
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 36, NO. 3, MARCH 2025 5219

Trainable Delays in Time Delay Neural Networks
for Learning Delayed Dynamics

Xunbi A. Ji and Gábor Orosz , Senior Member, IEEE

Abstract— In this article, the connection between time delay
systems and time delay neural networks (TDNNs) is presented
from a continuous-time perspective. TDNNs are utilized to learn
the nonlinear dynamics of time delay systems from trajectory
data. The concept of TDNN with trainable delay (TrTDNN) is
established, and training algorithms are constructed for learn-
ing the time delays and the nonlinearities simultaneously. The
proposed techniques are tested on learning the dynamics of
autonomous systems from simulation data and on learning the
delayed longitudinal dynamics of a connected automated vehicle
(CAV) from real experimental data.

Index Terms— Dynamical systems, machine learning, time
delay neural network (TDNN), time delay system.

I. INTRODUCTION

OVER the past a few decades, the development of the
neural networks and machine learning techniques has

flourished in many fields. Researchers have been trying to
bridge the gap between dynamical systems and neural net-
works in different ways. On the one hand, neural networks may
be used to govern the time evolution of states in discrete-time
and continuous-time dynamical systems. Thus, the behavior of
the networks can be studied from the dynamical systems’ point
of view [1], [2]. On the other hand, neural networks have been
widely used for system identification and control in recent
years [3], [4], [5], [6]. In many studies, neural networks are
used to approximate the solution of the underlying dynamical
system in discrete time. For example, [7] used a feedforward
neural network to learn the input–output map of the plant,
and [8], [9] used recurrent neural networks to identify the
unknown dynamics. The neural networks are also used as
controllers [10], [11] and as predictors [12] in many research
studies.

Time delays were incorporated in neural network archi-
tectures as “memory” to construct complex mappings, and
neural networks with delays were utilized to represent and
control nonlinear systems in discrete time [13], [14], [15].
However, those delays did not correspond to the physical
time delays, which appear in the real-world applications, such
as climate systems [16], epidemiology models [17], [18],
and road transportation systems [19], [20]. State and input

Manuscript received 18 September 2023; revised 27 January 2024;
accepted 12 March 2024. Date of publication 28 March 2024; date of current
version 1 March 2025. (Corresponding author: Xunbi A. Ji.)

Xunbi A. Ji is with the Department of Mechanical Engineering, University
of Michigan, Ann Arbor, MI 48109 USA (e-mail: xunbij@umich.edu).

Gábor Orosz is with the Department of Mechanical Engineering and the
Department of Civil and Environmental Engineering, University of Michigan,
Ann Arbor, MI 48109 USA (e-mail: orosz@umich.edu).

Digital Object Identifier 10.1109/TNNLS.2024.3379020

delays were considered in the design of control algorithms
for continuous-time models [21], [22], [23], and stability
analysis of time delay neural networks (TDNNs) was utilized
to assist modeling and control [24], [25], [26], [27]. There also
exists comprehensive literature on the dynamics and control
of time delay systems [28], [29], [30], [31], [32], [33], [34],
awaiting to be fully utilized in the area of neural networks.
The dynamics of time delay systems can be potentially learned
from data using continuous-time models, which requires one
to utilize tools both from dynamical systems and from neural
networks. This article intends to make a stride in the direction
of relating TDNNs and time delay systems in continuous time.

Since neural networks are shown to be powerful function
approximators, one may utilize them to approximate the
right-hand side of the differential equations governing the
time evolution of the states in dynamical systems, as illus-
trated on the left of Fig. 1. For example, one may construct
neural ordinary differential equations (NODEs) [35], which
are continuous-depth models that parameterize the right-hand
side using neural networks. Similar ideas have also been put
forward earlier via continuous-time recurrent neural networks
(CTRNNs) [36]. Both approaches model the state derivative
and consider the solution of the differential equations as
output, while the hidden-state derivatives are represented in
a slightly different way in the two cases. It was proved in [37]
that the dynamical systems without input can be approximated
by CTRNNs, and in [38], this was extended to a general class
of continuous-time dynamical systems.

Learning the dynamics of time delay systems is, in general,
more difficult than learning delay-free dynamics, since the
trajectories are embedded in an infinite dimensional state
space [32], [34]. We aim to extend the concept of learning
the dynamics with neural networks to the time delay systems,
as illustrated on the right of Fig. 1. The time delays can
result in rich dynamics, including periodic motions [39], quasi-
periodic motion [40], and even chaos [16], [41], [42], while
introducing the delays into the networks increases the flexibil-
ity and interpretability of the networks. For example, due to the
rich dynamics resulting from time delays, a complicated deep
neural network can be represented with a simpler network with
delays [43]. Extending the concept of NODEs, neural delay
differential equations (NDDEs) can be constructed [44], [45],
where the right-hand side is represented by a neural network,
which contains delays. In [46] and [47], neural networks with
explicit delays were used for learning the continuous-time time
delay nonlinear systems. However, prior results approaches
considered the delays to be known, which may not hold in

2162-237X © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-7024-2959
https://orcid.org/0000-0002-9000-3736

5220 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 36, NO. 3, MARCH 2025

Fig. 1. Relationships between dynamical systems and neural networks
without and with time delay.

many applications. In many practical problems, the existence
and the sources of the delays are known, but their values
are unknown. Our goal is to establish general gradient-based
methods for learning the time delays from data.

In this article, we represent the right-hand side using
TDNNs with trainable delays (TrTDNNs), which can capture
the nonlinearities and the time delays in the system. The
trained networks allow us to simulate continuous-time systems
and predict the state of these systems at any future time
moment. We aim to learn the direct mapping from the delayed
values of states and control inputs to the derivative of the state
(where the latter is obtained numerically from data), instead
of learning the dynamics indirectly via the error between
simulation output and the data as in [35], [43], [44], [45],
and [48]. This reduces the computation cost in training and
provides more flexibility in the choice of networks, e.g., allow
the use of more general TDNNs with multiple input delays.
We introduce a limited number of trainable time delays and
construct network architecture, so that the learned delays
have clear physical interpretations. Then, we use gradient-
based training algorithms to enable the TrTDNNs to learn
the delays and the nonlinearities in the system simultaneously.
Some preliminary works have been presented in [49], where
a TrTDNN was used to learn the control law of a connected
automated vehicle (CAV), and in [50], where the method was
extended to multiple delays.

The contributions of this article include the following.
1) We relate TDNNs and time delay system from a

continuous-time perspective and construct TDNNs for
learning the delayed dynamics from trajectory data.

2) We propose trainable delays in TrTDNNs and develop
gradient-based training algorithms, which balance
between global search and local search in parameter
space.

3) The parameter update rules are derived analytically for
two gradient-based methods. The implementation codes
and data are provided on GitHub (link).

4) Examples with both simulation data and real experimen-
tal data are provided to demonstrate the robustness of
developed methods.

The rest of this article is organized as follows. We specify
the problem setting in Section II. We introduce TrTDNNs, the
loss functions, and the gradient-based training algorithms in

Section III, where we also derive the gradients of the loss with
respect to delays and other parameters. In Section IV, we pro-
vide examples of using TrTDNNs to learn the dynamics of
autonomous systems with multiple delays and the longitudinal
dynamics of a CAV. We conclude our results and provide the
future research directions in Section V.

II. PROBLEM STATEMENT

We consider time delay systems in continuous time, which
can be cast in the general form

ẋ(t) = G(xt , ut) (1)

where x ∈ Rn and xt ∈ C([−τmax, 0], Rn) represent the
space of continuous functions. Namely, we define
xt (ϑ) := x(t + ϑ), ϑ ∈ [−τmax, 0], where τmax > 0 is
the maximum value of the delay. Similarly, for the
control input, we have u ∈ Rp, ut ∈ C([−τmax, 0], Rp),
and ut (ϑ) := u(t + ϑ), ϑ ∈ [−τmax, 0]. That is,
the right-hand side is given by the functional
G : C([−τmax, 0], Rn)× C([−τmax, 0], Rp)→ Rn .
Specifically, we restrict ourselves to point delays, that
is, to cases when (1) can be written as follows:

ẋ(t) = g(x(t − τ0), x(t − τ1), . . . , u(t − τd),

u(t − σ0), u(t − σ1), . . . , u
(
t − σq

))
(2)

where g : Rn
× Rn

× · · · × Rn
× Rp

× Rp
× · · · × Rp

→ Rn

and τ0 = σ0 = 0, while d and q represent the number of
(nonzero) delays in the state and the input, respectively. Our
goal here is to learn the nonlinear functional G or, equivalently,
learn the nonlinear function g and the delays τ0, τ1, . . . , τd and
σ0, σ1, . . . , σq , simultaneously.

Learning the functional G in (1) means finding a functional
Ĝ, such that the norm ∥G(xt , ut)− Ĝ(xt , ut)∥ remains small
while considering the set of states X ⊂ C([−τmax, 0], Rn)

and set of inputs U ⊂ C([−τmax, 0], Rp). These sets will be
specified with the available data as described further below.
For the specific form (2), we shall find a function ĝ, such that
the norm ∥g(·)− ĝ(·)∥ remains small for the set of arguments
specified by the data, and also find time delays τ̂ 0, τ̂ 1, . . . , τ̂ d

and σ̂ 0, σ̂ 1, . . . , σ̂ q , which are close to the true delay values.
In [51], a method was proposed to identify the time delay
and the plant’s parameters for a linear system using transfer
function estimation. In this article, we will obtain the nonlinear
function ĝ and the delays τ̂ 0, τ̂ 1, . . . , τ̂ d and σ̂ 0, σ̂ 1, . . . , σ̂ q

directly from states and inputs.
In order to achieve this, we construct TrTDNNs. The inputs

of such a network are the current and past values of the
state and the control input, and the output of the network
is the state derivative. Different from conventional TDNN,
the time delays in the TrTDNN are continuous variables that
evolve through the learning process. The proposed training
algorithm is based on gradient information, which can utilize
many advanced gradient-based methods. The neural networks,
the loss function, and the training algorithm used will be
introduced in Section III.

The learning process is executed while interacting with data.
We assume that we observe the state and the input at time

https://github.com/Jxb814/TrTDNN

JI AND OROSZ: TRAINABLE DELAYS IN TDNNS FOR LEARNING DELAYED DYNAMICS 5221

moments t = j1t , j ∈ Z. In this case, the state derivative
can also be approximated from data using finite differences.
For example, using Euler method’s, the state derivative can be
obtained as follows:

ẋ(j1t) ≈
x((j + 1)1t)− x(j1t)

1t
(3)

but one may also use more sophisticated methods to obtain
the derivative.

Since the delays vary continuously during the learning
process, the value x(t−τ) may not be available directly. (Here,
dropped the subscript of τ to simplify the notation.) Recall
that the state is only observed at the time moments t = j1t ,
j ∈ Z. Considering that τ ∈ [l1t, (l + 1)1t), we may define
α ∈ [0, 1), such that τ = (l + α)1t . Then, the delayed state
can be approximated using linear interpolation

x(t − τ) ≈ (1− α)x(t − l1t)+ αx(t − (l + 1)1t) (4)

and similar procedure can be followed for the input yielding

u(t − σ) ≈ (1− β)u(t − l1t)+ βu(t − (l + 1)1t) (5)

where σ = (l + β)1t and β ∈ [0, 1).
After the training is complete, one may test the accuracy

of the learned nonlinearity and delays by either comparing ˆẋ
with ẋ or comparing the solutions x̂(t) with x(t), obtained
via numerical simulation, along some time horizon. To fur-
ther investigate how well the learned dynamics matches the
ground truth, one may study the stability properties. For
example, linearizing the dynamics (2) around an equilibrium,
we obtain

ẋ(t) =
d∑

k=0

Ak x(t − τk)+

q∑
k=0

Bku(t − σk) (6)

where Ak ∈ Rn×n and Bk ∈ Rn×p, and we used
g(0, . . . , 0) = 0 to simplify the notation. This results in
the characteristic equation

det

[
λI −

d∑
k=0

Ake−λτk

]
= 0 (7)

see [30], which has infinitely many solution for the char-
acteristic roots λ (see [32], [34]). Computing the rightmost
characteristic roots allows us to compare the asymptotic behav-
ior of the learned system with that of the ground truth.

III. TDNNS WITH TRAINABLE DELAYS

In this section, we first review conventional TDNNs and
point out their shortcomings when they are used to learn the
delayed dynamics in continuous time. Then, we introduce
novel TrTDNNs and highlight how they may overcome the
shortcomings of conventional TDNNs. These are followed
by the descriptions of the loss function and the training
algorithms.

A. Time Delay Neural Networks

Time delays have been introduced into neural networks for
speech recognition in [52]. The corresponding TDNNs are
essentially feedforward neural networks with delayed infor-
mation flow. Time delay networks with input delays can be
expressed as follows:

zt
1 = f1

(
r∑

k=0

wk
1zt−k

0 + b1

)
zt

l = fl
(
Wl zt

l−1 + bl
)
, l = 2, . . . , L (8)

where zt
l represents the (potentially vector valued) out-

put of layer l at time t ; fl(·) is the activation function,
which is applied elementwise and has well-defined derivative
f ′l (s) = (∂ fL(s)/∂s); and wk

1 is the weight matrix associated
with delay index k, while Wl and bl are the weight and bias
used in layer l. Define the augmented vector

zt
0 =

zt

0
zt−1

0
...

zt−r
0

. (9)

Equation (8) can be rewritten as follows:

s t
1 = W1zt

0 + b1

zt
1 = f1

(
s t

1

)
s t

l = Wl zt
l−1 + bl

zt
l = fl

(
s t

l

)
, l = 2, . . . , L (10)

with W1 =
[
w0

1, w
1
1, . . . , w

r
1

]
. Here, we introduce the compact

notation

zt
L = net

(
zt

0

)
(11)

which captures the functional relationship between the input
zt

0 and the output zt
L of the network and can be utilized for

both traditional TDNNs and the proposed TrTDNNs.
The time history of the state x and the control input u is

often referred to as memory. These are usually available in
discrete time, and the output can be very general, such as
letters or words. Since our goal is to represent the dynamics of
the dynamical system (2), we can discretize time and assume
that the delays coincide with the discrete time steps j1t , j ∈
Z, where data are available. Then, one may construct

zt
0 =

x(t)
u(t)

x(t −1t)
u(t −1t)

...

x(t − r1t)
u(t − r1t)

(12)

where τmax = r1t . This approach, however, leads to compu-
tational issues. Namely, considering small 1t values results
in a large weight matrix W1, which may not be necessary
for the system with discrete point delay, since many of these
weights shall approach zero during training, which requires

5222 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 36, NO. 3, MARCH 2025

Fig. 2. (a) TrTDNN for predicting state derivative at time t . (b) Use of
TrTDNN as feedforward mapping during training. (c) Use of TrTDNN for
simulation: gray color means inputs from data, and the yellow color means
the inputs obtained from simulation.

extra regularization. At the same time, simulating the sys-
tem with the large number of delays is also computational
expensive. Instead, we propose a new architecture, which can
accommodate trainable time delays as laid out in Section III-B.

B. Constructing TrTDNNs

The concept of TrTDNN is shown in Fig. 2(a). There is
still a window of sequential data available to the network
at each time moment t , but the trainable delay parameters
τ0, τ1, . . . τm “select” the relevant ones as the network input.
As these time delays evolve during the training, the inputs
change as indicated by the blue arrows. After training, similar
to the weights and biases, the time delays are fixed when using
the network to predict future states of the dynamical system.

The TrTDNN also takes the form (10), but how the input
zt

0 is constructed in the two cases differs. TDNNs utilize the
whole memory (9), while for TrTDNNs, we construct the
sparse memory

zt
0 =

zt−τ0

0
zt−τ1

0
...

zt−τm
0

 (13)

with flexible delays, which will be learned from data. By con-
structing such flexible delayed inputs, the number of delays in
TrTDNNs can be much smaller than the number of discretiza-
tion points (m ≪ r). This allows us to greatly simplify the
network structure and customize using prior knowledge, which
also improves the interpretability of the results. The arrange-
ment of the delayed states and control inputs is also flexible,
i.e., the delays do not have to be in an ascending/descending
order, they can be assigned as zero, and their number can
be overestimated. For instance, when learning the dynamics

of (2), one may construct the input of the TrTDNN as follows:

zt
0 =

x
(
t − τ̂ 0

)
x
(
t − τ̂ 1

)
...

x
(
t − τ̂ d

)
u
(
t − σ̂ 0

)
u
(
t − σ̂ 1

)
...

u
(
t − σ̂ q

)

(14)

where the delays τ̂ k and σ̂ k are continuous variables learned
from the data. As discussed above, the state x and the control
input u are typically available at time moments j1t , j ∈ Z.
Thus, to construct the elements of (14), we will utilize (4)
and (5).

We remark that the form (11) can be viewed as a recurrent
neural network if the output of the network is used as input
in the next time moment. Moreover, depending on whether
the output is the state derivative at current time or the state
itself at next time moment, the network can be used to capture
the dynamics of continuous-time or discrete-time dynamical
systems. In this article, we consider the former one, that is,
the outputs of the TDNNs and TrTDNNs are used as the
state derivatives to resemble the delay differential equations
in the continuous time. The derivative of the state can then be
predicted using the following equation:

ˆẋ(t) = net
(
zt

0

)
. (15)

Then, learning the dynamics of the time delay system (2)
is equivalent to sequentially adjusting the weights Wl ,
l = 1, 2, . . . , L , and biases bl , l = 1, 2, . . . , L , in net as well
as the delays τ̂ k , k = 0, 1, . . . , d, and σ̂ k , k = 0, 1, . . . , q ,
such that the error ∥ ˆẋ(t)− ẋ(t)∥ decreases.

C. Loss Function

The learning is performed by utilizing trajectory data gen-
erated by (2). Since the data are only available at discrete
time steps t = j1t , one can only evaluate the difference
∥
ˆẋ(t)− ẋ(t)∥ at these time moments. Thus, we design the loss

function using the mean-squared error between the predicted
derivative ˆẋ(j1t) = z j

L and the derivative ẋ(j1t) obtained
from data

L =
1
N

N∑
j=1

n∑
i=1

(
ˆẋ i (t0 + j1t)− ẋ i (t0 + j1t)

)2
. (16)

Observe that the prediction starts from t0 ≥ τmax, because we
need an initial segment of data of length τmax. Here, xi refers
to the i th element of vector x , while the time derivative
ẋ(t0 + j1t) may be available as data or can be calculated
from x(t0 + j1t) via numerical differentiation; see (3).

We remark that one may alternatively define the simulation
loss

Lsim =
1
N

N∑
j=1

n∑
i=1

(
x̂ i (t0 + j1t)− xi (t0 + j1t)

)2
(17)

JI AND OROSZ: TRAINABLE DELAYS IN TDNNS FOR LEARNING DELAYED DYNAMICS 5223

which is used below to evaluate the performance of the
trained networks. Different choices of the error measures and
corresponding loss functions are studied in [48] and [53].

In order to demonstrate the performance of the proposed
networks, we use a TrTDNN with sparse trainable input delays
and a conventional TDNN with the dense input delays to carry
out the same learning task. We train the networks using the
loss function (16). While training the networks, the state x and
control input u are taken from data, that is, the networks are
trained using (15) in a feedforward fashion, as illustrated in
Fig. 2(b). After training, we compare the performance of the
two approaches using the simulation loss (17), as shown in
Fig. 2(c). For the network simulation, only the initial history
of the state x0 and the control input u(t) are given, while the
state is generated using

x̂(t) = DDEsolver(net, x0, u, t). (18)

In other words, in (15), the input of the net at each time t is
constructed based on the ongoing simulation x̂(t) instead of
the data x(t).

D. Training Methods

Here, we illustrate the analytical derivation of the gradients
of the loss function L, so that the gradient-based methods, such
as the gradient descent (GD) method or Levenberg–Marquardt
(LM) method [54], can be applied. In our training algorithms,
time delays are also treated as parameters, similar to weights
and biases. Consequently, we need to calculate the gradients
with respect to the delays too.

In the GD method, the updating formula of parameter
θ ∈ RM at iteration k + 1 uses the gradient of the loss function
at iteration k

θk+1 = θk − ηθ

∂L
∂θk

. (19)

The learning rate ηθ can be a constant or be adaptive during
the training. In order to calculate the gradient (∂L/∂θk),
we reformulate the cost function (16) as follows:

L(θ) =
1
N

E⊤(θ)E(θ) (20)

where

E(θ) =

e1

e2

...

eN

 ∈ RNn (21)

and

e j
=
ˆẋ(t0 + j1t)− ẋ(t0 + j1t). (22)

Then, the updating formula (19) becomes

θk+1 = θk − ηθ

2
N

∂ E⊤

∂θk
E(θk) (23)

which contains the Jacobian matrix (∂ E⊤/∂θ) ∈ RM×(Nn).
For the LM method, we use the formula

θk+1 = θk −

(
2
N

∂ E⊤

∂θk

∂ E
∂θk
+ µI

)−1 2
N

∂ E⊤

∂θk
E(θk) (24)

where µ is the tuning parameter and I denotes the M × M
identity matrix. For large µ, the LM method approximates the
GD method with a small learning rate. For small µ, it approx-
imates Newton’s method with an approximate Hessian matrix
(∂ E⊤/∂θ)(∂ E/∂θ) ∈ RM×M .

Both algorithms (23) and (24) contain the Jacobian matrix

∂ E⊤

∂θ
=

[(
∂e1

∂θ

)⊤
, . . . ,

(
∂eN

∂θ

)⊤]
(25)

which requires the calculations of the gradients (∂e j/∂θ),
j = 1, . . . , N . To simplify the notation, we drop the super-
script j . Also, we vectorize the weight matrices Wl ∈ Rnl×nl−1

into the vectors

W l =
[
w1,1, . . . , w1,nl−1 , w2,1, . . . , w2,nl−1 , · · ·

]⊤
∈ Rnl nl−1

(26)

where nl denotes the dimension of zl . Then, the gradients
with respect to weights W l and biases bl can be expressed as
follows:

∂e

∂W l
=

∂e
∂zL

hl
∂sl

∂W l
= hl

(
Inl×nl ⊗ z⊤l−1

)
(27)

and

∂e
∂bl
=

∂e
∂zL

hl
∂sl

∂bl
= hl (28)

respectively, where

hl = hl+1
∂sl+1

∂zl

∂zl

∂sl
= hl+1Wl+1 f ′l (sl) (29)

for l = 1, . . . , L − 1, and

hL = f ′L(sL) = InL×nL (30)

see (10). Note that ⊗ denotes the Kronecker product,
so that (Inl×nl ⊗ z⊤l−1) ∈ Rnl×nl nl−1 , hl ∈ RnL×nl ; therefore
(∂e/∂W l) ∈ RnL×nl nl−1 , and (∂e/∂bl) ∈ RnL×nl . In our case,
the dimension of the last layer is equal to the dimension of
the state derivative ẋ , i.e., nL = n.

In case of the time delay parameters, we define the vector

T =
[

τ̂ 0, . . . , τ̂ d , σ̂ 0, . . . , σ̂ q
]⊤
∈ RD (31)

with D = d + q + 2, which is part of the parameter θ . The
gradient with respect to the delay vector T can be calculated
as follows:

∂e
∂T
=

∂e
∂zL

h1
∂s1

∂z0

∂z0

∂T
= h1W1

∂z0

∂T
. (32)

Here, the network input z0 = [z0,1, . . . , z0,n0]
⊤
∈ Rn0 is an

augmented vector of states and control inputs corresponding
to each delay value, where n0 = D(n + p), and n and p are
the dimension of the state x and the input u, respectively,
as defined in Section II. The matrix (∂z0/∂T) ∈ Rn0×D can
be written as follows:

∂z0

∂T
=

[
∂z0

∂τ1
, . . . ,

∂z0

∂τD

]
. (33)

5224 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 36, NO. 3, MARCH 2025

Algorithm 1 Multi-Attempt Gradient-Based Training
Algorithm for a TrTDNN

Data: training data and validation data
Result: learn θ = {Wl , bl , T }, l = 1, . . . , L from data
• normalize inputs and outputs between [0, 1] and obtain the

derivatives of the inputs
• choose the updating formulas (23) or (24) and tune

parameters ηθ or µ
• set maximum iteration number kmax, maximum violation

number vmax, maximum allowed delay τmax
• choose different initializations for Wl uniformly between
[−1, 1], set bl = 0, and initialize the elements of T within
interval [0, τ] for τ < τmax

For each initialization, set v = 0 and start training
for k = 1, . . . , kmax do

construct the input z0 for selected trajectories based on
Tk

calculate the losses Ltr and Lva for training and
validation data

obtain the gradient information and update parameters
θk+1 ← θk

if Lva increases consecutively for vmax times or any
element of Tk+1 exceeds τmax then

break loop
end

end
After collecting all parameters from multiple attempts at the
end of training, choose the set of parameters Wl , bl , T which
gives the smallest Ltr among them

Each element z0,i , i = 1, . . . , n0, is a scalar associated with
one specific delay τb ∈ T, b = 1, . . . , D. Thus, we can write

∂z0,i

∂τb
=

∂z0,i (t − τb)

∂τb
= −

∂z0,i (t − τb)

∂t
= −ż0,i (t − τb)

(34)

where ż0,i (t − τb) is the time derivative of the network input
at time t − τb, which can be approximated from the data. For
instance, the simplest approximation is given by using a zero-
order-hold approximation and the forward Euler method

ż0,i (t − τb) ≈
(
z0,i (t − (j − 1)1t)− z0,i (t − j1t)

)
/1t

(35)

for τb ∈ [(j − 1)1t, 1t). We can set (∂z0,i/∂τb) = 0 if we
regulate the network to have a delay-free input x(t) or u(t).
This will be the case in Section IV-B. We also remark that
to ensure the nonnegativeness of time delays, after using the
updates (23) or (24), we apply max{0, Tk+1} elementwise;
see (31).

Recall that in the formulas above, the parameter vector θ

collects vectorized weights and biases and the time delays.
Therefore, we obtain

∂e
∂θ
=

[
∂e

∂W 1
,

∂e
∂b1

, · · · ,
∂e

∂W L
,

∂e
∂bL

,
∂e
∂T

]
∈ RnL×M (36)

and concatenate the e j -s of different time steps as in (25) to
construct the Jacobian (∂ E⊤/∂θ) ∈ RM×(NnL) with nL = n.

We describe the training process in Algorithm 1 when using
a dataset, which consists of multiple input–output trajectories.
For autonomous systems, since there is no external excitation

(control input), the validation dataset contains trajectories
created by different histories, so that it is independent of
the training dataset. The validation dataset is not used for
updating parameters but for monitoring the training. In the case
where only one trajectory is available, parts of the trajectory
are selected as validation or testing, and those parts do not
overlap with each other. In Algorithm 1, the input z0 of each
trajectory is constructed based on learned delays T [see (31)]
at each iteration, and the loss of multiple trajectories is
combined for updating the parameters. One can also choose a
trajectory randomly from training set and use that to update the
parameters. Then, the GD algorithm becomes the stochastic
GD method. In addition, we use multiple initializations to
avoid undesired local minima.

IV. APPLICATIONS

In this section, we demonstrate that TrTDNNs are capable
of learning multiple time delays in autonomous systems from
simulation data. We also show that they can also be used to
identify the time delay from noisy field data.

A. Learning From Simulation Data

We consider the following nonlinear autonomous systems
with multiple delays:

ẋ(t) = −x(t)+ x(t − 1)x(t − 0.5)− x3(t − 0.5) (37)

and

ẋ(t) = −x(t − 1.5)+ x2(t − 1)− x3(t − 0.5). (38)

In system (37), there are two delays (not including the
delay-free term) and a “cross term” containing both delays.
In system (38), there are three delays and no delay-free
term. These systems are constructed for testing the proposed
algorithm while learning multiple time delays. In both cases,
the same network architecture (one-hidden-layer TrTDNN
with three input delays and only three neurons in the hidden
layer) is used to learn the dynamics from simulation data.
We use the sigmoid function

f (z) =
1

1+ e−z
(39)

as the activation function in the hidden layer and a linear
function in the output layer.

The training dataset contains seven trajectories created by
numerical simulation using the constant histories x(t) ≡ c,
t ∈ [−τmax, 0], where c = {1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6}. The
simulated trajectory with constant history c = 1.25 is used
for validation, and we test the performance on the trajectory
with constant history c = 1.35. The time step in all datasets is
1t = 0.01. The initial time delays are chosen between 0 and
τmax = 2. We implemented both the GD and LM methods, but
the LM method converges much faster. Thus, the results are
presented here for LM method with µ = 0.01. During training,
we start from ten different initializations and choose the best
result from them as our final trained results. We show below
that more attempts in training provide better convergence in
the time delay. As a trade-off, having more attempts makes
the training process slower.

JI AND OROSZ: TRAINABLE DELAYS IN TDNNS FOR LEARNING DELAYED DYNAMICS 5225

Fig. 3. Normalized RMSE and learned delays along training iterations
for (a) and (b) system (37) and (c) and (d) system (38). While only first
700 iterations are shown in the figure, the actual training stops later based on
the validation loss criterion.

Fig. 4. Performance of TrTDNN and conventional TDNN on the training
data for (a) system (37) and (b) system (38).

The training processes for systems (37) and (38) are shown
in Fig. 3. Fig. 3(a) and (c) shows that the loss decreases
rapidly within a few hundred iterations for both systems.
Fig. 3(b) and (c) depicts the learning paths of the time delay
parameters. Observe that the delays converge to the true
values, i.e., to 0, 0.5, and 1 in case of (37) and to 0.5, 1,
and 1.5 in case of (38). To highlight the performance of the
trained TrTDNN, we display the simulation results of the
trained networks in Figs. 4 and 5 for training data and testing
data, respectively. Static mapping refers to the input–output
mapping at each time step, where the inputs are always from
the data; see (15) and Fig. 2(b). Simulation refers the network
as a delay differential equation simulated with given initial
history; see (18) and Fig. 2(c).

A conventional one-hidden-layer TDNN is also trained
using MATLAB Deep Learning Toolbox with LM method
for comparison. The conventional TDNN also has three
neurons in the hidden layer and the same nonlinear activa-
tion function (39), but with 201 inputs, i.e., [x(t), x(t −
0.01), . . . , x(t−2)], compared with the three inputs with three
trainable delays in the TrTDNN. The quantitative analysis of
the training and testing performances is collected in Table I.
Since the conventional TDNN has a large number of inputs,
the complexity of the network is much larger, even though
the number of neurons in the hidden layer is the same as
for the TrTDNN. Thus, the conventional TDNN can achieve

Fig. 5. Performance of TrTDNN and conventional TDNN on the test data
for (a) system (37) and (b) system (38).

TABLE I
TRAINING AND TESTING RESULTS FOR THE TWO SYSTEMS

Fig. 6. (a) Approximation of the nonlinearities in (38). Solid curves represent
the ground truth, while the dashed curves are extracted from the TrTDNN.
(b) Approximation of the spectrum in (38). Black crosses show the ground
truth, while the green crosses are from the trained network.

a better fitting in terms of static mapping, i.e., capture ẋ
better. However, when the networks are used for simulation,
the conventional TDNN fails to capture x due to overfitting,
while the TrTDNN is able to reproduce it with high accuracy.
This highlights the advantages of the sparsity and trainability
of the proposed TrTDNN.

To emphasize that the trained TrTDNN can capture the
true dynamics, we also demonstrate that it reproduces the
nonlinearities in the system as well as the spectrum near
equilibria. Since the delayed components in system (38) are
decoupled, we plot them separately as shown by the solid
curves in Fig. 6(a). Also, by activating each delayed channel
in the network inputs, we can plot the nonlinear approximation
given by the trained network, as shown by the dashed curves.
Thus, with sigmoid function (39) and only three neurons in the
hidden layer, the TrTDNN can simultaneously learn the delays
and nonlinearities. In order to check the transient dynamics
around the equilibrium x(t) ≡ 0 in system (38), we compare
the spectrum, i.e., the eigenvalues of the trained network and
that of the original system in Fig. 6(b). The spectrum given by

5226 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 36, NO. 3, MARCH 2025

Fig. 7. Convergence of learned delays in 100 runs. (a) One attempt. (b) Five attempts. (c) Ten attempts. (d) 20 attempts.

Fig. 8. (a) Experimental setup where a CAV follows CHVs based on the data
transmitted through V2V connectivity. (b) Nonlinearities used in the model.

the trained network is very close to the ground truth, which
are the solutions to λ+ e−1.5λ

= 0. That is, the TrTDNNs
approximates well the underlying transient dynamics.

To illustrate the necessity of using multiple attempts in
the gradient-based training algorithms, we show the final
learned time delays with different numbers of attempts in
each training in Fig. 7 for system (38). The 100 runs of
training are performed, and the final delays are shown in the
3-D plot, while the color bar shows the final training error.
Fig. 7(a) shows that introducing the additional trainable delay
parameters into the networks leads to many undesired local
minima. As we increase the number of attempts, we explore
more places in the parameter space, and some undesired local
minima can be filtered out by choosing the best path. We can
see that with ten attempts in the training process, the delays
converge to the true values. Multiple initializations in the
training help to search globally. At the same time, the gradient
information obtained from approximate state derivatives helps
in local exploitation.

B. Learning From Field Data

Here, we provide an example of learning the delay and
nonlinearities from field data. In particular, we use a TrTDNN
to learn the longitudinal dynamics of a CAV from experimental
data. The scenario is shown in Fig. 8(a) where a CAV
is inserted to a chain of connected human-driven vehicles
(CHVs). Via vehicle-to-vehicle (V2V) communication, CAV
is made aware of the velocities and positions of the vehicles
ahead, and it also measures its own velocity and position.

The details of the controller design and experiments are
given in [55]. Here, we provide a brief overview of the design

procedure, while our main goal is to learn the dynamics form
data. The longitudinal dynamics of the CAV can be modeled
by the following equation:

ḣ(t) = v1(t)− v(t)

v̇(t) = −p(v(t))+ sat(u(t − τ)) (40)

where h is the distance headway to the CHV1 immediately
ahead, v is the speed of the CAV, and v1 is the speed
of the CHV1. Moreover, p(v(t)) represents the loss term,
which depends on CAV’s current velocity, while u represents
the commanded acceleration that is limited by the saturation
function

sat(u) =

amin, if u < amin

u, if amin ≤ u ≤ amax

amax, if u > amax

(41)

to keep it within the limits given by the road friction and driver
comfort. Finally, τ represents the time delay in the control loop
resulting from V2V communication, onboard computation,
and actuator delays. Neither the resistance term p(v) nor the
time delay τ was known while designing the controller. Here,
we will identify these from the data collected through the
experiments.

The control law used in the experiments [55], [56], [57],
[58] is given by the following equation:

u = α(V (h)− v)+

3∑
k=1

βk(W (vk)− v) (42)

where α is the control gain used to regulate the headway h,
while β1, β2, and β3 are the control gains used to respond to
the velocities v1, v2, and v3 of the CHVs ahead. The control
law includes the range policy

V (h) =

0, if h < hst

κ(h − hst), if hst ≤ h ≤ hgo

vmax, if h > hgo

(43)

which gives the desired speed as an affine function of the
headway. It also contains the speed policy

W (vk) =

{
vk, if vk ≤ vmax

vmax, if vk > vmax
(44)

which is introduced to avoid following leaders whose speed
exceeds the maximum desired speed vmax. The functions V ,
W , and sat are depicted in Fig. 8(b).

JI AND OROSZ: TRAINABLE DELAYS IN TDNNS FOR LEARNING DELAYED DYNAMICS 5227

Fig. 9. TrTDNN training results on datasets 500 and 233 using LM algorithm. (a) and (d) Training and validation loss. (b) and (e) Evolution of the time
delay. (c) and (f) Simulation of learned TrTDNN (black) together with the simulation given by the nominal model (light blue) and the experimental data
(red). Note that (a), (b), (d), and (e) only show the first 600 iterations of training, but the actual training stops later based on the validation loss criterion. The
RMSE of the quantities plotted in (c) and (f) is collected in Table II.

As shown in Fig. 9, we utilize two experimental datasets
with different controller settings. In “dataset 500,” the
CAV only responded to the CHV immediately ahead
using (β1, β2, β3) = (0.5, 0.0, 0.0) s−1, while in “dataset
233,” the CAV responded to all three CHVs ahead with
(β1, β2, β3) = (0.2, 0.3, 0.3) s−1. Both settings shared the
same α = 0.4 s−1. When simulating the nominal model,
we use τ = 0.6 s and p(v) = a + cv2 with a = 0.0981 m/s2 and
c = 0.0003 m−1; see [50]. The delay and the loss term
were not known in the experiments, and some unmodeled
dynamics (e.g., powertrain) are not represented in the nominal
model (40)–(42). This can be observed when comparing the
experimental data (red) and the simulation of the nominal
model (light blue) in Fig. 9(c) and (f). Our goal here is to
learn the overall dynamics of the CAV and the time delay τ

simultaneously from the experimental data.
A TrTDNN with three neurons in the single hidden layer

is used when learning the dynamics. The number of the
inputs depends on the availability of the data and the number
of the time delays in the systems. We presume that one
dominant time delay appears in the feedback loop through
the inputs h(t − τ), v(t − τ), v1(t − τ), v2(t − τ), v3(t − τ),
and we also set a time delay to zero corresponding to the

loss term containing v(t). There are altogether six inputs to
the TrTDNN, five of which share the same trainable delay.
The output of the TrTDNN is the acceleration v̇(t), since the
kinematic part of (40) does not require further learning. The
TrTDNNs are trained with LM methods with µ = 0.01 and
ten attempts. The initial delays for those attempts are chosen
uniformly between 0 and 2 s, and the maximum allowed delay
is set to 3 s.

Approximately, 500-s data (with a time step of 0.1 s)
are utilized from each experiment. The first 70% was used
for training, 15% was used for validation, and 15% was
used for testing. The training processes and delay learning
path are shown in Fig. 9(a) and (b) for dataset 500 and in
Fig. 9(d) and (e) for dataset 233. In both cases, the delay value
converges to a number around 0.65 s. In Fig. 9(c) and (f),
the simulations from the trained TrTDNN are shown as
black dotted-dashed lines capturing the experimental data (red
circles) well. The simulation results of the nominal model are
plotted as light blue solid curves. From Fig. 9(c), we can see
that the trained TrTDNN can capture the headway and velocity
well in the training segment and gives good predictions in
validation and testing segments. The difference between the
model-based simulations and the learned dynamics is more

5228 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 36, NO. 3, MARCH 2025

TABLE II
TESTING RESULTS FOR THE TWO DATASETS

Fig. 10. Distributions of learned delay in 100 runs for the two datasets.

pronounced for dataset 500 than for dataset 233, since in the
former case, the CAV performed more aggressive maneuvers.
The simulation-based root-mean-square errors between predic-
tion and data are collected in Table II for headway, velocity,
and acceleration. To show the convergence in the time delay
parameters, we run the training algorithm 100 times and plot
the distribution of the final learned delay in Fig. 10. For both
datasets, the delay converges to a distribution concentrated
around 0.65 s.

V. CONCLUSION

In this article, we established a connection between time
delay systems to the TDNNs in a continuous-time setting.
We proposed the concept of a TrTDNN, which enables one
to learn the nonlinearities and the time delays simultaneously.
We also proposed gradient-based learning algorithms based
on the derivative loss function, which led to fast training and
accurate network simulation results when using the trained
neural network as the right-hand side of the delay differential
equation. We showed that using a conventional TDNN resulted
in overfitting and inaccurate network simulation result. Utiliz-
ing sparse trainable delays in the TrTDNN helped to learn
the underlying mechanism, that is, to extract the time delays
and nonlinearities from data. The gradient-based learning
algorithms with multiple initializations for delay training were
demonstrated for two cases: learning from simulation data and
learning from experimental data collected by CAVs. As future
directions, we will consider the case where the states are not
fully observed. Additional networks may also be employed
together with TrTDNN to extract the hidden states and decode
hidden-state derivatives.

REFERENCES

[1] W. Zhao, W. Lin, R. Liu, and J. Ruan, “Asymptotical stability in
discrete-time neural networks,” IEEE Trans. Circuits Syst. I, Fundam.
Theory Appl., vol. 49, no. 10, pp. 1516–1520, Oct. 2002.

[2] H. Zhang, Z. Wang, and D. Liu, “A comprehensive review of stability
analysis of continuous-time recurrent neural networks,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 25, no. 7, pp. 1229–1262, Jul. 2014.

[3] K. S. Narendra and K. Parthasarathy, “Identification and control of
dynamical systems using neural networks,” IEEE Trans. Neural Netw.,
vol. 1, no. 1, pp. 4–27, Mar. 1990.

[4] X.-D. Li, J. K. L. Ho, and T. W. S. Chow, “Approximation of dynamical
time-variant systems by continuous-time recurrent neural networks,”
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 52, no. 10, pp. 656–660,
Oct. 2005.

[5] J.-S. Pei, E. C. Mai, J. P. Wright, and S. F. Masri, “Mapping some basic
functions and operations to multilayer feedforward neural networks for
modeling nonlinear dynamical systems and beyond,” Nonlinear Dyn.,
vol. 71, nos. 1–2, pp. 371–399, Jan. 2013.

[6] S. L. Brunton and J. N. Kutz, Data-Driven Science and Engineering:
Machine Learning, Dynamical Systems, and Control. Cambridge, U.K.:
Cambridge Univ. Press, 2019.

[7] J. G. Kuschewski, S. Hui, and S. H. Zak, “Application of feedforward
neural networks to dynamical system identification and control,” IEEE
Trans. Control Syst. Technol., vol. 1, no. 1, pp. 37–49, Mar. 1993.

[8] R. Kumar and S. Srivastava, “Externally recurrent neural network based
identification of dynamic systems using Lyapunov stability analysis,”
ISA Trans., vol. 98, pp. 292–308, Mar. 2020.

[9] R. Kumar, “Memory recurrent Elman neural network-based identifica-
tion of time-delayed nonlinear dynamical system,” IEEE Trans. Syst.,
Man, Cybern., Syst., vol. 53, no. 2, pp. 753–762, Feb. 2023.

[10] D. Psaltis, A. Sideris, and A. A. Yamamura, “A multilayered neural
network controller,” IEEE Control Syst. Mag., vol. 8, no. 2, pp. 17–21,
Apr. 1988.

[11] R. Kumar, S. Srivastava, and J. R. P. Gupta, “Modeling and adaptive
control of nonlinear dynamical systems using radial basis function
network,” Soft Comput., vol. 21, no. 15, pp. 4447–4463, Aug. 2017.

[12] S. Wong, L. Jiang, R. Walters, T. G. Molnár, G. Orosz, and R. Yu,
“Traffic forecasting using vehicle-to-vehicle communication,” in Proc.
3rd Conf. Learn. Dyn. Control, vol. 211, 2021, pp. 917–929.

[13] R. Kumar, “A Lyapunov-stability-based context-layered recurrent
pi-sigma neural network for the identification of nonlinear systems,”
Appl. Soft Comput., vol. 122, Jun. 2022, Art. no. 108836.

[14] R. Kumar, “Double internal loop higher-order recurrent neural network-
based adaptive control of the nonlinear dynamical system,” Soft Comput.,
vol. 27, no. 22, pp. 17313–17331, Nov. 2023.

[15] J. Li, Z. Wang, H. Dong, and G. Ghinea, “Outlier-resistant remote
state estimation for recurrent neural networks with mixed time-delays,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 5, pp. 2266–2273,
May 2021.

[16] A. Keane, B. Krauskopf, and C. M. Postlethwaite, “Climate models
with delay differential equations,” Chaos, Interdiscipl. J. Nonlinear Sci.,
vol. 27, no. 11, Nov. 2017, Art. no. 114309.

[17] F. Casella, “Can the COVID-19 epidemic be controlled on the basis
of daily test reports?” IEEE Control Syst. Lett., vol. 5, no. 3,
pp. 1079–1084, Jul. 2021.

[18] A. D. Ames, T. G. Molnár, A. W. Singletary, and G. Orosz, “Safety-
critical control of active interventions for COVID-19 mitigation,” IEEE
Access, vol. 8, pp. 188454–188474, 2020.

[19] G. Orosz, R. E. Wilson, R. Szalai, and G. Stépán, “Exciting traffic jams:
Nonlinear phenomena behind traffic jam formation on highways,” Phys.
Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 80, no. 4,
Oct. 2009, Art. no. 046205.

[20] M. di Bernardo, A. Salvi, and S. Santini, “Distributed consensus strategy
for platooning of vehicles in the presence of time-varying heterogeneous
communication delays,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 1,
pp. 102–112, Feb. 2015.

[21] Y. Chen, D. Huang, N. Qin, and Y. Zhang, “Adaptive iterative learn-
ing control for a class of nonlinear strict-feedback systems with
unknown state delays,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34,
pp. 6416–6427, 2023.

[22] R. Moghadam and S. Jagannathan, “Optimal adaptive control of uncer-
tain nonlinear continuous-time systems with input and state delays,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 6, pp. 3195–3204,
Jun. 2023.

JI AND OROSZ: TRAINABLE DELAYS IN TDNNS FOR LEARNING DELAYED DYNAMICS 5229

[23] T. G. Molnar and T. Insperger, “On the robust stabilizability of unstable
systems with feedback delay by finite spectrum assignment,” J. Vib.
Control, vol. 22, no. 3, pp. 649–661, Feb. 2016.

[24] S. Arik, “New criteria for stability of neutral-type neural networks with
multiple time delays,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31,
no. 5, pp. 1504–1513, May 2020.

[25] X. Zhang, D. Wang, K. Ota, M. Dong, and H. Li, “Delay-dependent
switching approaches for stability analysis of two additive time-varying
delay neural networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33,
no. 12, pp. 7545–7558, Dec. 2022.

[26] Y. He, G. P. Liu, D. Rees, and M. Wu, “Stability analysis for neural
networks with time-varying interval delay,” IEEE Trans. Neural Netw.,
vol. 18, no. 6, pp. 1850–1854, Nov. 2007.

[27] Z. Li, Y. Bai, C. Huang, H. Yan, and S. Mu, “Improved stability analysis
for delayed neural networks,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 29, no. 9, pp. 4535–4541, Sep. 2018.

[28] O. Diekmann, S. A. van Gils, S. M. V. Lunel, and H.-O. Walther, Delay
Equations. Cham, Switzerland: Springer, 1995.

[29] K. Gu, V. L. Kharitonov, and J. Chen, Stability of Time-Delay System.
Cham, Switzerland: Springer, 2003.

[30] W. Michiels and S.-I. Niculescu, Stability and Stabilization of Time-delay
Systems. Philadelphia, PA, USA: SIAM, 2007.

[31] M. Krstic, Delay Compensation for Nonlinear, Adaptive, and PDE
Systems. Basel, Switzerland: Birkhäuser, 2003.

[32] T. Insperger and G. Stépán, Semi-Discretization for Time-Delay Systems.
Cham, Switzerland: Springer, 2011.

[33] E. Fridman, Introduction to Time-Delay Systems. Basel, Switzerland:
Birkhäuser, 2014.

[34] D. Breda, S. Maset, and R. Vermiglio, Stability of Linear Delay
Differential Equations. Cham, Switzerland: Springer, 2015.

[35] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud,
“Neural ordinary differential equations,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 31, S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds. Red Hook,
NY, USA: Curran Associates, 2018. [Online]. Available: https://
proceedings.neurips.cc/paper_files/paper/2018/file/69386f6bb1dfed6869
2a24c8686939b9-Paper.pdf

[36] M. A. Cohen and S. Grossberg, “Absolute stability of global pattern
formation and parallel memory storage by competitive neural networks,”
IEEE Trans. Syst., Man, Cybern., vol. SMC-13, no. 5, pp. 815–826,
Sep. 1983.

[37] K. Funahashi and Y. Nakamura, “Approximation of dynamical systems
by continuous time recurrent neural networks,” Neural Netw., vol. 6,
no. 6, pp. 801–806, 1993.

[38] T. W. S. Chow and X.-D. Li, “Modeling of continuous time dynamical
systems with input by recurrent neural networks,” IEEE Trans. Circuits
Syst. I, Fundam. Theory Appl., vol. 47, no. 4, pp. 575–578, Apr. 2000.

[39] G. Orosz and G. Stépán, “Subcritical Hopf bifurcations in a
car-following model with reaction-time delay,” Proc. Roy. Soc. A, Math.,
Phys. Eng. Sci., vol. 462, no. 2073, pp. 2643–2670, Sep. 2006.

[40] T. G. Molnar, Z. Dombovari, T. Insperger, and G. Stepan, “On the
analysis of the double Hopf bifurcation in machining processes via
centre manifold reduction,” Proc. Roy. Soc. A, Math., Phys. Eng. Sci.,
vol. 473, no. 2207, Nov. 2017, Art. no. 20170502.

[41] M. C. Mackey and L. Glass, “Oscillation and chaos in physiological
control systems,” Science, vol. 197, no. 4300, pp. 287–289, Jul. 1977.

[42] M. Goldmann, C. R. Mirasso, I. Fischer, and M. C. Soriano, “Learn one
size to infer all: Exploiting translational symmetries in delay-dynamical
and spatiotemporal systems using scalable neural networks,” Phys.
Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 106,
no. 4, Oct. 2022, Art. no. 044211.

[43] F. Stelzer, A. Röhm, R. Vicente, I. Fischer, and S. Yanchuk, “Deep
neural networks using a single neuron: Folded-in-time architecture using
feedback-modulated delay loops,” Nature Commun., vol. 12, no. 1,
pp. 1–10, Aug. 2021.

[44] Q. Zhu, Y. Guo, and W. Lin, “Neural delay differential equations,” 2021,
arXiv:2102.10801.

[45] Q. Zhu, Y. Guo, and W. Lin, “Neural delay differential equations: System
reconstruction and image classification,” 2023, arXiv:2304.05310.

[46] J. de Jesus Rubio, W. Yu, and X. Li, “Time-delay nonlinear system
modelling via delayed neural networks,” in Proc. 6th World Congr. Intell.
Control Autom., 2006, pp. 119–123.

[47] J. D. J. Rubio and W. Yu, “Stability analysis of nonlinear system
identification via delayed neural networks,” IEEE Trans. Circuits Syst.
II, Exp. Briefs, vol. 54, no. 2, pp. 161–165, Feb. 2007.

[48] X. A. Ji and G. Orosz, “Learn from one and predict all: Single trajectory
learning for time delay systems,” Nonlinear Dyn., vol. 112, no. 5,
pp. 3505–3518, Mar. 2024, doi: 10.1007/s11071-023-09206-y.

[49] X. A. Ji, T. G. Molnár, S. S. Avedisov, and G. Orosz, “Feed-forward
neural networks with trainable delay,” in Proc. 2nd Conf. Learn. Dyn.
Control, vol. 120, 2020, pp. 127–136.

[50] X. A. Ji, T. G. Molnár, S. S. Avedisov, and G. Orosz, “Learning the
dynamics of time delay systems with trainable delays,” in Proc. 3rd
Conf. Learn. Dyn. Control, vol. 144, 2021, pp. 930–942.

[51] F. Chen, H. Garnier, and M. Gilson, “Robust identification of
continuous-time models with arbitrary time-delay from irregularly sam-
pled data,” J. Process Control, vol. 25, pp. 19–27, Jan. 2015.

[52] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang,
“Phoneme recognition using time-delay neural networks,” IEEE Trans.
Acoust., Speech, Signal Process., vol. 37, no. 3, pp. 328–339, Mar. 1989.

[53] X. Ji and G. Orosz, “Learning the dynamics of autonomous nonlin-
ear delay systems,” in Proc. 5th Conf. Learn. Dyn. Control, 2023,
pp. 116–127.

[54] J. J. Moré, “The Levenberg–Marquardt algorithm: Implementation and
theory,” in Numerical Analysis. Cham, Switzerland: Springer, 1978,
pp. 105–116.

[55] J. I. Ge, S. S. Avedisov, C. R. He, W. B. Qin, M. Sadeghpour, and
G. Orosz, “Experimental validation of connected automated vehicle
design among human-driven vehicles,” Transp. Res. C, Emerg. Technol.,
vol. 91, pp. 335–352, Jun. 2018.

[56] L. Zhang and G. Orosz, “Motif-based design for connected vehicle
systems in presence of heterogeneous connectivity structures and time
delays,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 6, pp. 1638–1651,
Jun. 2016.

[57] D. Hajdu, J. I. Ge, T. Insperger, and G. Orosz, “Robust design of
connected cruise control among human-driven vehicles,” IEEE Trans.
Intell. Transp. Syst., vol. 21, no. 2, pp. 749–761, Feb. 2020.

[58] S. S. Avedisov, G. Bansal, and G. Orosz, “Impacts of connected
automated vehicles on freeway traffic patterns at different penetration
levels,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 5, pp. 4305–4318,
May 2022.

Xunbi A. Ji received the B.E. degree in energy
and power engineering from Southeast University,
Nanjing, China, in 2018, and the MSE degree
in mechanical engineering from the University of
Michigan, Ann Arbor, MI, USA, in 2020, where she
is currently pursuing the Ph.D. degree in mechanical
engineering.

Her research interests include modeling time delay
systems, nonlinear dynamics, and applications to
connected and automated vehicles.

Gábor Orosz (Senior Member, IEEE) received the
M.Sc. degree in engineering physics from Budapest
University of Technology, Budapest, Hungary,
in 2002, and the Ph.D. degree in engineering mathe-
matics from the University of Bristol, Bristol, U.K.,
in 2006.

He held post-doctoral positions at the Univer-
sity of Exeter, Exeter, U.K., and the University
of California, Santa Barbara, CA, USA. In 2010,
he joined the University of Michigan, Ann Arbor,
MI, USA, where he is currently an Associate Pro-

fessor of mechanical engineering, and civil and environmental engineering.
From 2017 to 2018, he was a Visiting Professor of control and dynamical
systems at California Institute of Technology, Pasadena, CA, USA. In 2022,
he was a Visiting Professor of applied mechanics at Budapest University
of Technology. His research interests include nonlinear dynamics and con-
trol, time delay systems, machine learning, and data-driven systems with
applications to connected and automated vehicles, traffic flow, and biological
networks.

http://dx.doi.org/10.1007/s11071-023-09206-y

