real and imaginary parts of the parametrization
variable. In panel (c), the SSM and the trajectory are displayed in the space of the original state variables. The
blue trajectories indicate the reduced dynamics on the SSM.

while the corresponding reduced dynamics is governed by


η̇1
η̇2


=




λ1η1 +


2≤k+l≤3

βklη
k
1η

l
2

λ2η2 +


2≤k+l≤3

γklη
k
1η

l
2


 . (44)

The corresponding homological equation assumes the form

∂W(η1, η2)

∂η1
η̇1 +

∂W(η1, η2)

∂η2
η̇2

= AW(η1, η2) +N(W(η1, η2)) ,

(45)

which is solved again with the polynomial balance method.

The first-order terms imply thatW10 = v1 andW01 = v2,
while the second order terms yield that

(2λ1I−A)W20 =
1

2
b(W10,W10)

− β20W10 − γ20W01 ,
(46)

((λ1 + λ2)I−A)W11 = b(W10,W01)

− β11W10 − γ11W01 ,
(47)

(2λ2I−A)W02 =
1

2
b(W01,W01)

− β02W10 − γ02W01 .
(48)

Let us introduce u1 and u2 as the left eigenvectors of
A corresponding to λ1 and λ2 such that u1v1 = 1 and
u2v2 = 1. Then, considering that W20, W11 and W02 are
orthogonal to the left eigenvectors u1 and u2, one obtains

β20 =
1

2
u1b(W10,W10) , γ20 =

1

2
u2b(W10,W10) , (49)

β11 = u1b(W10,W01) , γ11 = u2b(W10,W01) , (50)

β02 =
1

2
u1b(W01,W01) , γ02 =

1

2
u2b(W01,W01) . (51)

Note that here we utilized that u1v2 = 0 and u2v1 = 0 are
also satisfied.

Then, under the corresponding non-resonance conditions,
the second order coefficients of the SSM assume the form

W20 = ∆−1(2λ1)


1

2
b(W10,W10)

− β20W10 − γ20W01


,

(52)

W11 = ∆−1(λ1 + λ2)


b(W10,W01)

− β11W10 − γ11W01


,

(53)

W02 = ∆−1(2λ2)


1

2
b(W01,W01)

− β02W10 − γ02W01


.

(54)

The same procedure can be carried out for the third
(and higher) order terms, however, this leads to lengthy
expressions, which are now omitted for brevity.

If the two most dominant eigenvalues are real, then all the
above coefficients are real as well. On the other hand, if the
dominant eigenvalues form a complex conjugate pair, then
the following symmetries are present: Wkl = Wlk and
γkl = βlk for k + l ≥ 2. In the current paper, we consider
the complex conjugate case.

Let us fix the system parameters to the same values as
before, except for the control gains of the automated

vehicle, which are now β̂ = −0.4 s−1 and β−1 = 0.6 s−1.
Then, the leading eigenvalues form the complex conju-
gate pair λ1,2 = −0.0885± 0.6374 i, while the third one is
λ3 = −0.4448.

Fig. 3(a) presents the normalized error of the discretization-
based eigenvalues. Now, the leading eigenvalue has a larger
error than the third, which can be explained by the fact
that λ1 and λ2 form a complex conjugate pair, while λ3 is
real.

Panels (b) and (c) show the convergence of a trajectory
to the SSM. The brown surface refers to the SSM, on
which the blue trajectories are obtained via the reduced
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dynamics. In panel (b), the nonlinear part of the SSM
is presented above the space spanned by the real and
imaginary parts of the parametrization variable η1, while
panel (c) shows the SSM and the trajectory in the space of

the state variables h̃−1, ṽ−1 and ṽ. It can be seen that the
trajectory converges to the SSM and spirals towards the
origin along a path predicted by the reduced dynamics.

5. CONCLUSION

The powerful concept of spectral submanifolds has been
applied to time delay systems recently. However, the
corresponding theoretical background required an intricate
operator differential equations based derivation. Here, we
proposed to approximate the time delay systems with a
large but finite-dimensional system of ordinary differential
equations and calculated the corresponding SSMs. This
was inspired by the application of SSM theory to the
finite element models (FEMs) of continuum structures
present in the literature (Jain and Haller, 2022), which is
basically a finite-dimensional approximation of an infinite-
dimensional system.

The theory was applied to obtain the essential dynamics
of a car-following model, where an AV aims to provide a
smooth guidance to the following HV. The case studies
included both the case of a dominant real eigenvalue
and the case of a dominant pair of complex conjugate
eigenvalues. The results show that the SSM of the system
can be approximated well even with the proposed simple
discretization technique. These numerical results validate
the cumbersome algebraic outcome of the delayed SSM
calculation (Szaksz et al., 2024, 2025).

In the future, we plan to investigate the dynamics of the
system for various control parameter combinations and we
also aim to consider different time delays for the HV and
for the AV. This is expected to lead to more intricate
dynamics, for which the discretization number must be
increased.

Our final goal is to utilize the SSM and the corresponding
reduced dynamics to propose an optimal control parameter
setting for the AV, which takes into account the relevant
nonlinearities of the system.
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